
AP2PS 2011

The Third International Conference on Advances in P2P Systems

ISBN: 978-1-61208-173-1

November 20-25, 2011

Lisbon, Portugal

AP2PS 2011 Editors

Antonio Liotta, Eindhoven University of Technology, The Netherlands

Nikos Antonopoulos, University of Derby, UK

Giuseppe Di Fatta, The University of Reading, UK

Takahiro Hara, University of Osaka, Japan

Quang Hieu Vu, ETISALAT BT Innovation Center (EBTIC)/ Khalifa University, UAE

 1 / 103

AP2PS 2011

Foreword

The Third International Conference on Advances in P2P Systems [AP2PS 2011], held between November
20 and 25, 2011 in Lisbon, Portugal, was a dedicated forum for academic researchers and industrial practitioners to
present and discuss the latest architectures, protocols, applications and innovative ideas in the field of overlay and
peer-to-peer networking.

Peer-to-peer systems have considerably evolved since their original conception, in the 90’s. The idea of
distributing files using the user’s terminal as a relay has now been widely extended to embrace virtually any form
of resource (e.g., computational and storage resources), data (e.g. files and real-time streams) and service (e.g., IP
telephony, IP TV, collaboration).

Robustness, resilience and autonomic management are the key evolutionary step which makes them best
fitted in dynamic, large-scale, decentralized environments. Peer-to-Peer systems provide network applications the
opportunity to leap over the boundaries of the standardized and best effort protocols and the constraints of
administrative domains.

We take here the opportunity to warmly thank all the members of the AP2PS 2011 Technical Program
Committee, as well as the numerous reviewers. The creation of such a broad and high quality conference program
would not have been possible without their involvement. We also kindly thank all the authors who dedicated much
of their time and efforts to contribute to AP2PS 2011. We truly believe that, thanks to all these efforts, the final
conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals, organizations, and
sponsors. We are grateful to the members of the AP2PS 2011 organizing committee for their help in handling the
logistics and for their work to make this professional meeting a success.

We hope that AP2PS 2011 was a successful international forum for the exchange of ideas and results
between academia and industry and for the promotion of progress in the field of P2P systems.

We are convinced that the participants found the event useful and communications very open. We also
hope the attendees enjoyed the historic charm of Lisbon, Portugal.

AP2PS 2011 Chairs:

Marco Aiello
Nick Antonopoulos
Giuseppe Di Fatta
Anders Fongen
Takahiro Hara
Yasushi Kambayashi
Antonio Liotta
Christoph Schuba
Roman Y. Shtykh
Quang Hieu Vu
Ouri Wolfson

 2 / 103

AP2PS 2011

Committee

AP2PS General Chairs

Nick Antonopoulos, University of Derby, UK
Antonio Liotta, Eindhoven University of Technology, The Netherlands
Giuseppe Di Fatta, The University of Reading, UK

AP2PS Advisory Chairs

Marco Aiello, University of Groningen, The Netherlands
Takahiro Hara, University of Osaka, Japan
Ouri Wolfson, University of Illinois at Chicago, USA

AP2PS 2011 Industry Liaison Chair

Christoph Schuba, Oracle Corp., USA
Roman Y. Shtykh, Rakuten, Inc., Japan

AP2PS 2011 Research Chairs

Yasushi Kambayashi, Nippon Institute of Technology, Japan
Anders Fongen, Norwegian Defense Research Establishment, Norway
Quang Hieu Vu, ETISALAT BT Innovation Center (EBTIC)/ Khalifa University, UAE

AP2PS 2011 Technical Program Committee

Jemal H. Abawajy, Deakin University - Geelong, Australia
Marco Aiello, University of Groningen, The Netherlands
Nikos Antonopoulos, University of Surrey, UK
Farnoush Banaei-Kashani, University of Southern California, USA
Ataul Bari, University of Western Ontario, Canada
Andreas Berl, University of Passau, Germany
Dumitru Dan Burdescu, University of Craiova, Romania
Candido Caballero-Gil, University of La Laguna, Spain
Frances Brazier, Tup-Delft, The Netherlands
Ahmet Burak Can, Hacettepe University, Turkey
Juan-Carlos Cano, Universidad Politécnica de Valencia, Spain
Charalampos Chelmis, University of Southern California, USA
Chou Cheng-Fu, National Taiwan University, Taiwan
Giovanni Chiola, Università di Genova, Italia
Carmela Comito, University of Calabria - Rende, Italy
Noël Crespi, IT-ParisSud, France
Antonio Cuadra-Sanchez, Indra, Spain
Rosario De Chiara, Università degli Studi di Salerno - Fisciano, Italy
Giuseppe Di Fatta, The University of Reading, UK
Anne Doucet , University Pierre et Marie Curie (Paris VI), France
Nashwa Mamdouh El-Bendary, Arab Academy for Science, Technology, and Maritime Transport - Giza, Egypt

 3 / 103

Luis Enrique Sánchez Crespo, SICAMAN, Spain
Jesús Esteban Díaz-Verdejo, University of Granada, Spain
George Exarchakos, TU Eindhoven, The Netherlands
Antonio Alfredo Ferreira Loureiro, Federal University of Minas Gerais, Brazil
Martin Fleury, University of Essex, UK
Giancarlo Fortino, University of Calabria - Rende (CS), Italy
Mário Freire, University of Beira Interior, Portugal
Marco Furini, University of Modena and Reggio Emilia, Italy
Alex Galis, University College London, UK
Lee Gillam, University of Surrey, UK
Katja Gilly de la Sierra-Llamazares, Miguel Hernandez University, Spain
Anastasios Gounaris, University of Thessaloniki, Greece
Takahiro Hara, University of Osaka, Japan
Kenneth Hawick, Massey University - Albany, New Zealand
Mikko Heikkinen, TKK Helsinki University of Technology, Finland
Pilar Herrero, Universidad Politécnica de Madrid, Spain
Nicolas Hidalgo, INRIA/LIP6 Paris France
Quang Hieu Vu, ETISALAT BT Innovation Center (EBTIC)/ Khalifa University, UAE
Eva Hladka, Masaryk University, Czech Republic
Eduardo Huedo Cuesta, Universidad Complutense de Madrid, Spain
Fabrice Huet, University of Nice - Sophia Antipolis / INRIA-CNRS, France
Carl James Debono, University of Malta, Malta
Hai Jiang, Arkansas State University, USA
Carlos Juiz, University of the Balearic Islands, Spain
Katerina Kabassi, TEI of Ionian Islands - Zakynthos Island, Greece
Yasushi Kambayashi, Nippon Institute of Technology, Japan
Georgios Kambourakis, University of the Aegean - Samos, Greece
Dimitrios Katsaros, University of Thessaly, Greece
Simon Koo, University of San Diego, USA
Harald Kosch, University Passau, Germany
Aleksandra Kovacevic, TU Darmstadt, Germany
Michal Kucharzak, Wroclaw University of Technology, Poland
Mikel Larrea, The University of the Basque Country, Spain
Yan Li, Conviva, Inc. - San Mateo, USA
Antonio Liotta, Eindhoven University of Technology, The Netherlands
Damon Shing-Min Liu , National Chung Cheng University, Taiwan
Lu Liu, University of Derby, UK
Xiao Liu, Swinbure University of Technology - Melbourne, Australia
Xuezheng Liu, Google, Inc, China
Gabriel Maciá Fernández, University of Granada, Spain
Constandinos Mavromoustakis, University of Nicosia, Cyprus
Pedro Medeiros, Universidade Nova de Lisboa, Portugal
Carlos Miguel Tavares Calafate, Universidad Politécnica de Valencia, Spain
Jean-Claude Moissinac, TELECOM ParisTech, France
Jezabel Molina-Gil, University of La Laguna, Spain
Stefano Montanelli, Università degli Studi di Milano, Italy
Gianluca Moro, Università di Bologna, Italy
Rossana Motta, University of California - San Diego, USA
Juan Pedro Muñoz-Gea, Polytechnic University of Cartagena, Spain
Jean-Frederic Myoupo, University of Picardie Jules Verne, France
Philippe O. A. Navaux, Universidade Federal do Rio Grande do Sul, Brazil
Reza Nejabati, University of Essex - Colchester, UK
Carlo Nocentini, Università degli Studi di Firenze, Italy

 4 / 103

Thanasis G. Papaioannou, EPFL, Switzerland
Jens Myrup Pedersen , Aalborg University - Aalborg East, Denmark
Rubem Pereira, Liverpool John Moores University, UK
Jean-Marc Pierson, IRIT / Université Paul Sabatier - Toulouse, France
Thomas Risse, L3S Research Center, Germany
Tapani Ristaniemi, University of Jyväskylä, Finland
Claudia Lucia Roncancio, Grenoble INP/Ensimag, France
Tomas Sanchez Lopez, EADS Innovation Works, UK
Rossano Schifanella, University of Turin, Italy
Florence Sedes, IRIT, France
Patricia Serrano Alvarado, University of Nantes, France
Roman Y. Shtykh, Rakuten, Inc., Japan
Simone Silvestri, Sapienza University of Rome, Italy
Dora Souliou, National Technical University of Athens, Greece
Ahmad Tajuddin Bin Samsudin, Telekom Malaysia (Research & Development), Malaysia
Orazio Tomarchio, University of Catania, Italy
Bo (Rambo) Tan, University of Illinois at Urbana - Champaign, USA
Kurt Tutschku, Institute of Distributed and Multimedia Systems / University of Vienna, Austria
Miguel A. Vega-Rodríguez, University of Extremadura, Spain
Kevin Vella, University of Malta, Malta /University of Kent, UK
Wenjing Wang, Attila Technologies, USA
Ouri Wolfson, University of Illinois at Chicago, USA

Additional reviewers

Alexander Allan, University of Reading, UK
Piotr Szczurek, University of Illinois at Chicago, USA

 5 / 103

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 6 / 103

Table of Contents

SGR-Tree: a Skip Graph based R-Tree for multi-dimensional data indexing in Peer-to-Peer systems
Quang Hieu Vu

1

Virtual Landmarking for Locality Aware Peer IDs
Alexander Allan, James Bradbury, and Giuseppe Di Fatta

7

Leveraging Social and Content-based Recommendation in P2P Systems
Fady Draidi, Esther Pacitti, Michelle Cart, and Hinde Lilia Bouziane

13

Web Service and Business Process Execution on Peer-to-Peer Environments
Marco Pereira, Marco Fernandes, and Joaquim Martins

19

Symmetric Push-Sum Protocol for Decentralised Aggregation
Francesco Blasa, Simone Cafiero, Giancarlo Fortino, and Giuseppe Di Fatta

27

A Data Aggregation System using Mobile Agents on Integrated Sensor Networks
Yuto Hamaguchi, Tomoki Yoshihisa, Yoshimasa Ishi, Yuuichi Teranishi, Takahiro Hara, and Shojiro Nishio

33

Modular P2P-Based Approach for RDF Data Storage and Retrieval
Imen Filali, Laurent Pellegrino, Francesco Bongiovanni, Fabrice Huet, and Francoise Baude

39

Formal Analysis and Verification of Peer-to-Peer Node Behaviour
Petter Sandvik and Kaisa Sere

47

Video Quality Assurance for SVC in Peer-to-Peer Streaming
Mikko Uitto and Janne Vehkapera

53

Pair-wise similarity criteria for flows identification in P2P/non-P2P traffic classification
Jose Camacho, Pablo Padilla, Francisco Javier Salcedo-Campos, Pedro Garcia-Teodoro, and Jesus Esteban
Diaz-Verdejo

59

An Empirical Study of MPI over PC Clusters
Fazal Noor, Majed Alhaisoni, and Antonio Liotta

65

Coalitions and Incentives for Content Distribution over a Secure Peer-to-Peer Middleware
Maria-Victoria Belmonte, Manuel Diaz, and Ana Reyna

71

On the Performance of OpenDPI in Identifying P2P Truncated Flows
Jawad Khalife, Amjad Hajjar, and Jesus Diaz-Verdejo

79

 1 / 2 7 / 103

Applying Certificate-Based Routing to a Kademlia-Based Distributed Hash Table
Michael Kohnen, Jan Gerbecks, and Erwin P. Rathgeb

85

New Heuristics for Node and Flow Detection in eDonkey-based Services
Rafael Rodriguez-Gomez, Gabriel Macia-Fernandez, and Pedro Garcia-Teodoro

90

Powered by TCPDF (www.tcpdf.org)

 2 / 2 8 / 103

SGR-Tree: a Skip Graph based R-Tree
for multi-dimensional data indexing in Peer-to-Peer systems

Quang Hieu Vu
ETISALAT BT Innovation Center

Khalifa University of Science, Technology and Research, UAE
quang.vu@kustar.ac.ae

Abstract—In this paper, we propose SGR-Tree, an index
structure for multi-dimensional data in Peer-to-Peer (P2P)
systems. SGR-Tree is an R-Tree index structure constructed on
top of a Skip Graph, a P2P overlay network. In SGR-Tree, each
Skip Graph node corresponds to an R-Tree leaf node. However,
different from R-Tree, SGR-Tree does not employ internal
nodes for routing purpose. Instead, at each Skip Graph node,
we virtually partition the whole system into non-overlapping
regions, each of which is connected to the node via a neighbor
node. For each region, the node keeps the minimum hyper-
rectangle covering all hyper-rectangles, which are in charged
by nodes falling in the region. In this way, when a node issues
or receives a query, it simply sends or forwards the query
to neighbor nodes whose minimum covering hyper-rectangle
intersects with the search region. The main advantage of SGR-
Tree is that it can avoid not only the bottleneck problem at
the root node but also the high cost of maintaining internal
R-Tree nodes, especially when the index structure is often
changed. Nevertheless, we prove that SGR-Tree is still able to
process multi-dimensional queries efficiently within a boundary
of logN steps, where N is the number of nodes in the system.
We have done experiments to validate the practicability and
efficiency of SGR-Tree.

Keywords - Multi-dimensional data indexing, P2P.

I. INTRODUCTION

In the past decade, Peer-to-Peer (P2P) systems have
received a lot of interests from both computer users and
researchers. The main advantage of P2P systems is the capa-
bility of sharing resources so that large systems can be easily
formed by low-cost computers instead of expensive servers.
Since sharing data such as images, music files, and textual
documents are often represented as multi-dimensional points
in a multi-dimensional space, supporting multi-dimensional
data indexing in P2P systems is extremely important.

Multi-dimensional data indexing has been well studied
in centralized systems. A straightforward method to index
multi-dimensional data is to employ Space Filling Curves [1]
such as Hilbert curve or Z-curve (Z-order) to first convert
multi-dimensional data to one-dimensional data and then to
index the converted one-dimensional data in popular one-
dimensional index structures. The problem of this method,
however, is that it cannot index high-dimensional data ef-
ficiently. Alternatively, several index structures that directly
index multi-dimensional data such as R-Tree [2], M-Tree [3],

and SS-Tree [4] have been proposed. These index structures
are generally based on a tree, where the data space is
hierarchically divided into smaller subspaces when the space
is overloaded and the tree grows up.

A popular approach to support multi-dimensional data
indexing in P2P is to adapt centralized multi-dimensional
index structures in P2P environment. Given a tree based
index structure, the biggest challenge of this approach,
however, is how to deal with the bottle-neck problem at
the root of the tree structure since all queries need to be
started at the root node. VBI-Tree [5] solves this challenge
by keeping an upside-path routing table at every node in the
tree structure and using upside-paths together with sideways-
routing tables for routing purpose. In this way, since a query
can start at any node in the tree structure, the bottle neck
problem at the root node is eliminated. Nevertheless, the
disadvantage of this solution is that it incurs a high cost for
updating upside-paths of nodes when the index tree structure
is changed.

To avoid the high cost of maintaining upside-paths, we
propose SGR-Tree, an R-Tree [2] index structure built on top
of a Skip Graph [6]. SGR-Tree uses a different way to build
routing tables where no upside-paths are needed. In SGR-
Tree, each Skip Graph node corresponds to a leaf node in the
R-Tree. For routing purpose, each Skip Graph node virtually
partitions the whole system into non-overlapping regions,
each of which is connected to the node via a neighbor
node. For each region, the node keeps the minimum hyper-
rectangle covering all hyper-rectangles, which are in charged
by nodes falling in that region. In this way, a query is still
able to start at any node in the Skip Graph structure. When a
node issues or receives a query, it needs to send or forward
the query to all neighbor nodes whose minimum covering
hyper-rectangle intersects with the search region. In addition
to SGR-Tree, since load balancing is an important aspect
of P2P systems, we also propose a mechanism for load
balancing in SGR-Tree. Finally, we conduct experiments to
evaluate the performance of SGR-Tree.

The rest of this paper is organized as follows. Section II
introduces related work. Section III presents the architecture
of SGR-Tree. Section IV describes how query is processed
in SGR-Tree. Section V discusses the load balancing mech-

1Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 9 / 103

anism. Finally, Section VI shows experimental study and
Section VII concludes the paper.

II. RELATED WORK

In general, there are two main approaches to support
multi-dimensional data indexing in P2P systems. In the first
approach, multi-dimensional data is first converted to one-
dimensional data using Space Filling Curves [1]. After that,
the result one-dimensional data is indexed to P2P systems
supporting one-dimensional data indexing. For example,
authors of [7] and [8] share the same idea of using Hilbert
curve for data conversion in the first step and Chord [9]
for data indexing in the second step. In these methods, the
system first encodes each dimensional value to a set of bit
keys so that an n-dimensional data item is represented by n
sets of bit keys. Hilbert curve is then used to convert these
sets of bits keys to a single value for indexing to Chord.
On the other hand, authors of [10] use Z-curse for data
conversion and Skip Graph [6] for data indexing. The main
disadvantage of methods belonging to the first approach is
that they are not efficient to index high-dimensional data.
Furthermore, these methods often have bad performance
when data distribution is skewed since the cost of load
balancing is very high.

To overcome the weakness of the first approach, the
second approach tries to adapt centralized multi-dimensional
data indexing structures in P2P environment. For exam-
ple, CAN [11], the first P2P system supporting multi-
dimensional data indexing, has a structure that is similar to
kd-tree [12] and grid file [13]. Alternatively, Skip Index [14]
utilizes kd-tree [12] to partition the data space into smaller
parts and then maps these parts to Skip Graph [6] by
encoding them into unique keys. On the other hand, P2PR-
Tree [15] proposes a tree structure, which is adapted from
R-Tree [2]. Additionally, VBI-Tree [5] and DP-Tree [16]
are designed as frameworks that can deploy different types
of index structures such as the R-Tree [2], M-Tree [3],
SS-Tree [4] as well as their variants. By employing tree
structures in distributed systems, the main challenge of
methods belonging to the second approach is how to avoid
the potential bottleneck occurred at the root node or nodes
near the root since queries always start at the root node. The
current solution used by existing index structures is to assign
each peer node to represent a leaf node and to let the leaf
node keep information about all internal nodes from itself to
the root for routing purpose. Since SGR-Tree uses a different
way to route queries where information of internal nodes is
not needed to maintain, this is the main difference between
SGR-Tree and existing index structures.

III. SYSTEM ARCHITECTURE

A. Overlay Network

In SGR-Tree, peers participating the system form a Skip
Graph structure (i.e., each peer is a Skip Graph node) and

A B C D E

A

B

C D

E

00 10 01 00 11

00

10

01 00

11 LEVEL 1

LEVEL 0

MEMBERSHIP

VECTOR

A 2-LEVEL SKIP GRAPH STRUCTURE

TWO-DIMENSIONAL SPACE AND SPLIT HISTORY

A B

C D

E

B

A

C D

E 1

1

4

4

2

2

3
3

R
min

(A, B) R
min

(C, D, E)

R
min

(C, D)

Figure 1. SGR-Tree architecture

each Skip Graph node corresponds to a leaf node in an
R-Tree index 1. While using Skip Graph as the overlay
network, SGR-Tree is different from the original Skip Graph
structure in three main features.

• Each node in SGR-Tree is in charge of a hyper-
rectangle in a multi-dimensional space instead of a
range of values as in the original Skip Graph structure.

• To share the load of an existing node for a new coming
node, the existing node splits its own hyper-rectangle
on one dimension into two smaller hyper-rectangles so
that the number of data covered by each hyper-rectangle
is approximately equal. After splitting, the node on the
left of the Skip Graph takes the lower hyper-rectangle
while the node on the right takes the upper hyper-
rectangle on the split dimension.

• When an existing node leaves the system, it passes
its hyper-rectangle to the neighbor node, whose hyper-
rectangle shares the border of its hyper-rectangle on
one dimension.

An example of an SGR-Tree supporting two-dimensional
data indexing with five nodes, A, B, C, D, and E in a
two-level Skip Graph is shown in Figure 1 in which the
top of the figure displays the Skip Graph overlay network
while the bottom of the figure describes hyper-rectangles in
charged by each node and the history of splitting the whole
two-dimensional space into these hyper-rectangles.

B. Routing Table

SGR-Tree does not use information of internal nodes in
the R-Tree structure for routing purpose as existing solutions
do. Instead, each node in SGR-Tree creates its own routing
table via its neighbor nodes. To create a routing table of
a node x, x virtually partitions nodes in the system into
non-overlapping regions, each of which is connected to x

1Since the terms “peer”, “Skip Graph node”, and “R-Tree leaf node” are
interchangeable in our system, we shall simply refer to them as “node”
when such reference does not cause any confusion. On the other hand, the
term “internal node” in R-Tree shall be kept as it is.

2Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 10 / 103

A B C D E

A

B

C D

E

00 10 01 00 11

00

10

01 00

11 LEVEL 1

LEVEL 0

MEMBERSHIP

VECTOR

SKIP GRAPH

TWO-DIMENSIONAL SPACEB

C R
min
(C, D, E)

R(B)
Node A

A

C R
min
(C, D)

R(A)

Node B

E R(E)
B

A R(A)

R(B)

Node C

D R
min
(D, E)

C

E R(E)

R
min
(C, B, A)

Node D

D

B R
min
(B, A)

R
min
(D, C)

Node E

B

A

C D

E

ROUTING TABLES OF NODES

Figure 2. Routing tables of nodes in an SGR-Tree

through a neighbor node. For each region, the routing table
of x contains information of the minimum hyper-rectangle
covering all hyper-rectangles of nodes falling in that region.
Given a neighbor y of x at level l in the Skip Graph structure,
we define the non-overlapping region connected through y
in the view of x as follows.

• If y is a neighbor of x at the highest level, the non-
overlapping region associated with y consists of all
nodes following y on the same side of x, including
y. For example, as in Figure 2, since C is a neighbor
of A at level 1, which is the highest level in the Skip
Graph, the non-overlapping region associated with C
in the routing table of A consists of C, D, and E (D
and E are nodes following C on the right side of A).

• If y is not a neighbor of x at the highest level, the non-
overlapping region associated with y includes all nodes
falling between y and z, the neighbor of x at the nearest
level higher than l on the same side of x as y, including
y. For example, as in Figure 2, since C is a neighbor of
B at level 0, which is not the highest level in the Skip
Graph, the non-overlapping region associated with C
in the routing table of B includes C and D (D is the
node falling between C and E, the next neighbor node
on the right side of B at level 1).

Figure 2 shows an SGR-Tree index structure with five
nodes and details of routing tables at these nodes. In each
routing table, the last two columns contain information of
neighbor nodes and the minimum hyper-rectangle covering
all hyper-rectangles of nodes in non-overlapping regions
associated with the neighbor nodes. Note that R(x) denotes
the hyper-rectangle in charged by x and Rmin(x, y, z)
denotes the minimum hyper-rectangle covering all hyper-
rectangles in charged by x, y, and z.

C. Routing Table Construction

To create the routing table of a new node x, each neighbor
y of x needs to send to x the minimum hyper-rectangle
covering the hyper-rectangle in charged by y and all hyper-
rectangles in charged by nodes following y on the opposite
side with x (this minimum hyper-rectangle can be calculated

from the routing table of y). Using received information
from neighbor nodes, x builds its routing table as follows.

• If y is a neighbor of x at the highest level in the
Skip Graph structure, the minimum hyper-rectangle
associated with y in the routing table is the minimum
hyper-rectangle x receives from y.

• If y is a neighbor of x at level l, which is not at the
highest level in the Skip Graph structure, the minimum
hyper-rectangle associated with y in the routing table
is the minimum hyper-rectangle covering the remainder
region of R(y) \ R(z), where R(y) is the minimum
hyper-rectangle x receives from y and R(z) is the min-
imum hyper-rectangle x receives from z, the neighbor
of x at the nearest level higher than l on the same side
of x as y.

For example, assume that a new node N joins to the
right of the existing node B of the SGR-Tree in Figure 2.
By joining the system, N takes over a part of the hyper-
rectangle in charged by B. The overlay network as well as
hyper-rectangles in charged by nodes in the SGR-Tree after
the join of N are shown in the top of Figure 3. As the figure
shows, the new node N has three neighbor nodes: A at level
1, B at level 0, and C and both levels 0 and 1. Thus, A,
B, and C need to send to N the minimum hyper-rectangles
covering all nodes following A, B and C in the opposite
side of N . They are respectively R(A), Rmin(A,B), and
Rmin(C,D,E). Since A and C are neighbors of N at
the highest level in the Skip Graph structure, R(A) and
Rmin(C,D,E) are also the minimum hyper-rectangles as-
sociated with A at C in the routing table of N . On the
other hand, since B is not a neighbor at the highest level
in the Skip Graph structure, the minimum hyper-rectangle
associated with B in the routing table of N is the minimum
hyper-rectangle covering Rmin(A,B) \R(A) = R(B).

Note that since the join of a new node affects the routing
tables of the new node’s neighbors, neighbors of the new
node also need to adjust their routing tables to reflect the
existence of the new node and calculate the minimum hyper-
rectangle associated with the new node from information

3Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 11 / 103

A B N C D

A

B

N C

E

00 10 01 01 00

00

10

01 01

11
LEVEL 1

LEVEL 0

MEMBERSHIP

VECTOR

SKIP GRAPH TWO-DIMENSIONAL SPACE

B

N R(N, C, D, E)

R(B)
Node A

A

N R(N, C, D)

R(A)

Node B

E R(E)
B

A R(A)

R(N, B)

Node C

D R(D, E)

C

E R(E)

R(C, B, A)
Node D

D

B R(B, A)

R(D, C)
Node E

E

D

11

00

B

C R(C, D, E)

R(B)Node N

B

A

C D

E

N

A R(A)

NEW NODE

ROUTING TABLES OF NODES AFTER THE NEW NODE N JOINS THE SYSTEM

Figure 3. Routing table of the new node N and changes in the routing tables of A, B, and C (neighbors of N) in the SGR-Tree

provided by the new node. Nevertheless, the process of
creating the routing table for the new node and updating
routing tables of the new node’s neighbors incur no ad-
ditional message cost because the routing information can
be piggy-backed with required messages used in the join
process (messages used to set up neighbor links of the new
node and update neighbor links of existing nodes).

IV. QUERY PROCESSING

Since a multi-dimensional point query can be considered
as a special case of a multi-dimensional range query where
the searched region is a point, we only introduce the algo-
rithm for processing a multi-dimensional range query in this
section. Basically, when a node x issues a multi-dimensional
range query q, x sends q to all neighbor nodes, whose
minimum hyper-rectangle intersects with the searched region
of q. Besides, to avoid sending duplicate query messages to
the same node, when x sends q to a neighbor node y at
level l, x also determines and sends to y a lookup region
L(y, q), which limits neighbor nodes y can further forward
q. L(y, q) is defined as follows.

• If y is a neighbor of x at the highest level in the Skip
Graph structure, L(y, q) are all nodes following y in
the opposite side of x.

• If y is not a neighbor of x at the highest level in the Skip
Graph structure, L(y, q) are all nodes falling between
y and z, the neighbor of x at the nearest level higher
than l on the same side of x as y.

When y receives q from x, if the hyper-rectangle of which
y is in charge intersects with the searched region of q, y
executes q locally and returns the result to x. Additionally,
if there is any neighbor node t of y, which falls into L(y, q)
and has the minimum hyper-rectangle intersecting with the
searched region of q, y first calculates L(t, q) based on the
position of t and L(y, q) and then forwards q together with
L(t, q) to t. Note that y does not need to forward q to
other neighbor nodes not falling in L(y, q) because these

neighbor nodes should receive the same query q from x or
other neighbor nodes of x sooner or later.

For example, assume that node A issues a query q for the
shaded region as in Figure 4. While having three neighbor
nodes B, C, and D, A only sends q to D since the minimum
hyper-rectangle of D, which is Rmin(D,E, F,G,H, I, J),
intersects with the searched region of q (note that L(D, q) =
{E,F,G,H, I, J}). On the other hand, since the minimum
hyper-rectangles of B and C, which are R(B) and R(C),
do not intersect with the searched region of q, q is sent to
neither B nor C. When D receives q from A, by checking
its routing table, D continues to forward the query to E with
L(E, q) = {F} and G with L(G, q) = {H, I, J} since E
and G are neighbor nodes having minimum hyper-rectangles
intersecting with the searched region of q in the opposite
side of A. Similarly, q is then continuously forwarded to F
with L(F, q) = {} from E; to H with L(H, q) = {I, J}
from G; and to I with L(I, q) = {J} from H . Finally, the
query is processed locally at F , G, H , and I since hyper-
rectangles of which these nodes are in charge intersect with
the searched region of q. Note that in Figure 4, routing
entries with red and blue colors contain minimum hyper-
rectangles that intersects with the searched region of q.
However, only neighbor nodes in red routing entries fall in
the limited lookup region defined by the query sender, and
hence q is only forwarded to these nodes. As an example,
when F receives q from E, even though it has two neighbor
nodes G and H , whose minimum hyper-rectangle intersects
with the searched region of q, it does not forward q to G
and H because G and H are not in L(F, q).

According to the query processing algorithm, when a
query q is sent from a node x to a neighbor node y, the
lookup region for query processing at y, L(y, q), is limited
by nodes either falling between y and the next neighbor
node z at the nearest level higher than the level of y in the
same direction with y or all nodes following y if y is the
farthest neighbor node in one side of x. This way of limiting
the lookup region is actually similar to that of the traditional

4Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 12 / 103

A B C D E F

A

B

C D

E F

A

B

C

D

E F

00 10 01 00 11 11

00

10

01 00

11 11

11 11

00 00

10

01

LEVEL 2

LEVEL 1

LEVEL 0

MEMBERSHIP

VECTOR

G H

01 10

I

10

J

01

G J

H I

G J

01 01

01 01

10 10

H I

10 10

q

q

q

q q q

step 1

step 2

step 2

step 3 step 3 step 4

A

B

C

D E

F

G

H

I

J

SKIP GRAPH

TWO-DIMENSIONAL SPACE

B

C R(C)

R(B)

Node A

D R
min

(D, E, F, G, H, I, J)

C

A R(A)

R
min

(B, C)

Node D
E R

min
(E, F)

G R
min

(G, H, I, J)
D

B R
min

(A, B)

R
min

(C, D)

Node E

F R
min

(F, G, H, I, J)

E

G R(G)

R
min

(A, B, C, D, E)

Node F

H R
min
(H, I, J)

F

D R(D)

R
min
(E, F)

Node G C R
min

(A, B, C)

H R
min

(H, I)

J R(J)

G

F R
min
(C, D, E, F)

R(G)

Node H
B R

min
(A, B)

I R
min

(I, J)

H

J R(J)

R
min
(A, B, C, D, E, F, G, H)

Node I
ROUTING TABLES OF NODES

INVOLVING QUERY PROCESSING

Figure 4. Query Processing in SGR-Tree

query processing in Skip Graph for single-dimensional range
query. The only difference between our query processing
algorithm and the traditional query processing is that our
algorithm allows to send a query to multiple nodes instead
of only one node. As a result, similar to traditional query
processing algorithm in Skip Graph, the maximum number
of steps required for processing a query in SGR-Tree is also
bounded at O(logN).

V. LOAD BALANCING

To serve load balancing purpose, in addition to keeping
minimum hyper-rectangles associated with neighbor nodes,
we also maintain the number of data belonging to these
minimum hyper-rectangles in the routing table. As a result,
when a new node joins the system, it can select a heavily
loaded node to join as an adjacent to share the heavy load.
On the other hand, when a node is overloaded, it can also
leverage information in the routing table to search for a
lightly loaded node. The lightly loaded node then leaves
the system and joins next to the heavily loaded node for
load balancing. In other to keep the information up to date,
whenever a load of a node is changed by a factor θ, the
node sends an update load request to all of its neighbor
nodes. When a node receives an update load request from
its neighbor, it first updates the load of the minimum hyper-
rectangle associated with the sender node. After that, if the

new load of the whole group is also changed by a factor
θ, the node continues to update its neighbor nodes but the
sender node about the change in load.

VI. EXPERIMENTAL STUDY

To evaluate the performance of SGR-Tree, we imple-
mented a simulator in Java to simulate an SGR-Tree of
10,000 nodes, where we inserted one by one 1,000,000 ran-
dom multi-dimensional data objects. We tested the simulator
with different data dimensionality from 2 to 20 and evalu-
ated the system’s performance according to three important
criteria: the number of steps required to process a query
(search steps), the number of messages required to process
a query (search messages), and the number of messages
required for building and updating routing tables (index
messages). We used VBI-Tree [5] for comparison purpose.
The experimental results are shown in Figure 5. The results
show that SGR-Tree is comparable to VBI-Tree in terms of
search steps and search messages. In particular, in both SGR-
Tree and VBI-Tree the number of search steps is independent
on data dimensionality while the number of search messages
increases with the increasing of data dimensionality. On the
other hand, in terms of index messages, SGR-Tree is much
better than VBI-Tree. In most cases, SGR-Tree only incurs
half of the cost compared to VBI-Tree. This confirms the
efficiency of SGR-Tree.

5Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 13 / 103

 0

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 n
um

be
r

of
 s

ea
rc

h
st

ep
s

Data dimensionality

SGR-Tree
VBI-Tree

(a) Average number of search steps

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14 16 18 20A
ve

ra
ge

 n
um

be
r

of
 s

ea
rc

h
m

es
sa

ge
s

Data dimensionality

SGR-Tree
VBI-Tree

(b) Average number of search messages

 0

 100

 200

 300

 400

 500

 600

 2 4 6 8 10 12 14 16 18 20A
ve

ra
ge

 n
um

be
r

of
 in

de
x

m
es

sa
ge

s

Data dimensionality

SGR-Tree
VBI-Tree

(c) Average number of index messages

Figure 5. Performance of SGR-Tree and VBI-Tree

VII. CONCLUSION

In this paper, we have introduced SGR-Tree, a structure
that is a combination of Skip Graph and R-Tree to support
multi-dimensional data indexing in P2P systems. In SGR-
Tree, participant peers form a Skip Graph overlay network
in which each Skip Graph node corresponds to a leaf node in
the R-Tree structure. For routing purpose, each node builds
its own routing table by virtually dividing the whole system
into non-overlapping regions, each of which is connected
to the node through a neighbor node. For each region, the
node maintains the minimum hyper-rectangle covering all
hyper-rectangles in charged by nodes in the region. Based
on this routing table structure, we have developed a query
processing algorithm that can process any multi-dimensional
query within O(logN) steps and the query can start at
any node in the SGR-Tree. Experiments have been done
to evaluate the efficiency of SGR-Tree.

REFERENCES

[1] H. Sagan, Space-Filling Curves. Springer-Verlag, 1994.

[2] A. Guttman, “R-trees: a dynamic index structure for spatial
searching,” in Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, 1984, pp. 47–57.

[3] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: an efficient
access method for similarity search in metric spaces,” in
Proceedings of the 23rd International Conference on Very
Large Databases (VLDB), 1997, pp. 426–435.

[4] D. A. White and R. Jain, “Similarity indexing with the ss-
tree,” in Proceedings of the 12th IEEE International Confer-
ence on Data Engineering (ICDE), 1996, pp. 516–523.

[5] H. V. Jagadish, B. C. Ooi, Q. H. Vu, R. Zhang, and A. Zhou,
“Vbi-tree: a peer-to-peer framework for supporting multi-
dimensional indexing schemes,” in Proceedings of the 22nd
IEEE International Conference on Data Engineering (ICDE),
2006.

[6] J. Aspnes and G. Shah, “Skip graphs,” in Proceedings of the
14th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2003, pp. 384–393.

[7] J. Lee, H. Lee, S. Kang, S. Choe, and J. Song, “CISS: an
efficient object clustering framework for DHT-based peer-to-
peer applications.”

[8] C. Schmidt and M. Parashar, “Flexible information discovery
in decentralized distributed systems,” in Proceedings of the
12th International Symposium on High Performance Dis-
tributed Computing (HPDC), 2003.

[9] D. Karger, F. Kaashoek, I. Stoica, R. Morris, and H. Bal-
akrishnan, “Chord: a scalable peer-to-peer lookup service for
internet applications,” in Proceedings of the ACM SIGCOMM
Conference, 2001, pp. 149–160.

[10] Y. Shu, K.-L. Tan, and A. Zhou, “Adapting the content native
space for load balanced,” 2004, pp. 122–135.

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker, “A scalable content-addressable network,” in
Proceedings of the ACM SIGCOMM Conference, 2001, pp.
161–172.

[12] J. L. Bentley, “Multidimensional binary search trees used for
associative searching,” Communications of the ACM, no. 9,
pp. 509–517, 1975.

[13] K. Hinrichs and J. Nievergelt, “The grid file: a data structure
designed to support proximity queries on spatial objects,” in
Proceedings of the 9th International Workshop on Graph-
Theoretic Concepts in Computer Science (WG), 1983.

[14] C. Zhang, A. Krishnamurthy, and R. Y. Wang, “SkipIndex:
towards a scalable Peer-to-Peer index service for high di-
mensional data,” Princeton University, Tech. Rep. TR-703-04,
2004.

[15] A. Mondal, Y. Lifu, and M. Kitsuregawa, “P2PR-Tree: an R-
Tree-based spatial index for Peer-to-Peer environments,” in
Proceedings of the EDBT Workshop on P2P and Databases
(P2PDB), 2004.

[16] M. Li, W.-C. Lee, and A. Sivasubramaniam, “DPTree: a
balanced tree based indexing framework for peer-to-peer
systems,” in Proceedings of the 14th International Conference
on Network Protocols (ICNP), 2006.

6Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 14 / 103

Virtual Landmarking for Locality Aware Peer IDs

Alexander Allan, James Bradbury and Giuseppe Di Fatta
School of Systems Engineering

The University of Reading
Whiteknights, Reading, Berkshire, RG6 6AY, UK

A.J.M.Allan@student.reading.ac.uk, siu06jb@reading.ac.uk and G.DiFatta@reading.ac.uk

Abstract—In Peer-to-Peer (P2P) networks, it is often desir-
able to assign node IDs which preserve locality relationships
in the underlying topology. Node locality can be embedded
into node IDs by utilizing a one dimensional mapping by a
Hilbert space filling curve on a vector of network distances
from each node to a subset of reference landmark nodes within
the network. However this approach is fundamentally limited
because while robustness and accuracy might be expected to
improve with the number of landmarks, the effectiveness of
1 dimensional Hilbert Curve mapping falls for the curse of
dimensionality. This work proposes an approach to solve this
issue using Landmark Multidimensional Scaling (LMDS) to
reduce a large set of landmarks to a smaller set of virtual
landmarks. This smaller set of landmarks has been postu-
lated to represent the intrinsic dimensionality of the network
space and therefore a space filling curve applied to these
virtual landmarks is expected to produce a better mapping
of the node ID space. The proposed approach, the Virtual
Landmarks Hilbert Curve (VLHC), is particularly suitable for
decentralised systems like P2P networks. In the experimental
simulations the effectiveness of the methods is measured by
means of the locality preservation derived from node IDs in
terms of latency to nearest neighbours. A variety of realistic
network topologies are simulated and this work provides strong
evidence to suggest that VLHC performs better than either
Hilbert Curves or LMDS use independently of each other.

Keywords-Peer-to-Peer Networks; Hilbert Curve; Landmark
Multidimensional Scaling; Virtual Landmarks; Network Coor-
dinates

I. INTRODUCTION

In Peer to Peer (P2P) networks it is useful in many
circumstances for a node to be aware of its relative locality,
the neighbourhood in which it resides. Latency optimizations
that neighbourhood knowledge provides bring clear benefits
to search and routing algorithms [1] [2] [3] [4]. In addition,
locality information itself is key to many self organizing,
cooperative and gossip based networks which represent an
emerging paradigm in P2P technology [5] [6].

A node’s calculation of its network locality is problematic
as it is impractical for each node to apply a distance measure
such as Round Trip Time (RTT) to all other nodes in the
network.

A solution to this problem comes in the form of landmark
clustering [3] used to create a scalar node ID space [7].

The assumption behind this technique is that RTT dis-
tances from any node to a predetermined set of landmark

nodes (a subset of nodes which act as reference points) will
be similar for other nodes in the immediate neighbourhood.
The vector of distances to landmarks can be used in itself if
the network protocols support a multidimensional index [8].
This work will be mainly focusing on the 1D scalar index
that can be generated from this vector, noting that such an
index can be more easily integrated into many existing peer-
to-peer distributed hash table (DHT) systems. A scalar index
provides an intuitive notion of locality for node naming
schemes in all areas of P2P networks.

In order to create this scalar node ID from a distance
vector, a dimensionality reduction algorithm is required.
Previous work [9] has shown that in the context of landmark
vector reduction, Hilbert Curves (HC), which are a type of
space filling curve with good locality preserving properties
[10] [11], outperform Principal Component Analysis (PCA)
and Sammon Mapping [12] in terms of neighbourhood
preservation. The Hilbert Curve can also be deployed in a
distributed manner, requiring only a set of landmark vectors
and a predefined HC granularity at each node to produce a
homogeneous indexing for all nodes.

A problem identified with this method and with landmark
indexing in general stems from the vulnerability and network
traffic implication inherent in having a small number of
landmark nodes upon which all other nodes depend to
produce their node ID. Furthermore the less landmarks
used, the greater the importance of landmark placement to
the accuracy of the overall algorithm [13]. It is desirable
therefore to increase the number of landmarks used as much
as possible so as to negate the need for a heuristic landmark
selection process and to decrease the vulnerability to single
node failures.

However, Hilbert Curves are affected considerably by the
curse of dimensionality [9], which causes accuracy to fall
and computational load to increase with each additional
dimension.

This work proposes a method to avoid the critical trade
off in the number of landmark nodes. The notion of virtual
landmarks is exploited to decouple the two issues. A large
number L of actual landmark nodes are projected into an
opportune small number K (K < L) of virtual landmarks
which define a network coordinates space for a given topol-
ogy. The HC is applied to the network coordinates space

7Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 15 / 103

which has lower dimensionality than the space defined by the
actual landmarks. In particular, a decentralised version of the
Landmark Multidimensional Scaling (LMDS) [14] algorithm
is adopted to map the landmark vectors into virtual landmark
vectors of lower dimensionality.

The proposed method, Virtual Landmarks Hilbert Curve
(VLHC), is expected to be more accurate in preserving
locality in the peer ID space than using either LMDS or
Hilbert Curve alone.

In the experimental analysis realistic network topologies
are used to compute and compare the accuracy of the
methods in preserving nearest neighbour relations.

The remainder of the paper is organized in the follow-
ing manner: Section II shows an overview of the various
algorithms and techniques used, Section III describes the
proposed method, Section IV describes the experimental
methodology used for the comparison and benchmarking,
Section V displays the experimental results and presents
their analysis and, finally, Section VI provides some con-
clusive remarks and suggests future extensions to this work.

II. OVERVIEW OF TECHNIQUES

A. Hilbert’s Curve

The Hilbert Curve (HC) is a method of sequentially
indexing points in space via a non intersecting line. The
idea of space filling curves was first proposed theoretically
by Giuseppe Peano in 1890 then geometrically by David
Hilbert a year later. These curves allow points in an N
dimensional space to be ordered on a 1D line in a manner
which preserves locality relationships. Although a number
of other space filling curves exist, such as Lebesque Curves,
it has been shown that Hilbert Curves are among the best
at preserving locality in terms of compact regions of space
[15] [16].

B. Virtual Landmarking

Virtual landmarks in the context of network coordinates
were proposed by Tang et al in 2003 [17]. The concept arose
from analysis of the process in which locality information
was embedded as sets of vectors to landmarks. This analysis
showed that the intrinsic dimensionality of these embeddings
in Internet-like networks was typically around 8 [17].

The concept of intrinsic dimensionality can be illustrated
by imagining a mechanical arm with 5 joints. A data set
might have the angle of each joint sampled at a certain
time interval with the tip of the arm represented by a 5
dimensional coordinates. Since the mechanical arm exists
in a 3D lab however, this position could be described by
a 3 dimensional coordinate system with no reduction in
accuracy. The embedding dimension of this data set would
then be 5, with an intrinsic dimensionality of 3.

This work is based on the assumption that the intrinsic
dimensionality of computer networks is relatively small. The
approximate figure of 8 given by Tang et al. suggests that

projecting a high dimensional coordinate space to a few
dimensions will retain most of the locality information.

C. LMDS

Multidimensional Scaling (MDS) [18][19] is a family
of dimensionality reduction methods. In classical MDS an
N×N distance matrix is required, where N is the number of
objects (nodes). The algorithm performs the eigendecompos-
tion of the distance matrix and has a complexity of O(N 3).
In order to generate the landmark vectors each node would
need to determine the communication latency to every other
node in the topology. This approach clearly has practical
limitations in a large-scale P2P network.

Landmark Multidimensional Scaling (LMDS) [20], [21]
is a scalable MDS variant which does not require computa-
tionally expensive matrix calculations, nor the entire distance
matrix. Landmark MDS instead performs a classical MDS
on the subset of landmark nodes only, and computes embed-
ding coordinates for the other nodes by using distance-based
triangulation by means of the decomposed landmark matrix.

Landmark MDS was developed primarily as a technique
to speed up the ISOMap procedure [20], and has been
shown to be equivalent to the Nyström approximation of
the eigenvectors and eigenvalues of a matrix [22], The
method works by utilising properties of kernel matrices to
calculate embedding coordinates based upon estimations of
eigenvalues and eigenvectors.

Two distance matrices are calculated, landmark node
to landmark node matrix A, and landmark node to non-
landmark node matrix B. To distinguish Landmark MDS
from the Nyström approximation, A and B must undergo
double-centering, akin to the classical MDS procedure [22].
The Nyström approximation then calculates estimated em-
bedding coordinates using values from the eigendecomposed
A matrix and values from the B matrix only, therefore
negating the need for the costly calculation of the N × N
distance matrix as well as its eigendecomposition. LMDS
has a complexity of O(NLk + L3), where L (L � N) is
the number of landmarks and k (k ≤ L) is the number of
the largest positive eigenvalues used in the approximation.

D. Landmark Selection

The landmark selection problem has itself been the subject
of much work as for small numbers of landmarks it can
have a large impact on any triangulation based methods
[23][13][24]. Various heuristics have been proposed which
attempt to select landmarks spread throughout the network
with a uniform distribution.

However, Tang et al (2004) [13] find that as the number of
landmarks in a network surpass 20, most landmark selection
techniques (with the exception of a computationally infea-
sible greedy approach) are no better than random selection
because a uniform distribution inevitably emerges from any
random selection method given sufficient points.

8Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 16 / 103

This work adopts a random selection of a large number of
landmarks, thus avoiding the complexity of implementing a
distributed non random selection heuristic.

III. VIRTUAL LANDMARKS HILBERT CURVE (VLHC)

This work proposes a novel approach for 1 dimensional
index generation by combining the notion of virtual network
landmarks with the two techniques HC and LMDS. In a two-
stage process at each node, LMDS is applied to the local
RTT vector vL obtained from a large set of L landmarks.
LMDS is used to project the high-dimensional RTT vector
to a lower K-dimensional space, where K < L. The
corresponding low-dimensional vector vK is referred to as
the virtual landmark vector.

In the second stage the local virtual landmark vector is
converted into a scalar index by means of a Hilbert Curve.

A traditional approach would apply HC to the landmark
vectors in L dimensions. In the proposed approach HC is
applied to the virtual landmark vectors in K dimensions. The
LMDS dimensionality reduction is adopted to overcome the
restriction of the Hilbert Curve that performs badly in high
dimensional spaces. This combination is also likely to be
more effective than using the LMDS to project directly into
the 1D index space, as Hilbert Curves have more favourable
locality preserving properties.

A. Decentralised Algorithm

A distributed approach for conducting the LMDS at each
node would be as follows.

In the initialisation step the landmark nodes ping each
other in order to create a matrix of latencies (RTT) between
them. The landmark nodes perform an all-to-all broadcast
operation to propagate their local latency vector and to
generate the L×L matrix. Each landmark node then uses this
matrix to perform classic MDS locally and independently.
All landmark nodes will compute the eigenvalue decomposi-
tion of the matrix. The landmark nodes generate an identical
reference set of K 1 eigenvalues and vectors.

When a node joins the network, it pings the landmarks to
create a local landmark vector. The node also requests and
receives the reference set of eigenvalues and eigenvectors
from any one of the landmarks. From the reference set and
its local RTT vector, the node can calculate its own ap-
proximate position in the lower dimensional MDS projection
using the Nyström approximation [22]. The coordinates of
this approximate position is then taken as the node’s virtual
landmark vector to which the Hilbert Curve is applied to
produce the 1D node index (peer ID).

The approach is scalable as nodes have to communicate
with landmark nodes only. The number and choice of actual
landmarks is not critical as already discussed.

1The actual number of virtual landmarks corresponds to the maximum
between the parameter K and the number of positive eigenvalues.

The VLHC technique can be applied in P2P networks
without the need for global communication and synchroni-
sation. This can be done in a fully decentralised approach
as outlined in the following steps.

Using a Gossip-based protocol nodes can randomly select
the landmarks by exchanging sorted lists of IP addresses and
choosing the top L after a suitable convergence period.

The elected landmark nodes collect RTTs to each other
and create the matrix needed for LMDS. The landmark
nodes distribute the matrix throughout the network at a
certain rate to prevent a traffic bottleneck at the landmarks.

When each node receives the matrix, it can then calculate
its virtual landmarks vector and from this its node ID.

IV. COMPARATIVE ANALYSIS

The comparative analysis of the different methods is based
on the average latency to the 30 Nearest Neighbour (NN)
nodes. Two methods provided the baseline and the optimal
value of the performance index. The ideal performance was
computed by searching the 30 actual NNs in the topology
for each node. The random selection of 30 nodes provided
a baseline value of the worst performance. The performance
indices from several random selections of landmark sets
were averaged.

In the experimental evaluation four methods were tested
to carry out a comparative analysis:

• 1-dimensional Landmark Multidimensional Scaling
(1D LMDS),

• Hilbert Curve applied to the landmark vectors (Hilbert),
• the proposed Virtual Landmarks Hilbert Curve (VLHC)

and
• 8-dimensional LMDS Network Coordinates (8D Net-

work Coordinates).

The 8D LMDS generates a network coordinates scheme
which is suitable to assess the information loss associ-
ated with the virtual landmarks. Ideally a loss-less latency
vector projection from the L-dimensional space to the K-
dimensional space would produce a performance index com-
parable to the ideal NN method. It should be noticed that
this method does not produce a scalar index which can be
used as peer ID and it serves as reference only.

In each test L landmark nodes were chosen randomly and
RTTs between them were used to create the matrix for the
LMDS calculations with the Nyström approximation. RTTs
from each node i to the landmark nodes were determined,
vLi , and were input into the LMDS algorithm to create a
vector of distances to K virtual landmarks vK

i .
The Douge Moore’s C implementation [25] of a recursion

free algorithm of the Hilbert’s space filling curve [26] was
adopted. It was applied to vK

i to produce the 1D index
H(vKi). The same algorithm was also applied to the vector
vLi to produce the 1D index H(vL

i) for the classical Hilbert
Curve method.

9Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 17 / 103

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30

A
ve

ra
ge

 L
at

en
cy

 to
 N

ea
re

st
 N

ei
gh

bo
ur

s

Number of Virtual Landmarks (K)

random
Network Coordinates (L=20)
Network Coordinates (L=30)
Network Coordinates (L=40)
Network Coordinates (L=50)

ideal

Figure 1. Average latency to nearest neighbours vs. the number of virtual
landmarks: reference methods only

LMDS with K = 1 was applied to vectors vL
i to produce

a 1D index L(vLi). Each of the three methods generates a
different set of peer IDs, respectively, {H(vK

i)}, {H(vLi)}
and {L(vLi)}.

Each generated index set was used to search the set of
30 nearest neighbours nodes for each node. Multiple sets
of random nodes were generated and the exact NNs in the
topology were computed using the Floyd Warshals algorithm
[27]. The set of NNs in the 8D network coordinates scheme
was determined by means of the Euclidean distance.

A set of NNs was used to compute an accuracy index.
The distances between every node and its NNs was used to
produce an average NN latency for each method.

The accuracy index is a normalized average NN latency
(∈ [0, 1]) which is designed to be relevant across hetero-
geneous topologies. An accuracy index of 1 is assigned to
the ideal average NN latency; 0 is assigned to the worst
average NN latency average associated with the random
method. The average NN latency of each method and on
each topology was normalized between these two indices.
Using this accuracy measure results close to 1 indicate the
method was almost as good as was possible and results
which were closer to 0 imply that the method was almost
as bad as a purely random selection of neighbours.

V. SIMULATIONS AND RESULTS

We have tested the algorithms in two different types of
network topologies:

• 10 Internet-like topologies with 1000 nodes generated
by the topology generator BRITE [28] with a Waxman
model [29] to simulate a flat level Autonomous System;

• 10 2D mesh topologies with dimensions 40× 25 (1000
nodes).

In the first test the average NN latency of the three
reference methods (ideal, random and Network Coordinates)
was compared to verify the intrinsic dimensionality of the

Internet-like topologies. In Figure 1 the average NN latency
for these three methods is shown for a varying number of
virtual landmarks K . The number of actual landmarks L is
fixed to 20, 30, 40 and 50. For the Network Coordinates
method and for a given value L, the test was executed
till the eigendecomposition would return enough positive
eigenvalues to generate the desired number K of virtual
landmarks. For K < 10 the average NN latency of the Net-
work Coordinates scheme clearly improves as K increases.
For K > 10 it does not improve further or it worsens. The
test was run on a single Internet-like topology; similar results
were obtained for the other topologies. This experiment
shows that a choice of 8 virtual landmarks is a good trade
off, confirming the intrinsic dimensionality of the Internet-
like topologies as determined in [17]. In all other simulations
we have fixed the number K of virtual landmarks to 8.

All methods were tested on each network topology mul-
tiple times. For each topology, the resulting performance
indices were averaged over 20 tests with different random
selections of landmarks. For each topology, the number of
landmarks was increased from L = 3 to L = 49 and for
every L value the normalised accuracy index was computed
as the average over 20 tests with different random selections
of landmarks.

Figures 2(a) and 2(b) show the accuracy of the methods
when varying the number of the actual landmark nodes.

The curve for the Hilbert method is truncated at L = 20.
Within Douge Moore’s C implementation of the Hilbert
Curve, the number of input bits (which defines the gran-
ularity of the curve) multiplied by the number of input
dimensions cannot exceed the value of 8 times an unsigned
‘long long’ data type (which is 64 bytes in the used CPU
architecture). A curve with 3-byte granularity was used to
give sufficient precision, so when the input dimensionality
increased beyond 21, the curve would no longer compute as
22× 3 > 64.

A. Discussion

The VLHC technique performs better than either the 1D
LMDS or stand alone Hilbert curve on both mesh and
Internet like topologies. Its accuracy plateaus at around 0.87
on the mesh topology, and around 0.41 on the Internet like
topology. It achieves this after 18 or more landmarks are
used, only improving marginally after this point as more
landmarks are added.

On the mesh topologies, where the intrinsic dimensional-
ity is 2, the standard Hilbert Curve computed over all land-
marks was comparable to VLHC. However, implementation
issues did effect its actual scalability in terms of the number
of landmarks.

On the Internet like topologies, the standard Hilbert Curve
achieved a maximum accuracy of around 0.24 after 6 land-
marks but could only maintain this until the implementation
failed at 22 landmarks. On this type of topologies, where the

10Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 18 / 103

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50

A
cc

ur
ac

y

Number of Landmarks (L)

8D Network Coordinates
VLHC

1D LMDS
Hilbert

(a) Mesh topologies

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50

A
cc

ur
ac

y

Number of Landmarks (L)

8D Network Coordinates
VLHC

1D LMDS
Hilbert

(b) Internet-like topologies

Figure 2. Accuracy for mesh (a) and Internet-like topologies (b)

intrinsic dimensionality is about 8, it performed constantly
worse than the VLHC.

On the mesh topologies the 1D index produced by the
LMDS was the worst performer with a peak of 0.23 accuracy
at 5 landmarks. As more landmarks were added the accuracy
fell slowly. For the Internet like topology the 1D LMDS
index was again the worst performer for any numbers of
landmarks we have tested, getting a peak accuracy score
of 0.1 which again fell slowly as the number of landmarks
increased.

The 8D network coordinates produced by LMDS showed
almost optimal performance in the mesh topologies, with
accuracy rising up to 0.97 after 17 landmarks. In the Internet
like topologies, however, it performed significantly worse,
achieving a maximum of 0.58 at 49 landmarks. The curve
shows a steep improvement up to around 8 landmarks, at
which point the rate of improvement slows considerably.
This is also another indirect confirmation of the intrinsic
dimensionality of this type of topologies.

The non optimal performance of the 8D network coordi-

nates system in the Internet-like topologies may be due to
using a triangulation based technique (which is essentially
how LMDS works) in a network space which violates the
triangular inequality (the communication latency from A
to B might be more than from A to C to B). The mesh
topology however is much closer to Euclidean space and so
the inequality would hold true in most cases.

The effectiveness of the VLHC 1D node indexing scheme
is considerably greater in the mesh topology than in the
Autonomous Systems topology. Indeed it scores only 12%
less than a brute force approach in the mesh topology which
makes it suitable for most applications. The utility in an
Internet like topology will be considerably more dependant
on the problem domain, as the peak accuracy of 41% may
not be sufficient for some applications where a high degree
of geographical accuracy is needed, but rather for ones
where a notion of locality in a scalar index outweighs the
overheads of adopting a more accurate but more complex
multidimensional network coordinate scheme.

VI. CONCLUSION

This work has presented the application of the concept of
virtual landmarks to the problem of generating locality aware
peer identifiers by means of space filling curves. Quantitative
evidence has suggested that applying LMDS in conjunction
with a Hilbert Curve produces a superior mapping to a
1D index in terms of locality preserving properties, when
compared to either technique applied independently. This
agrees with the postulation that a small number of virtual
landmarks are sufficient to capture the intrinsic dimension-
ality of Internet-like networks. More experimental work is
required to investigate the sensitivity of the proposed method
with respect to this parameter in real network topologies.

In contrast to previous applications of the Hilbert Curve, a
larger numbers of landmarks can be employed by exploiting
a decentralised LMDS algorithm. This not only increases
accuracy but also allows for more robustness.

The experimental analysis has shown that, as expected,
1D indices are less accurate than multidimensional network
coordinates. In general, applications should consider what
accuracy level of nearest neighbour preservation is needed
before adopting either a 1D scheme or a multidimensional
scheme, as the cost of simplicity is still substantial.

Further work will include using graphs extracted from
real network topologies to support the results obtained via
simulation, the implementation and testing of the outlined
Gossip-based approach and the adaptation of the algorithm
to handle a dynamic environment with churn rate for nodes
and landmarks and with time-varying latencies.

REFERENCES

[1] H. Shen and C. Xu, “Hash-based proximity clustering for load
balancing in heterogeneous dht networks,” Journal of Parallel
and Distributed Computing, vol. 65, no. 5, pp. 686–702, May
2005.

11Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 19 / 103

[2] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron, “Ex-
ploiting network proximity in peer-to-peer overlay networks,”
Microsoft Research, Cambridge, England, Tech. Rep. MSR-
TR-2002-82, May 2002.

[3] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker,
“Topologically-aware overlay construction and server selec-
tion,” in Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies Proceedings, New
York, USA, Jun. 2002, pp. 1190–1199.

[4] Y. Zhu and Y. Hu, “Towards efficient load balancing in
structured P2P systems,” in 18th International Parallel and
Distributed Processing Symposium (IPDPS’04), Santa Fe,
USA, april 2004, p. 20.

[5] M. Cai and M. Frank, “RDFPeers: a scalable distributed RDF
repository based on a structured peer-to-peer network,” in
Proceedings of the 13th international conference on World
Wide Web. ACM, 2004, pp. 650–657.

[6] S. Savarimuthu, M. Purvis, M. Purvis, and B. Savarimuthu,
“Mechanisms for the self-organization of peer groups in
agent societies,” Multi-Agent-Based Simulation XI, pp. 93–
107, 2011.

[7] Z. Li, G. Xie, and Z. Li, “Locality-aware consistency mainte-
nance for heterogeneous P2P systems,” in IEEE International
Parallel and Distributed Processing Symposium (IPDPS),
2007, pp. 1–10.

[8] M. Gharib, Z. Barzegar, and J. Habibi, “A novel method for
supporting locality in peer-to-peer overlays using hypercube
topology,” in International Conference on Intelligent Systems,
Modelling and Simulation (ISMS), 2010, pp. 391–395.

[9] A. Allan and G. Di Fatta, “Effectiveness of landmark analysis
for establishing locality in P2P networks,” in The Second In-
ternational Conference on Advances in P2P Systems (AP2PS
2010), October 2010.

[10] C. Gotsman and M. Lindenbaum, “On the metric properties
of discrete space-filling curves,” IEEE Transactions on Image
Processing, vol. 5, no. 1, pp. 794–797, Jan. 1996.

[11] B. Moon, H. Jagadish, C. Faloutsos, and J. Saltz, “Analysis
of the clustering properties of the Hilbert space-filling curve,”
IEEE Transactions on Knowledge and Data Engineering,
vol. 13, no. 1, pp. 124–141, Jan. 2001.

[12] J. Sammon, “A nonlinear mapping for data structure analysis,”
IEEE Transactions on Computers, vol. C-18, no. 5, pp. 401–
409, May 1969.

[13] L. Tang and M. Crovella, “Geometric exploration of the
landmark selection problem,” Passive and Active Network
Measurement, pp. 63–72, 2004.

[14] V. De Silva and J. Tenenbaum, “Sparse multidimensional scal-
ing using landmark points,” Dept. Math., Stanford University,
Stanford, CA, Tech. Rep, 2004.

[15] C. Faloutsos and Y. Rong, “Spatial access methods using
fractals: Algorithms and performance evaluation,” University
of Maryland, Maryland, USA, Tech. Rep. UMIACS-TR-89-
31, Mar. 1989.

[16] H. Jagadish, “Linear clustering of objects with multiple
attributes,” ACM SIGMOD Record, vol. 19, no. 2, pp. 332–
342, Jun. 1990.

[17] L. Tang and M. Crovella, “Virtual landmarks for the internet,”
in Proceedings of the 3rd ACM SIGCOMM conference on
Internet measurement. ACM, 2003, pp. 143–152.

[18] W. Torgeson, “Multidimensional scaling of similarity,” Psy-
chometrika, vol. 30, pp. 379–393, 1965.

[19] R. Shepard, “Analysis of proximities: Multidimensional scal-
ing with an unknown distance function I & II,” Psychome-
trika, vol. 27, pp. 125–140, 219–246, 1962.

[20] J. B. Tenenbaum and V. de Silva, “A global geometric
framework for nonlinear dimensionality reduction,” Science,
vol. 290, no. 5500, pp. 2319–2323, 2000.

[21] V. de Silva and J. B. Tenenbaum, “Sparse multidimensional
scaling using landmark points,” University of Stanford, Stand-
ford, USA, Tech. Rep. CSE-TR-456-02, jun 2004.

[22] J. C. Platt, “Fastmap, metricmap, and landmark mds are all
nystrom algorithms,” in In Proceedings of 10th International
Workshop on Artificial Intelligence and Statistics. IEEE,
2005, pp. 261–268.

[23] S. Baskakov, “Landmarks selection algorithm for wireless
sensor networks,” in Self-Adaptive and Self-Organizing Sys-
tems, 2008. SASO’08. Second IEEE International Conference
on. IEEE, 2008, pp. 361–369.

[24] Q. Cao and T. Abdelzaher, “Scalable logical coordinates
framework for routing in wireless sensor networks,” ACM
Transactions on Sensor Networks (TOSN), vol. 2, no. 4, pp.
557–593, 2006.

[25] D. Moore. (2011) Fast hilbert curve gen-
eration, sorting, and range queries. Rice
University. Texas, USA. [Online]. Available:
http://www.tiac.net/∼sw/2008/10/Hilbert/moore/hilbert.c

[26] A. Butz, “Alternative algorithm for Hilbert’s space-filling
curve,” IEEE Transactions on Computers, vol. C-20, no. 4,
pp. 424–426, april 1971.

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms (3rd Ed.). MIT Press, 2009.

[28] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE:
An approach to universal topology generation,” in Proc.
of the International Workshop on Modeling, Analysis and
Simulation of Computer and Telecommunications Systems
(MASCOTS’01), 2001, pp. 346–353.

[29] B. Waxman, “Routing of multipoint connections,” Selected
Areas in Communications, IEEE Journal on, vol. 6, no. 9,
pp. 1617–1622, 1988.

12Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 20 / 103

Leveraging Social and Content-based Recommendation in P2P Systems

Fady Draidi, Esther Pacitti, Michelle Cart, Hinde Lilia Bouziane

INRIA & LIRMM, Montpellier, France

{fady.draidi, esther.pacitti, cart, hinde.bouziane}@lirmm.fr

Abstract-We focus on peer-to-peer (P2P) content recommenda-

tion for on-line communities, where social relationships be-

tween users can be exploited as a parameter to increase the

trust of recommendation. Most of the existing solutions estab-

lish friendship relationships based on users behavior or de-

clared trust. In this paper, we propose a novel P2P recommen-

dation approach (called F2Frec) that leverages content and

social-based recommendation by maintaining a P2P and

friend-to-friend network. This network is used as a basis to

provide useful and high quality recommendations. Based on

F2Frec, we propose new metrics, such as usefulness and simi-

larity (among users and their respective friend network), nec-

essary to enable friendship establishment and to select recom-

mendations. We define our proposed metrics based on users’

topic of interest and relevant topics that are automatically

extracted from the contents stored by each user. Our experi-

mental evaluation, using the TREC09 dataset and Wiki vote

social network, shows the benefits of our approach compared

to anonymous recommendation. In addition, we show that

F2Frec increases recall by a factor of 8.8 compared with cen-

tralized collaborative filtering.

Keywords-P2P systems; personalization; recommendation; gossip

protocols; social networks.

I. INTRODUCTION

We focus on Peer-to-Peer (P2P) large scale content shar-
ing for on-line communities. For instance, in modern e-
science (e.g., bio-informatics, physics and environmental
science), scientists must deal with overwhelming amounts of
contents (experimental data and documents, images, etc.)
produced and stored in his workspace that they are willing to
share within a community or with specific friends without
relying in a centralized server.

Peer-to-Peer (P2P) networks, offers scalability, dy-
namicity, autonomy and decentralized control. Locating
contents based on contents ids in a P2P overlay network is
now well solved (see [4]). However, the problem with cur-
rent P2P content-sharing systems is that the users them-
selves, i.e., their interest or expertise in specific topics, or
their rankings of documents they have read, are simply ig-
nored. In other words, what is missing is a recommendation
service that, given a query, can recommend relevant docu-
ments by exploiting user information.

Sinha et al. [11] have shown that users prefer the advices
that come from known friends in terms of quality and trust,
because users typically trust their friends’ advices. The
emersion of Web2.0 and the growing popularity of online
social networks have encouraged exploiting users’ social
data in P2P systems. In existing P2P solutions, friendship
links are extracted from users’ behaviors [6] or are estab-

lished based on explicit trust declaration [8]. To enrich these
solutions, we consider that users that store similar contents
may be potentially friends with a specific declared trust level
with respect to the relevance of a user in a specific topic.
Thus, our decentralized recommendation approach leverages
content-based and social-based recommendation over a dis-
tributed graph, where each node represents a user labelled
with the contents it stores and its topics of interests. As a
basis for recommendation, we propose new social metrics
such as similarities (among users and their respective friend
network) and usefulness of a user with respect to a friend or
query taking into account the declared trusts. These measures
are defined based on user topics of interest and relevant
topics that are automatically extracted from the contents they
store. Notice that a user is considered relevant in a specific
topic t if it has a sufficient amount of content with high prob-
ability related to t. Then this user will be relevant to serve
queries related to t. also a user v is considered useful to a user
u, if v is relevant in topics that u is interested in.

We implement friendship networks using concepts from
the Friend-Of-A-Friend (FOAF) project. FOAF provides an
open, detailed description of profiles of users and the rela-
tionships between them using a machine-readable syntax.
We use FOAF files to support users’ queries. To establish
friendship and disseminate recommendation, we rely on
gossip protocols [3] as follows: At each gossip exchange,
each user u checks its gossip local-view to enquire whether
there is any relevant user v that is useful to u, and whether its
friendship networks have high overlap with u’s friendship
network. If it is the case, a demand of friendship is launched
among u and v and the respective FOAF files are updated
accordingly.

Whenever a user submits a keyword query, its FOAF file
is used as a directory to redirect the query to the top-k most
adequate friends taking into account similarities, relevance,
usefulness and trust. In our previous work [3], we focused on
P2P anonymous recommendation exploiting different types
of gossip protocols.

In this paper, we propose F2Frec, a new social-based ap-
proach for recommendation that facilitates the construction
and maintenance of P2P social network and exploits social
metrics to provide recommendations. Our major contribu-
tions are:

 We introduce new social metrics to suggest friends and
detect if a friend is relevant and useful to provide recom-
mendations.

 We propose an efficient query routing algorithm that takes
into account the social metrics to select, in a top-k ap-
proach, the most appropriate friends to provide recom-
mendation.

13Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 21 / 103

 Once the best recommendations are provided, we propose
to rank them by taking into account the semantic similari-
ties, content popularity, distance and trust between que-
ry’s initiator and responders.

 We provide an experimental evaluation using real data
sets that demonstrates the efficiency of F2Frec over the
TREC09 [10] and Wiki vote social network [12] com-
pared to anonymous P2P recommendations and central-
ized recommendation.
The rest of this paper is organized as follows. Section II

provides a general overview of F2Frec. Section III presents
our social metrics and how we manage friendship estab-
lishment. Section IV describes our solution for retrieving
recommendations over F2Rrec given a key-word query.
Section V gives our experimental validation that compares
F2Rrec with centralized collaborative filtering. Section VI
discusses related work. Section VII concludes.

II. GENERAL OVERVIEW OF F2F RECOMMENDATION

Our recommendation model is expressed based on a
graph G = (D,U,E,T), where D is the set of shared docu-
ments, U is the set of users u1,…un corresponding to autono-
mous peers p1,…pn, E is the set of edges between the users
such that there is an edge e(u,v) if users u and v are friends,

and T is the domain of topics. Each user uU is associated

with a set of topics of interest Tu T, and a set of relevant

topics Tu
r Tu extracted locally from the documents u has

rated. The rating that has been given by a user u on docu-
ment doc is denoted by ratedoc

u
.

In our approach, we use Latent Dirichlet Allocation
(LDA) [2] to automatically extract the topics in the system,
which in turn are used to extract users’ relevant topics of
interest. In F2Frec, LDA processing is done in two steps: the
training at a global level, and inference at the local level. The
global level is given to the bootstrap server (BS) that aggre-
gates a sample set of M documents from F2Frec participant
peers. Then, BS runs the LDA classifier to get a set T =
{t1,..tk} of topics, where k is the number of topics. Each topic

tT contains a set of Z words, where Z is the number of

unique words in M, and each word zZ is associated with a
weight value wz

t
 between 0 and 1. The wz

t
 represents how

much the word zZ is related to t. At the local level, user u
performs LDA locally to extract the topics of its local docu-
ments, using the same set of topics T that were previously
generated at the global level. LDA provides a vector of size
k for each document doc, Vdoc = [wdoc

t1
,…,wdoc

tk
], where wdoc

t

is the weight of each topic tT with respect to doc.
Users’ relevant topics of interest are extracted based on a

combination between documents’ semantics and ratings.
Since we focus on on-line communities, we safely assume
that users are willing to rate the documents they store. Once

a user u extracted the Vdoc for each docDu, it multiplies the
Vdoc = [wdoc

t1
,..,wdoc

tk
], by the rating ratedoc

u
. Then, user u

identifies for each topic tT only the documents that are
highly related to t. A document doc is considered highly
related to topic t, if its weight in that topic wdoc

t
multiplied by

its rating ratedoc
u
 exceeds a threshold value. Next, u counts

how many documents are highly related to each topic t T.

User u is considered interested in topic tTu if a percentage y
of its local documents are highly related to topic t. Finally, u

is considered a relevant user in topic tTu
r
 if it is interested

in t and has a sufficient amount x (system-defined) of docu-
ments that are highly related to topic t.

Each user uU maintains locally a FOAF file that con-
tains a description of its personal information, and friendship
network, denoted by friends(u)={f1, f2,…fn}. Personal infor-
mation includes the extracted topics of interest, where each

topic of interest tTu is associated with a Boolean value that
indicates whether u is relevant in that topic. Friends’ infor-
mation includes friends’ names, links (URI) to their FOAF
files, relevant topics of interest, and trust levels. The trust
level between user u and a friend v, denoted by trust(u,v), is
a real value within [0, 1] and represents the faith of user u in
its friend v. The trust level between user u and its friend v
can be obtained explicitly [8] or implicitly [7].

Furthermore, each user uU establishes new friendships
with users that are useful to u’s demands or have friendship
networks with high overlap with u’s friendship network. A
user v is considered useful to a user u, if v is a relevant user
and a certain amount of v’s relevant topics Tv

r
 are of interest

for u. User u exploits its useful friends (of friends) for rec-
ommendations. Notice that, if a friendship acquaintance
exists between users u and v, u implicitly recommends its
documents to v and vice-versa, in related topics. More pre-
cisely, if there is a friendship path between users u and v,
path(u,v)={(u, vi), (vi,vj),...,(vk, v)}, then u can recommend its
documents related to their topics of interest to v and vice-
versa.

Queries are expressed through key-words, and mapped to
topic(s) Tq using LDA. Moreover, queries are associated with
a TTL (Time To Live), and routed recursively on a distribut-
ed top-k algorithm: Once a query is received by any user, it
is forwarded to its top-k best friends by taking into account
usefulness and trust. A response to a query q is a recommen-
dation provided in a ranked list and defined as:

recommendationq = rank(recq
1
(doc1),… recq

n
(docj))

Different recommendations may be given for the replicas
of a document doci. The recommendationq is ordered based
on a ranking function, that ranks each recq

v
(doci) according

to its relevance with q, its popularity, and the distance and
trust between the q initiator and responder v. More details on
query processing and recommendations ranking are given in
Section IV.

The trust value between a query’s initiator u and a re-
sponder v, denoted by trustq(u,v), is computed during query
processing. The path of a query q between u and v can be
represented as pathq(u,v)={(u, vi), (vi,vj), (vj, v)}, and the trust
value between u and v can be computed by multiplying the
trust values among directs friends along the pathq(u,v), which
is:

trustq(u,v) = ∏

III. FRIEND TO FRIEND RECOMMENDATION

The goal is to let each user explicitly establish friendship
with useful users, so that it can exploit them for recommen-

(1)

(2)

14Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 22 / 103

dation. First, we present the similarity metrics we propose.
Then, we present the data structures and algorithms for
friendship establishment.

A. Metrics

We compute the similarity distance between u and v
based on their friendship networks and relevant topics of
interest. We measure the similarity distance between u and v
based on their friendship networks, denoted by distance-

fri(u,v), by counting the overlap of their friends. We use the
dice coefficient, which is:

 distancefri(u,v) =

We could also use other similarity functions such as co-
sine, jaccard, etc. We use distancefri(u,v) as a measure for the
implicit trust between u and v.

We measure the common interest of topics between user
u and v, denoted by distanceintr(u,v), by counting the overlap
of their topic of interests. We use the dice coefficient, which
is:

 distanceintr(u,v) =

Notice that user u and v may be similar in terms of topics
of interest. However, v may not be useful for u, because the
topics of interest of u are not related to v’s relevant topics.
Therefore, we measure how much v is useful to u, denoted
by useful(u,v), by counting the overlap between u’s topics of
interest Tu and v’s relevant topics Tv

r
. Similarly, we use the

Dice coefficient to measure useful(u,v):

 useful(u,v) =

We measure the final similarity distance between u and v,
denoted by sim(u,v), by combining distancefri(u,v) with use-
ful(u,v) in a weighted approach as follows:

sim(u,v) = *useful(u,v) + (1-)*distancefri(u,v)

The parameter is used to adjust whether u prefers to es-
tablish friendship with users that are highly useful to its
queries, or with users that their friendship networks are high-

ly overlapped with u’s friendship network. As values be-
come close to 1, the usefulness of users play a more im-
portant role in the final similarity distance sim(u,v).

Also, we use the Dice coefficient to measure how much a
relevant user v is useful to a query q:

useful(q,v) =

| |

If useful(q,v)≠0, then the relevant user v can give recom-
mendations for q.

B. Friendship Establishment

Each user u exploits its gossip local-view to establish
friendship. For each gossip cycle, u goes through each user

entry vlocal-viewu, and evaluates whether v may be sug-
gested for friendship as follows: User u computes the simi-
larity distance sim(u,v) as described in Section III.A. User v
is suggested to u for friendship under some conditions, tak-
ing into account the degree of similarity sim(u,v), the dis-
tancefri(u,v), the distanceintr(u,v), useful(u,v), and v’s relevant

topics, etc. If u has accepted to establish friendship with v,
user u sends a message to v, denoted by msgreq, asking v for a
friendship. Then, u adds v to a waitList list, waiting for
friendship confirmation.

Afterwards, user u receives a reply message, denoted by

msgrep, from each user vwaitList. If user v has accepted to
establish friendship with u i.e., msgrep = accept, u stores v’s
information in its FOAF file. The information for the new
friend v includes v’s relevant topics of interest, a trust value
trust(u,v) between u and v, and link to v’s FOAF file. Notice
that the trust(u,v) is assigned explicitly by u [8].

IV. QUERY PROCESSING BASED ON FOAF FILE

In this section, we describe our query processing algo-
rithm to generate recommendations. Next, we describe the
ranking model we use to order the returned recommenda-
tions.

A query is defined as q(wordi, TTL, Vq, Tq, trustq(u,v),k),
where wordi is a list of keywords, TTL is the time-to-live
value, Vq is query q’s topic vector. Query q’s topic vector,
Vq= [wq

t1
,..,wq

tk
], is extracted using LDA. Then, query top-

ic(s) Tq T are computed, where q is considered to belong to

a topic tTq if its weight wq
t
 in that topic exceeds a certain

threshold (which is system-defined). The trustq(u,v) is the
trust level between u and a responder v. The value k is the
parameter for top-k redirection.

Each time, a user u issues a query q, it proceeds as fol-
lows: First, it computes how much each useful friend

vfriend(u) is useful to q. Then, u computes the rank of v,
denoted by rank(v). The rank of a useful friend v for u de-
pends on the usefulness of v for q, and the trust level be-
tween u and v. Accordingly the rank(v) is defined as:

rank(v) = trust(u,v)*useful(q,v)

Once u has computed the rank of each useful friend v, it
adds rank(v) to a RankList that contains the useful friends’
addresses along with their ranks. Then, it selects the top-k
useful friends from the RankList with highest rank, and adds
them to topkList. Then, u forwards q to each useful friend

vtopkList, attaching to q the trust value trustq(u,v), and
reducing the query TTL by one. Note that the value of
trustq(u,v) is equal to the value of trust(u,v), because v is a
direct friend of u. Also the useful friend v with the highest
rank is the useful friend that is most useful to q, and has the
highest trust level with u.

Once user u receives the recommendation information
from the responders, it ranks those recommendations and
presents them in an ordered list (see Section IV.A).

When a user v receives a query q that has been initiated
by a user u, it processes q as follows: First, it measures the
similarity between query q and each document v has locally.
The similarity between a document doc and q, denoted by
sim(doc,q), is measured by using the cosine similarity be-
tween the document topic vector Vdoc= [wdoc

t1
,…,wdoc

tk
] and

the query topic vector Vq= [wq
t1
,…,wq

tk
], which is:

sim(doc,q) =
∑

√∑

 ∑

(3)

(4)

(5)

(6)

(7)

(8)

(9)

15Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 23 / 103

Second, v returns to the query’s initiator u the recom-
mendations for the documents whose similarity exceeds a
given (system-defined) threshold.

Finally, v selects from its friends the top-k useful friends
that have the highest rank, and adds them to the topkList if
the query’s TTL is not yet zero. Then, v computes the trust

value trustq(u,x) for each useful friend xtopkList based on
Equation 2. Then v attaches trustq(u,x) to q, and forwards q
to x after reducing TTL by one.

With such query routing, we avoid sending q to all
friends, thus minimizing the number of messages and net-
work traffic for q. In addition, we send the query to friends
that are most useful and trustful.

A. Ranking Recommendations

Recall that the result of a query q submitted by a user u is
recommendationq = rank(recq

v1
(doc1),…, recq

v
(doci)), where

recq
v
(doci) is the recommendation that has been given for a

document doci from a responder v. We rank recq
v
(doci) based

on the semantic similarity between q and doci, the popularity
of doci, and the distance and trust between u and the re-
sponders of doci. Accordingly, recq

v
(doci) that has been re-

ceived from responder v includes sim(doci,q), v’s topics of
interest Tv and the trustq(u,v). The rank of a recq

v
(doc), de-

noted by rank(recq
v
(doc)), is defined as:

rank(recq
v
(doc)) =

∑

Where a, b and c are scale parameters, pop(doc) is the
popularity of doc, and |R| is the number of responders that
have recommended doc to the initiator u. The popularity is
equal to the number of replicas of doc in F2Frec. The user
can specify whether it prefers highly popular documents,
documents that are highly semantically relevant to q, or
documents that come from highly similar users, by adjusting
parameters a, b and c. Upon receiving the recommended
documents, user u can download a copy of a document, rate
and include it in its document set Du.

V. EXPERIMENTAL EVALUATION

In this section, we provide an experimental validation of
F2Frec to assess the quality of recommendations, search
efficiency (cost, and hit-ratio), and the average number of
friends. We conducted a set of experiments using TREC09
[10] and the Wiki vote social network [12]. We first describe
the experimentation setup. Then, we evaluate the effect of
friendship establishment on the performance of F2Frec.
Finally, we compare F2Frec with centralized collaborative
filter.

A. Experimentation Setup

We use the classical metric of recall that is used in in-
formation retrieval and recommender systems to assess the
quality of the returned recommendations. Recall represents
the system ability to return all relevant documents to a query
from the dataset. Thus, in order to measure recall, the rele-
vant documents set for each query that have been issued in

the system should be known in advance. Data published by
TREC have many relevance judgments. We use TREC09
filtering track [10], a set of 348566 references from
MEDLINE, the on-line medical information database, con-
sisting of titles and abstracts from 270 medical journals over
a five year period (1987-1991). It includes also a set Q of

4904 queries. The relevant documents for each query qQ,
denoted by Rq, were determined by TREC09 query assessors.

In the experiments, user u issues a query qQ and uses
F2Frec to possibly retrieve the documents that are in Rq. The
set of documents returned by F2Frec for a user u and a query
q is denoted by Pq. Once a user u has received Pq from
F2Frec, it can count the number of common documents in
both sets Pq and Rq to compute recall. Thus, recall is defined
as the percentage of q’s relevant documents doc Rq occur-
ring in Pq with respect to the overall number of q’s relevant
documents | Rq |:

recall =
| ⋂ |

| |

In addition we use the following metrics to evaluate
F2Frec.

 Communication cost: the number of messages in the P2P
system for a query.

 Background traffic: the average traffic in bps experi-
enced by a user due to gossip exchanges.

 Hit-ratio: the percentage of the number of queries that
have been successfully answered.

 Average number of friends in the network: the total
sum of the number of friend of all users divided by the
size of the network (total number of users).
We extracted the titles and abstracts of TREC09 docu-

ments and removed from them all the stop words (e.g., the,
and,..). Then, we fed them to the GibbsLDA++ software [9],
a C++ implementation of LDA using Gibbs sampling, to
estimate the document topic vectors Vdoc. With |T|=100 as
the number of topics. To estimate the query topic vectors Vq,
we removed the stop words from queries keywords, fed the
query keywords left to GibbsLDA++, and computed the

topics Tq of each query qQ. For ease of presentation, we

consider that each query qQ has one topic tqT.
We use the Wiki vote social network [12] to give ran-

domly each user a set of documents from TREC09. Wiki
vote considers that two users are considered friends if one
votes for the other. It consists of 7115 users connected to-
gether by 103689 links with an average of 14.57 links per
user. After distributing the TREC09 documents over the
Wiki vote users, we get a total of 6816170 documents, with
an average of 958 documents per user.

We generate a random rating between 0 and 5 for each
document a user has and compute the users’ topics of interest
from the documents they have rated. We consider that each
user u is interested at least in one topic and relevant at least
for one topic. Also u is interested in at most 10 topics and
relevant for 5 topics at most.

F2Frec is built on top of a P2P content sharing system
that we generated as an underlying network of 7115 nodes,
which is equal to the number of users in the Wiki vote net-

(10)

(11)

16Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 24 / 103

work. We use PeerSim for simulation. Each experiment is
run for 24 hours, which are mapped to simulation time units.

In order to evaluate the quality of recommendations, we
let each user u issue a query after computing the previous
query or after a system-specified timeout. Then we obtain the
result for each query and compute the respective metric
values. In order to obtain global metrics, we average the
respective metric values for all evaluated queries. We let
each user u establish new friends after each time it performs
a gossip.

B. Experiments

We first investigate the effect of friend establishment on
the performance of F2Frec over the respective metrics. Se-
cond, we compare F2Frec with a centralized collaborative
filter. For the gossip parameters (gossip period Cgossip, gossip
message Lgossip, and view-size), we use 30 minutes for Cgossip
(simulation time units), 10 for Lgossip, and 50 for view-size (in
[3] we showed that this setting provided good quality of
recommendations with acceptable network traffic). We use 1
for the TTL of the query, and query is forwarded to each
friend v that is useful to query, in order to measure the quali-
ty and effectiveness of friendship establishment.

Then, we collect the results for each experiment after 24
simulation hours. We set TTL to 1 to measure the quality
and effectiveness of friendship establishment. All experi-
ments are performed under churn i.e., the network size is
changed during the run due to the joining and leaving of
users. The experiments start with a stable overlay with 355
users. Then, as experiments are run, new users are joining
and some of the existing users are leaving.

Friendship Establishment. In this experiment, we vary

the value of between 0 and 1, in order to investigate the
trade-off of usefulness and friendship distance based on the
Equation 6. In addition, we investigate the effect of friend-
ship establishment on the performance of F2Frec over the

respective metrics. In each experiment, each user uU gets
its initial friends from the Wiki social network, then u runs
the F2Frec algorithm to establish new friends.

Table 1 shows the results obtained after 24 hours of run-
ning the F2Frec algorithm. We can see that the average
number of friends increases from 49.7 to 174.6 when in-

creasing from 0 to 1. Combining users’ usefulness with
friend networks increases the likeness between users. Thus
more new friends are added to users’ FOAF files. We also
observe that recall, communication cost, hit-ratio and back-
ground traffic are correlated to the average number of
friends. The communication cost increases because more
useful friends are visited. Visiting more useful friends in-
creases the relevant documents returned, and thus greater
recall is achieved. Also, hit-ratio increases as long as the
average number of friends also increases, because there is a
higher probability to find a useful friend to serve a query.
However, bandwidth consumption increases because increas-
ing the number of friends implies the increase of the size of
the gossip entries, increasing the size of the gossip messages.
As a result the bandwidth consumed is increased.

In Figure 1, we show the variation of average number of

friends and recall versus time under different values of. We

observe that combining the usefulness of users with friend-
ship networks increases the possibility of finding new friends

(Fig. 1(a)). When the value of is equal to 0, the final
friendship establishment depends on the overlap between
users’ friends only. This depends on the density of the links
in the network graph. In our benchmark, the overlap between
friend networks is low, and thus the average number of
friends is low, which causes low recall. However, the rec-
ommended documents in this case have more confidence and
quality, and users are more satisfied with those recommenda-
tions. This is because they are recommended by trusted
friends.

TABLE 1. RESULTS OBTAINED BY F2FREC OVER THE RESPECTIVE METRICS

Max.

recall

Max.

Com.

cost

Max.

Hit-

ratio

Max. Avg.

background

traffic (bps)

Max.

Avg.

Friend

0 0.31 20 0.61 12.4 49.7

0.3 0.58 38.3 0.94 17.4 141.1

0.5 0.67 46 0.977 19 177.6

0.7 0.67 47 0.98 18.7 177.6

1 0.73 46.5 0.98 18.5 174.6

Figure 1. F2Frec performance over respective metrics

When the value of is equal to 1, friendship establish-
ment depends on the usefulness of users only. Each time a
user u performs gossip, new relevant users are added to its
local-view. Thus, u finds new relevant users that are useful to
its demand, and then establishes friendship with them. There-
fore, more friends are added at u’s FOAF file. As a result,
the average number of friends is increased. While the values

of increase between the two extremes, u finds new relevant
users that are useful to its demand, and establishes friendship
with them. Accordingly, its friend list is increased. Then, the
possibility of overlap between users’ friends increases as
well. As a result, the possibility of establishing new friend-
ship increases.

We observe that the recall achieved by =1 is greater

than that with =0.7 or 0.5, even though the average number

of friends are almost identical (Fig. 1(b)). When =1, friend-
ship establishment depends on users usefulness only. Ac-
cordingly, each user u establishes new friendship with rele-
vant users that are more useful to its demands.

For the other simulations, we set =0.5, because this set-
ting leverages users’ usefulness and friendship networks, and
provides reasonable results with acceptable overhead in
terms of background traffic.

17Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 25 / 103

Social Effect. We compare F2Frec with a centralized
collaborative filter [1] with respect to recall. In order to rec-
ommend a set of documents that a user u may like, we com-
pute the similarity between a user u and all the users in the
system. Then, we select a set of users, noted neighbors(u),
which are the top-k similar to u. We use the cosine similarity
to extract a user’s neighbors, based on the ratings that are
given by the users over the documents they have seen or
created. Once the similarity between u and each user v has
been computed, we select the top 178 similar users as the
neighbors(u). Once users’ neighbors are extracted, we run
the system and generate recommendations for each user from
its neighbors, and then compute the average recall of all
users. The recommendations for each user u are generated as

follows: First, u randomly selects a query qQ s.t. tqTu.
Then u forwards q to each member in its neighbors. Each
neighbor receives q, returns to u all the documents that their
similarity with q exceed 0.5. We select the top 178 similar

users as the neighbors(u), and tqTu, to be identical with
F2Frec.

We observe that the similarity measure is time consum-
ing as it takes about 38 hours to compute the similarity be-
tween the 7115 users with 6816170 documents. This time
increases exponentially as the numbers of documents and
users increase.

Results. We observe that the average recall achieved by
collaborative filter is equal to 0.076. F2Frec increases the
recall by a factor of 8.8 in comparison with the centralized
collaborative filter. A major reason behind this significant
gain is the friendship establishment in F2Frec that relies on
usefulness of users and friend networks. In contrast, central-
ized collaborative filter aggregates neighbors based on doc-
ument ratings only. Unfortunately, this kind of similarity
does not capture the contents of the documents.

VI. RELATED WORK

In this section, we discuss the previous works that are
most related to F2Frec. Previous works such as [3] and [5]
exploit specific gossip protocols to aggregate the neighbors
of each user. Then users use those neighbors (of neighbors)
to serve their demands. However, these systems do not ex-
ploit users’ social data and explicit friendship for recommen-
dations.

In [6] and [8], users’ social data (friends, trust, etc.) are
exploited in computing recommendations. In [6], users’
preferences are extracted from user’s behaviors and asserted
in users’ FOAF files. Then the system aggregates users’
FOAF files and clusters the users with similar preferences in
one group. Then, when a user u in a group rates an item, the
system determines whether the item is good enough to be
recommended to other users in the group. However, aggre-
gating users’ FOAF files increases network traffic. In con-
trast, F2Frec lets each user maintain locally its FOAF file,
and uses it to support its queries.

In [8], trust in users is also used as a basis for recommen-
dations. The system lets each user u express its level of trust
to each user it has interacted with. Then u measures the trust
level between itself and each user in the network, and selects
the most trustful as its neighbors. Those neighbors are used

to compute the recommendations. However, inferring the
trust relationships between users is time consuming and
increases network traffic. In contrast, F2Frec computes the
trust between indirect friends during query processing. Thus
we do not need extra data and information to propagate and
aggregate the trust network.

VII. CONCLUSION

In this paper, we proposed F2Frec, a P2P recommender
system that leverages content and social-based recommenda-
tions by maintaining P2P social networks. The basic idea of
F2Frec is to exploit the users’ relevant topics of interest and
friends’ networks, in order to get high quality recommenda-
tions. F2Frec relies on gossip protocols to disseminate rele-
vant users and their information, in order to let users estab-
lish friendship with new useful friends.

We use FOAF files to store users’ friendship networks
and their relevant topics of interest, and as a directory to
redirect a query to the appropriate trustful and useful friends
in a top-k approach.

In our experimental evaluation, using the TREC09 da-
taset and Wiki vote social network, we showed that F2Frec
increases recall by a factor of 8.8, compared with centralized
collaborative filter.

ACKNOWLEDGMENT

We would like to thank Bettina Kemme for her insightful
discussions.

REFERENCES

[1] J.-S., Breese, D., Hecherman, and C., Kadie, Empirical analysis of
predictive algorithms for collaborative filtering. Proc. of the 14th
Conf. on Uncertainty in Artificial Intelligence, 1998, pp. 43–52.

[2] D.-M., Blei, A.-Y., Ng, and M.-I., Jordan, Latent Dirichlet Allocation.
Journal of Machine Learning, 2003, vol. 3, pp. 993–1022.

[3] F., Draidi, E., Pacitti, and B., Kemme, P2Prec: a P2P
Recommendation System for Large-scale Data Sharing. Tran. on
Large-Scale Data- and Knowledge- Centered Systems, LNCS, 2011,
vol. 6790, No. 3, pp. 87-116.

[4] M., El Dick, E., Pacitti, R., Akbarinia, and B., Kemme, Building a
peer-to-peer content distribution network with high performance,
scalability and robustness. Information Systems, 2011, vol. 36, No. 2,
pp. 222-247.

[5] A.-M., Kermarrec, V., Leroy, A., Moin, and C., Thraves, Application
of Random Walks to Decentralized Recommender Systems.
OPODIS, 2010, pp. 48–63.

[6] H.-J., Kim, J.-J., Jung, and G.-S., Jo, Conceptual framework for
recommendation system based on distributed user ratings. LNCS,
2003, vol. 3032, pp. 115-122.

[7] L., Lacomme, Y., Demazeau, and V., Camps, Personalization of a
trust network. IEEE/ACM, 2009, pp. 408–415.

[8] P., Massa and P., Avesani Trust-aware Collaborative Filtering for
Recommender System. LNCS, 2004, vol. 3290, pp. 492-508.

[9] X.-H., Phan, October 2011, http://gibbslda.sourceforge.net

[10] S., Robertson and D.-A., Hull, The TREC-9 filtering track final
report. Proc. of 9th Text REtrieval Conf. (TREC-9), 2001, pp. 25-40.

[11] R., Sinha and K., Swearingen, Comparing Recommendation made by
Online Systems and Friends. Proc. of the DELOS-NSF Workshop on
Personalization and Recommender Systems in Digital Libraries, 2001

[12] Wikipedia vote network, October 2011, http://snap.stanford.edu/data/
wiki-Vote.html

18Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 26 / 103

Web Service and Business Process Execution on
Peer-to-Peer Environments

Marco Pereira, Marco Fernandes and Joaquim Arnaldo Martins
DETI - Department of Electronics, Telecommunications and Informatics
IEETA - Institute of Electronics and Telematics Engineering of Aveiro

University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
{marcopereira, marcopsf, jam}@ua.pt

Abstract—Service oriented environments and peer-to-peer
networks are on the forefront of research. This paper addresses
the issues that arise when attempting to integrate these
technologies, while at the same time makes explicit the benefits
that can be gained from this integration. We propose the
creation of a proxy for web services that allows the deployment
of multiple instances of the same traditional web service in a
peer-to-peer network. This proxy handles service discovery in
the peer-to-peer network and can be used by existing clients
with no modifications, thus offering a transparent way access
to resource replication and decentralisation benefits that are
traditionally associated with peer-to-peer networks. We then
proceed to adapt a business process execution engine to be
peer-to-peer aware, allowing the implementation of process
partition and delegation techniques that can result in reductions
in the network traffic required to execute a business process,
as well as in a more efficient distribution of the service load
through available peers.

Keywords-Peer-to-Peer; Web Services; Service Oriented Archi-
tecture; Business Process Management.

I. INTRODUCTION

Access to computational resources is a key requirement of
most modern organisations. This requirement arises from the
need to produce text documents, to process employees’ salaries,
or to provide complex services. The typical response to this
requirement leads to the proliferation of hardware throughout
organisations, and even among individual users. While some of
it is specialised hardware (such as dedicated servers) most takes
the form of personal computers that are mainly used to perform
simple tasks, wasting potential computational resources in the
form of processing cycles and storage space. Using peer-to-
peer (P2P) technology it is possible to tap into these otherwise
wasted computational resources [1]. A possible use for these
"recovered" computational resources is service deployment,
particularly web services. If web services are themselves seen
as resources it is possible to apply to them the same philosophy
that is applied to files in traditional P2P networks, where
availability and resilience is improved by the existence of
multiple copies distributed throughout the network. By having
multiple copies of a web service present in a P2P network one
can avoid what can be seen as a potential centralised point of
failure and provide an alternative way to implement a Service
Oriented Architecture (SOA) [2]. While SOA is one of the
most popular research topics, and has been a driving force in

the software industry [3] to fully explore its advantages it is not
possible to ignore the importance of service orchestration, that
can be used to create composite services from the individual
services available, thus creating a business process. The usage
of SOA, business process orchestration and web services can
bring numerous advantages for organisations [4] such as higher
automation and process integration. Unfortunately the tools that
perform service orchestration are not expecting the services to
be available from multiple providers as it would be the case if
the services were available as resources in a P2P network and
do not take advantage of this fact. In this work we describe how
to use a P2P network in combination with orchestration tools
in order to reap benefits from making web services behaviour
more akin to the one exhibited by files in file-centric P2P
networks.

This work focuses on the development of integration
strategies that explore the synergies that exist between web
services, business process execution and P2P environments.
We believe that better integration between these technologies
will lead to improved performance and added robustness when
executing business processes or individual web services. These
improvements are achieved by using process delegation to
reduce the overall network traffic generated by the execution of
a business process and by allowing the replication of individual
web services through multiple peers to ensure that a service
can be executed even if some of the service providers become
unreachable.

While designing a P2P based service-oriented environment
we have established a few pre-requisites. First unless absolutely
required existing standards should be used. Using standards
compliant approach will enable us to accommodate already
existing services, clients and business processes within the
P2P environment, and does not impose any additional burden
to developers. Second we make no particular assumptions
about the underlying network. This means that our environment
should transparently accommodate different topologies and be
able to execute the services and business processes in a non-
optimised fashion if the available peers do not offer specific
capabilities.

The structure of this work is as follows: in Section II we
review existing related work while in Section III and Section IV
we describe how web services and business process execution
can be made P2P-aware while the benefits and caveats that

19Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 27 / 103

can follow from having P2P-aware business process execution
environment are analysed in Section V with a case study.
Finally in Section VI we present the conclusion of this work
and explain our plans to further improve the presented work.

II. RELATED WORK

Exposing services as part of a P2P network can be seen
as one of the achievements of the JXTA framework [5]. The
JXTA framework provides the necessary protocols to create a
P2P overlay network, establish connections between peers, and
to discover resources in the network. JXTA is able to create
unstructured P2P overlays that can be configured to form either
a pure P2P system that resorts to flooding (using multicast
where available) to perform network queries or an hybrid
P2P system where queries can be directed to infrastructure
peers (in addition to any local caching performed by client
nodes). It should be noted that the use of an hybrid topology is
mandatory in case the actual overlay needs to be extended past
any type of network boundaries (such as NATs or firewalls).
In JXTA every resource (be it a communication channel, a
peer or a service) is represented by an advertisement [6]. An
advertisement is a small XML document with information about
a particular resource that possess a pre-determined lifetime that
will expire if not explicitly renewed during that lifetime. The
first step to locate a resource in a JXTA based P2P network is
always to discover a corresponding advertisement by querying
the network or the local cache. Of particular relevance is a
family of advertisements, Module Advertisements that can be
used to represent and discover services. This family possesses
two advertisement types, Module Specification Advertisement
and Module Implementation Advertisement, representing re-
spectively the expected behaviour and protocol of a given
service and a concrete implementation of the corresponding
service. It should be noted that although the publication of a
Module Specification Advertisement is optional, its publication
is considered a good practice and has an advantage over the
publication of a Module Implementation Advertisement alone.
The advantage is that a Module Specification Advertisement is
allowed to carry within it a Pipe Advertisement, which can be
used to locate a peer that is able to execute the service. As it
would be expected, services constructed in this way are deeply
intertwined with the P2P network and difficult to expose to
the outside, thus creating an impedance mismatch when trying
to use them in SOA.

Another project, also based on JXTA took a different
approach. Instead of creating pure JXTA services, JXTA-SOAP
[7] allowed developers to create web services, that can then
be deployed in the P2P network. Services created with JXTA-
SOAP can be reached within the P2P network by discovering a
Module Specification Advertisement that contains the WSDL of
the web service and a Pipe Advertisement to contact the peer to
execute the service. JXTA is used as a transport protocol instead
of HTTP (handled automatically by the JXTA-SOAP library).
Developing a service using the JXTA-SOAP approach requires
the service to be developed in Java, and the implementation of
a specific interface. It also requires the service to be deployed

using the first generation of the Apache Axis platform [8].
As with native JXTA services, services developed with JXTA-
SOAP are also difficult to expose to the outside.

The default approach to web service discovery is to rely
on UDDI (Universal Description, Discovery and Integration
protocol). UDDI provides a centralised broker that can be
queried by a client to discover a provider of a given service,
yet this centralised approach creates a single point of failure.
To tackle this problem it was proposed in [9] that UDDI
brokers could be federated using a P2P approach, where
each UDDI broker acts as a super-peer for a group of peers
that have shared interests (in this case they either require or
provide similar services). Replacing UDDI with a completely
decentralised P2P approach was proposed in [10]. In this
scenario peers publish a semantic description of each provided
service (based on OWL-S). When queried, the network can
return the description to a particular service (or a semantically
equivalent one that is currently available) by automatically
producing a service composition described using Business
Process Execution Language (BPEL). The resulting service
composition can be later used in any application as a regular
web service.

The issue of web service replication is approached in [11].
This work assumes an ad-hoc network scenario (similar to P2P
networks) where frequent node disconnections and failures
make traditional static binding unreliable. To increase the
reliability and availability of services in those types of networks,
it introduces an active monitoring scheme, based on a global
view of the network that can be used to determine if a service is
still available. To cope with expected service failure it allows
dynamic deployment of replicas of web services (the web
services must be Java based). To invoke a service a node must
at first discover an available instance of the service (it is stated
that this a responsibility of the client, not of the system and
the suggested means to achieve this are described in [12][13]).
After discovering this initial instance, it passes it to a tool
called "WSDL-finder" that must be called every time before
the service is actually invoked in order to discover and invoke
the service from an available replica.

An alternative to the use of P2P networks for service
replication can be found in SmartWS [14]. It relies on client
side "smart proxies" that intercept the original web service
call and redirects it to a service provider that at the moment
offers optimal performance (based on a series of tests). All
the service providers must be known before generating the
client side "smart proxy", which means that any new provider
that appear after the proxy creation will not be taken into
consideration.

On the business process side there have been several
proposals that attempt to leverage the existence of multiple
distinct providers, particularly of the orchestration engine itself.
The proposed techniques can be applied to business process
described using BPEL, and mainly deal on how to divide
the business process in order to distribute the execution of a
single business process by multiple BPEL engines in order
to improve throughput. To achieve this goal it was proposed

20Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 28 / 103

in [15] the partition of the BPEL instruction sequence into a
set of distributed processes (that can be reordered, but whose
final output will always be the same as the original sequence).
BPEL activities are divided into fixed (receive, reply invoke)
and portable, where each fixed activity is aggregated with a
process service (receive/reply pair with the entry point) and the
portables can be moved. This approach allows the automatic
extraction of parallelism from the flow activity and results
in partitions containing one fixed activity and zero or more
portable ones. According to the authors this approach leads to
a projected throughput increase of 30% under normal system
load and by a factor of two under high load, yet it assumes that
every service-providing node has BPEL runtime capabilities.

Another approach can be found in [16] where it is proposed
to decentralise the flow control and dynamically select the
role that a given node should take. After executing an activity
each node transfer all the generated state information to the
following node (thus the participating nodes can be seen as
stateless). It should be noted that this approach allows the
dynamic discovery of business partners, yet it still requires the
presence of a BPEL engine in every node and only considers
simple flows without any type of synchronisation, restrictions
or error handling. Alternative approaches to business process
partitioning can be found in [17][18]. These works propose
extensions to the existing BPEL standard in order to make
the data flow (expressed in the form of shared process wide
variables) as explicit as its control flow. Business processes
using the proposed extensions can be partitioned taking into
account both control requirements and shared data requirements.
It should be noted that the partitioning process takes place
before deploying the business process for execution.

III. WEB SERVICES IN P2P ENVIRONMENTS

Our starting point is a previously developed P2P framework
designed to support digital libraries [19]. The P2P component
is based on a JXTA unstructured hybrid overlay comprised
of both infrastructure peers and client peers. In this overlay
infrastructure peers are responsible for gathering advertisements
that are sent periodically by client peers and other infrastructure
peers. Client peers can contact infrastructure peers in order
to discover and receive new advertisements that are stored in
a local cache. When client peers need to locate a resource
they first issue a query to their local advertisement cache and
only in the event of not having a matching advertisement they
issue the query to infrastructure peers. It was decided that the
services should be standard web services, given the ubiquity
and consequent familiarity of that technology. This decision
lead us to use JXTA-SOAP to provide the bridge between web
services and the P2P network, in an attempt to avoid exposing
the details of the P2P network directly to service developers.
While this initial approach allowed us to take advantage of
JXTA built-in resource discovery mechanism (advertisements),
it also possessed a number of shortcomings. Its use of JXTA-
SOAP created a technological limitation to service developers
by requiring that services to be deployed using Apache Axis.
Additional requirements of the creation of services using JXTA-

SOAP include the need to implement a specific interface and
the creation of service descriptor (one for each service), which
requires details from the P2P network itself, thus breaking
the illusion that developers are creating standard web services.
Furthermore the services created were only available within
the P2P network, and making them available to the outside
required a manually created per service proxy.

Given the limitations of our initial approach the need for a
complementary solution became clear. Instead of creating our
services inside the P2P network we decided that it would
be better if we created regular web services. This allows
developers to design new services without having to worry
about implementing specific interfaces to allow the network
to be service aware while also freeing them from having to
create services using a particular technology or application
server. In order to make the network aware of the existence of
these external web services (some whose access might only
be possible from the localhost) the local P2P client can be
configured to fetch the WSDL service descriptions from either a
set of addresses or a system folder. The same local client can be
deployed and configured to run in tandem with already existing
web services, exposing them to the P2P network. Services
are then described using a specially crafted advertisement
(based on JXTA Module Specification Advertisement) that
uses the information available from the service WSDL. This
advertisement will carry three pieces of information that
allows the identification of both service and providing peer:
its namespace, methods and address. Two distinct peers can
deploy a copy of the service in their own application server and
automatically generate advertisements for each service from its
corresponding WSDL. Two advertisements will describe the
same service if they possess the same namespace and method
collection. With this strategy web services’ clients are created
in the traditional way, and if nothing is done we could run the
risk of creating bindings that use the same service-providing
peer, ignoring any replica present in the P2P network. To avoid
this we chose to create a transparent web services proxy. Each
peer can be configured to provide a small HTTP server whose
main task is to capture SOAP messages. These messages have
the required information (namespace and method) to locate
a service in the network by searching for its advertisement,
generating a list of potential providers. Another task of the
HTTP server is to publish a modified version of the original
WSDL of each service. This modified WSDL is identical to
the original except that the <soap:address> of the binding will
point to an address configured in the web service proxy instead
of pointing to the service location directly, thus ensuring that
clients generated from this modified WSDL version will be
transparently using the P2P network. Assuming that previously
deployed public services remain public, clients generated from
the original WSDL will not be affected, ensuring that legacy
applications will continue to work while still offering a clear
upgrade path. As was said before each peer can be configured
to act as a proxy regardless of the existence of other peers
that are performing the same task. This enables us to provide
multiple entry points into the P2P network or even to apply

21Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 29 / 103

P2P Network

Service
Client

Service
Proxy

Service
Provider

1

2 4

4

5

3

1
2
3
4
5

HTTP Soap Request/Reply
Service Lookup Query/Reply
SAAJ Service Call
JXTA Encapsulated Request/Reply
Local Service Call
Common Operations
Direct Contact Operations
Deferred Contact Opertions

Figure 1: Direct contact and deferred contact.

load balance techniques between entry points.
It should also be noted that peers that act as service proxies

have two distinct service invocation methods that they can use:
direct contact and deferred contact (as seen in Figure 1). Direct
contact can be used when the service is directly accessible
using the standard HTTP protocol, while deferred contact
first transfers the raw SOAP message that the service proxy
received to the peer that is actually going to perform the
service using the P2P network. The decision to use one or
another method (illustrated in Figure 2) depends of whether
a service can be reached using the standard HTTP protocol
or not, and determining this requires resolving the service
address. A successful resolve indicates that the service is
directly accessible and is available, while a failure can indicate
that the service provider is no longer available, or that the
service is only accessible from the P2P network. Since both
types of failures are indistinguishable we make the assumption
that the requested service will be available from the same
provider through the use of the P2P network (thus adopting a
deferred contact strategy). If this leads to a new failure while
contacting the peer, a new one can be selected from those that
offer the same service.

A disadvantage of this approach when compared with both
native JXTA services and JXTA-SOAP based services is that
it will require manual service replication. JXTA services were
designed to be portable across machines that are running the
same JXTA version (JXSE or JXTA-C), with their runtime
requirements being described in Module Advertisements. A
similar philosophy can be applied to JXTA-SOAP services,

Determine
service from

message

Query P2P
Network for

service

[Service not found] Generate
SOAP fault

Generate
service

provider list

Select
provider
from list

Invoke using
P2P

Invoke using
SAAJ call

Remove
provider
from list

Send
response

[Direct
contact]

[Deferred
contact]

[Invoke Error]

[List is not empty]

Figure 2: Decision model.

since their base requirements (an Axis application server and
java based JXSE JXTA version) is known a priori, and their
runtime dependencies can be bundled in a package. With our
proposed approach the only pieces of information that we have
about a service is its WSDL and providing peer. Since we have
no information about the application server that they require,
or about their runtime dependencies it is not yet possible
to devise an appropriate and completely automated service
migration/replication policy. On the other hand our strategy
does not mandate the use of any specific technology for the
creation of services, unlike previously referenced approaches
[6][7][11].

IV. BUSINESS PROCESS EXECUTION IN P2P
ENVIRONMENTS

While the strategy detailed in the previous section regarding
web services deployment in P2P environments can be used
transparently in the context of business process execution,
we believe that a BPEL engine can benefit from the fact of
being P2P-aware. The most obvious benefit is that it can use
the service discovery mechanism directly, avoiding having to
go through the web services proxy for each service that it
intends to invoke from the P2P network. Having direct access
to the discovery mechanism means that the BPEL engine can
act as a simple load balance mechanism, exploring service

22Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 30 / 103

replication to avoid sending too many service requests to the
same service-providing peer. This can help to alleviate the
fact that the traditional approach to business process execution
is a centralised one, in which service calls are dispatched to
partner links (usually generated from a WSDL and thus bound
to a single provider) and where state is centrally managed, by
replacing those pre-bounded calls with dynamically discovered
service providers. Going one step further, the ability to execute a
BPEL process is in itself a service, which can be replicated and
advertised by the P2P network. It should also be noted that the
composition of multiple services executed by a BPEL engine
is itself exposed as a web service described by a WSDL. This
fact can be explored in a P2P environment in several ways: by
replicating business processes (seen as regular web services)
throughout the network; by allowing peers that provide an
entry point into the P2P network to perform load balance
between multiple composite service providing peers and more
importantly by realising that the network may have multiple
peers that can provide BPEL execution as a service. Being able
to discover other available BPEL engines opens the door to
distributing the orchestration process through multiple service
providers (as opposed to execute the entire process in a single
centralised provider). Distributing the orchestration through
multiple peers has several advantages, particularly in high load
scenarios or in scenarios where there is the need to transfer
large amounts of data between service providers and consumers.
Achieving this goal requires a careful partitioning process in
order to reduce the number of messages and the amount of
data transferred, thus increasing throughput.

Regarding the partitioning process, previous work assumes
that every partner node will have BPEL capabilities, which in
a P2P network designed to take advantage of already existing
computational resources might not be the most convenient
approach. It is possible to safely alleviate this assumption
when using a BPEL engine that is P2P aware, since before
executing a business process we can discover not only the
required service providers but also any other available BPEL
engines (since BPEL execution itself is a service). If no other
engine is found then business process execution will proceed
in the traditional centralised way, yet if one or more engines
are found the BPEL process definition can be partitioned and
parts of it delegated to other engines. If those engines are
themselves P2P aware it is possible to continue the partition
process. It should be noted that the absence of this "BPEL in
every node" assumption means that some of the previously
proposed partition mechanisms can not safely be applied to this
scenario, yet some of the previously proposed design principles
remain valid. When there is a parallel execution (a flow activity),
an entire branch can be still be partitioned if the first invoke
service activity exists at a BPEL-capable peer. Furthermore
having access to the service discovery mechanism means that
we can eventually use information about the services themselves
both to decide what will be the more adequate service provider
to use and to infer the best tasks to be delegated.

As was asserted before, process delegation has the potential
to greatly reduce the amount of data that must be transferred

through the network, mainly by eliminating round trips in the
invocation calls. Since this effect can be seen more clearly
when delegating services that require the transmission of large
message or variables (particularly large response messages),
our main concern should be to provide a way to identify those
types of service. While there is no standard way to know a
priory which services will generate a large response message,
we can use the return type as a telltale of those services. It
is safe to assume that any efficiency gain will likely be much
smaller when delegating the process if services are going to
return an integer when compared with services that return an
array of bytes. As such we suggest the usage of a simple
rule: perform no process delegation if the next service return
messages with simple types (numeric, boolean, strings) or
complex types based on these types.

In line with previous work inner process delegation presents
some difficulties when dealing with process monitoring. While
keeping track of the progress of a business process in a
centralised scenario is a simple task, doing so in a decentralised
orchestration environment is not as trivial. This is a non-critical
issue that only occurs for BPEL engines that support process
delegation; nevertheless one should be aware of this limitation.
Furthermore the delegation of branches that contain shared
process variables can also become a source of problems.

V. CASE STUDY

We present as an example the case of a digital newsstand
website that allows registered users to view a range of
newspapers as they are published. The website receives PDF
files from the publishers which need to be converted into an
image format (in the case JPEG) for display purposes and
whose text must be extracted for search purposes. As part
of the submission process there is the need to invoke several
services (image conversion, resize and white space cropping,
text extraction, OCR and storage). The sequence of services
to be performed can be organised as a business process (a
functional diagram of it can be found in Figure 3). The initial
input of this process is a PDF file and an XML document
with associated metadata. The process starts with two parallel
branches. The first branch extracts text from the initial PDF,
while the second branch converts the PDF into an array of
PNG files and crops the white space around the generated PNG
files. From this point on the process once again splits into two
parallel branches, one that is responsible to convert the PNG
files to TIFF format (the OCR service requires that the input
files to be in TIFF format) with the resulting files being fed
to an OCR service. Meanwhile the other branch converts the
PNG files to the final JPEG format (with the appropriate screen
resolution). The final activity consists on the use of a service
that will store all non-intermediate files that were generated
by the process.

In the worst case scenario each of the blocks in Figure 3
represents a service in a different peer. In a centralised
orchestration this represents a significant amount of data that
must be sent through the network. The total amount can be
calculated by T = 3SPDF | + 5SPNG + 2STIF + 2SOCR +

23Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 31 / 103

St
or

ag
e

C
on

ve
rt

R
es

iz
e

O
C

R
C

ro
p

Te
xt

 E
xt

ra
ct

io
n

Text(PDF)

CropWS(PNG)

PNG⇒TIF

PNG⇒JPG

StoreDoc(PDF,XML,*)

PDF⇒PNG

OCR(TIF)

Document Submission Process

Figure 3: Functional diagram of the document submission
process.

2STXT + 2SJPG + SXML + SID where Sx represents the
message size of the transmission of X . In a branched process
such as this one it is possible to perform a simple optimisation
by delegating an entire branch of activities. If one of the peers
that provide an image conversion service also provides BPEL
execution capabilities, we can reduce data that must circulate
through the network by delegating all the activities in the
"OCR" band of Figure 3. The call to the image conversion
service would be a local one, thus avoiding sending the
intermediary TIFF files that result from the image conversion
back to the original caller trough the network. In this particular
digital newsstand application the intermediary TIFF are about
3MB each, which for a 40-page newspaper would result on
not having to send 120MB of data through the network if this
optimisation is applied.

In an optimal scenario where all peers have BPEL execu-
tion capabilities it would be possible to apply the partition
algorithms that were previously mentioned in Section II. It
should be noted that some delegation could prove to be counter-
productive. If there were services just before the storage service,
dedicated to provide unique identifiers, produce checksums or
calculate hashes based on the metadata of the new document,
delegating the orchestration of one of those services and
the storage to those providers would actually increase the
network usage since instead of invoking the first service,
receive its results and send everything to the storage service,

both the initial PDF and final JPEG images would have to
be sent first to the new service provider and only after to
the storage service. In this scenario instead of transferring
Tfinal = 2SXML + 2SID + SPDF + SJPG we would be
transferring Tfinal = 2SXML + SID + 2SPDF + 2SJPG.
If we apply the criteria that was proposed earlier, since the
id/checksum service return type will probably be of a simple
type (that we can safely predict to be small when compared
with byte arrays that hold the original PDF or JPEG files) no
delegation would occur, thus avoiding generating extra network
traffic. Other optimisations could be considered, such as trying
to merge activities in peers that provide multiple consecutive
services. This optimisation could greatly reduce network traffic
but it would be difficult to analyse its beneficial impact if
factors such as throughput were also to be considered. In this
particular example it could also be possible to further explore
the P2P network by using it as a storage medium, which would
allow the storage service to be executed by any available peer.

VI. CONCLUSION AND FUTURE WORK

In this work we have discussed and implemented strategies
to better integrate web services, SOA, and business process
execution in peer-to-peer environments. Our proposed strategy
allows the deployment of replicated web services in multiple
peers without requiring any major change to the services
themselves or to the clients. It accomplishes this with the
use of a small proxy that allows access to services hosted on
the P2P network to clients that are not aware of the presence
of the P2P network providing the following benefits:
• Does not require modifications to existing services or

clients.
• Does not mandate a specific technology for the develop-

ment or deployment of new services.
• Provides a way to tap into otherwise wasted computational

resources.
• Transparently manages access to replicated web services.
While it can be argued that the adopted strategy adds an

additional step that has the potential of slowing the access to
a given service in low load scenarios, it also has the potential
to shield clients in high load scenarios, provided that multiple
peers provide an entry proxy to the P2P network and that
popular services are properly replicated. Business process
execution engines can use the replicated services transparently,
providing an added layer of reliability to business process
execution, yet a P2P-aware business process engine can obtain
the following additional benefits:
• Delegate parts of a business process to other engines.
• Directly select service providers to distribute workload.
• Reduce the amount of data that must be sent through the

network.
Of the previously stated benefits, process delegation and

reduced network data transfers depend directly on the existence
of additional business process execution engines in the P2P
network. Since we are able to discover them in runtime we
can alleviate the "BPEL in every node" assumption present

24Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 32 / 103

in previous works [15][16] and avoid the need to perform
the partition process before actually deploying the business
process [17][18] thus ensuring that there is an "always working"
solution for the execution of the business process, even when
no other business process execution engines are available in
the P2P network.

A point to be improved in the service discovery mechanism is
that the current approach is still based on the traditional WSDL,
which only provides a syntactic description of the service.
While this description provides enough information to discover
and execute a service based only on an incoming request,
the use of a semantic description would enable more refined
queries. One of the goals of a semantically improved discovery
mechanism would be to further improve service execution
resilience by allowing the exchange of a missing or faulty
services with semantically equivalent ones (or composition of
multiple services if applicable) in an automated way (a similar
approach can be seen in PANIC [20]). This requires knowledge
about what the service does that cannot be obtained from the
current WSDL description, but might be available with the
introduction of WSDL-S or OWL-S. The additional knowledge
gathered about each service could also be used to improve
peer selection process, and open the way to more efficient
process delegation strategies. Two peers can be providing
the exact same set of services, yet due to differences in
hardware the performance obtained from each one can be
very different, making one of those peer a less desirable choice
to perform some classes of services. As an example a storage
service would benefit from being executed on a peer with
more available storage space while a video conversion service
would benefit from being executed in a peer with dedicated
encoding hardware. By taking into account the requirements
of the service when selecting the service-providing peer it is
possible to promote an even more rational use of available
hardware resources. It should be noted that having advanced
peer/service selection algorithms is a an important step that to
achieve further performance gains, and is an important research
topic [21][22][23].

As was said before, the proposed P2P service discovery
mechanism assumes that a web service is going to be described
by a WSDL. While this assumption holds true for SOAP based
web services, it collapses when dealing with REST services.
This has a double impact since it prevents the use of REST
services in BPEL processes and prevents proper integration
of REST services with our P2P network. Taking into account
the work described in [24] where REST services have been
described in WSDL and in [25], where REST services were
composed into BPEL processes (with the use of extensions)
we believe that it will be possible to support REST services
in parallel with SOAP based web services using our proposed
P2P architecture with only minor modifications.

ACKNOWLEDGEMENT

This work was funded in part by the Portuguese Foundation
for Science and Technology grant SFRH/BD/62554/2009.

REFERENCES

[1] I. J. Taylor and A. Harrison, From P2P to Web Services and Grids. Peers
in a Client/Server World. Springer, 2005.

[2] E. A. Marks and M. Bell, Service-Oriented Architecture: A Planning
and Implementation Guide for Business and Technology. John Wiley &
Sons, June 2006.

[3] M. Bichler and K.-J. Lin, “Service-oriented computing,”
Computer, vol. 39, pp. 99–101, 2006. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/MC.2006.102

[4] O. Zimmermann, V. Doubrovski, J. Grundler, and K. Hogg,
“Service-oriented architecture and business process choreography
in an order management scenario: rationale, concepts, lessons
learned,” in Companion to the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications, ser. OOPSLA ’05, 2005, pp. 301–312. [Online]. Available:
http://doi.acm.org/10.1145/1094855.1094965

[5] JXTA Community Board, “Jxta homepage,” 2010. [Online]. Available:
http://jxta.kenai.com/

[6] ——, JXTA v2.0 Protocol Specification, 2007. [Online]. Available:
http://jxta.kenai.com/Specifications/JXTAProtocols2_0.pdf

[7] M. Amoretti, “Enabling peer-to-peer web service architectures with
jxta.soap,” in IADIS e-Society 2008, 2008.

[8] A. S. Foundation, “Web services - axis,” 2005 Published. [Online].
Available: http://axis.apache.org/axis/

[9] M. P. Papazoglou, B. J. Krämer, and J. Yang, “Leveraging web-services
and peer-to-peer networks,” in Proceedings of the 15th international
conference on Advanced information systems engineering, ser. CAiSE’03.
Berlin, Heidelberg: Springer-Verlag, 2003, pp. 485–501.

[10] Z. Zhengdong, H. Yahong, L. Ronggui, W. Weiguo, and L. Zengzhi, “A
p2p-based semantic web services composition architecture,” in IEEE
International Conference on E-Business Engineering, oct. 2009, pp.
403–408. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/
ICEBE.2009.63

[11] S. Dustdar and L. Juszczyk, “Dynamic replication and synchronization
of web services for high availability in mobile ad-hoc networks,” Service
Oriented Computing and Applications, vol. 1, no. 1, pp. 19–33, 2007.
[Online]. Available: http://dx.doi.org/10.1007/s11761-007-0006-z

[12] L. Juszczyk, J. Lazowski, and S. Dustdar, “Web service discovery,
replication, and synchronization in ad-hoc networks,” in Proceedings
of the First International Conference on Availability, Reliability and
Security. Washington, DC, USA: IEEE Computer Society, 2006, pp.
847–854. [Online]. Available: http://dx.doi.org/10.1109/ARES.2006.143

[13] S. Dustdar and M. Treiber, “Integration of transient web services into
a virtual peer to peer web service registry,” Distributed and Parallel
Databases, vol. 20, pp. 91–115, September 2006. [Online]. Available:
http://dx.doi.org/10.1007/s10619-006-9447-1

[14] J. G. R. Jr., G. T. do Carmo, M. T. Valente, and N. C. Mendonça, “Smart
proxies for accessing replicated web services,” IEEE Distributed Systems
Online, vol. 8, no. 12, 2007.

[15] M. G. Nanda, S. Chandra, and V. Sarkar, “Decentralizing execution of
composite web services,” SIGPLAN Not., vol. 39, pp. 170–187, October
2004. [Online]. Available: http://doi.acm.org/10.1145/1035292.1028991

[16] F. Montagut and R. Molva, “Enabling pervasive execution of workflows,”
in Collaborative Computing: Networking, Applications and Worksharing,
2005 International Conference on, 2005, p. 10 pp. [Online]. Available:
http://dx.doi.org/10.1109/COLCOM.2005.1651227

[17] R. Khalaf, O. Kopp, and F. Leymann, “Maintaining data dependencies
across bpel process fragments,” International Journal of Cooperative
Information Systems., vol. 17, no. 3, pp. 259–282, 2008. [Online].
Available: http://dx.doi.org/10.1142/S0218843008001828

[18] R. Khalaf, “Supporting business process fragmentation while maintaining
operational semantics: a bpel perspective,” Ph.D. dissertation,
University of Stuttgart, Faculty of Computer Science, Electrical
Engineering, and Information Technology, 2008. [Online]. Available:
http://elib.uni-stuttgart.de/opus/volltexte/2008/3514/

[19] M. Pereira, M. Fernandes, J. A. Martins, and J. S. Pinto, “Service
oriented p2p networks for digital libraries, based on jxta.” in ICSOFT
2009 - Proceedings of the 4th International Conference on Software and
Data Technologies, B. Shishkov, J. Cordeiro, and A. Ranchordas, Eds.
INSTICC Press, 2009, pp. 141–146.

[20] J. Hunter and S. Choudhury, “Panic: an integrated approach to the
preservation of composite digital objects using semantic web services,”

25Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 33 / 103

International Journal on Digital Libraries, vol. 6, no. 2, pp. 174–183,
2006. [Online]. Available: http://dx.doi.org/10.1007/s00799-005-0134-z

[21] F. Xhafa, L. Barolli, T. Daradoumis, R. Fernández, and S. Caballé,
“Jxta-overlay: An interface for efficient peer selection in p2p jxta-based
systems,” Computer Standards & Interfaces, vol. 31, no. 5, pp. 886–893,
2009. [Online]. Available: http://www.sciencedirect.com/science/article/
B6TYV-4S2TRXK-1/2/ac83a5f48d7beeac9f84cb21e6182d83

[22] N. C. Mendonça and J. A. F. Silva, “An empirical evaluation of
client-side server selection policies for accessing replicated web services,”
in SAC ’05: Proceedings of the 2005 ACM symposium on Applied
computing. New York, NY, USA: ACM, 2005, pp. 1704–1708. [Online].
Available: http://doi.acm.org/10.1145/1066677.1067062

[23] S. Dykes, K. Robbins, and C. Jeffery, “An empirical evaluation of
client-side server selection algorithms,” in Proceedings of INFOCOM
2000. Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies., vol. 3, March 2000, pp. 1361–1370.

[24] L. Mandel, “Describe rest web services with wsdl 2.0: A how-to guide,”
IBM, 2008. [Online]. Available: http://www.ibm.com/developerworks/
webservices/library/ws-restwsdl/

[25] C. Pautasso, “Bpel for rest,” Business Process Management, vol.
5240, pp. 278–293, 2008. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-85758-7_21

26Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 34 / 103

Symmetric Push-Sum Protocol for Decentralised Aggregation

Francesco Blasa, Simone Cafiero, Giancarlo Fortino,
Department of Electronics, Informatics and Systems

University of Calabria, 87036 Rende (CS), Italy
{checco84,simone.cafiero}@gmail.com, g.fortino@unical.it

Giuseppe Di Fatta
School of Systems Engineering, The University of Reading

Whiteknights, Reading, Berkshire, RG6 6AY, UK
G.DiFatta@reading.ac.uk

Abstract—Gossip (or Epidemic) protocols have emerged as
a communication and computation paradigm for large-scale
networked systems. These protocols are based on randomised
communication, which provides probabilistic guarantees on
convergence speed and accuracy. They also provide robust-
ness, scalability, computational and communication efficiency
and high stability under disruption. This work presents a
novel Gossip protocol named Symmetric Push-Sum Protocol
for the computation of global aggregates (e.g., average) in
decentralised and asynchronous systems. The proposed ap-
proach combines the simplicity of the push-based approach
and the efficiency of the push-pull schemes. The push-pull
schemes cannot be directly employed in asynchronous systems
as they require synchronous paired communication operations
to guarantee their accuracy. Although push schemes guarantee
accuracy even with asynchronous communication, they suffer
from a slower and unstable convergence. Symmetric Push-
Sum Protocol does not require synchronous communication
and achieves a convergence speed similar to the push-pull
schemes, while keeping the accuracy stability of the push
scheme. In the experimental analysis, we focus on computing
the global average as an important class of node aggregation
problems. The results have confirmed that the proposed method
inherits the advantages of both other schemes and outper-
forms well-known state of the art protocols for decentralized
Gossip-based aggregation.

Keywords-peer-to-peer computing; distributed aggregation
algorithms; gossip protocols; extreme scale computing.

I. INTRODUCTION

Nowadays, highly distributed systems such as P2P net-
works, large scale sensor networks, grids and ubiquitous
systems, enable a broad range of applications [1]. Central-
ized paradigms are not suitable for distributed large-scale
scenarios as they introduce bottlenecks and failure intoler-
ance. In particular, applications require atop such systems a
protocol layer that can cope well with the highly dynamic
and decentralized nature of these infrastructures. Locality
has been a key element to successfully deploy applications
into large-scale networked systems. However, computing
and spreading global information is still necessary for a
wide range of applications and is a particularly challenging
task when considering dynamic, highly distributed, large and
extreme scale systems.

This work was partly carried out while Francesco Blasa and Simone
Cafiero were at the University of Reading, UK, for a work placement of
the Erasmus Training Programme (June-Sept. 2010).

Aggregation protocols represent a decentralized paradigm
for computing global properties of distributed systems. Sev-
eral distributed aggregation protocols have been proposed in
the last years. They can be divided into two main classes:
Tree-based protocols and Gossip-based protocols.

The former performs a tree-based communication
throughout a tree overlay structure (e.g., [2]–[4]). Tree-based
protocols support a minimum number of communications
but require the construction of a hierarchical communication
structure among nodes and can be affected by the presence
of single points of failure.

The second class includes Gossip (or Epidemic) protocols,
which are a robust and scalable communication paradigm
to disseminate information in a large-scale distributed en-
vironment using randomised communication [5], [6]. Al-
though Epidemic protocols have communication costs usu-
ally greater than tree-based protocols, they are intrinsically
fault tolerant. Gossip-based communication can use push,
pull or push-pull schemes.

P2P applications based on Gossip protocols are emerging
in many fields. In [7], a global load monitoring service
for P2P overlay networks has been proposed. In [8], a
decentralized dynamic load balancing algorithm for a desk-
top Grid environment is presented. The work in [9] intro-
duces an epidemic content search mechanism in unstructured
P2P overlay over intermittently connected mobile ad hoc
networks. The work in [10] studies Gossip-based message
dissemination schemes to be employed for content and
service dissemination or discovery in unstructured P2P and
ad hoc networks. In [11], authors define a protocol to achieve
mutual anonymity in unstructured P2P networks, which
deals with high churn rates by means of an epidemic-style
data dissemination. A number of Gossip-based protocols for
sensor networks have also been proposed (e.g., [12]–[14]).
Gossip protocols have also been adopted to solve the general
data aggregation problem [15]–[17].

In this work, we present a new algorithm for Gossip-based
aggregation named Symmetric Push-Sum Protocol (SPSP).
The proposed algorithm is fully decentralized and suitable
for large scale networks. We evaluate performances of our
algorithm w.r.t. Push-Sum Protocol (PSP) [15] and Push-
Pull Gossip Protocol (PPG) [16], [17]. SPSP preserves the
mass conservation invariant, i.e., at any time the sum of all

27Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 35 / 103

values in the network is constant. This invariant guarantees
the correctness of aggregation algorithms [18]. In particular,
among the various aggregation functions in the experimental
analysis we focus on the average. The simulations have
confirmed the quality and the consistency of the results.
In particular, the results show that the proposed approach
always performs much better than the state of the art
aggregation protocols for large-scale distributed systems.

The rest of this paper is organized as follow. Section
II reviews related work. Section III presents the proposed
aggregation protocol. Section IV presents an experimental
comparative analysis. Finally, Section V provides some
conclusive remarks and future research directions.

II. RELATED WORK

Several Gossip-based aggregation protocols have been
proposed. In [15], a push scheme protocol named
Push-Sum Protocol (PSP) is proposed. It is a simple aggre-
gation protocol for computing several aggregation functions
(e.g., sum, average, count). In PSP, the local scalar value
is represented as a pair (v, w), where v is initialised with
the local value x and the initial weight w depends on the
global aggregate function to be computed as shown in Table
I. The global aggregate value is given by v/w after a fixed
number of communication cycles. At each cycle, each node
halves its local value and weight (v, w) = (v/2, w/2) and
sends the new obtained pair to a randomly selected node
according to a uniform probability density function (pdf).
The global mass is guaranteed to be conserved in case
a reliable communication protocol is used. A number of
messages equal to the number of nodes in the network
is sent in total at each cycle. The diffusion speed is the
minimum number of protocol cycles required to achieve a
good approximation of the true value of the global aggregate
function with high probability:

Prob(ei < ε) ≥ 1− δ, ∀ i = 1, . . . , n, (1)

where n is the network size, ei the approximation error
at node i and ε and δ two arbitrary small positive constants.
The diffusion speed of the PSP has been shown to have a
complexity O(log(n) + log(ε−1) + log(δ−1)) [15].

In [19], authors discuss some issues of PSP when used as
summarisation algorithm. The sum function in [15] requires
a leader election; this represents a non trivial task and could
introduce single points of failure. In [19], the authors pro-
vides a scalable and fault tolerant solution to this problem by
incorporating a leader election mechanism in the aggregation
protocol.

In [16], [17], two similar algorithms are proposed; they
can be both referred to as Push-Pull Gossip protocol (PPG).
PPG uses a push-pull scheme that improves the diffusion
speed w.r.t. PSP. In PPG at each cycle a node i randomly
chooses a node j to perform an averaging operation and to

update their local values xi+xj

2 . In PPG, 2 × n messages
are sent in total at each cycle. In [17], authors focus on
the design of Gossip algorithm by defining a method to
obtain the fastest Gossip algorithm over a given distributed
network. In particular they find out that the averaging time
(which is directly related to diffusion speed) depends on
the eigenvalue of a doubly stochastic matrix characterizing
the algorithm. The fastest Gossip algorithm is obtained by
minimizing the eigenvalues in a distributed fashion.

In [18], authors state that the correctness of such algo-
rithms depends on the mass conservation invariant. They
show that PPG could violate this fundamental invariant if
an atomic violation happens. An atomic violation occurs on
node i when i receives a push while it is waiting for a
pull. Therefore two versions of PPG are proposed: Push-Pull
Back Cancellation and Push-Pull Ordered Wait. The first al-
gorithm adopts a simple message cancellation mechanism to
guarantee atomicity and avoid mass conservation violation.
However, the cancellation method decreases the diffusion
speed. The second approach adopts a buffer for storing push
messages that are received while a push-pull operation is
being executed. This mechanism could introduce a deadlock
across the network. To avoid deadlocks they introduce a total
order among nodes and a constraint in the nodes selection
mechanism, which penalizes selection of some nodes.

In general, the use of synchronous cycles simplifies the
analysis and the implementation of Gossip-based aggrega-
tion protocols. Nevertheless, the protocols can be imple-
mented in completely asynchronous environments. Indepen-
dent local Poisson clocks can be used to generate syn-
chronous cycles in asynchronous distributed environments
(e.g., [20]). A second interesting alternative is the use of an
exact global estimation of the right termination time, similar
to the median-counter algorithm [6] for rumour spreading.

III. SYMMETRIC PSP

We propose a novel Gossip-based aggregation protocol,
the Symmetric Push-Sum Protocol (SPSP), which combines
the simplicity of PSP and the convergence speed of PPG.

We assume that the transport protocol is reliable. This
assumption is not strictly necessary and could be relaxed as
Gossip protocols are intrinsically fault tolerant. However, in
this work the effect of packet loss is not investigated.

SPSP adopts an asynchronous push-pull communication
scheme. Push-pull schemes are expected to converge faster
than push schemes with the same number of exchanged
messages [6].

Let consider a distributed system composed by n peers
P = {P1, . . . , Pn}. Each node i holds a local value vi and
a local weight wi (wi ≥ 0) and needs to compute a global
aggregation function F (v1, w1, . . . , vn, wn). Similarly to
PSP, SPSP can perform several aggregation functions, some
of which are shown in Table I.

28Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 36 / 103

Table I
SETTINGS FOR SEVERAL AGGREGATION FUNCTIONS

Function Description

Sum vi = local value
wi = 1 at a single node, 0 at all other nodes

Count vi = 1
wi = 1 at a single node, 0 at all other nodes

Average vi = local value
wi = 1

Weighted vi = local value × local weight
Average wi = local weight

At each node i
Require: v0, w0

The initial local value, v0;
The initial local weight, w0.

Initialisation:
1: (v, w) = (v0, w0)

At each cycle:
2: j ← getNode()
3: v ← v/2, w← w/2
4: send an aggregation message to j, 〈(v, w), true〉

At event: received an aggregation message 〈(v ′, w′), r〉
from j

5: if r is true then
6: v ← v/2, w← w/2
7: send an aggregation message to j, 〈(v, w), false〉
8: end if
9: v ← v + v′, w← v + w′

Figure 1. The pseudocode of the Symmetric Push-Sum Protocol

As shown in Figure 1, at each cycle a node i randomly
selects a communication partner j according to a uniform
pdf. This selection is provided by the service getNode()
(line 2). Then i halves its local value and weight (line 3) and
sends them to j (line 4). At the reception of the message,
the node j will asynchronously perform a symmetric push
operation: it halves its local value and weight and sends
them to node i (lines 6-7). Then, it adds the received value
and weight to its own value and weight (line 9). In case of
atomic violation, a node i receives the symmetric push from
k �= j immediately after its push operation, the symmetric
push mechanism guarantees the mass invariant.

At each random push an asynchronous reply follows as a
symmetric push: at each cycle 2× n messages are sent.

A. Node Cache Protocol

In uniform Gossip protocols the random node selection is
a critical operation. In general, the global network topology
is not known or is not available at each node.

Figure 2 describes the node selection algorithm adopted
in SPSP, i.e. the Node Cache Protocol. The protocol only re-

At each node i
Require: QMAX , Neighbours

The maximum size of local cache, QMAX ;
The initial set of physical neighbours nodes,
Neighbours.

Export: getNode()
Let getNode() return and remove a random node ID
from the local node ID cache Qi

Initialisation:
1: Qi ← Neighbours
2: randomly trim Qi such that |Qi| ≤ QMAX

At each cycle:
3: j ← getNode()
4: send a cache message to j, 〈Qi, true〉

At event: received a cache message 〈Qj , r〉 from j
5: if r is true then
6: send a cache message to j, 〈Qi, false〉
7: end if
8: Qi ← Qi ∪Qj ∪ { j }
9: randomly trim Qi such that |Qi| ≤ QMAX

Figure 2. The pseudocode of the Node Cache Protocol

quires a few assumptions: the network is a connected graph,
each node knows its physical neighbours (Neighbours), a
multi-hop routing protocol is available.

The node selection protocol maintains a local cache Q
of node identifiers (IDs), with |Q| = QMAX . The cache is
initialised with the physical neighbours (lines 1-2). At each
protocol cycle the local cache is sent to a node randomly
chosen from the cache according to a uniform pdf (lines 3-
4). When a remote cache is received, it is merged with the
local one and trimmed to the maximum size by randomly
removing a number of IDs exceeding QMAX (lines 5-9). The
procedure can be considered a practical implementation of
multiple random walks. After a sufficiently large number
of cycles, the entries in the local cache are uniformly
distributed. In regular connected graphs, random walks con-
verge to uniform independent samples of the node set in a
polynomial number of steps. In expander graphs, i.e., sparse
graphs that are very well connected, random walks converge
to the uniform distribution in O(log(n)) [21].

The node cache protocol provides a local service
getNode(), which removes and returns a random node from
the cache.

IV. PERFORMANCE EVALUATION

In this section the proposed SPSP is evaluated and com-
pared with PSP and PPG protocols for the decentralised
approximate computation of a global average. At each cycle
c of the aggregation protocol each node i computes an
estimate m̃ of the global true average m:

29Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 37 / 103

m̃i(c) ≈ m =

∑n
j=1 vj

n
(2)

A. Experimental setting

We implemented the three protocols, SPSP, PSP and PPG,
in an ad hoc simulator based on discrete events [22]. The
simulator has an event scheduler, a set of processes, which
simulate network nodes, a topology manager and events,
which represent operations such as initialisation, messages,
computation, etc. The simulations assume that a reliable
point-to-point communication protocol is available in the
network.

We have tested the distributed algorithms in two different
types of network topologies:

• two Internet-like topologies were generated using
BRITE [23] with a Waxman model to simulate a flat
level Autonomous System with 1000 and 5000 nodes;

• two 2D mesh topologies were also generated with
dimensions, respectively, 40 × 25 (1000 nodes) and
100× 50 (5000 nodes).

The algorithms were evaluated according to the peak
data distribution, where only a node i holds as local value
vi = N , and all others j hold as local value vj = 0. As
shown in Table I to compute the average each node i holds
weight wi = 1. According to this setting, m is equal to 1. We
have tested all the discussed algorithms with two different
peak data distribution randomly generated.

Each one of the tested protocols uses the Node Cache
Protocol reported in Section III-A. In particular, each node
has its own node cache with QMAX equal to 20.

In order to simulate the algorithms and to collect relevant
performance indices, we have adopted an opportune cycle
structure of fixed length where the aggregation is carried out.
The cycle structure guarantees that there is no overlap in the
communication of different cycles and provides a simple
mechanism for varying the atomic violation percentage
(AVP).

Each cycle is composed of four intervals as shown in Fig-
ure 3. The four intervals have a fixed length of, respectively,
d1, d2, d2 and d3:

Figure 3. Cycle structure

• d1 is the length of the interval where nodes start push
operations;

• d2 is the maximum propagation delay between any pair
of nodes in the network;

• d3 is the maximum synchronisation offset between any
pair of nodes in the network.

We assume a uniformly distributed synchronisation offset
for the start of the aggregation process at different nodes.
In all experiments the maximum synchronisation offset (d3)
between any pair of nodes is set to 10 msec. This value
is similar to a clock synchronisation offset, which can be
obtained using e.g., NTP [24] or PariSync [25].

Each node (source) initiates a push operation at a random
instant of the first interval (d1). In particular, d1 is the sim-
ulation parameter through which the AVP can be varied. By
decreasing the value of d1 the AVP increases and vice versa.

After a propagation delay the push message is received
at the destination node, which asynchronously replies with
a symmetric push (pull) message. After the corresponding
propagation delay the reply is received at the source node.
The second and third intervals account for these propagation
delays. Two intervals of length d2 are necessary to guarantee
that a symmetric push operation (push-pull) is completed.
The value of d2 is a property of the network topology.

Finally a padding interval (d3) is required to ensure
that communications of two different cycles do not overlap
because of the synchronisation offset of the nodes.

B. Analysis

The performance of the three methods (SPSP, PSP and
PPG) are compared in terms of accuracy and convergence
speed at different AVP levels. The accuracy is computed in
terms of the mean percentage error of the estimated average
among all nodes, as shown in equation 3.

MPE(c) =
1

n
·

n∑

i=1

∣∣∣
m− m̃i(c)

m

∣∣∣ (3)

The convergence speed is evaluated by means of the
variance of m̃i among all nodes over time, as indicated in
equation 4.

VAR(c) =
1

n− 1
·

n∑

i=1

(m− m̃i(c))
2 (4)

As shown in Figure 4, PPG is sensitive to AVP. PPG
always reaches a non-null error for AV P > 0%. With
a very large d1 interval the smallest AVP level (0.3%) is
obtained. Even in this case PPG does not converge to the true
average (MPE �= 0). PSP preserves the mass conservation
invariant and is guaranteed to converge to the true average.
However it has a slow convergence speed compared to the
other protocols. SPSP is not sensitive to the AVP level and
is guaranteed to converge to the true average. Moreover,
SPSP provides the best accuracy in all simulated scenarios.

30Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 38 / 103

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50

M
P

E

cycles

PPG 90%
PPG 66%
PPG 44%

PPG 0.3%
PSP 90%
PSP 66%
PSP 44%

PSP 0.3%
SPSP 90%
SPSP 66%
SPSP 44%
SPSP 0.3%

Figure 4. MPE varying the AVP w.r.t. 100 different simulations: BRITE and Mesh topologies, 1000 and 5000 nodes, 2 different Peak Data Distribution.

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50

av
er

ag
e

cycles

PPG
PSP

SPSP

Figure 5. Average and standard deviation of the estimated aggregate over
the network nodes. BRITE topology with 5000 nodes. AVP equal to 90%.

In Figures 5 and 6, PPG and SPSP have a similar variance
trend, however PPG converges to an incorrect estimate m̃.

V. CONCLUSION

The Symmetric Push-Sum Protocol (SPSP) is a novel
Gossip-based aggregation protocol that is suitable for com-
puting aggregation functions on networks of any scale. The
proposed algorithm is totally decentralized and robust and
preserves the mass conservation invariant. The experimental
analysis has confirmed that the algorithm outperforms the

 1e-035

 1e-030

 1e-025

 1e-020

 1e-015

 1e-010

 1e-005

 1

 100000

 0 10 20 30 40 50 60 70 80 90 100

va
ria

nc
e

cycles

PPG 90%
PPG 0.3%
PSP 90%
PSP 0.3%

SPSP 90%
SPSP 0.3%

Figure 6. Convergence speed (variance). BRITE topology with 5000 nodes.
AVP equal to 0.3% and 90%.

state of the art protocols (i.e., PSP and PPG) for the
average aggregation function. In particular, SPSP does not
violate the mass conservation invariant, similarly to PSP,
and is much faster than PSP. SPSP and PPG have similar
convergence speed; SPSP guarantees a convergence to the
true global aggregate, while PPG does not. Future research
directions will focus on the evaluation of the protocol in
dynamic environments with churn rate and with node and
link failures.

31Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 39 / 103

REFERENCES

[1] F. Cappello, S. Djilali, G. Fedak, T. Hérault, F. Magniette,
V. Néri, and O. Lodygensky, “Computing on large-scale
distributed systems: Xtremweb architecture, programming
models, security, tests and convergence with grid,” Future
Generation Comp. Syst., vol. 21, no. 3, pp. 417–437, 2005.

[2] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani,
“Estimating aggregates on a peer-to-peer network,” Stanford
InfoLab, Technical Report 2003-24, April 2003.

[3] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“Tag: a tiny aggregation service for ad-hoc sensor networks,”
SIGOPS Oper. Syst. Rev., vol. 36, pp. 131–146, December
2002.

[4] M. Dam and R. Stadler, “A generic protocol for network state
aggregation,” in In Proc. Radiovetenskap och Kommunikation
(RVK), 2005, pp. 14–16.

[5] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry, “Epidemic
algorithms for replicated database maintenance,” in Proc. of
the sixth annual ACM Symposium on Principles of distributed
computing, ser. PODC ’87. ACM, 1987, pp. 1–12.

[6] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking,
“Randomized rumor spreading,” in Proceedings of the 41st
Annual Symposium on Foundations of Computer Science.
IEEE Computer Society, 2000, pp. 565–574.

[7] B. Ghit, F. Pop, and V. Cristea, “Epidemic-style global load
monitoring in large-scale overlay networks,” International
Conference on P2P, Parallel, Grid, Cloud, and Internet Com-
puting, pp. 393–398, 2010.

[8] D. H. H. Sheng Di, Cho-Li Wang, “Gossip-based dynamic
load balancing in an autonomous desktop grid,” in Proc.
of the 10th International Conference on High-Performance
Computing in Asia-Pacific Region, 2009, pp. 85–92.

[9] Y. Ma and A. Jamalipour, “An epidemic P2P content search
mechanism for intermittently connected mobile ad hoc net-
works,” in IEEE Global Telecommunications Conference
(GLOBECOM), 2009, pp. 1–6.

[10] S. Tang, E. Jaho, I. Stavrakakis, I. Koukoutsidis, and
P. Van Mieghem, “Modeling gossip-based content dissemi-
nation and search in distributed networking,” Comput. Com-
mun., vol. 34, pp. 765–779, May 2011.

[11] N. Bansod, A. Malgi, B. K. Choi, and J. Mayo, “Muon:
Epidemic based mutual anonymity in unstructured P2P net-
works,” Computer Networks, vol. 52, no. 5, pp. 915–934,
2008.

[12] L. Chitnis, A. Dobra, and S. Ranka, “Aggregation methods
for large-scale sensor networks,” ACM Transactions on Sensor
Networks (TOSN), vol. 4, pp. 1–36, April 2008.

[13] N. Marechal, J.-M. Gorce, and J. Pierrot, “Joint estimation
and gossip averaging for sensor network applications,” IEEE
Transactions on Automatic Control, vol. 55, no. 5, pp. 1208–
1213, may 2010.

[14] A. Dimakis, S. Kar, J. Moura, M. Rabbat, and A. Scaglione,
“Gossip algorithms for distributed signal processing,” Pro-
ceedings of the IEEE, vol. 98, no. 11, pp. 1847–1864, nov.
2010.

[15] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based com-
putation of aggregate information,” in Proceedings of the
44th Annual IEEE Symposium on Foundations of Computer
Science, oct. 2003, pp. 482–491.

[16] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based
aggregation in large dynamic networks,” ACM Transactions
on Computer Systems, vol. 23, pp. 219–252, August 2005.

[17] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Random-
ized gossip algorithms,” IEEE Transactions on Information
Theory, vol. 52, no. 6, pp. 2508–2530, june 2006.

[18] P. Jesus, C. Baquero, and P. Almeida, “Dependability in
aggregation by averaging,” in 1st Symposium on Informatics
(INForum 2009), sept. 2009, pp. 482–491.

[19] W. Terpstra, C. Leng, and A. Buchmann, “Brief announce-
ment: Practical summation via gossip,” in Proceedings of the
sixth annual ACM Symposium on Principles of distributed
computing (PODC). ACM, August 2007, pp. 12–15.

[20] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed
asynchronous deterministic and stochastic gradient optimiza-
tion algorithms,” IEEE Transactions on Automatic Control,
vol. 31, no. 9, pp. 803–812, sep 1986.

[21] D. Gillman, “A chernoff bound for random walks on expander
graphs,” SIAM Journal on Computing (Society for Industrial
and Applied Mathematics), vol. 27, no. 4, pp. 1203–1220,
1998.

[22] G. Fortino, C. Mastroianni, and W. Russo, “A hierarchical
control protocol for group-oriented playbacks supported by
content distribution networks,” Journal of Network and Com-
puter Applications, vol. 32, no. 1, pp. 135–157, 2009.

[23] A. Medina, I. Matta, and J. Byers, “On the origin of power
laws in Internet topologies,” SIGCOMM Comput. Commun.
Rev., vol. 30, pp. 18–28, April 2000.

[24] D. L. Mills, “On the accuracy and stability of clocks synchro-
nized by the network time protocol in the Internet system,”
ACM Computer Communication Review, vol. 20, pp. 65–75,
1990.

[25] P. Bertasi, M. Bonazza, N. Moretti, and P. E., “PariSync:
Clock Synchronization in P2P Networks,” ISPCS 2009 Inter-
nation IEEE Symposium on Precision Clock Synchronization
for Measurement, Control and Communication, pp. 12–16,
October 2009.

32Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 40 / 103

A Data Aggregation System using Mobile Agents on Integrated Sensor Networks

Yuto Hamaguchi∗, Tomoki Yoshihisa∗, Yoshimasa Ishi∗,Yuuichi Teranishi†, Takahiro Hara∗, and Shojiro Nishio∗
∗Department of Multimedia Engineering,Graduate School of Information Science and Technology, Osaka University

†National Institute of Information and Communications Technology, Japan
Email: [hamaguchi.yuto,yoshihisa,ishi.yoshimasa]@ist.osaka-u.ac.jp, teranisi@nict.go.jp, [hara,nishio]@ist.osaka-u.ac.jp

Abstract—Due to the recent development of sensor networks,
integrated sensor networks, in which some sensor networks
are managed systematically, have attracted considerable at-
tention. To implement various applications, such as weather
forecasting and environmental observation, with integrated
sensor networks, users (clients) usually aggregate and collect
the sensor data obtained from all the sensor networks. After
this, the clients execute some operations, such as averaging
and analysis, on the aggregated sensor data. However, such
processes cause heavy network traffic in aggregating data from
all the sensor networks. Hence, in this paper, we propose a
data aggregation system using mobile agents. Mobile agents
are programs that migrate among sensor networks. Since the
mobile agents migrate while executing operations on the sensor
data, the clients do not need to aggregate the sensor data by
collecting it from all the sensor networks, and the network
traffic can be reduced.

Keywords-wireless sensor networks; mobile agents; peer-to-
peer networks.

I. INTRODUCTION

Due to the recent development of sensing technologies,
sensor networks, in which sensors construct information
networks and communicate with each other, have attracted
considerable attention. A sensor network typically has a
sink node, which collects the sensor data generated from
the sensors connected to the sensor network. However,
sensor networks have limits regarding the geographical area
they can cover, since the sensors must function within
communication ranges of other sensors. Therefore, we need
to integrate local sensor networks in order to construct broad
sensor networks that can cover a wide area. We call the
constructed sensor networks as integrated sensor networks.
With integrated sensor networks, users can collect sensor
data obtained from various sensor networks. In the following
examples, there are three sensor networks deployed respec-
tively at Osaka, Kyoto, and Nara, which are notable Japanese
cities in the Kansai area, located near one another.

• For weather forecasting, a user calculates the average
temperature of these cities. To calculate the average
value, the client aggregates the temperature sensor data
obtained from all the sensor networks.

• For environmental observation, a user finds the hottest
city among the three cities. To find the city that has the
maximum temperature value, the client calculates the

temperature sensor data obtained from all the sensor
networks.

• To find broken temperature sensors, a user finds the
sensors generating abnormal values, by analyzing the
sensor data generated from all the sensor networks.

To aggregate sensor data generated from integrated sen-
sor networks, several data aggregation systems have been
proposed ([1], [2]). In these systems, users (clients) must
aggregate the sensor data obtained from all sensor networks
for their clients. After this, the clients execute some oper-
ations, such as averaging and analysis, on the aggregated
sensor data. However, such processes cause heavy network
traffic in aggregating data from all the sensor networks. To
solve this problem, data aggregation operations should be
performed only on necessary data at each sensor network.
For example, to determine the average temperature for
weather forecasting, the clients do not need to collect all
the sensor data, but only the average temperature and the
number of sensors for each sensor network.

Hence, in this paper, we propose a data aggregation
system using mobile agents on integrated sensor networks.
Mobile agents are computer programs that migrate among
sensor networks. In our proposed system, clients generate
mobile agents. The mobile agents execute the user-written
programs migrating among sensor networks, and finally
return to the clients. Since the mobile agents migrate while
executing operations on the sensor data, the clients do not
need to collect and aggregate the sensor data generated from
all the sensor networks, and thus network traffic can be
reduced.

The rest of this paper is organized as follows. We intro-
duce related work in Section II. In Section III, we discuss the
requirements for integrated sensor networks, and explain the
system designed to satisfy these requirements. We describe
the implementation of our proposed system in Section IV,
and discuss its merits and demerits in Section V. Finally, in
Section VI we conclude the paper.

II. RELATED WORK

A number of sensor data aggregation systems for inte-
grated sensor networks have been developed. LiveE! collects
the sensor data observed by digital instrument shelters ([3]).
The shelters are managed by 11 decentralized servers, and

33Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 41 / 103

have temperature, humidity, pressure, wind-direction, wind-
speed, and rainfall sensors. Since the servers are decentral-
ized, LiveE! can relieve the servers’ load. However, users
must access all the servers to collect all the sensor data.

X-Sensor 1.0 is a sensor network testbed which our
research group has developed ([4], [5]). X-Sensor 1.0 has
several sensor networks that are deployed in major Japanese
universities. By registering a sensor network with the X-
Sensor 1.0 testbed server, the sensor network can be man-
aged by the centralized server. Users can collect the sensor
data from the X-Sensor 1.0 system via the centralized server.
Compared with X-Sensor 2.0, it is difficult to aggregate
sensor data from multiple sensor networks with the X-Sensor
1.0 since we have to submit aggregation queries to sink
nodes for each sensor network.

IrisNet [2] stores the sensor data in the distributed sensor
databases. In IrisNet, SAs (Sensing Agents) collect the
sensor data from several sensors. The SAs aggregate the
collected sensor data for nearby OAs (Organizing Agents).
The OAs select the most relevant database in which to store
the aggregated data, from the viewpoint of overall system
performance, and transfer their data to this database.

Environmental Monitoring 2.0 is a data-sharing and visu-
alization system using Sensormap [6] and GSN (Global Sen-
sor Network) [7]. Sensormap provides data-sharing services,
and GSN provides data-management services. In contrast
to the three systems above, Environmental Monitoring 2.0
focuses on the visualization system. It can show the sensor
type, sensor data, and so on, visually.

However, in these systems users must collect the sensor
data for their clients; and after this, the clients execute
operations on the collected sensor data. In our proposed
system, the clients do not need to collect all the sensor
data, since mobile agents migrate among the sensor networks
while executing operations on the sensor data.

Some systems designed to manage mobile agents, such
as AgentTeamwork [8], PIAX [9], and MADSN [10], have
been proposed. AgentTeamwork uses mobile agents for grid
computing. The mobile agents migrate to the computers
that have the necessary data, and execute the required
tasks there. PIAX is a P2P-based mobile-agent system.
However, AgentTeamwork and PIAX do not focus on sensor
data aggregation. MADSN, on the other hand, does not
focus on integrated sensor networks. A mobile-agent system
customized for integrated sensor networks offers users easy
and efficient aggregation of sensor data generated from such
networks.

III. REQUIREMENTS AND DESIGN

As noted in Section I, the network traffic required to ag-
gregate the sensor data from conventional integrated sensor
networks is large, since the clients must often collect all
the sensor data from all the sensor networks. By executing

Internet

Gateway

Sensor Network
(X-Sensor 1.0)

Sensor Nerwork
Management Server

Sink Node

Digital Instrument Shelters
(LiveE!)

User

Figure 1 An Integrated Sensor Network

operations on the sensor data and aggregating only the nec-
essary data, the network traffic can be reduced. Mobile-agent
systems are suitable for executing operations on respective
sensor networks, since they can migrate among the sensor
networks, executing operations. Therefore, we use mobile
agents.

A. Requirements

In this subsection, we describe the requirements for data
aggregation systems using mobile agents.

1) Management of Mobile Agents: To enable mobile
agents to aggregate the sensor data, we need to manage
the mobile agents. That is, the system generates the mobile
agents and controls them according to users’ operations. For
example, users select the sensor networks which they want to
aggregate the sensor data, and write a data aggregation pro-
gram for the mobile agents. After this, the clients generate
the mobile agents, and the mobile agents begin to migrate.
The written program is executed in each sensor network
when the mobile agents migrate to it. In addition, users
can control the mobile agents by sending operations such
as ‘move’, ‘stop’, and ‘destroy’, and debug the program in
the course of the mobile agents’ execution of their tasks.
Finally, the mobile agents return to the client. The system
must manage the mobile agents in order to accomplish such
operations.

2) Visual Interface: To facilitate control of the mobile
agents, it is useful to determine where they are and what
they are doing. With visual access to their locations, users
can intuitively determine where the mobile agents are.
In addition, visual interfaces facilitate users’ selections of
mobile agents. Users select the mobile agents using a visual
interface when they wish to confirm their status (such as
waiting or running). Thus, a visual interface is required for
data aggregation systems using mobile agents.

3) Physical Sensor Network: To aggregate the sensor data
generated from the sensor networks, the system obviously
needs to connect to the physical sensor networks. The sink
nodes of the sensor networks collect the sensor data gen-
erated from the connected sensors. In addition, the system
must accommodate different sensor database schemas, since

34Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 42 / 103

the sensor networks are managed by different organizations.
Thus, a schema-management function is required for man-
aging the physical sensor network.

B. Design

Figure 1 shows the network architecture for our model
integrated sensor network. Each sensor network has a gate-
way, and can connect to the Internet via the gateway. The
gateway has rich computing resources, and has no difficulties
with battery lifetime as it is connected to an external power
source. In the figure, two different types of sensor networks,
X-Sensor 1.0 and LiveE!, are included in the integrated
sensor network. To integrate different types of sensor net-
works, we use the sensor network management server, which
manages the metadata, such as the ID, location, and database
schema of each sensor network. Users can determine these
by consulting the sensor network management server. Since
the sensor network management server needs to maintain
the latest metadata, the metadata are sent to the sensor
network management server when the gateways update their
metadata. Below, we explain our system design based on the
requirements described in the previous subsection.

1) Use of the Mobile Agent System: Various systems
to manage mobile agents have been developed. Among
these, P2P-based systems are suitable for integrated sensor
networks that include many sensor networks. By using a
P2P-based mobile-agent system, the system load is not
concentrated on the server, and thus it can run the mobile
agents effectively. Although our system has a sensor network
management server, the load is low since the clients com-
municate with it only when they start running the system.
To facilitate the collection of sensor data generated from
integrated sensor networks, we prepare two kinds of special
mobile agents: (a) gateway agents which are stationed at
the gateways to access sensor networks, and collect sensor
data obtained from sink nodes via the gateways; and (b)
user agents which are generated by the clients and execute
the programs written by users. These latter cannot access
the sensor data obtained from the gateway directly, since
they do not know the access method for the sensor database
of the sink node connected to the gateway. Therefore, they
communicate with the gateway agents in order to receive the
sensor data.

By stopping the user agents at the gateways, users can
check their status. Otherwise, users cannot check their status,
since the user agents usually continue to migrate. We defined
four user-agent statuses: READY means the mobile agents
are ready to run programs; WAIT means the mobile agents
are waiting at each sensor network for the user’s commands;
RUNNING means the mobile agents are executing the user’s
programs; FINISH means the mobile agents have completed
the program.

2) Web Browser Interface: To provide visual interfaces,
we use web browsers. This is because users do not need

Web Browser

Web Server
Peer DB User Agent DB

Integrated Sensor Networks

C

C

D

D

E

E

B

A

User Interface

Layer

Gateway

Peer

Gateway

Computer

A B

Sensor Network

Management Server

User

Gateway Agent

User Agent

Mobile Agent

Layer

Sensor Network

Layer

Figure 2 The X-Sensor 2.0 Architecture

to install new software in order to visualize the state of
sensor data aggregation, since most of the clients have web
browsers. In addition, we can employ various web appli-
cations such as maps and databases through the Internet,
and exploit these, through web browsers, for the purposes
of visualization. By clicking and sending the commands to
the indicators for the mobile agent on the map, users can
control the user agent based on its status. Furthermore, in
the case of an abnormal stop, or the deletion of the mobile
agents, the messages are displayed on the web browser.

3) Integrated Sensor Networks: Since the sensor network
management server has the metadata for the sensor net-
works, we can employ different types of sensor networks
that have different sensor database schemas. In our design,
the sink nodes must connect to the gateways, and the mobile-
agent management system must be installed in the gateways.

IV. IMPLEMENTATION

In this section, we describe our implementation of the data
aggregation system using mobile agents. We call the imple-
mented system X-Sensor 2.0. The X-Sensor 2.0 architecture
is shown in Figure 2. The architecture has three layers.
In Subsection IV-A, we explain the mobile-agent layer. In
Subsection IV-B, we explain the user-interface layer; and
finally, we explain the sensor-network layer in Subsection
IV-C. The X-Sensor 2.0 essentially extends the X-Sensor
1.0 to incorporate the use of mobile agents.

A. Implementation of Mobile Agents

We exploit PIAX ([9]) for managing the mobile agents
in the mobile-agent layer. PIAX is a peer-to-peer (P2P)-
based mobile-agent system, suitable for aggregating data
from integrated sensor networks. The mobile agents are
implemented by Java. Our implemented mobile agents have
some APIs (Application Programming Interfaces). Users

35Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 43 / 103

Table I X-SENSOR 2.0 APIS (PARTIAL LIST)

Class Main Method Arguments Return Value
PeerAccess getPeerInfo none PeerInfo

SQLProcessor

getSensorData id,site, nonequery
getSensorResult id ResultSet

returnAsText id none

returnAsImage id, noneGraphOptions
Agent sendMessage agentid, noneCommunication message

AgentControl

getAgentStatus none AgentStatus

move peername none

stop none none

write mobile-agent programs using these APIs. For non-
expert users, we can prepare various template programs.
The implemented APIs are shown in Table I (X-SENSOR
2.0 APIS). The PeerAccess class provides users access to
information about the sensor networks. For example, users
can obtain the database schemas and the location of the mo-
bile agents at runtime by using the getPeerInfo method. The
SQLProcessor class provides the query processing functions.
Users write SQL queries and make the user agents execute
them by using the getSensorData method included in the
SQLProcessor class. Users can obtain the result by using
the getSensorResult method, and then show the result on the
web browser by using the returnAsText or returnAsImage
methods. The returnAsText method is used to check the
results of data aggregation by downloading the text files.
The returnAsImage method is used to return the JPEG
images to clients. The AgentCommunication class effects
communication between the user agents and the gateway
agents. For example, when users wish to send messages to
a user agent, they use the sendMessage method. Users write
the receiveMessage method to receive the messages. The
AgentControl class provides the getStatus method and some
agent-control methods. By using the getStatus method, users
can determine the status of the user agents at runtime, and
control them by the move method or the stop method based
on their status.

B. Visualization of Sensor Networks

We use web browsers for the user-interface layer, as
explained in III-B (2). Figure 3 shows a screenshot of the
web browser interface for the X-Sensor 2.0. Users log into
the X-Sensor 2.0 system. Then, the map is shown on the
web browser. To render the map, we use MSN Virtual Earth
[11]. In the figure, we can see sensor networks at Italy, India,
China, and Japan. A red square indicates a single sensor
network. When the mouse cursor points at the indicator,
the detailed information for the sensor network pops up.
If there are a number of sensor networks in a narrow area,
it may be difficult to recognize each indicator. In this case,
the indicators are bundled up in one square indicator. By

Sensor Network Sensor Network Information

Location Info
57 locations near here

Location

Peer ID
Latitude

Longitude

Okayama Pref. Kurasiki City

dJUeEbiWAkgwDmKMhWrPWXjTnl

34.583889

133.728611

QueryList

SelectedLocationList

Figure 3 The X-Sensor 2.0 Web
Interface

Figure 4 Query Creation
Dialogue

Mobile Agent

Figure 5 Visualization of Mobile
Agents

Figure 6 Sensors for
X-Sensor 2.0 in
Our Laboratory

zooming the map, the bundled indicator is divided into
the respective squares. To display the information for each
sensor network when users access the web site, the web
server accesses the sensor network information from the
sensor network management server.

To aggregate the data from integrated sensor networks,
users first select the respective sensor networks. The selected
sensor networks are listed in the SelectedLocationList, which
is shown on the left side of the web page. When users click
the selected sensor network name on the SelectedLocation-
List, the location is shown on the map. By double-clicking
the sensor network name, the sensor network is removed
from the SelectedLocationList.

After selecting the sensor networks, users push the “Cre-
ate Query” button to create queries. Here, “query” means
a query to aggregate sensor data, including the program
for the mobile agents. To answer the queries, the system
generates the user agents. Unless the user writes the mobile-
agent generation function in the program for the user agent,
one query generates one user agent. Figure 4 shows the
query creation dialogue. With the AgentRoute tab, users
enter the query name. Then, users select the agent mode.
The agent modes include a normal mode and a debug mode.
In the normal mode, the mobile agents do not wait for user
commands before migrating through sensor network. Thus,
users cannot control the mobile agents until they return
to the client. In the debug mode, the mobile agents wait
for the ‘move’ command before they begin to migrate to
other sensor networks. The program for the mobile agents
is written in the Program tab. In the Schema tab, users can

36Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 44 / 103

confirm the metadata for each sensor network. When users
finish creating the query, they push the “OK” button. Then,
the generated user agent begins to migrate among the sensor
networks. The created queries are listed in the QueryList
located on the top left of the web page.

To facilitate their visualization, the user agents register
their events, such as beginning migration or beginning
communication with the web server. When the web server
receives an event, it sends an asynchronous message to the
users’ web browser using Reverse Ajax. When a mobile
agent migrates to a peer, the location is shown in the map,
as in Figure 5.

The X-Sensor 2.0 can show the aggregation results by
means of a graph image, as shown in Figure 7. Users write in
the programs how to visualize the results of data aggregation
and generate the graph image from query results; then
download the results. We explain the detailed program in
Subsection IV-D.

Users can check the results of the data aggregation by
double-clicking the query name listed in the QueryList.
In addition, since the mobile agents can return the results
at runtime, users can check the intermediate results when
needed.

C. Implementation of Integrated Sensor Networks
We need only two steps to add a new sensor network to the

X-Sensor 2.0. For example, first, users create a configuration
file for the new sensor network. Next, users install and
activate the PIAX on the gateway computer, and connect
the sensor network to the integrated sensor network. Figure
6 shows the physical sensors that compose the X-Sensor 2.0.
We deployed more than 100 sensor nodes in our laboratory.

D. Application Scenario
In this subsection, we describe how to aggregate the

sensor data obtained from the X-Sensor 2.0. The X-Sensor
2.0 is available as web site (see [12]). Suppose the case that
the user obtains the average temperature from an integrated
sensor network. The integrated sensor network consists of
three sensor networks, Osaka-u.NishioLab.Xsensor1, Osaka-
u.NishioLab.Xsensor2, and CyberMedia.Center. These sen-
sor networks have temperature sensors, and periodically
collect the sensor data into their databases. First, the user
logs into the system and consults the map. The user selects
some of these networks by clicking their indicators shown
on the map. Then, the user clicks the “Create Query” button,
and chooses a template program for the mobile agents. The
template program for this example is shown in Figure 8.

Lines 1 and 2 are required to employ the user agent and
the SQL query API respectively. The userProcessing method
beginning with line 6 is executed when the mobile agent
migrates to other sensor networks. In line 8, the variable
sp is initialized and manages the query results of each
sensor network. In line 9, the mobile agent aggregates the
timestamp and the temperature

Create Time: 2011/04/06 13:24:02

 End Time: 2011/04/06 13:25:31

2011-04-06 13:25:02

Rank

F
re

q
u

e
n

c
y

North and South at two locations

Histgram

RESULT TIME

Osaka-u.ComputerRoom.Xsensor3 Amanohasidate.North

Figure 7 Visualization of Results

1 import org.xsensor2.agent.TraverseAgent;
2 import org.xsensor2.dbaccess.SQLProcessor;
3
4
5 public class UserAgent extends TraverseAgent{
6 public void userProcessing() {
7
8 SQLProcessor sp = this.getSQLProcessor();
9 sp.getSensorData(”key1”,”select timestamp,value from temperature

limit 20”,”Osaka−u.NishioLab.Xsensor1”);
10 sp.getSensorData(”key1”,”select timestamp,value from temperature

limit 20”,”Osaka−u.NishioLab.Xsensor2”);
11 sp.getSensorData(”key1”,”select timestamp,value from temperature

limit 20”,”CyberMedia.Center”);
12 }
13
14 public void finalProcessing() {
15
16 SQLProcessor sp = this.getSQLProcessor();
17 sp.getSensorData(”avg”,”SELECT sensortype,AVG(value) FROM key1

”);
18 sp.returnAsImage(”avg”);
19
20 }
21 }

Figure 8 A Program for User Agents

data as a value from the Osaka-u.NishioLab.Xsenseor1 sen-
sor network. Also, in lines 10 and 11, the mobile agent
aggregates the same sensor data obtained from Osaka-
u.NishioLab.Xsensor2 and CyberMedia.Center. The final-
Processing method beginning with line 14 is executed when
the mobile agent returns to the client. In the method, the
program calculates the average of the aggregated sensor data.
At this time, key1 has the query results obtained from the
getSensorData method. After writing the program, the user
creates the mobile agent, which migrates among the sensor
networks. After a while, the mobile agent returns to the
client and the result is shown on the web browser.

E. System Evaluation

We measured the network traffic for data aggregation
using X-Sensor 2.0 implementation and server client imple-
mentation, as a comparison. At the measurement, 5 sensor
networks are connected, and the size of each sensor data is
10 bytes. There are over 20 sensors in each sensor network,

37Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 45 / 103

Table II THE EVALUATION RESULT

Aggregation Method Network Traffic
Total 500 records Total 50,000 records

Server Client 24,414 bytes 217,450 bytes
Mobile Agent 45,695 bytes 45,730 bytes

and user submits the query to calculate average value for
all sensor data. We created the query and the mobile agent
program to get 100 or 10,000 records at each sensor network.
The size of the query and the mobile agent program are 618
and 9013 bytes respectively. The network traffic includes
the data for mobile agents. The result is shown in Table
II. In server-client method, the server aggregates all sensor
data. Then, it calculates the average value. In mobile-agent
method, the mobile agent calculates the average value while
migrating among gateways successively.

V. DISCUSSION

We can see that the mobile agent method can reduce
the network traffic compared with the server-client method.
The server-client method requires more network traffic than
the mobile agent method as the sensor data size increases.
However, when the mobile agent can not aggregate sensor
data effectively, the network traffic increases. Therefore,
the effectiveness of using mobile agents depends on the
application of data aggregation.

X-Sensor 2.0 is suitable for sensor data aggregation using
mobile agents, since the system is designed to make the
mobile agents aggregate the sensor data. Other mobile-agent
systems such as AgentTeamwork or the original PIAX are
designed for, and can be applied to, various mobile-agent
applications. However, a mobile-agent system customized
for integrated sensor networks offers users easy and efficient
aggregation of the sensor data generated from integrated
sensor networks, since the mobile agent migrates among
multiple sensor networks. A further merit may be seen in
the X-Sensor 2.0’s ability to visualize the locations of sensor
networks and the mobile agents. Therefore, it is easy to
determine the status of the mobile agents. Regarding the
fault tolerance for X-Sensor 2.0, by programming the mobile
agents so that they can find unusual response from sensors,
we can make the system be tolerant for troubles.

On the other hand, one of the demerits of the X-Sensor
2.0 is that it is hard for non-experts users to write the agent
programs. We can solve this problem by improving the script
language for programming the mobile agents, and supporting
more intuitive GUI. In addition, since users have flexibility
in writing mobile-agent programs, they can create malicious
agents such as computer viruses. However, we can detect
these by checking the user-written mobile-agent programs
at the web server.

VI. CONCLUSION

In this paper, we described the design and implementation
of the X-Sensor 2.0, which is a data aggregation system
using mobile agents on integrated sensor networks. In the
system, the mobile agents migrate among the sensor net-
works, executing operations on the sensor data. Since the
mobile agents aggregate only necessary sensor data, network
traffic can be reduced.

In the future, we will define a more intuitive script
language for programming the mobile agents.

ACKNOWLEDGMENT

This research was supported by collaborative research of
NICT·Osaka University (research and development, valida-
tion of integrated management technique for heterogeneous,
wide-area sensor networks) and Grants-in-Aid for Scientific
Research (S) numbered 21220002.

REFERENCES

[1] S. Michel, A. Salehi, L. Luo, N. Dawes, K. Aberer, G.
Barrenetxea, M. Bavay, A. Kansal, K. A. Kumar, S. Nath,
M. Parlange, S. Tansley, C. van Ingen, F. Zhao, and Y. Zhou,
“Environmental monitoring 2.0.”, In Proc. of the International
Conference on Data Engineering (ICDE 2009), pp. 1507-1510,
2009.

[2] P. Gibbons, B. Karp, Y. Ke, S. Nath, and S.n Sechan, “IrisNet:
An Architecture for a Worldwide Sensor Web.”, IEEE Perva-
sive Computing, Vol. 2, No. 4, pp. 22-33, 2003.

[3] Live E!: Live environmental information of the earth,
http://www.live-e.org/en, Sep 3, 2011.

[4] A. Kanzaki, T. Hara, Y. Ishi, T. Yoshihisa, Y. Teranishi, and
S. Shimojo, “X-Sensor: Wireless Sensor Network Testbed
Integrating Multiple Networks.”, Wireless Sensor Network
Technologies for the Information Explosion Era Studies in
Computational Intelligence, Vol. 278, pp. 249-271, 2010.

[5] X-Sensor Multi-WSN Testbed, http://www1.x-sensor.org, Sep
3, 2011.

[6] S. Nath, J. Liu, and F. Zhao, “Sensormap for wide-area sensor
webs.”, IEEE Computer, Vol. 40, No. 7, pp. 90-93, 2008.

[7] K. Aberer, M. Hauswirth, and A Salehi, “Infrastructure for
Data Processing in Large-Scale Interconnected Sensor Net-
works.”, In Proc. of the International Conference on Mobile
Data Management (MDM 2007), pp. 198-205, 2007.

[8] M. Fukuda, C. Ngo, E. Mak, and J. Morisaki, “Resource man-
agement and monitoring in AgentTeamwork grid computing
middleware.”, In Proc. of the IEEE Pacific Rim Conference on
Communications, Computers, and Signal Processing (PacRim
2007), pp. 145-148, 2007.

[9] Y. Teranishi, “PIAX: Toward a Framework for Sensor Over-
lay Network.”, In Proc. of the International IEEE Consumer
Communications and Networking Conference Workshop on
Dependable and Sustainable Peer-to-Peer Systems (CCNC
2009), pp. 1-5, 2009.

[10] H. Qi, S. S. Iyengar, and K. Chakrabarty, “Distributed Multi-
Resolution Data Integration Using Mobile Agents.”, In Proc. of
the IEEE Aerospace Conference, Vol. 3, pp. 1133-1141, 2001.

[11] MSN Virtual Earth, http://virtualearth.msn.com, Sep 3, 2011.

[12] X-Sensor 2.0, http://www2.x-sensor.org, Sep 20, 2011.

38Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 46 / 103

Modular P2P-Based Approach for RDF Data Storage and Retrieval

Imen Filali, Laurent Pellegrino, Francesco Bongiovanni, Fabrice Huet and Françoise Baude

INRIA-I3S-CNRS, University of Nice-Sophia Antipolis
2004 route des lucioles, Sophia Antipolis, France

imen.filali@inria.fr, laurent.pellegrino@inria.fr, francesco.bongiovanni@inria.fr

fabrice.huet@inria.fr, francoise.baude@inria.fr

Abstract—One of the key elements of the Semantic Web is
the Resource Description Framework (RDF). Efficient storage
and retrieval of RDF data in large scale settings is still
challenging and existing solutions are monolithic and thus
not very flexible from a software engineering point of view.
In this paper, we propose a modular system, based on the
scalable Content-Addressable Network (CAN), which gives the
possibility to store and retrieve RDF data in large scale settings.
We identified and isolated key components forming such system
in our design architecture. We have evaluated our system using
the Grid’5000 testbed over 300 peers on 75 machines and the
outcome of these micro-benchmarks show interesting results in
terms of scalability and concurrent queries.

Keywords- Semantic Web; Peer-to-Peer (P2P); Resource De-
scription Framework (RDF); RDF data indexing; RDF query
processing

I. INTRODUCTION

The Semantic Web [1] promises to deliver a new expe-
rience of the Web through the usage of more structurally
complex data based on the Resource Description Framework
(RDF) data model [2]. Realising this vision in large scale
settings will be hardly feasible without proper and scalable
infrastructures such as the ones proposed by the Peer-to-
Peer (P2P) community in the last decade. More specifically,
Structured Overlay Networks (SONs) such as CAN (Content
Addressable Network) [3] and Chord [4] have proved to be
an efficient and scalable solution for data storage and re-
trieval in large scale distributed environments [5], [6]. These
overlays, which offer a practical Distributed Hash Table
(DHT) abstraction, use a variant of consistent hashing [7] for
assigning keys to nodes. Consistent hashing distributes the
keys uniformly among all nodes, which provides a lookup
performance of O(log N) where N is the total number of
nodes in the network. However, such protocols can not
handle more advanced queries such as partial keywords,
wildcards, range queries, etc. because consistent hashing is
not order-preserving; it randomly distributes lexicographi-
cally adjacent keys among all nodes. More advanced SONs
such as P-Grid [8] and PHT [9] introduced the capability to
handle more complex queries (e.g., range or prefix queries)
but are still limited regarding the expressiveness of the
queries they support.

The need to specifically manage a large amount of RDF
data has triggered the concept of RDF store, which can

be seen as a kind of “database” allowing to query RDF
data using advanced query languages such as SPARQL [10].
The first generation for RDF data storage systems has
spawned centralized RDF repositories such as RDFS-
tore [11], Jena [12] and RDFDB [13]. Although these RDF
stores are simple in their design, they suffer from the
traditional limitations of centralized systems such as single
point of failure, performance bottlenecks, etc. The Semantic
Web community can benefit from the research carried out in
P2P systems to overcome these issues. As a result, the com-
bination of concepts provided by the Semantic Web and P2P
together with efficient data management mechanisms seems
to be a good basis to build scalable distributed RDF storage
infrastructure. SPARQL is a very expressive language and
supporting it in a distributed fashion is challenging. Various
solutions based on P2P solutions have been proposed to
process RDF data in a distributed way [14]–[16], but their
architectures are rather complex and lack flexibility.
To meet the storage and querying requirements of large
scale RDF stores, we revisit, in this paper, a distributed
infrastructure that brings together RDF data processing and
structured P2P concepts while keeping simplicity, reusability
and flexibility in mind. The proposed architecture, based on
a modified version of CAN [3], does not rely on consistent
hashing. We chose to store the data in a lexicographical
order in a three dimensional CAN which (i) eases RDF query
processing, (ii) reflects the nature of RDF triples (iii) retains
the benefits of deterministic routing [17].

The contributions of this paper are (i) the design of a
fully decentralized P2P infrastructure for RDF data storage
and retrieval, based on three dimensional CAN overlay,
written in Java with the ProActive [18] middleware, (ii) the
implementation of the proposed design with clear separation
between the sub-components of the whole API (e.g., storage
component, query processing, etc.). This modular architec-
ture means it is possible to substitute sub-components (e.g.,
using another local RDF store). Finally, (iii) the evaluation
of the proposed solution through micro-benchmarks carried
out on the Grid’5000 test bed.

The remainder of the paper is organized as follows. In
Section II, we give an overview of the related work for RDF
data storage and retrieval in P2P systems. In Section III, we

39Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 47 / 103

introduce the proposed distributed infrastructure for RDF
data storage and retrieval and present our data indexing and
query processing mechanisms. The experimental evaluation
of our approach is reported in Section IV. Finally, Section V
concludes the paper and points out future research directions.

II. RELATED WORK

Many P2P-based solutions have been proposed to build
distributed RDF repositories [20]. Some of them are built on
top of super-peer-based infrastructure as in Edutella [14]. In
this approach, a set of nodes are selected to form the super-
peer network. Each super peer is connected to a number of
leaf nodes. Super-peer nodes manage local RDF repositories
and are responsible for query processing. This approach is
not scalable for two main reasons. First, the super-peer nodes
are a single point of failure. Second, it uses the flooding-like
search mechanism to route queries between super-peers.

By using DHTs, other systems, such as RDFPeers [15],
address the scalability issue in the previous approach. RDF-
Peers is a distributed repository built on top of Multi-
Attribute Addressable Network (MAAN) [24]. Each triple is
indexed three times by hashing its subject, its predicate and
its object. This approach supports the processing of atomic
triple patterns as well as conjunctive patterns limited to the
same variable in the subject (e.g., (?s, p1, o1) ∧ (?s, p2, o2)).
The query processing algorithm intersects the candidate sets
for the subject variable by routing them through the peers
that hold the matching triples for each pattern.

From a topology point of view, the structure that comes
closest to our approach is RDFCube [16], as it is also a three
dimensional space of subject, predicate and object. However,
RDFCube does not store any RDF triples. It is an indexation
scheme of RDFPeers. RDFCube coordinate space is made
of a set of cubes, having the same size, called cells. Each
cell contains an existence-flag, labeled e-flag, indicating the
presence (e-flag=1) or the absence (e-flag=0) of a triple
in that cell. It is primarily used to reduce the network
traffic for processing join queries over RDFPeers repository
by narrowing down the number of candidate triples so to
reduce the amount of data that has to be transferred among
nodes. GridVine [19] is built on top of P-Grid [8] and uses
a semantic overlay for managing and mapping data and
meta-data schemas on top of the physical layer. GridVine
reuses two primitives of P-Grid: insert(key, value) and
retrieve(key) for respectively data storage and retrieval.
Triples are associated with three keys based on their subjects,
objects and predicates. A lookup operation is performed by
hashing the constant term(s) of the triple pattern. Once the
key space is discovered, the query will be forwarded to peers
responsible for that key space.
From the data indexing point of view, almost of the proposed
approaches for RDF data storage and retrieval use hashing
approaches to map data into the overlay. However, even
if this indexing mechanism enables the efficient key-based

lookup, resolving more complex queries such as conjunctive
queries may led to an expensive query resolution process.

III. CAN-BASED DISTRIBUTED RDF REPOSITORY

The aim behind the P2P infrastructure proposed in this
work is the RDF data storage and retrieval in a distributed
environment.

At the architectural level, it is based on the original idea
of CAN [3]. A CAN is a structured P2P network based
on a d-dimensional Cartesian coordinate space labeled D.
This space is dynamically partitioned among all peers in the
system such that each node is responsible for storing data in
a zone of D. To store the (k, v) pair (insert operation in
Figure 1), the key k is deterministically mapped onto a point
i in D and then the value v is stored by the node responsible
for the zone comprising i. The lookup (retrieve operation
in Figure 1) for the value corresponding to a key k is
achieved by applying the same deterministic function on k to
map it onto i. The query is iteratively routed from one peer
to its adjacent neighbors, with closest zones’coordinates to
the searched key, until it reaches the node responsible for
that key.

insert(k)

retrieve(k)

Figure 1. Routing in CAN: data storage (insert(k, v)) and retrieval
(retrieve(k)).

At the data representation level, data is presented in
the RDF format [2]. RDF is a W3C standard aiming to
improve the World Wide Web with machine processable
semantic data. RDF provides a powerful abstract data model
for structured knowledge representation and is used to
describe semantic relationship among data. Statements about
resources are in the form of <subject,predicate,object>
expressions which are known as triples in the RDF
terminology. The subject of a triple denotes the resource

that the statement is about, the predicate denotes a property
or a characteristic of the subject, and the object presents the
value of the property. These triples, if connected together,
form a directed graph where arcs are always directed from
resources (subjects) to values (objects).

When designing an RDF data storage and retrieval, a
set of key challenges have to be taken into account in
order to come up with a scalable distributed RDF infras-
tructure. From the system scalability point of view, and
unlike centralized solutions for massive RDF data storage

40Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 48 / 103

and retrieval which raise several issues (e.g., single point
of failure, poor scalability), we argue that the use of a
structured P2P overlay, at the architectural level, ensures the
system’s scalability. It also offers location transparency, that
is, queries can be issued by any peer without any knowledge
regarding the location of the stored data. Scalability needs
to be achieved also at the query level by providing the
ability to perform concurrent complex queries. As the data
is expressed in RDF format, we use the SPARQL query
language, which is another W3C recommendation [10], used
to query RDF data. SPARQL queries could be in the form
of:

• atomic queries are triples where the subject, the pred-
icate and the object can either be variables or con-
stant values. As an example, the query q = (si, ?p, ?o)
looks, for a given subject si, for all possible objects
and predicates linked to si. These kinds of queries are
also called triple patterns.

• conjunctive queries are expressed as a conjunction of
a set of atomic triple patterns (subqueries).

• range queries have specified ranges on variables.
For instance, we consider the following query
q = (< s >< p >?o FILTER (v1 ≤ ?o ≤ v2)) with a
given subject s and a predicate p. It looks for a set of
objects, given by the variable ?o, such as v1 ≤ o ≤ v2.

As stated earlier, the intrinsic goal behind a distributed
RDF storage is to search for data provided by various
sources. As a first step towards this direction, we would
like to guarantee that the data can be found as long as the
source node responsible for that data is alive in the network.
This can be guaranteed by using a structured overlay model
for distributed RDF data storage and retrieval. In this work,
our distributed RDF storage repository relies on a three
dimensional coordinate space where each node is responsible
for a contiguous zone of the data space and handles its local
data store. In the following section, we detail the data storage
and retrieval process.

A. RDF Data Organization

The RDF storage repository is implemented using a
three dimensional CAN overlay with lexicographic order.
The three dimensions of the CAN coordinate space rep-
resent respectively the subject, the predicate and the ob-
ject of the stored RDF triple. From now, let us denote
by zsmin,zsmax, zpmin,zpmax, zomin and zomax, the minimum
(min) and the maximum (max) borders of a peer’s zone
according to the subject axis (zsmin, zsmax), the predicate
axis (zpmin, zpmax), and the object axis (zomin, zomax). We say
that a triple t =< s, p, o > ∈ z only if zsmin ≺ s ≺ zsmax,
zpmin ≺ p ≺ zpmax and zomin ≺ o ≺ zomax; where s, p, o

present respectively the subject, the predicate, and the object
of the triple t and z is a zone of the CAN overlay. Doing so,
a triple represents a point in the CAN space without using
hash functions.

n1n0

n2

n3
S-axis

s ∈ [zsmin, zsmax]?

s ∈ [zsmin, zsmax]

p ∈ [zpmin, zpmax]?

P-axis

O-axis

insert(t)
n4

n5

n6

...

ni

nj

s ∈ [zsmin, zsmax]

p ∈ [zpmin, zpmax]

o ∈ [zomin, zomax]?

t

Figure 2. Insertion of RDF triples.

For better understanding, consider the example presented
in Figure 2. Suppose that node n0 receives an insert(t)
request aiming to insert the RDF triple t in the network.
Since no element of t belongs to the zone of n0, and as
s fits into the zone of n1, n0 routes the insert message
to its neighbor n1 according to subject axis (S− axis).
The same process will be performed by n1, by means of
the predicate axis (P− axis) which in turn, will forward
the message to its neighbor n3. Once received, n3 checks
whether one of its neighbor is responsible for a zone such as
o belongs to. Since the target peer is not found, the message
will be forwarded at each step according to the object axis
(O− axis) to the neighbor with object coordinates which
are closest to o. The idea behind this indexing mechanism
is sketched in Algorithm 1.

Algorithm 1 Indexing algorithm
1: . Code for Peer Pi

2: upon event 〈Insert | t〉 from Pj

3: if t /∈ Zi then
4: if s or p or o closer to one of my Neighbors’

zones then
5: send 〈Insert | t〉 to Neighdim

6: end if
7: end if
8: end event

This indexing approach has several advantages. First, it
enables to process not only simple queries but also range
queries. Using hashing functions in a DHT approach makes
the management of such kind of queries expensive or even
impossible. Moreover, in contrast to hashing mechanism that
destroys the natural ordering of the stored information, the
lexicographic order preserves the semantic information of
the data so that it gives a form of clustering of triples
sharing a common prefix. In other words, this approach
allows that items with “close” values will be located in
contiguous peers. As a result, range queries, for instance, can
be resolved with a minimum number of hops. The routing

41Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 49 / 103

process of an insert operation consists in finding the peer
managing the zone where the triple falls to. Routing query

messages is slightly more complex and will be explained
later in this section.
A closer look reveals that one downside with this approach
is that it is sensitive to the data distribution. RDF triples
with common prefixes might be stored on the same peer,
i.e., a node can become a hot zone. In the case where an
element is common to many triples, such as a frequently
occurring predicate (e.g., < rdf : type >), the triples can
still be dispatched on to different peers, depending on the
values of the other elements. However, when some elements
share the same namespace or prefix, the probability that they
end-up on a very small subset of all available peers is very
high. To avoid this potential issue, we try to automatically
remove namespaces or prefixes and only use the remaining
part for indexing and routing. Some care has to be taken
when doing this because if done too aggressively, we might
lose the clustering mentioned earlier. Note that this issue also
appears in other P2P implementations which rely on prefix-
based indexing with order-preserving hash functions [19].

In the general case, there are other solutions that can
be used to mitigate the impact of skewed data. First, one
can limit the CAN space if some specific information is
known about the data distribution. For instance, if it is
known that all subjects will have a prefix falling in a
small interval, then it is possible to instantiate the overlay
with the specified interval, avoiding empty zones. Second,
if at runtime some peers are overloaded, it is possible to
force new peers to join zones managing the highest number
of triples, hence lowering the load. Some more advanced
techniques have been proposed to deal with imbalance such
as duplicating data to underloaded neighbors or having peers
manage different zones [3].

B. RDF Data Processing

From the data retrieval perspective, efficient data lookup
is at the heart of P2P systems. Many systems, such as Chord,
relies on consistent hashing to uniformly store (key, value)
pairs over the key space. However, consistent hashing only
supports key-based data retrieval and is not a good candidate
to support range queries since adjacent keys are spread
over all nodes as stated earlier. Therefore, efficient lookup
mechanisms are needed to support not only simple atomic
queries but also conjunctive and disjunctive range queries.
Hereafter, we detail how the queries are supported by our
routing process:

• atomic queries are routed on the subject− axis of
the CAN overlay looking for a match on the subject
value si. Once a peer responsible for the specified value
si is found, it forwards the query through its neighbors
in the dimension where peers are most likely to store
corresponding triples based on their zones’s coordinates

• conjunctive queries are decomposed into atomic
queries and propagated accordingly.

• range queries are routed by first identifying the con-
stant part(s) in the query. Then the lowest and the high-
est values are located by going over the corresponding
axis. If all results are found locally, they are returned to
the query initiator. Otherwise, the query is forwarded
to neighbors that may contain other potential results.

In order to route a query, a client sends it to a peer
inside the overlay, the query initiator, as mentioned in
Algorithm 2 at line 2. Once received, this query will be
transformed, i.e., the initiator creates a message with addi-
tional information used for routing purposes (line 3), notably
a key corresponding to the coordinates the message must be
routed to. The next step consists of decomposing a complex
query, a conjunctive query for instance, into atomic queries
(line 5). Once we have these atomic queries, the peer sends
messages, in parallel, to its neighbors accordingly, that is,
if through them it can reach peers responsible for potential
matches (lines 6 - 8). Whenever a peer has to propagate the
message in different dimensions, it will de facto become a
synchronization point for future results, that is, it waits for
the results to come back and will merge the results before
sending them to the client node (lines 15 - 21). In parallel
of sending messages to its neighbors, the initiator will also
check its local datastore in case it has potential matches
for the query (line 10). Once neighbors receive a routing
message (line 23), they will check their local datastore in
case they can match the query (line 24) and return possible
results to the initiator (line 26) otherwise they propagate the
message to their neighbors accordingly (line 28). In order to
ease the routing of the results, each message will embed the
list of visited peers. This technique ensures that the forward
path is the same as the backward path, avoiding potential
issues related to NAT traversal, IP filtering, etc. that may
happen in case we want to establish a direct connection to
the initiator peer.

Figure 3 depicts various routing scenarios depending on
the parts within the triple pattern. If subject, predicate and
object are fixed, e.g., when performing an add, then the
only peer which potentially holds matching results will be
involved 3(a). In case the subject and the predicate are fixed,
the message will have to traverse the object dimension in
order to collect matching triples 3(b). When only the subject
is fixed, the routed message will have to cross the object
and predicate dimensions 3(c). Note that whenever a query
with only variables is processed, our approach naively uses
message flooding through each peer’s neighbors. Hence, it
may happen that a peer receives a message multiple times
from different dimensions as shown in Figure 3(d). These
duplicate messages will be ignored. Thanks to the way data
is indexed and stored, queries are restricted to a specific
subspace where candidate results are more likely to be

42Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 50 / 103

Algorithm 2 SPARQL queries routing algorithm
1: . Code for the Query Initiator

2: upon event 〈Query | Q〉 from client

3: RQ← transformIntoRoutableQuery(Q)

4: if RQ is a complex query then
5: List of sub qi ← decomposeQuery(RQ)

6: for each sub qi do
7: send 〈SubQuery | sub qi〉 to Neighdim

8: end for each
9: end if

10: if local RDFs matches Q then
11: MergedRes←MergedRes ∪{local matched RDFs}
12: end if
13: end event
14:
15: upon event 〈SubQueryResults | Res〉 from Neighdim

16: MergedRes←MergedRes ∪ {Res}
17: Pending Sub q ← Pending Sub q \ {Neighdim}
18: if Pending Sub q == ∅ then
19: send 〈FinalRes | MergedRes〉 to client

20: end if
21: end event
22: . Code for the Neighborsdim
23: upon event 〈SubQuery | sub qi〉 from Initiator or Neighdim

24: if local RDFs matches sub qi then
25: Res← matched RDFs

26: send 〈SubQueryResults | Res〉 to Initiator

27: else
28: send 〈SubQuery | sub qi〉 to Neighdim

29: end if
30: end event

predicate

ob
je

ct

subject

(a) Fixed subject, object and predi-
cate

predicate

ob
je

ct

subject

(b) Fixed subject and predicate

predicate

ob
je

ct

subject

(c) Fixed subject

predicate

ob
je

ct

subject

(d) No fixed part

Figure 3. Example of message scope depending on constant parts in the
query.

found.

C. Modular Architecture

One of the goals when designing this distributed storage
was to be able to easily change or modify some parts.
A modular architecture is at the heart of the design,
clearly separating the infrastructure (a CAN overlay), the
query engine (using Jena [12]) and the storage system
(a BigOWLIM [21] repository) as depicted in Figure 4.
However, these elements do not work in isolation. Rather,
they require frequent interactions. In this section, we will
outline the different parts of our architecture, explaining
their functions and showing their relations.

Peer i

Reusable
Abstractions

Query Manager

P2P substrate

Query
decomposition and
parsing (e.g. Jena)

CAN
overlay

Local RDF
repository (e.g.
BigOWLIM)

Reasoner

Figure 4. Modular architecture overview.

Query manager. Although the routing of the query is a
P2P substrate’s responsibility, part of the process requires
the analysis of the query in order to extract atomic queries
and their constant parts. This is performed using the Jena
Semantic Web Framework [12] which provides dedicated
operations. When a query returns data sets from multiple
peers, the merge/join operation also relies on Jena. In order
to experiment with the modularity aspect of our imple-
mentation, we have successfully swapped the query engine
for Sesame [22] without impacting the other parts of the
architecture.
P2P substrate. This “layer” is responsible for maintaining
the CAN infrastructure, routing messages and accessing the
local repository. The 3D CAN overlay is managed through
an Overlay object which is responsible for maintaining a
description of the zone managed by the current peer and
an up-to-date list of its neighbors. Changing the number of
dimensions of the CAN, e.g., to handle meta-data, requires
providing a modified implementation of the Overlay object.
To route a query, we first analyze it to determine its constant
parts, if any, which will be used to direct it to the target peer.
When there is not enough information to make a routing
decision, it is broadcasted to the neighboring peers which
will perform the same process.
Local storage abstraction. The local storage is ultimately
responsible for storing data and processing queries locally.

43Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 51 / 103

It is important for the P2P infrastructure to be independent
from the storage implementation. All references are isolated
through an abstraction layer whose role is to manage the
differences between data structures and API between the
P2P and the storage implementations. Some requests require
the access to the local repository to read or write some
information. Although this is rather straightforward, some
care has to be taken regarding the commit of data to
the storage. With some implementations like BigOWLIM,
committing can take some time and thus should not be done
after each write operation. The peer can implement a policy
to only perform them when a threshold is reached (e.g., the
time passed since last commit aka commit interval, number
of write done, etc.) or when a read query has to be processed.

IV. EXPERIMENTAL EVALUATION

In order to validate our framework, we have performed
micro-benchmarks on an experimental testbed, Grid’5000.
The goal was twofold. First, we wanted to evaluate the over-
head induced by the distribution and the various software
layers between the repository and the end user. Second, we
wanted to evaluate the benefits of our approach, namely the
scalability in terms of concurrent access and the overlay
size. All the experiments presented in this section have
been performed on a 75-nodes cluster with 1Gb Ethernet
connectivity. Each node has 16GB of memory and two
Intel L5420 processors for a total of 8 cores. For the 300
peers experiments, there were 4 peers and 4 BigOWLIM
repositories per machine, each of them running in a separate
Java Virtual Machine.

A. Insertion of random data

Single peer insertion. The first experiment performs 1000
statements insertion and we measured the individual time
for each of them, on a CAN made of a single peer. The two
entities of this experiment, the caller and the peer, are located
on the same host. The commit interval was set to 500 ms
and 1000 random statements were added. Figure 5(a) shows
the duration of each individual call. On average, adding a
statement took 2.074 ms with slightly higher values for the
first insertions due to cold start.

In a second experiment, the caller and the peer were put
on separate hosts in order to measure the impact of the local
network link on the performance. As shown in Figure 5(b),
almost all add operations took less than 9 ms while less
than 6.7% took more than 10 ms. The average duration for
an add operation was 6 ms.
Multiple peer insertion. We have measured the time taken
to insert 1000 random statements in an overlay with different
number of peers, ranging from 1 to 300. Figures 6(a) and
Figure 6(b) show respectively the overall time when the calls
are performed using a single or 50 threads. As expected, the
more peers, the longer time is taken to add statements since
more peers are likely to be visited before finding the target

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(m

s)

Query Number
(a) on a single local peer

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(m

s)

Query Number
(b) on a remote peer

Figure 5. Insertion of 1000 statements with one peer.

one. However, when performing the insertion concurrently,
the total time is decreased but still depending on the number
of peers. Depending on the various sizes of the zones of the
global space and the first peer randomly chosen for triple’s
insertion, the performance can vary, as can be seen with the
small downward spike on Figure 6(b) at around 80 peers. To
measure the benefits of concurrent access, we have measured
the time to add 1000 statements on a network of 300 peers
while varying the number of threads from 1 to 50. Results
in Figure 7 show a sharp drop of the total time, clearly
highlighting the benefits of concurrent access.
B. Queries using BSBM data

The Berlin SPARQL Benchmark (BSBM) [23] defines
a suite of benchmarks for comparing the performance of
storage systems across architectures. The benchmark is built
around an e-commerce use case in which a set of products
is offered by different vendors, with given reviews by
consumers regarding the various products. The following
experiment uses BSBM data with custom queries detailed
below. The dataset is generated using the BSBM data
generator for 666 products. It provides 250030 triples which
are organized following several categories: 2860 Product
Features, 14 Producers and 666 Products, 8 Vendors and

44Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 52 / 103

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 50 100 150 200 250 300

T
o
ta

l
T

im
e
 (

m
s)

Number of Peers

(a) 1 thread

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 50 100 150 200 250 300

T
o
ta

l
T

im
e
 (

m
s)

Number of Peers

(b) 50 threads

Figure 6. Insertion of 1000 statements for a variable number of peers.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 5 10 15 20 25 30 35 40 45 50

T
o
ta

l
T

im
e
 (

m
s)

Number of write threads

Figure 7. Evolution of the time for concurrent insertion with 300 peers.

13320 Offers, 1 Rating Site with 339 Persons and 6660
Reviews. Out of this benchmark, we chose four queries to
execute on our infrastructure:

• Q1 finds all the producers from Germany
• Q2 retrieves triples having “purl:Review” as object
• Q3 retrieves triples having “rdf:type” as predicate
• Q4 returns a graph where “bsbm-ins:ProductType1”

instance appears

Q1 and Q4 are complex queries and will be decomposed
into two subqueries. Hence, we expect a longer processing

time for them. The number of matching triples for each
query is as follows:

Query Q1 Q2 Q3 Q4
of results 1 6660 25920 677

Figure 8 shows the execution time and the number of
visited peers when processing Q1, Q2, Q3 and Q4. Note that
when a query reaches an already visited peer, it will not be
further forwarded, therefore we do not count it. Q1 is divided
into two subqueries with only a variable subject. Hence, it
can be efficiently routed and is forwarded to a small number
of peers. Q2 also has one variable and thus exhibits similar
performance. Q3 has two variables so it will be routed along
two dimensions on the CAN overlay, reaching a high number
of peers. Since it returns 25920 statements, the messages
will carry a bigger payload compared with other queries.
Finally, Q4 generates two subqueries with two variables
each, making it the request with the highest number of
visited peers. In the network of 300 peers, the two subqueries
have visited more than 85 peers.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 50 100 150 200 250 300

T
o
ta

l
T

im
e
 (

m
s)

Number of Peers

Q1
Q2
Q3
Q4

(a) Execution time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300

N
u
m

b
e
r

o
f

V
is

it
e
d
 P

e
e
rs

Number of Peers

Q1
Q2
Q3
Q4

(b) Messages overhead

Figure 8. Custom queries with BSBM dataset on various overlays.

Summary. Regarding the statement insertion into the
distributed storage, although a single insertion has a low
performance, it is possible to perform them concurrently,
leading to a higher throughput. The performance of the query
processing phase strongly depends on the number of sub-
queries, the payload carried between peers and the number of
visited peers. While the payload depends on the complexity

45Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 53 / 103

of the query itself (conjunctive/atomic query, number of
variables in a triple pattern, etc.), the number of visited peers
depends not only on the structure of the overlay but also on
the randomly chosen peer for initiating the query.

V. CONCLUSION

In this paper we have presented a distributed RDF storage
based on a structured P2P infrastructure. RDF triples are
mapped on a three dimensional CAN overlay based on
the value of its elements. The global space is partitioned
into zones and each peer is responsible for all the triples
falling into it. We do not use hash functions, thus pre-
serving the data locality. By removing constant parts such
as prefixes from when indexing elements, we lessen bias
naturally present in RDF data. The implementation has
been designed with flexibility in mind. Our modular design
and its implementation is abstracted away from the local
storage and the query decomposer, thus they can swapped
with other ones with minimal efforts. It also relies on
standard tools and libraries for storing triples and processing
SPARQL queries. We have validated our implemention with
micro-benchmarks. Although basic operations like adding
statements suffer from an overhead, the distributed nature of
the infrastructure allows concurrent access. In essence, we
trade performance for throughput. On a 75 nodes cluster, we
have deployed an overlay of 300 peers. The time taken for
query processing depends on the number of variable parts
in the query and the size of the result set.

Future work. When queries have to be multicasted along
different dimensions, the number of visited peers increases
significantly, lowering the global performance. In this
regard, we are currently working on an optimal broadcast
algorithm, such as the one proposed in [25], which we
adapt to CAN. This will allow us to decrease the number of
redundant messages in case no constant parts are specified
within the triple patterns of the query. Finally, we will
investigate the impact of churn and node failures in our
future experiments.

Code availability: The implementation mentioned in this
paper is available at: http://code.google.com/p/event-cloud/.

Acknowledgment. The presented work is funded by the
EU FP7 STREP project PLAY (http://www.play-project.eu)
and French ANR project SocEDA (http://www.soceda.org)

REFERENCES

[1] “W3C Semantic Web Activity,” http://www.w3.org/2001/sw/, last accessed:
July 2011.

[2] G. Klyne, J. Carroll, and B. McBride, “Resource description framework (RDF):
Concepts and Abstract Syntax,” Changes, 2004.

[3] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A scalable
content addressable network,” in Proceedings of SIGCOMM ’01, vol. 31, no. 4.
ACM Press, October 2001, pp. 161–172.

[4] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord:
A scalable peer-to-peer lookup service for internet applications,” in Proceedings
of SIGCOMM ’01. New York, NY, USA: ACM, 2001, pp. 149–160.

[5] A. Lakshman and P. Malik, “Cassandra: A Decentralized Structured Storage
System,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2, p. 3540,
2010.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: Ama-
zon’s Highly Available Key-Value Store,” ACM SIGOPS Operating Systems
Review, vol. 41, no. 6, pp. 205–220, 2007.

[7] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin,
“Consistent Hashing and Random Trees: Distributed Caching Protocols for
Relieving Hot Spots on the World Wide Web,” in Proceedings of the twenty-
ninth annual ACM symposium on Theory of Computing, 1997, pp. 654–663.

[8] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,
M. Punceva, and R. Schmidt, “P-Grid: a Self-Organizing Structured P2P
System,” ACM SIGMOD Record, vol. 32, no. 3, p. 33, 2003.

[9] S. Ramabhadran, S. Ratnasamy, J. Hellerstein, and S. Shenker, “Prefix Hash
Tree: An Indexing Data Structure Over Distributed Hash Tables,” in PODC,
2004.

[10] E. Prud’hommeaux and A. Seaborne, “SPARQL Query
Language for RDF,” W3C Recommendation, January 2008,
http://www.w3.org/TR/rdf-sparql-query/, last accessed:
July 2011.

[11] “RDFStore,” http://rdfstore.sourceforge.net/, last accessed: July 2011.

[12] J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson,
“Jena: implementing the semantic web recommendations,” in World Wide Web
conference. ACM, 2004, pp. 74–83.

[13] R.V.Guha, “rdfDB: An RDF Database,” http://guha.com/rdfdb/, last accessed:
July 2011.

[14] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson,
M. Palmer, and T. Risch, “EDUTELLA: A P2P Networking Infrastructure
Based on RDF,” in Proceedings of the 11 International World Wide Web
Conference, Honolulu, USA, May 2002.

[15] M. Cai and M. R. Frank, “RDFPeers: a Scalable Distributed RDF Repository
Based on a Structured Peer-to-Peer Network,” in WWW, 2004, pp. 650–657.

[16] A. Matono, S. Pahlevi, and I. Kojima, “RDFCube: A P2P-Based Three-
Dimensional Index for Structural Joins on Distributed Triple Stores,” DBISP2P,
pp. 323–330, 2007.

[17] T. Schutt, F. Schintke, and A. Reinefeld, “Structured overlay without consistent
hashing: Empirical results,” in Cluster Computing and the Grid Workshops,
2006. Sixth IEEE International Symposium on, vol. 2, 2006, p. 8.

[18] “The ProActive middleware,” http://proactive.inria.fr/, last accessed: July 2011.

[19] K. Aberer, P. Cudré-Mauroux, M. Hauswirth, and T. V. Pelt, “GridVine:
Building Internet-Scale Semantic Overlay Networks,” in International Semantic
Web Conference, 2004.

[20] I. Filali, F. Bongiovanni, F. Huet and F. Baude, “A Survey of Structured P2P
Systems for RDF Data Storage and Retrieval,” in Transactions on Large-Scale
Data-and Knowledge-Centered Systems III, 2011, pp 20–55.

[21] D. M. Atanas Kiryakov, Damyan Ognyanov, “OWLIM : a Pragmatic Semantic
Repository for OWL,” 2005.

[22] A. K. Jeen Broekstra1 and F. van Harmelen, “Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema,” in The Semantic Web -
ISWC 2002 In Proceedings of the first Int’l Semantic Web Conference, 2002,
pp. 54–68.

[23] C. Bizer and A. Schultz, “The berlin sparql benchmark,” 2009.

[24] M. Cai, M. Frank, J. Chen, and P. Szekely, “MAAN: A Multi-Attribute
Addressable Network for Grid Information Services,” in Journal of Grid
Computing, vol. 2, 2003.

[25] S. El-Ansary, L. Alima, P. Brand, and S. Haridi, “Efficient broadcast in
structured P2P networks,” in Peer-to-Peer Systems II, 2003, pp. 304–314.

46Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 54 / 103

Formal Analysis and Verification of Peer-to-Peer
Node Behaviour
Petter Sandvik1,2 and Kaisa Sere1

1Department of Information Technologies, Åbo Akademi University
2Turku Centre for Computer Science (TUCS)
Joukahaisenkatu 3–5, 20520 Turku, Finland

{petter.sandvik,kaisa.sere}@abo.fi

Abstract—As services and applications move away from the
one-to-many relationship of the client-server model towards
many-to-many relations such as distributed cloud-based services
and peer-to-peer networks, there is a need for a reusable model of
how a node could work in such a network. We have constructed
a reusable formally derived and verified model of a node in a
peer-to-peer network for on-demand media streaming, validated
and animated it, and then compared the results with simulations.
We have thereby created an approach for analysing peer-to-peer
node behaviour.

Keywords-formal modelling; peer-to-peer; BitTorrent; on-
demand streaming.

I. INTRODUCTION

There has been a trend in computer software towards a
“utility computing vision” [1] in which computer services
are accessed without needing to know the specific underlying
structure. Rather than the traditional client-server architecture
of network services, this vision is largely dependent on many-
to-many relations such as distributed cloud-based services and
peer-to-peer systems. However, the recent increase in peer-to-
peer usage has highlighted a few issues when it comes to
development of such services. Testing a peer-to-peer system
can be difficult and cumbersome, due to the often large
scale and heterogeneous nature of the system. In some cases
simulations can be used, but designing a thorough simulation
is not an easy task. Furthermore, both testing and simulating
these types of systems may require us to emulate the whole
network of interacting nodes even if our interest would lie with
only one of them, such as when developing a new application
designed to interact with a network of existing ones.

Our background in formal methods made us wonder if this
problem could be approached from the opposite direction.
By this we mean that instead of testing and simulating the
whole network to confirm the correct behaviour of one node,
we create a formally verified model of one node and then
use that model for analysing peer-to-peer node behaviour in
general. We will here look at a peer-to-peer on-demand media
streaming system, in which content is divided into pieces,
distributed between peers using piece selection methods based
on BitTorrent on-demand media streaming [2], and then played
back in-order. We describe the creation of models for three
specific piece selection methods, based on a common reusable
formally derived and verified model in Event-B [3]. We then
show how ProB [4] can be used to animate our Event-B

model, giving results that we can compare with results from
simulations. Hence, we show how these different techniques
and tools complement each other in the design task.

The rest of this article is organised as follows: In Section II,
we describe the Event-B formalism and the tools we have
used, and in Section III, we give an overview of on-demand
streaming. Section IV details the creation of our formal model.
In Section V, we show the results of animation, and compare
them with results from previous simulations. We conclude this
article in Section VI with discussion and future work.

II. EVENT-B, THE RODIN PLATFORM AND PROB

Event-B [5] is a formalism based on Action Systems [6],
[7] and the B Method [8]. The primary concept in formal
development with Event-B is models [5]. A model in Event-B
consists of contexts, which describe the static parts such as
constants and sets, and machines, which contain the dynamic
parts such as variables, invariants (boolean predicates on
the variables), and events. An event contains actions, which
describe how the values of variables change in the event, and
guards, which are boolean predicates that all must evaluate to
true before the event can be enabled, i.e., able to execute.

In Event-B development starts from an abstract specifica-
tion, and the model is then refined stepwise into a concrete
implementation. In order to achieve a reliable system we use
superposition refinement [9], [10] to add functionality while
preserving the overall consistency, which means that we add
new variables and functionality in such a way that it prevents
the old functionality from being disturbed [11]. In order to
prove the correctness of each step of the development, we
rely on the Rodin Platform [12] tool, which automatically
generates proof obligations. These proof obligations, which
are mathematical formulas that need to be proven in order to
ensure correctness, can then be proven either automatically
or interactively with the Rodin Platform tool. The choice of
Event-B as the formalism to use for a model of this kind was
largely due to this integrated tool support.

While the Rodin Platform tool is good for modelling and
proving, we would also like to animate, or “execute” our
models. This is because the mathematical correctness does
not prove that our model does what we wanted it to do [5],
and we would also like results that can be compared to
those from simulations. ProB [4] is a free-to-use animator

47Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 55 / 103

and model checking tool, and supports models from both the
B Method and Event-B. While ProB is available as a plug-
in for the Rodin Platform tool, we have used the standalone,
fully featured version for animation.

III. ON-DEMAND STREAMING

Streaming can be described as the transport of data in a con-
tinuous flow, in which the data can be used before it has been
received in its entirety. There are two different approaches to
streaming content; live streaming and on-demand streaming.
From an end user perspective live streaming is similar to a
broadcast; that is, everyone who receives the media is intended
to receive the same content at the same time. On-demand
streaming is different, in that it is “essentially playback, as a
stream, of pre-recorded content” [13]. This makes on-demand
streaming more similar to traditional file transfer. However,
on-demand streaming is still “play-while-downloading” and
not “open-after-downloading” [14], and traditional file sharing
protocols can therefore not be used without modifications. This
holds true especially if we look at peer-to-peer file sharing,
where content is often transferred out-of-order.

The basis for the peer-to-peer media streaming solution we
will look at is the file sharing protocol BitTorrent [15]. In
BitTorrent, content is partitioned into pieces of equal size,
and by default these pieces are requested out-of-order. By
modifying the algorithms used to select the order in which
the pieces of the content is requested, i.e. piece selection,
BitTorrent can be made to work for streaming content. Several
different modifications to the BitTorrent protocol to enable
streaming media have been proposed, for instance BiToS [16]
and Give-to-Get [17]. We have here chosen to model three
different piece selection methods; sequential, rarest-first with
buffer (RFB) and distance-availability weighted (DAW). Se-
quential represents a straightforward streaming solution, re-
questing pieces in their original order. While this is used for
instance when streaming content in the OneSwarm friend-to-
friend sharing application [18], BitTorrent contains a tit-for-tat
incentive mechanism that requires data to be out-of-order to
function as intended, and the sequential method may therefore
be of limited use when unknown peers are involved. RFB is
a modification of the rarest-first method used in BitTorrent
file sharing, where the piece held by the fewest other peers
is requested. The addition of a buffer means that a specific
number of pieces after the piece currently being played back
are requested with the highest priority, thus striving towards
always having a certain amount of the content immediately
available for playback. and only after that will the rarest
piece be requested. DAW [2] tries to strike a balance between
requesting rare pieces and pieces that are close to being played
back, by calculating priority using the distance (i.e., difference
in sequence number between a specific piece and the currently
playing one) multiplied with the availability. If there is more
than one piece with the same priority, the piece with the lowest
piece number, i.e. closest to being played back, will be chosen
in both RFB and DAW.

For streaming to work, we note that data cannot be received
slower than it should be played back, and this is something that

we must take into consideration when creating our model. In
the following section, we describe a common Event-B model
for the piece selection methods, and refine that model into
three specific ones corresponding to the three mentioned piece
selection methods.

IV. MODELLING WITH EVENT-B

Entire peer-to-peer systems and other distributed architec-
tures have been formally modelled [19], [20], [21]. We have
created a reusable Event-B model for a node in an on-demand
content streaming network [3]. The difference between the two
approaches is that instead of looking at the whole network
of peers, we model just how one peer looks at the system.
Our idea when creating a model is to build it in separate
layers, separating the functional parts from each other so
that the model could easily be adopted for use with different
functionality. Here we focus on modelling the piece selection
methods.

As we model our peer-to-peer client as a client for streaming
media, we see that three major functions are needed; piece
selection (possibly out-of-order), piece transfer (possibly out-
of-order) and playback (always in-order). These three func-
tions are independent of each other, but must be performed
in this sequence. Hence, pieces must be selected before they
are transferred, and pieces must be transferred before they
can be played back. An example situation is shown in Fig. 1.
As mentioned previously, the content must be transferred at
least as fast as it should be played back in order to ensure
that streaming works. Therefore, we require that selection will
always take place at the same rate as playback or faster; that
is, for each time we advance playback we will have selected
at least one additional piece.

selected

transferred

playing

numselected

numtransferred

pieces1 2 3 4 5 6 7 ...

Fig. 1. The relation between selected, transferred and playing.
The arrows indicate the number of pieces (7 selected, 5 transferred and 3
playing), while the grey squares indicate the specific pieces.

A. Common Model

We will start with a common model for all three piece
selection methods [3], and here we will briefly describe the
features of this model. We have two constants, pieces
and simreq, which define how many pieces the content is
divided into and the number of simultaneous requests, i.e.,
the maximum amount of pieces that can be selected but not
yet transferred. We have variables for how many pieces we
have selected (numselected) and exactly which pieces have
been selected (selected), and similar variables for pieces
that have been requested, i.e., transfer started, and for which
the transfer has completed. We also keep track of which piece
we are playing back and the priority for all pieces, as well as
which piece we last updated priority for (priupd). The type
restrictions of these variables are defined by invariants [3].

48Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 56 / 103

machine PieceSelect_M
variables playing completed numselected

selected numtransferred transferred

numrequested requested priority priupd

invariants
...

events
...

end

We initialise our common model with having zero pieces,
and therefore not having selected, requested or transferred
anything. Priorities are set initially for all pieces, but before
the priorities are actually used they will be updated. This
is done by an abstract event called CHANGE_PRIORITIES.
which will be refined later. Initially, this event is enabled as
long as we have not updated priorities for all possible pieces
to request (@grd4 1) and for any p which is a non-zero
natural number (@grd4 2). The priority of the piece after the
previously updated one is then set to p (@act4 1), while the
value of priupd is set to that piece (@act4 2). This means
that we will update priorities of all pieces from the currently
playing one to the last one.

event CHANGE_PRIORITIES ≙

any p

where
@grd4 1 priupd < pieces

@grd4 2 p ∈ N1

then
@act4 1 priority(priupd+1) ∶= p

@act4 2 priupd ∶= priupd + 1
end

As the main focus in this model is piece selection, we
will now look at the piece selection events. Because we
require that content must be transferred faster than it should
be played back, we also require that piece selection happens
faster than playback. We have modelled this by separating
the main flow of the program into two events: SELECT and
SELECT_AND_ADVANCE. This means that the action taken in
each step can be that of selecting a piece, or selecting a piece
and advancing playback. In other words, every time something
happens in our model we will select a piece, and some of those
times we also advance playback. Naturally, after initialisation
we always start with selecting a piece and only after that piece
has been transferred could it be possible to advance playback.

The SELECT event is enabled when we have not yet
selected as many pieces as we can (@grd0 1 and @grd2 4)
and when we have updated priorities for all pieces (@grd4 5).
The parameter n must also be such that it can represent a piece
we have not yet selected (@grd1 2 and @grd1 3) and the
priority for piece number n must be less than or equal to the
priorities of all other possible pieces (@grd4 6). In practice,
this means that the maximum priority that can be given to
any piece is a numerical value of one, with higher numerical
values being less prioritised. It also means that if there is
more than one piece with the same priority, and that priority
has the lowest numerical value of all priorities given to valid
pieces, which one of these pieces to select is not determined.
In our case, we will in the next refinements specify which of

these pieces to select. However, the way the piece selection
is modelled in this common model is actually consistent with
the original BitTorrent specification, which does not specify an
order when two or more pieces have the same availability [22].

What the SELECT event actually does is to increase the
number of selected pieces (@act0 1), indicate that the specific
piece has been selected (@act1 2) and reset the priupd
variable so that we can update priorities before the next piece
is selected (@act4 3).

event SELECT ≙

any n

where
@grd0 1 numselected < pieces

@grd1 2 n ∈ playing+1..pieces

@grd1 3 selected(n) = FALSE

@grd2 4 numselected − numtransferred < simreq

@grd4 5 priupd = pieces

@grd4 6 ∀k ⋅ (k ∈ playing+1..pieces ∧ k ≠ n ∧

selected(k)= FALSE ⇒

priority(n) ≤ priority(k))
then

@act0 1 numselected ∶= numselected + 1

@act1 2 selected(n) ∶= TRUE

@act4 3 priupd ∶= playing
end

The SELECT_AND_ADVANCE event is very similar to
the SELECT event, with the addition of guards and action
concerning advancing playback. Thus, for this event to be
enabled we require that we have not played all selected and
transferred pieces (@grd0 a and @grd2 c), and that we have
already selected and transferred the piece following the one
currently being played back (@grd1 b and @grd3 d). The
actions of this event are identical to the SELECT event,
except for the addition of an action increasing the number
of the currently playing piece (@act0 a) and therefore also
requiring the increased value in the action that resets priority
updates (@act4 3).

event SELECT_AND_ADVANCE ≙

any n

where
@grd0 1 numselected < pieces

@grd0 a playing < numselected

@grd1 2 n ∈ playing+1..pieces

@grd1 3 selected(n) = FALSE

@grd1 b selected(playing+1) = TRUE

@grd2 4 numselected − numtransferred < simreq

@grd2 c playing < numtransferred

@grd3 d transferred(playing+1) = TRUE

@grd4 5 priupd = pieces

@grd4 6 ∀k ⋅ (k ∈ playing+1..pieces ∧ k ≠ n ∧

selected(k)= FALSE ⇒

priority(n) ≤ priority(k))
then

@act0 1 numselected ∶= numselected + 1

@act0 a playing ∶= playing + 1

@act1 2 selected(n) ∶= TRUE

@act4 3 priupd ∶= playing + 1
end

49Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 57 / 103

Our model also contains events which are not interesting in
this context and therefore not shown here. We have events for
pieces being requested and transferred, and in both we require
that it is possible to perform the actions enabled by the event,
which increase the number of requested or transferred pieces
and mark the specific piece number as requested or transferred,
respectively. The transfer event thereby updates variables that
can be seen in the guards of the SELECT_AND_ADVANCE
event. There is also an event that only advances playback after
all pieces have been selected. We also have a final event which
represents the conditions that must be true for the execution
to terminate, which is that all pieces must have been selected,
requested, transferred and played back. Only then will we set
our variable completed to TRUE.

B. Three Piece Selection Models

Now that we have described our common model, we will
take a look at our refined models which represent the use of
three different piece selection methods.

1) The Sequential Piece Selection Method: The sequential
piece selection method is very simple. Essentially, pieces are
selected in order by setting the priority for a piece to its
piece number. To model such a piece selection method we
can use our common model as a basis, without needing any
new variables, constants or events. In fact, the only change
is refining the CHANGE_PRIORITIES event. The parameter
p from the abstract event is here replaced by its concrete
representation, priupd+1, which is the piece number of the
piece for which we are changing priority. This necessitates the
addition of a witness (@p), and we also remove the type guard
for p.
event CHANGE_PRIORITIES_SEQUENTIAL ≙

refines CHANGE_PRIORITIES
when

@grd4 1 priupd < pieces

with
@p priupd+1 = p

then
@act4 1 priority(priupd+1) ∶= priupd+1

@act4 2 priupd ∶= priupd + 1
end

2) The Rarest-First Method with Buffer: To model the
rarest-first method with buffer (RFB) based on our common
abstract model, we need to refine the abstract priority into a
concrete one. As described in Section III, the priority in RFB
is highest in the buffer, which consists of a fixed number of
pieces after the playing one. Outside the buffer, the priority
of each piece is set to the availability of that piece. Thus,
we add a constant buffersize to describe the size of the
buffer, and constants minavail and maxavail to describe
the minimum and maximum values for piece availability.
Availabilities must be larger than zero, because allowing zero
availability for a piece would introduce additional complexity
in piece selection and uncertainty as to whether all pieces
could actually be transferred. We also need a new variable,
availability, to describe the availability of each piece.
We also add the following invariant, which states that when

we have updated priorities for some but not all pieces, the
pieces that we have updated priorities for and that are outside
the buffer will have their priorities equal to their availability.
@inv5 23 ∀t ⋅ (t ∈ playing+1..priupd ∧

priupd < pieces ∧ t > playing+buffersize

⇒ (priority(t) = availability(t)))

Initially we set availability to minavail for all pieces.
Because the availability is not controlled by us, we need an
abstract event which changes the availability of a piece. This
event should be enabled independently of piece selection, but
not when updating priorities because they depend on the avail-
ability. The new event CHANGE_AVAILABILITY is enabled
for any valid piece (@grd5 1) and availability (@grd5 2)
whenever we have updated priorities for all pieces (@grd5 3),
and sets the availability of that piece (@act5 1).
event CHANGE_AVAILABILITY ≙

any n a

where
@grd5 1 n ∈ 1..pieces

@grd5 2 a ∈ minavail..maxavail

@grd5 3 priupd = pieces
then

@act5 1 availability(n) ∶= a
end

For changing priorities, we refine our abstract event into
two separate events, CHANGE_PRIORITIES_BUFFER
for setting priorities for pieces in the buffer, and
CHANGE_PRIORITIES_RFB for the other pieces. The
guard (@grd5 3) separates the two different events, ensuring
that only one of them is enabled at a time. The parameter
p from the abstract event is changed into a concrete one,
necessitating the witness (@p) and removal of the guard
stating the type of p. As can be seen both in the witnesses
and in the actions (@act4 1), in these events the replacement
for p is 1 and the availability of the piece, respectively.

event CHANGE_PRIORITIES_BUFFER ≙

refines CHANGE_PRIORITIES
when

@grd4 1 priupd < pieces

@grd5 3 priupd < playing + buffersize

with
@p 1 = p

then
@act4 1 priority(priupd+1) ∶= 1

@act4 2 priupd ∶= priupd + 1
end

event CHANGE_PRIORITIES_RFB ≙

refines CHANGE_PRIORITIES
when

@grd4 1 priupd < pieces

@grd5 3 priupd ≥ playing + buffersize

with
@p availability(priupd+1) = p

then
@act4 1 priority(priupd+1) ∶=

availability(priupd+1)

@act4 2 priupd ∶= priupd + 1
end

50Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 58 / 103

The SELECT and SELECT_AND_ADVANCE events both gain
one guard. This guard corresponds to the requirement that if
two pieces have the same priority, the one with the lowest
piece number is selected.

@grd5 7 ∀j ⋅ (j ∈ playing+1..pieces ∧ j ≠ n

∧ selected(j) = FALSE ∧

(priority(n) = priority(j)) ⇒ (n < j))

The remaining events do not need refining.

3) The Distance-Availability Weighted Method: When
modelling the distance-availability weighted piece selection
method (DAW), we can use our experience with modelling
RFB as many parts are similar. In this refinement, the contexts
of RFB and DAW are identical, and so are the variables.
However, the invariant concerning priority (@inv5 23) is
different. Here, the priorities we have updated outside the
buffer should be set to distance times availability [2].

@inv5 23 ∀t ⋅ (t ∈ playing+1..priupd ∧

priupd < pieces ∧ t > playing+buffersize

⇒ (priority(t) = (t − (playing+buffersize))

∗ availability(t)))

The CHANGE_AVAILABILITY event introduced in the
refinement for RFB is abstract enough that it can be used
as-is for DAW as well, but the big difference lies in the
CHANGE_PRIORITIES event. Like in RFB, we refine the
abstract event from our common model into two different
events; one for pieces in the buffer and one for pieces outside
the buffer. The CHANGE_PRIORITIES_BUFFER event for
pieces in the buffer is, again, identical to the RFB one, as they
both assign the highest priority to buffersize pieces after
the playing one. However, the event that changes priorities for
pieces outside the buffer is different. The parameter p from
the abstract event is here replaced with a witness stating the
corresponding concrete priority according to the DAW piece
selection method.

event CHANGE_PRIORITIES_DAW ≙

refines CHANGE_PRIORITIES
when

@grd4 1 priupd < pieces

@grd5 3 priupd ≥ playing + buffersize

with
@p ((priupd+1) − (playing+buffersize))

∗ availability(priupd+1) = p
then

@act4 1 priority(priupd+1) ∶=

((priupd+1) − (playing+buffersize))

∗ availability(priupd+1)

@act4 2 priupd ∶= priupd + 1
end

The remaining events are identical to the RFB ones, which
in some cases means that they are unchanged from the
common model. The requirement that if two or more pieces
have identical priority the one with the lowest piece number
must be selected is also present in DAW.

C. Proof Obligations

Event-B models have certain properties, and when refining
a model these properties need to be preserved in order for the
model to remain correct. The Rodin Platform tool generates
proof obligations, which are the mathematical formulas that
need to be proven in order to ensure this correctness, including
preserving the invariants and strengthening of the guards of our
Event-B models. The Rodin Platform tool can automatically
discharge most of these proof obligations by means of auto-
matic provers, but some may need to be proven interactively,
which the Rodin Platform also provides the means for. Table I
shows the amount of proof obligations generated for each
machine by version 2.0.1 of the Rodin Platform tool, and
how many of those that needed user interaction. The Rodin
Platform tool was used on a computer with a 2.4 GHz Intel
Core 2 Duo processor running Mac OS X 10.5.8.

TABLE I
Proof Obligations of our Event-B Model.

Machine Total Proofs Interactive Proofs

PieceSelect M 71 2
PieceSelect M SEQ 72 2
PieceSelect M RFB 92 3
PieceSelect M DAW 93 4

V. VALIDATION, ANIMATION AND COMPARISON

As mentioned in Section II, we have used the standalone,
fully featured version of ProB [4]. Due to the way our
models are created and ProB interacts with them, memory
and processing time constraints have forced us to use smaller
values than we would in a real-life situation. Combined with
limitations from simulations, this means that we look at the
case when the content is divided into 20 pieces, only one
request can be outstanding at any time, and the buffer size for
RFB and DAW is set to 3. Although smaller than what would
be used in a real-world situation, we believe that this is large
enough to be noticeable but small enough not to impact the
results.

We have compared the results from animating our models
in ProB with the results from simple mathematical simula-
tions [2], [13]. These simulations show the behaviour of the
piece selection methods for the whole network, and here we
chose a network of ten peers starting from scratch and one
seed holding all the content. The results show how many of the
peers hold each piece after twelve pieces have been selected,
when selection happens twice as fast as playback.

Because our Event-B model looks at the network from the
point of one node only, we have completed 40 random runs
of the animation in ProB, and present the average results
from these runs. The minimum availability was set to one
and the maximum availability was set to five, and as in the
simulation we have stopped to look at the situation after
twelve pieces have been selected. Fig. 2 shows the results
from both simulation and ProB animation for RFB and DAW
piece selection methods.

The results for the sequential piece selection method are not
shown, because the results from the simulation are identical

51Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 59 / 103

Fig. 2. The availability of each piece after twelve pieces have been selected,
when using RFB and DAW.

to the ProB results, as should be expected. In both cases,
the twelve first pieces are always selected after twelve pieces
in total have been selected. For RFB and DAW, we note
that the results from simulation and ProB animation are very
similar. Some of the differences that exist are due to the fact
that the simulations use the actual availability for each piece
when calculating priority, while the animation uses random
values corresponding to the nondeterminism in our Event-B
model. Another difference regards the playback position. In
the simulations, playback has always reached exactly piece
number six after twelve pieces have been selected, because
playback is advanced exactly every other time selection is
done. In the animation, we start with selecting a piece, and
after that we either select a piece or select a piece and advance
playback with equal probability, which leads to variation in
playback position but a mathematical average of 5.5. This
means that unlike in the simulation, in the ProB animation
an RFB node may not always have selected the 9 first pieces,
and this is visible in Fig. 2. The very nature of DAW makes it
unlikely, although not impossible, for the same thing to happen
with DAW.

VI. CONCLUSIONS AND FUTURE WORK

We have created a formally constructed and verified Event-B
model of a node in a peer-to-peer content streaming network.
This model we have then refined and animated, and the results
have been compared with simulations. Using the same piece
selection methods, our formal model of one peer has given us
similar average results as a simulation of the whole network of
peers. While we ran the ProB animation using smaller figures
than would be used in a real-world situation, we still believe
that our results show the added value that our method creates.
By itself or together with simulations, animation of a formally
derived and verified model can be used as an approach to
analysing and verifying peer-to-peer node behaviour.

As our model is reusable, future work could include refining
our model for other piece selection methods and extending
the models and comparisons to other peer-to-peer systems be-
sides an on-demand streaming one. Another possible direction
would be refining our formal models to include the network
structure in order to facilitate analysing aspects that require
knowledge of more than just one node.

REFERENCES

[1] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
Computing and Emerging IT Platforms: Vision, Hype, and Reality for
Delivering Computing as the 5th Utility,” Future Generation Computer
Systems, vol. 25, pp. 599–616, 2009.

[2] P. Sandvik and M. Neovius, “The Distance-Availability Weighted Piece
Selection Method for BitTorrent: A BitTorrent Piece Selection Method
for On-Demand Streaming,” in Proceedings of AP2PS ’09, October
2009.

[3] P. Sandvik, K. Sere, and M. Waldén, “An Event-B
Model for On-Demand Streaming,” Turku Centre for
Computer Science (TUCS), Tech. Rep. 994, December 2010,
http://tucs.fi/publications/insight.php?id=tSaSeWa10a (Accessed
September 2011).

[4] “The ProB Animator and Model Checker,”
http://www.stups.uni-duesseldorf.de/ProB/ (Accessed September 2011).

[5] J.-R. Abrial, Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

[6] R.-J. Back and K. Sere, “From Modular Systems to Action Systems,”
Software - Concepts and Tools, vol. 13, pp. 26–39, 1996.

[7] M. Waldén and K. Sere, “Reasoning About Action Systems Using the
B-Method,” Formal Methods in Systems Design, vol. 13, pp. 5–35, 1998.

[8] J.-R. Abrial, The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

[9] R.-J. Back and R. Kurki-Suonio, “Decentralization of Process Nets with
Centralized Control,” in Proceedings of the 2nd ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, 1983, pp. 131–142.

[10] S. Katz, “A Superimposition Control Construct for Distributed Systems,”
ACM Transactions on Programming Languages and Systems, vol. 15(2),
pp. 337–356, April 1993.

[11] K. Sere, “A Formalization of Superposition Refinement,” in Proceedings
of the 2nd Israel Symposium on the Theory and Computing Systems, June
1993.

[12] “Event-B and the Rodin Platform,” http://www.event-b.org/ (Accessed
September 2011).

[13] P. Sandvik, “Adapting Peer-to-Peer File Sharing Technology for On-
Demand Media Streaming,” Master’s thesis, Åbo Akademi University,
May 2008.

[14] D. Xu, M. Hefeeda, S. Hambrusch, and B. Bhargava, “On Peer-to-Peer
Media Streaming,” in Proceedings of the 22nd International Conference
on Distributed Computing Systems (ICDCS’02), 2002.

[15] B. Cohen, “BitTorrent - A New P2P App,” Yahoo eGroups,
http://finance.groups.yahoo.com/group/decentralization/message/3160
(Accessed September 2011).

[16] A. Vlavianos, M. Iliofotou, and M. Faloutsos, “BiToS: Enhancing
BitTorrent for Supporting Streaming Applications,” in 9th IEEE Global
Internet Symposium 2006, April 2006.

[17] J. Mol, J. Pouwelse, M. Meulpolder, D. Epema, and H. Sips, “Give-
to-Get: Free-riding-resilient Video-on-Demand in P2P Systems,” in
Multimedia Computing and Networking 2008, Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series, Vol. 6818, 2008.

[18] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson, “Privacy-
Preserving P2P Data Sharing with OneSwarm,” in SIGCOMM’10,
August–September 2010, pp. 111–122.

[19] L. Yan and J. Ni, “Building a Formal Framework for Mobile Ad
Hoc Computing,” in Proceedings of the International Conference on
Computational Science (ICCS’04), June 2004.

[20] L. Yan, “A Formal Architectural Model for Peer-to-Peer Systems,” in
Handbook of Peer-to-Peer Networking 2010 Part 12, X. Shen, H. Yu,
J. Buford, and M. Akon, Eds. Springer US, 2010, pp. 1295–1314.

[21] M. Kamali, L. Laibinis, L. Petre, and K. Sere, “Self-Recovering Sensor-
Actor Networks,” in FOCLASA, 2010.

[22] B. Cohen, “Incentives Build Robustness in BitTorrent,” in 1st Workshop
on Economics of Peer-to-Peer Systems, June 2003.

52Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 60 / 103

Video Quality Assurance for SVC in Peer-to-Peer Streaming

Mikko Uitto and Janne Vehkaperä
VTT Technical Research Centre of Finland

Kaitoväylä 1, 90571 Oulu, Finland
mikko.uitto@vtt.fi, janne.vehkapera@vtt.fi

Abstract—The Scalable Video Coding (SVC) has begun to
arouse interest as a considerable alternative when streaming
compressed video over wireless link. The main advantage of
SVC comes with the scalability: one encoded sequence can
contain multiple decodable sub-streams that allow adaptation
to bandwidth fluctuation as well as terminal capabilities.
Another growing phenomenon in video streaming is the
utilization of peer-to-peer (P2P) technology, which benefits
from its reduced costs and load on servers. However, similarly
as in non-P2P networks, packet losses and transmission errors
are possible, which sets specific need for error resilience
especially in the decoder in order to provide sufficient Quality
of Experience (QoE). This paper focuses on SVC transmission
in error-prone P2P networks and represents our quality
assurance strategies focusing mainly to the error concealment
for the SVC decoder. The paper also evaluates the effectiveness
of the proposed method via simulation setup where the decoder
receives incomplete SVC streams that simulate the packet
losses in P2P network.

Keywords-SVC; scalable video coding; error concealment;
P2P; peer-to-peer; QoE

I. INTRODUCTION

Video streaming due the fast development of Internet and
video technology demands new ways of streaming high
quality video to users with different network and terminal
device capabilities. Indeed, in the side of need for better
transmission technologies the increasing number of different
end terminals has awaken the need for dedicated video
compression technologies. One of the strong candidates is
Scalable Video Coding (SVC), which requires only one
encoding for the video, but multiple sub-streams can be
decoded from the single stream. This allows not only
considerable bandwidth adaptation but also excellent
suitability into the receiving terminal. This means that the
same video can be streamed both to high quality television
with extremely high quality as well as low resolution mobile
phones with lower quality.

Alongside the development of video compression, better
ways for streaming real-time video are needed that reduce
the load of the dedicated video servers [1]. Peer-to-peer
(P2P) technology has aroused interest as an alternative
transmission gateway when streaming video content among
several users. One of the advantages comes with the non-
dedicated server implementation since each user works as a
server as well as a client. Peer-to-peer structure also reduces

maintenance costs and provides simplicity although more
work needs to be done in future with the security issues [2].
Content Delivery Network (CDN) support often large
number of users likewise in P2P, but they require the
deployment of special infrastructure [3].

Despite the fast development of powerful video codecs
and streaming techniques a chance for transmission errors is
always present due e.g., to network congestion, delay
requirements and high video bitrate [4]. Additionally to
these issues, temporary link failure can cause significant
QoE degradation or even crash the decoder. Some of the
research done for SVC quality assurance in P2P relies on
controlling the errors via Forward Error Correction (FEC),
Flow Forwarding (FF) or retransmission [1] without
considering the loss potential still in the decoder. Available
tools for maintaining the SVC video quality for spatially
oriented streams via error concealment have been
investigated [5] and also implemented to the old SVC
reference software [6],[7]. However, these are mainly
developed for individual frame losses and therefore require,
for example, complex memory usage in order to maintain
the previous pictures as a reference to the following
pictures. Additionally, complex data structures in the error
concealment can set hard limitation for the real-time
performance, also for low-resolution streams. Furthermore,
none of the existing quality assurance and error concealment
techniques are designed especially to P2P streaming.

In this paper, we describe some of the work done in P2P-
Next project, which is a research project funded partially by
European Commission in the context of Framework
Program 7 [8]. One of the goals in this project is to develop
a P2P content delivery platform, the NextShare system with
SVC support. Without going into deep in SVC integration
into P2P architecture of the NextShare system we focus in
this paper how to maintain the satisfying quality among the
end users when packet losses are possible during the SVC
transmission concentrating especially on the error
concealment possibilities in the decoder.

The paper is organised in the following way. In Section
2, we describe SVC delivery in P2P architecture and present
the NextShare platform. In Section 3, we provide our
approach how to maintain video quality on a satisfying level
for the end user. In Section 4, we evaluate our approach and
compare it to the reference cases via simulation setup.
Finally, Section 5 concludes the paper.

53Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 61 / 103

II. SVC IN PEER-TO-PEER ARCHITECTURE

The cost-effective solution of P2P has aroused widely
interest as an alternative gateway for real-time video
streaming. However, the number of such systems with full
SVC support [9] is rare although the recent research has
investigated this to some extent [10]. The majority of the
research in this area, such as LayerP2P [11] does not
consider SVC as the applied video codec but rely on non-
layered codecs, such as H.264/AVC.

A. SVC advantages
The MPEG-4 Scalable Video Coding standard is an

extension of the H.264/AVC standard (AnnexG) and
provides a number of different layers within one encoded
bitstream. While the H.264/AVC compliant base layer of a
scalable bitstream provides the minimum quality, the
enhancement layers are used to further increase the quality,
resolution or frame rate of the bitstream [12]. Thus, a client
only needs to receive a small part of the scalable bitstream
to consume the data in low quality, while it has to receive
and decode the complete scalable bitstream to consume the
data in best quality. The usage of scalable codecs simplifies
the adaptation of bitstream significantly, as an adaptation of
such a bitstream can be performed by simply skipping some
or all of the data related with enhancement layers.

The SVC base layer may be enhanced in three
dimensions: the temporal dimension (frame rate), the spatial
dimension (resolution) and the quality dimension (SNR)
[12]. When considering networks with fluctuating
bandwidth, especially temporal and SNR scalabilities enable
powerful adaptation by diminishing the video bitrate.
However, when several terminals with unique device
capabilities exist also spatial scalability is a considerable
alternative for saving the encoding time of various different
types of sequences.

An essential feature of the design of the SVC extension is
that the majority of the components of the H.264/AVC
standard were adopted. This implies that transform coding,
entropy coding, motion compensation, intra-prediction, the
deblocking filter or the structure of the NAL units (NALU)
are used as intended for the H.264/AVC standard [12]. One
advantage of this approach is that the base layer of an SVC-
encoded bitstream can generally be processed by a
H.264/AVC compatible decoder, as the extensions of the
H.264/AVC standard are only used to support spatial and
signal-to-noise ratio (SNR) scalability.

B. NextShare
The NextShare, an open-source system, the next

generation P2P content delivery platform, is developed in
the P2P-Next project [8] and it has a fully support also to
SVC. Basically, it follows the foundation of BitTorrent, but
thanks to the NextShare development of state-of-the-art
scientists, it can be now used not only for single layer
streams, but also to multi-layered SVC streams. The basic
principle and also a benefit in this platform is that the core

won’t require any changes if the video codec e.g., the
decoder needs to be replaced to another. Additionally, the
following error concealment as well as quality assurance
technique presented in the next section is so called stand-
alone algorithm that is not decoder dependent. This means
that its integration is done basically to the decoder-player
interface without requiring any major changes to the
decoding process.

The simplified overall model of the producer-consumer
side architecture can be seen in Fig. 1. The current SVC
implementation in NextShare is designed to support both
spatial and SNR layers. Likewise in the evaluation section
of this paper, we have modelled the system with 4-layer
mixed scalabilities where both the base layer BL and the
spatial enhancement have one additional SNR layer (see
TABLE 2). In the NextShare setup [9], we use 64 frames in a
piece with 25 fps, with 3072 Kb/s for the highest VGA
high-quality layer. Naturally, all the layers are mapped to
pieces separately. The SVC encoder is optimised to have a
constant bit rate with only one slice in a picture, because the
coding efficiency suffers from using multiple slices [13].

Furthermore, the P2P engine that is responsible for
creating and injecting the content into the network will not
send the upper layer before the corresponding lower layer is
sent [9]. In addition, the pieces are sent forward only if all
the frames are received, which means that individual frame
losses are not possible. Since the decoder will receive only
“complete” group of pictures (GOPs) it guarantees in theory
that the decoder should never crash. However, problems
arise especially when spatially scalable video is streamed.
First, the user may experience that the resolution varies in
the player, which can be a very annoying phenomenon.
Second, it is not always certain that the decoder is able to
survive from the layer switching, especially if no Intra
Decoding Refresh (IDR) pictures are used. This means that
error concealment is needed to assure the video quality.

M
PEG

-TS
dem

ux

N
A

LU
 R

TP
Packetizer

Figure 1. Simplified model of the producer-consumer side architecture.

54Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 62 / 103

III. PROPOSED QUALITY ASSURANCE TECHNIQUES

The available bandwidth does not always guarantee
lossless transmission of the video stream. Especially in P2P
networks the number of peers can vary causing total
enhancement layer GOP losses in the receiving terminal.
This means that the decoder must take these losses into an
account and provide not only a stable and steady decoding
process but also a satisfying video quality for the end users.

The error concealment in H.264/SVC decoder is to
ensure complete decoding without crashes and to provide
sufficient quality of experience. In some cases the spatial
enhancement layer(s) cannot be received within the defined
time slots, especially with high data rate videos. One
problem in SVC decoder is that the first IDR packet usually
defines the target resolution to be decoded: if the highest
layer of spatially scalable stream cannot be received, it can
crash the decoder or the resolution may vary from high to
low, which can be very annoying phenomenon for human
eye. Another viewpoint is that the hierarchical prediction
structures in SVC can cause extensive error propagation.

We took the SVC reference decoder (version 9.15) [6] as
a starting point and implemented error concealment for the
decoder in order to provide good error robustness. Second,
we concentrated on implementing picture upsampling
techniques because the varying resolution in the player, such
as in VLC, is a very provocative quality of experience.

Currently, JSVM reference software provides four
separate upsampling algorithms with the picture resampling
tool [14]. The first upsampling method is based on integer-
based 4-tap filters that are originally derived from Lanczos-
3 filter and arbitrary upsampling ratios are supported. On
the contrary, the second method supports only dyadic
upsampling ratios where the actual upsampling process is
performed with several dyadic stages using also
interpolation for the missing luminance and chrominance
samples. The third method applies three-lobed Lanczos-
windowed sinc functions and finally, the fourth method is
the combination of AVC-half sample interpolation filter and
bi-linear filter. [14]

We implemented the first method, integer-based 4-tap
upsampling filter, as a separate function after the decoding
process in order to enable an easy integration into different
decoders. We optimised the time consuming blocks via
benchmarking and achieved real-time algorithm, at least for
VGA resolution video.

The use of IDR pictures is one easy way to break the
decoding chain and check whether all the spatial layers are
received. Therefore, we monitor the resolution of the first
IDR picture, taking place as a first picture in each GOP. As
was presented in Section II, the P2P engine sends only full
GOPs to the consumer. So we basically upsample the whole
GOP until the next IDR is received. Fig. 2 clarifies the
upsampling process.

 The actual upsampling process is simple; the algorithm
solely takes the decoded picture as an input and upsamples
it into the target resolution, which is defined in the Sequence
Parameter Set (SPS) NAL packet. After this, the upsampled
picture is directed either in the file writing process or to
video output player, such as VLC. On this work, we focused
principally implementing “portable” upsampling routine that
guarantees satisfying end quality. The next step will be to
apply and/or develop even better filters, which are state-of-
the-art [15]. However, in this work we also benchmarked
the JSVM filters and implemented the one providing the
best end quality. This can be seen TABLE 1, which illustrates
the sequence average Peak-Signal-to-Noise-Ratio (PSNR)
comparison results in decibels (dB). Clearly our choice, the
4-tap filter, provides the best end quality both when
upsampling the spatial base layer (BL) or its first quality
enhancement layer (EL1) where Coarse-Grain Scalability
(CGS) is used. The three test sequences will be introduced
later in Section IV.

TABLE 1. JSVM upsampling filter comparison.

PARKRUN SUNFLOWER CREW
BL EL1 BL EL1 BL EL1

4-tap 21,80 23,04 28,46 33,02 29,48 32,50
Dyadic 21,43 22,39 27,51 30,27 29,20 31,68
Lanczos 21,43 22,37 27,52 30,28 29,20 31,66
Half-pel
+bilinear

21,43 22,39 27,51 30,27 29,20 31,68

We did not want to focus only on simple spatial
scalability when outlining the upsampling implementation.
Instead of this, we used mixed spatial and quality layer
scenario that was defined already in the project [9]. This
enables a configuration where multiple receiving terminals
with different device capabilities exist.

55Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 63 / 103

Figure 2. SVC upsampling process.

IV. EVALUATION

The evaluation section consists of the description of the
simulations and their results. In addition, the corresponding
SVC decoder is also integrated into the SVC prototype and
the functionality of the error concealment is confirmed with
the actual P2P setup as well [9].

A. Simulation setup
In order to evaluate the effectiveness of our quality

assurance technique for the SVC decoder we developed also
a packet loss generator as separate software that reads the
SVC stream and drops packets with a certain loss ratio. For
the purpose of P2P packet loss simulations we modified the
software to drop whole GOPs from the stream. Basically the
GOPs were dropped randomly but in a manner where the
missing GOP and its higher enhancements were also
discarded. Consequently, we were able to replicate
comparable model for the P2P video decoder in the aspect
of transmission errors. Once generating the GOP losses we
decoded the output file with our modified SVC decoder and
then measured the output PSNR. We repeated this
simulation chain 50 times for each GOP loss ratio (2%, 5%,
10% and 20%) in order to average the PSNR values for each
frame.

We chose three sequences with different characteristics
mainly to have variety in the results (see Fig. 3). The
Parkrun illustrates a running person both with steady slow
motion, moving camera as well as static scenes with zero
motion. The second sequence, Sunflower, contains only

sharp motion in a small area both from the camera and the
bee. The final sequence, Crew, contains lot of motion, bright
lights and colors.

Figure 3. Test sequences.

The encoding parameters can be seen in TABLE 2. In
order to have a variation to PSNRs and bitrates we encoded
the test sequences without enabling the rate control.
However, in the real demonstrator constant bit rate is
applied but for our simulations for the error concealment it
is not needed. We used CGS for quality enhancement laeyrs.
As was illustrated in Fig. 2, we upsample the highest
received GOP. If the GOP loss generator drops only the
highest layer, then the output GOP is decoded with the
quality from EL2. Furthermore, if EL1 is the highest
received layer, we decode this one and use it as a reference
for the upsampling algorithm.

TABLE 3 presents the encoded PSNRs for each layer.
Naturally, when e.g., upsampling the EL1 (Parkrun) the end
PSNR is not anymore 33.65 decibels for the high-resolution

56Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 64 / 103

image, because upsampling causes blurriness to some
extent.

TABLE 2. SVC encoding parameters.

Number of layers 4
BL & EL1 resolution QVGA (320x240)
EL2 & EL3 resolution VGA (640x480)
GOP size (IDR period) 64
B frames yes
Frame rate 30 fps
BL bitrate
(Parkrun;Sunflower;Crew)

100; 70; 200 kb/s

EL1 bitrate
(Parkrun;Sunflower;Crew)

700; 600; 800 kb/s

EL2 bitrate
(Parkrun;Sunflower;Crew)

1300; 800; 900 kb/s

EL3 (full) bitrate
(Parkrun;Sunflower;Crew)

4500; 2000; 2400 kb/s

TABLE 3. Encoded PSNRs for each layer.

Parkrun Sunflower Crew
BL 27,96 29,55 30,80
EL1 33,65 35,61 35,50
EL2 26,87 32,51 32,49
EL3 32,96 37,31 36,08

B. Results
This section presents the results of the simulations where

random GOP losses were injected to the three 1800-frame
sequences. Fig. 4 – Fig. 6 show the PSNR-Y curves as a
function of GOP loss ratio %. As can be seen in all
simulation cases our proposed SVC quality assurance as
well as error concealment technique outperforms the
reference case, which was the so called “frame freeze”
technique that can be widely seen in various video players.
We can observe that the PSNR difference between the
proposed and the reference case is only 2 dB (for 20% loss)
for the Parkrun. This can be explained by the sequence
characteristics where basically the video background and
main target remain the same all the time creating smaller
gaps between BL and EL3 PSNRs.

For the other two test sequences, the PSNR variation at
20% ratio is approximately 3-4 dBs better and it is clearly
seen that the PSNR difference would increase for greater
GOP loss ratios. Despite the fact that the end quality is
significantly better as the PSNR values indicate, the visual
quality, especially jerkiness, is extremely smooth without
any freeze states in the video playback. As can be seen for
the Crew sequence in Fig. 7 the overall quality improvement
with the proposed method is significant.

Figure 4. Average PSNR results for the Parkrun sequence.

Figure 5. Average PSNR results for the Sunflower sequence.

Figure 6. Average PSNR results for the Crew sequence.

57Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 65 / 103

Figure 7. PSNR curve for Crew – sequence (1800 frames).

V. CONCLUSIONS

This paper investigated how to maintain the quality of
experience in a good level for SVC streams in P2P
streaming. The paper introduced the actual P2P platform
developed in the P2P-Next project and its SVC relevance.
We presented our implemented technique for video quality
assurance focusing on the SVC decoder-side error
concealment possibilities. In addition to the fact that the
upsampling implementation is also running in the Nextshare
SVC platform, we made our own simulation setup in order
to evaluate the goodness of the quality assurance technique.
The results show inevitably that our approach provides a lot
smoother visual quality of experience compared to the
traditional frame-freeze technique and also the
computational values via PSNR curves proves that our
method is applicable algorithm to be used in the SVC
decoder. The proposed algorithm will be a portable block
between any video decoder and player in future.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union's Seventh Framework Programme
(P2P-Next) under grant agreement n° 216217. The authors
would like to thank for the support.

REFERENCES

[1] T. Schierl, Y. Sanchez, C. Hellge, and T. Wiegand,
“Improving P2P Live-Content Delivery using SVC”,
Proceedings of IEEE Visual Communications and Image
Processing (VCIP'10), Huang Shan, An Hui, China, pp. 1-10,
July 2010.

[2] P. Sanjoy, “Digital Video Distribution in Broadband,
Television, Mobile, and Converged Networks: Trends,
Challenges and Solutions”. John Wiley & Sons Ltd, West
Sussex, United Kingdom, pp. 1-384, 2011.

[3] P. Bacciechet, T. Schierl, T. Wiegand, and B. Girod, “Low-
delay Peer-to-Peer Streaming using Scalable Video Coding”,
Packet Video 2007, Nov. 2007, pp. 173-181, doi:
10.1109/PACKET.2007.4397039

[4] B. Li and H. Yin, “Peer-to-Peer Live Video Streaming on the
Internet: Issues, Existing Approaches and Challenges”, IEEE
Communications Magazine, Vol. 45, June 2007, pp. 94-99,
doi: 10.1109/MCOM.2007.374425

[5] Y. Guo, Y. Chen, Y.-K. Wang, H. Li, M. M. Hannuksela, and
M. Gabbouj, “Error Resilient Coding and Error Concealment
in Scalable Video Coding”, IEEE Transactions on Circuits
and Systems for Video Technology, Vol. 19, pp. 781-795,
Jun. 2009, doi: 10.1109/TCSVT.2009.2017311

[6] SVC Reference Software (JSVM software). [Online].
Available:
http://ip.hhi.de/imagecom_G1/savce/downloads/SVC-
Reference-Software.htm, accessed on 23/06/2011

[7] Y. Chen, K. Xie, F. Zhang, P. Bandit, and J.Boyce,” Frame
loss error concealment for SVC”, Journal of Zhejiang
University – Science A 7, pp. 677-683, December 2006.

[8] The P2P-Next Project, FP7-ICT-216217,
http://www.p2pnext.org, accessed on 23/06/2011

[9] N. Capovilla, M. Eberhard, S. Mignanti, R. Petrocco, and J.
Vehkaperä, “An Architecture for Distributing Scalable
Content over Peer-to-Peer Networks”, Proc. Advances in
Multimedia (MMEDIA), 2010, pp.1-6, June 2010, doi:
10.1109/MMEDIA.2010.17

[10] M. Mushtaq and T. Ahmed, “Smooth Video Delivery for SVC
based Media Streaming over P2P Networks”, Proc. Consumer
Communications and Networking Conference 2008 CCNC
2008 5th IEEE, pp. 447-451, Jan.2008.

[11] Z. Liu, Y. Shen, K. W. Ross, S. S. Panwar, and Y. Wang,
“LayerP2P: Using Layered Video Chunks in P2P Live
Streaming”, IEEE Transactions on Multimedia, Vol. 11, pp.
1340 – 1352, August 2009.

[12] H. Schwarz, D. Marpe, and T. Wiegand, "Overview of the
Scalable Video Coding Extension of the H.264/AVC
Standard", IEEE Trans. on CSVT, vol. 17, no. 9, pp. 1103-
1120, September 2007.

[13] M. Uitto, J. Vehkaperä, and P. Amon, ” Impact of Slice Size
for SVC Coding Efficiency and Error Resilience”, 6th
International Mobile Multimedia Communications
Conference (MobiMedia 2010, SVCVision Workshop).
Lisbon, Portugal, pp. 1-15, 6-8th September 2010.

[14] JSVM 9.15 Software Manual, 2008.
[15] Q. Shan, Z. Li, J. Jia, and C.-K. Tang, “Fast Image/Video

Upsampling”, ACM Transactions on Graphics (SIGGRAPH
ASIA 2008), Vol. 27, pp. 1-8, November 2008.

58Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 66 / 103

Pair-wise Similarity Criteria for Flows Identification in P2P/non-P2P Traffic
Classification

José Camacho, Pablo Padilla, F. Javier Salcedo-Campos, Pedro Garcı́a-Teodoro, Jesús Dı́az-Verdejo
Dpt. of Signal Theory, Telematics and Communications,

CITIC - Faculty of Computer Science and Telecommunications - University of Granada,
C/ Periodista Daniel Saucedo Aranda s/n 18071 GRANADA (Spain).

josecamacho@ugr.es, pablopadilla@ugr.es, fjsalc@ugr.es, pgteodor@ugr.es, jedv@ugr.es

Abstract—There is a growing interest in network traffic
classification without accessing the packets payload. A main
concern for network management is peer-to-peer (P2P) traffic
identification. This can be performed at several levels, including
packet level, flow level and node level. Most current traffic
identification approaches rely on flow level identification, being
highly demanding and time consuming procedures. This paper
introduces a similarity-based method to pair flows up, which is
aimed at reducing the cost of identifying P2P/non-P2P traffic
flows. For that, different similarity measures for flows pairing
are proposed and analyzed.

Keywords-Traffic classification; peer-to-peer; k-Nearest
Neighbors

I. INTRODUCTION

The increasing popularity and expansion of peer-to-peer
(P2P) networks and applications has raised some engineering
issues related to traffic and security. On the one hand,
Internet service providers need to handle the large volume
of traffic yielded by P2P activities to assure the minimal
impact to other network services. Moreover, the exchange of
any kind of information between the so-called peers, most
of them anonymous, is a security risk. This risk affects users
in particular, since the information exchanged might contain
viruses, worms and malware. It also affects the network
infrastructure, since P2P applications can be used to support
other harmful activities such as coordinated DoS attacks,
botnets, etc.

In this context, there is a clear interest in P2P traffic
identification. This paper introduces a new method aimed at
reducing the cost of identifying P2P/non-P2P traffic flows.
The rest of the article is organized as follows: Section
II reviews the state of the art of traffic classification and
P2P traffic identification. Section III introduces the data-
sets used in the experimentation. Section IV motivates the
use of macro-flows built upon pairs of flows. In Section V
some strategies for flows pairing are presented. Section VI
is devoted to compare the results obtained by these different
strategies, and finally, the conclusions are drawn in Section
VII.

II. STATE OF THE ART

The recognition of P2P traffic is part of a more general
problem, namely the identification of network traffic [1].
Three main problems arise in the identification of the traffic
on a network:

1) Characterization: There are many features that have
been proposed in the literature to represent and classify
network traffic. The information used includes a wide
variety of parameters, from statistical data of connec-
tions from SNMP routers reports [2] (low granularity)
to information obtained from TCP headers, including
the signaling bits and the first bytes of payloads (high
granularity) [3].

2) Identification level: Once the traffic has been param-
eterized, three levels are considered to perform the
identification [1], [4]: node level, packet level and flow
level. In the first case, the objective is to identify nodes
that generate a certain type of traffic [5]. The aim of
packet-based identification is to classify each packet
individually. In the flow-based identification, the goal
is to determine the application protocol that generates
each traffic flow.

3) Identification process: A wide variety of recognition
systems are used to perform the identification, ranging
from heuristic or signature-based [1], [6], [7] to data
mining or pattern recognition algorithms [4], [8].

P2P flow recognition has been attempted by using a num-
ber of techniques. Among them, the k-Nearest Neighbors
(kNN) technique is remarkable because of its simplicity and
high recognition rate reported. Jun et al. [9] performed a
comparison between a number of techniques including Naı̈ve
Bayes, decision trees, kNN and other methods to classify
flows from 12 different application protocols, where some
of them are P2P (BitTorrent and Gnutella) and the rest non-
P2P (HTTP, DNS, POP3, etc.). The results show that kNN is
the best technique in terms of precision rate. Lim et al. [10]
proposed a discretization of standard parameters of traffic
flows (ports, package sizes, number of packets, duration
of flow, etc..) and assessed four classification techniques:
support vector machines (SVMs), kNNs, Naı̈ve Bayes and

59Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 67 / 103

decision trees. The results indicate that the performance of
kNN is similar to SVMs, which yielded the best perfor-
mance. Salcedo-Campos et al. [11] proposed a kNN-based
technique called MVC (Multiple Vector Classification) for
P2P traffic identification. This method combines three kNNs
applied over different sets of parameters obtained from the
flows.

Most current traffic classification approaches rely on flow
level techniques. Despite the good classification performance
usually obtained by them, the general process is highly time
consuming. In order to overcome such limitation, this paper
introduces several similarity measures for flows pairing in
order to identify groups of flows likely to be generated
by the same protocol/service. This way, once a flow is
identified with a well-known procedure (e.g., DPI tools),
all the flows which are similar to it according to the flows
pairing will also be (quickly) identified. The proposed pair-
wise approach for flows classification takes advantage of the
good performance exhibited by kNN classifiers.

III. NETWORK TRAFFIC DATA FOR THE
EXPERIMENTATION

In order to evaluate the approach and methods described
in this work, an experimental setup with two steps has been
considered. The first one includes the capture of a great
amount of real network traffic, in this case, acquired in an
academic institution network. The second one consists of the
automatic classification of all the captured traffic packets and
flows by means of a deep packet inspection (DPI) tool. In
this scenario, the ground truth data-set is constituted taking
into account the analysis and identification of each traffic
flow and its associated traffic packets with a DPI tool, in
this case openDPI [12], with a negligible percentage of
classification errors.

The database used in this work contains the data captured
during three days of network inspection in an academic
institution. The acquisition was performed in the access
router in order to control the incoming and outgoing traffic
of the inner nodes of the network. The traffic flows and their
packets are captured in both communication ways.

The original data-set has been divided into a calibration
subset of 100,000 flows and a test subset with 100,000
flows. It should be remarked that the flows are sequentially
organized so that the period corresponding to the calibration
subset is previous to the one of the test subset, with no time
period overlapping. Table I shows the amount of P2P traffic
in both calibration and test subsets. OpenDPI tool found 35
and 41 different protocols in the calibration and test subsets,
respectively.

The openDPI classification shows that HTTP is the pro-
tocol with the highest number of flows, while the portion
of P2P protocols is close to 9%. Although this P2P frac-
tion could be considered reduced, the P2P traffic volume
associated is high, due to the size of each P2P flow. A

Table I
BASIC TRAFFIC DESCRIPTION OF THE CALIBRATION AND TEST SUBSET.

Flows
Subset Total P2P flows non-P2P flows

Calibration 100,000 8,897 91,103
Test 100,000 8,916 91,084
Total 200,000 17,813 182,187

more detailed analysis shows that only a reduced number of
network nodes generate or receive P2P traffic, being more
relevant videostreaming related protocols, which contribute
to the HTTP traffic (i.e., YouTube traffic). The rest of non-
P2P flows include mainly habitual protocols, such as DNS,
SSL or email protocols. The majority of the P2P flows
are related to BitTorrent, meanwhile Gnutella and others
are found in a lower proportion. This proportion may be
considered a consequence of the particular features of the
protocols. The relation between the P2P traffic and the non-
P2P traffic is similar in both calibration and test data-sets.
Please, refer to [11] for a more detailed description of the
protocols in the data set.

The feature vector representing each flow is composed
of 61 variables, as Table II depicts. The feature vectors
contain all the information needed for posterior analysis,
including the flow identification label in the database, the
protocol detected by openDPI and some traffic information
concerning the flow. The IP addresses of each flow have been
sorted by number. The term UP (ascending) points out that
the packet is going towards the machine with the highest IP,
and the term DOWN (descending) indicates that the packet
is going towards the machine with the lowest IP.

In the rest of the text, the terms observation and feature
vectors are used interchangeably. Two levels of classification
are established: the first one considering all the protocols
in the subsets and the second one considering only two
classes indicating if the flows are related to P2P or non-P2P
protocols.

IV. MOTIVATION

In kNN classification, an object is assigned to the most
common class amongst its k nearest neighbors. In this
section, the kNN technique in its simplest form (k=1) will
be applied to the calibration data-set in order to motivate the
approach adopted in this paper. From here onwards, let us
call this the NN technique. The NN classifies an observation
(feature vector or flow) within the same class of the nearest
observation in the calibration data. To establish the nearest
observation to a given one, a closeness functional needs to be
defined, typically based on well-known distances. An often
used distance is the normalized Euclidean distance, where
all variables have been normalized in variance:

d(x,y) =
√
(x− y)t · S−1 · (x− y) (1)

60Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 68 / 103

Table II
VARIABLES OF THE FEATURE VECTOR FOR EACH FLOW.

Value Description
Flow identification

ID FLOW Flow ID
IP LOW Lower IP of the session tuple
IP UPPER Highest IP of the session tuple
PORT1 Port related to the lowest IP (IP LOW)
PORT2 Port related to the highest IP (IP UPPER)
PROT UDP Transport protocol UDP
PROT TCP Transport protocol TCP
PROT UNK ICMP
DIR Direction of the first observed packet (UP or DOWN)
FIRST TIME Timestamp of the first packet (µs)
LAST TIME Timestamp of the last packet (µs)

Related to transfer
NPACKETS Number of packets in flow
NPACKETS UP Idem way UP
NPACKETS DOWN Idem way DOWN
PACKETS SIZE Complete size of all the packets in the flow
PACKETS SIZE UP Idem way UP
PACKETS SIZE DOWN Idem way DOWN
PAYLOAD SIZE Complete size of payloads
PAYLOAD SIZE UP Idem way UP
PAYLOAD SIZE DOWN Idem way DOWN
MEAN PACK SIZE Mean packet size
MEAN PACK SIZE UP Idem way UP
MEAN PACK SIZE DOWN Idem way DOWN
SHORT PACKETS Number of short packets
SHORT PACKETS UP Idem way UP
SHORT PACKETS DOWN Idem way DOWN
LONG PACKETS Number of large packets
LONG PACKETS UP Idem way UP
LONG PACKETS DOWN Idem way DOWN
MAXLEN Maximum packet size
MAXLEN UP Idem way UP
MAXLEN DOWN Idem way DOWN
MINLEN Minimum packet size
MINLEN UP Idem way UP
MINLEN DOWN Idem way DOWN

Related to time
DURATION Flow duration (µs)
MEAN INTERAR Mean time between consecutive packets
MEAN INTERAR UP Idem only UP
MEAN INTERAR DOWN Idem only DOWN
MAX INTERAR Maximum time between consecutive packets
MAX INTERAR UP Idem only UP
MAX INTERAR DOWN Idem only DOWN
MIN INTERAR Minimum time between consecutive packets
MIN INTERAR UP Idem only UP
MIN INTERAR DOWN Idem only DOWN

Signaling
N SIGNALING Number of packets containing flags
N SIGNALING UP Idem way UP
N SIGNALING DOWN Idem way DOWN
NACKS Number of packets with ACK flag active
NFIN Idem FIN
NSYN Idem SYN
NRST Idem RST
NPUSH Idem PSH
NURG Idem URG
NECE Idem ECE
NCWD Idem CWD
NACK UP Number of packets UP with ACK flag active
NACK DOWN Idem way DOWN
NFIN UP Idem FIN & UP
NFIN DOWN Idem FIN & DOWN
NRST UP Idem RST & UP
NRST DOWN Idem RST & DOWN

where S is a diagonal matrix containing the sampling
variances of the variables.

In Figure 1, the performance of the NN technique for
traffic classification (Figure 1(a)) and P2P traffic identifi-
cation (Figure 1(b)) is assessed with the calibration data

following two different approaches. The first approach con-
siders the traffic corresponding to the first hour as the
calibration data for NN. Then, traffic classification and P2P
identification are performed over the rest of the flows up
to the 20th hour. Notice that the first 20 hours correspond
to the calibration subset introduced in the previous section.
The test subset is only employed in the experiments of
Section V. The second approach considers a sliding window
of one hour as the calibration data for NN. Thus, to classify
an observation the nearest neighbor is obtained from the
immediate preceding observations within one hour interval.
Both methods are compared to a 95% confidence level for
statistical significance, computed using permutation tests,
a.k.a. randomization tests [13], [14]. The confidence level
is useful to assess the expected performance of a random
classifier in a given data-set, in order to test whether the
performance of the present classifier is beyond what it is
expected just by chance. Thus, in Figure 1(b), the expected
accuracy of a random classifier is high (between 50% and
95%) due to the low percentage of P2P flows in the data in
comparison with non-P2P flows. The random performance
also changes over time due to changes in the percentage of
P2P traffic. The good performance of NN is evidenced in the
figures since both approaches are far above the confidence
level. Also, the sliding window approach outperforms the
static window in the first hour.

Another interesting question is how the similarity between
flows is affected by the coincidence of IP addresses. An
experiment to check this is shown in Figure 2. The 20th hour
interval of traffic from a specific IP (the most common one)
was classified using the NN technique from two different
data-sets obtained from the previous 19 hours: traffic from
the same IP and traffic from the rest. For a fair comparison,
both data-sets had the same number of flows and non
statistical differences on time stamp. According to the figure,
most of the correct traffic classification and P2P traffic
identification is obtained for traffic with the same IP.

V. STRATEGIES FOR FLOWS PAIRING

The results in the previous sections show that the good
performance of NN is almost restricted to traffic with the
same IP. This represents a severe limitation for the general
application of NN to on-line traffic classification, since
it cannot be applied to traffic coming from new IPs not
previously considered. Furthermore, the performance of NN
is expected to degrade with the time separation between
calibration flows and test flows. Finally, taking into account
that calibration flows need an additional classification me-
chanism to perform NN, for instance payload-based classi-
fication, the direct application of NN in traffic classification
is not recommended.

Nevertheless, flows identification methods based on
pairing can take advantage of this good performance of
NN. From the previous results, a convenient approach for

61Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 69 / 103

5 10 15 20
0

20

40

60

80

100

Hours

%
 A

cc
ur

ac
y

First hour
Sliding window
95% confidence

(a)

5 10 15 20
0

20

40

60

80

100

Hours

%
 A

cc
ur

ac
y

First hour
Sliding window
95% confidence

(b)

Figure 1. Percentage of accuracy for the calibration data-set in (a) traffic
classification and (b) P2P traffic identification. The confidence level is
computed using randomization tests.

Traffic Classification P2P Identification
0

20

40

60

80

100

%
 A

cc
ur

ac
y

Same IP Different IP

Figure 2. Percentage of accuracy in traffic classification and P2P traffic
identification for the 20th hour traffic from a given IP. The performance of
NN using past traffic from the same IP is compared to that of NN using
past traffic from different IPs.

flows pairing is to use a time sliding window, where only
those flows which share at least one IP with the current flow
are considered as potential candidates for pairing. This ap-
proach has been combined with payload-based classification
methods by the authors in some preliminary experiments,
yielding less than 5% of payloads inspection to identify cor-
rectly close to 100% of flows. This low payload inspection
level and the fact that only a time window of traffic data is
stored for classification, makes this approach specially suited

for on-line traffic classification in network monitoring.
A main decision within this approach is the similarity

or closeness functional considered in NN for flows pairing.
Here, two types of functional are compared: those based on
traditional distances and a parametric functional, referred
to as similarity rule. The similarity rule has been designed
from first principles by the authors, taking into account the
general behavior of network protocols.

A. Distance-based approaches

Two distances have been considered: the normalized Eu-
clidean distance in Eq. (1) and the Mahalanobis distance
[3]:

dM (x,y) =
√
(x− y)t ·Σ−1 · (x− y) (2)

where Σ stands for the covariance matrix. The difference
between normalized Euclidean and Mahalanobis distances
is that in the latter the weight of the eigenvalues of the
covariance matrix in the resulting distance are normalized.
This may be convenient when eigenvectors of low variance
(low eigenvalue associated) contain relevant information for
classification.

B. Similarity rules

The most similar flow to a given one can be found as the
one which maximizes a similarity functional. The proposed
parametric definition of the similarity functional for a pair
of flows is the following:

F = |NIP − 1|+ 1

dp1 + k1
+

1

dp2 + k1
+

1

dt + k2
(3)

where NIP is the number of coincident IPs between the
two flows, which is at least 1 (Recall that at least one
coincident IP is assumed for flows pairing), dp1 and dp2
are the 1-norm distances between ports (ordered according
to the coincident IP), measured in tens of ports, dt is the
1-norm distance between time stamps at the beginning of
the flow (first packet), measured in seconds, and k1 and k2
are the functional parameters.

The definition of the functional in Eq. (3) answers to
the behavior of typical network protocols. Thus, servers
typically use one or a reduced number of ports to accept
service requests. Also, the Operating Systems in the clients
typically use consecutive dynamic port numbers for the con-
secutive connections established. For example, this would be
the behavior of a web client when connecting to a number
of web pages. In particular, if these pages are hosted in the
same server, the flows share the same two IPs and close
ports. Finally, related flows should be close in time. Eq. (3)
has been designed so that close ports and time stamps have
a significant impact on the functional but it is not so much
penalized by large distances. For this, 1-norm distances

62Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 70 / 103

10
−1 10

0 10
1 10

2 10
3 10

4

10
−110

010
110

210
310

4
97.5

98

98.5

99

99.5

100

k2k1

%
 A

cc
ur

ac
y

Figure 3. Parameters fitting for the similarity functional using the
calibration data. Parameters k1 and k2 take values between 0.1 and 10.000
and are presented in a logarithmic scale

are considered instead of 2-norm distances, and they are
included in inverse form in the functional.

The definition of the functional is also convenient from
the practical point of view. The five variables (2 IPs, 2 ports
and beginning time stamp) considered in the functional are
obtained from the first packet in a flow. Therefore, one single
packet is enough for flows pairing. Unlikely, distance-based
approaches with the feature vector in Table II can only be
applied once the flows have finished.

The calibration data will be used to fit the parameters of
the similarity functional. Figure 3 shows the result of the
calibration for k1 and k2 values between 0.1 and 10,000, in
logarithmic scale. According to the results, the parameters
are set to k1 = 1 and k2 = 1. It should be noted that the
results are quite stable for a large interval of the parameters.
In particular, the time closeness (k2) does not seem to be
relevant or even positive for certain values of k1.

VI. COMPARISON

This section is devoted to compare the performance of
distance-based approaches and similarity rules for flows
pairing. The accuracy of each approach is defined as the
percentage of flow pairs belonging to the same class. Al-
though this work is focused on P2P classification, the pairing
strategy can be used for traffic classification in general.
This accuracy for traffic classification and P2P traffic iden-
tification for the calibration and test data-sets is presented
in Figure 4. Notice that all the calibration decisions, such
as the normalization in Euclidean distance, the covariance
in the Mahalanobis distance, and the values of k1 and k2
parameters in the similarity rules, are set from the calibration
data and then applied to the test data.

TC P2P/nP2P nP2P P2P
60

70

80

90

100

%
 A

cc
ur

ac
y

/ %
 T

ru
e

P
os

iti
ve

s

Euclidean Mahalanobis Sim. Rules

(a) Calibration data

TC P2P/nP2P nP2P P2P
60

70

80

90

100

%
 A

cc
ur

ac
y

/ %
 T

ru
e

P
os

iti
ve

s

Euclidean Mahalanobis Sim. Rules

(b) Test data

Figure 4. Comparison of strategies for flows pairing in terms of the
coincidence of classes within a pair. Percentage of accuracy in traffic
classification (TC) and P2P traffic identification (P2P/nP2P) and percentage
of true positives in no P2P (nP2P) and P2P (P2P) traffic. The percentage
of true positives of P2P traffic in the calibration data is 13%.

Figure 4 shows that the similarity rules outperform the
other two approaches, being the Mahalanobis distance the
worst choice. Figure 5 shows the first 30 eigenvalues of the
covariance matrix in the normalized calibration data. The
first four eigenvalues contain more than the 50% of the
variability within the data, which evidences the collinearity
of the variables considered in the feature vectors (Table II).
The Mahalanobis distance normalizes the weights of the
eigenvectors in the distance. This is negatively affecting the
performance, showing that the eigenvectors of highest eigen-
value associated contain the relevant similarity information
for classification. This is also convenient from the practical
point of view, since it means that the useful similarity
information is manifesting in a high number of variables.
This result is coherent with those in [11]. In particular, the
similarity information useful for classification is manifesting
in the five variables considered in the similarity rules, which
yield the best performance. This is especially convenient
considering that a flow can be paired from the first packet
using the similarity rules.

Finally, a comparison of the mean time between pairs
has been performed for Euclidean-based pairs and similarity
rules pairs. A t-test showed that this mean time is lower for

63Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 71 / 103

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

E
ig

en
va

lu
es

Figure 5. First 10 eigenvalues of the covariance matrix in the calibration
data.

the similarity rules pairs (p-value < 1−12) for both calibra-
tion and test data-sets. Pairs of flows with less difference in
time are expected to be more reliable.

VII. CONCLUSION

This paper is devoted to introduce and compare different
strategies for traffic flows pairing based on similarity mea-
sures. This strategy is used for fast P2P traffic classification
in network monitoring, although it can be applied to traffic
classification in general.

According to the results presented, flows pairing can be
effectively performed using only five parameters for each
flow: the IPs and port numbers and the beginning time
stamp. These five parameters are combined in what has been
named similarity rule. The pairing based on similarity rules
outperforms the application of other traditional distances,
such as the Euclidean distance, in several ways:

• The parameters in the similarity rule are available from
the first packet in a flow, so that a flow can be paired
only with the information in the first packet. Distance-
based pairing needs the completeness of the flows.

• Similarity rules are faster to compute than distance-
based pairing, since only 5 parameters are used. Also,
they require less storage space.

• Classification based on similarity rules outperforms
classification based on traditional distances.

• Similarity rules provide closer flow pairs in time than
distance-based pairing.

ACKNOWLEDGMENT

Research in this paper is partially supported by the
Spanish Ministry of Science and Technology through grant
TEC2008-06663-C03-02.

REFERENCES

[1] A. Callado, C. Kamienski, G. Szabo, B.P. Gero, and J. Kelner,
“A Survey on Internet Traffic Identification,” IEEE Commu-
nications Surveys & Tutorials, vol. 11, n. 3, pp. 37-52, 2009.

[2] S. Sen and J. Wang, “Analyzing Peer-to-Peer TrafficAcross
Large Networks,” IEEE/ACM Transactions on Networking,
vol. 12, n. 2, pp. 219-232, 2004.

[3] A. Madhukar and C. Williamson, ”A Longitudinal Study
of P2P Traffic Classification”, Proc. of Int. Symposium on
Modeling, Analysis and Simulation, pp. 179-188, 2006.

[4] R. Keralapura, A. Nucci, and C. Chuah, “A Novel Self-
Learning Architecture for P2P Traffic Classification in High
Speed Networks,” Computer Networks, vol. 54, pp. 1055-
1068, 2010.

[5] L. Xuan-min, P. Jiang, and Z. Ya-jian, ”A New P2P Traffic
Identification Model Based on Node Status”, In Int. Confer-
ence on Mangement and Service Science, pp. 1-4, 2010.

[6] X. Li and Y. Liu, “A P2P Network Traffic Identification Model
Based on Heuristic Rules,”. Int. Conference on Computer
Application and System Modeling, vol. 5, pp. 177-179, 2010.

[7] W. JinSong, Z. Yan, W. Qing, and W. Gong, “Connection
Pattern-based P2P Application Identification Characteristic,”
Proc. of Int. Conference on Network and Parallel Computing
Workshops, pp. 437-441, 2007.

[8] M. Soysal and E.G. Schmidt, “Machine Learning Algo-
rithms for Accurate Flow-Based Network Traffic Classifica-
tion: Evaluation and Comparison,” Performance Evaluation,
vol. 67, n. 6, pp. 451-467, 2010.

[9] L. Jun, Z. Shunyi, L. Yanqing, and Z. Zailong, “Internet traffic
classification using machine learning,” Second International
Conference on Communications and Networking in China
(CHINACOM’07), pp 239-243, 2007.

[10] Y. Lim, H. Kim, J. Jeong, C. Kim, T.T. Kwon, and Y. Choi,
“Internet traffic classification demystified: on the sources of
the discriminative power,” Proceedings of the 6th Interna-
tional Conference On Emerging Networking Experiments And
Technologies (CoNEXT’10), 2010.

[11] F.J. Salcedo-Campos, J.E. Dı́az-Verdejo, and P. Garcı́a-
Teodoro, ”Multiple Vector Classification for P2P Traffic Iden-
tification”, In Proc. of Int. Conference on Data Communica-
tions and Networking (DCNET), 2011.

[12] OpenDPI, 2011. Available at http://www.opendpi.org

[13] F. Lindgren, B. Hansen, W. Karcher, M. S. ostr om, and
L. Eriksson, “Model validation by permutation tests: Applica-
tions to variable selection,” Journal of Chemometrics, vol. 10,
pp. 521–532, 1996.

[14] S. Wiklund, D. Nilsson, L. Eriksson, M. S. ostr om, S. Wold,
and K. Faber, “A randomization test for pls component
selection,” Journal of Chemometrics, vol. 21, pp. 427–439,
2007.

64Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 72 / 103

An Empirical Study of MPI over PC Clusters

 Fazal Noor*, Majed Alhaisoni*, Antonio Liotta+
*Computer Science and Software Engineering Department

University of Hail, Saudi Arabia
+Department of Electrical Engineering and

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

The Netherlands
f.noor@uoh.edu.sa, majed.alhaisoni@gmail.com, a.liotta@tue.nl

Abstract — Message Passing Interface (MPI) is an important
mechanism in P2P. Herein we assess how different types of
MPI collective communication functions perform on a Gigabit
Ethernet Homogeneous Beowulf PC cluster. In this way we
provide an insight on the factors that affect P2P applications
over an enterprise context such as the emerging Cloud-based
services. By contrast to the literature, which includes mostly
theoretical studies, we carry out an empirical study. We show
that the bahaviour of scatter and gather are most
unpredictable in comparison with other collective functions.

Keywords - MPI benchmark, Homogeneous PC Cluster,
Ethernet, Collective Communications, Latency, Bandwidth, All-
to-all, Gather, Scatter, Broadcast.

I. INTRODUCTION

 In recent years Peer-to-Peer (P2P) networks have
become an active area of research [1]-[4]. Traditional
networks use the client/server paradigm where dedicated
servers offer clients services. P2P networks are
characterized by all peers having the capability of both
being a client and a server. P2P networks can support many
applications such as sharing of resources, e.g.
communication services, file sharing, query search,
distributed computing, etc.
 In P2P topology, MPI (Message Passing Interface) is
considered as a common communication protocol for
various P2P systems. Therefore, it is considered as a good
mechanism with its goals are to have high performance,
scalability, and portability. Having low delay with
reasonable throughput is important for computing clusters,
due to a lack of shared memory implies large amounts of
network data transfer. However, portablility is very
important for MPI. The scalability of MPI is mainly due to
MPI being the real standard in distributed computing.
 In this paper, a simulation of P2P is done using MPI
collective communications routines on a PC cluster to
measure and evaluate the performance of P2P system. A

homogeneous PC cluster is defined as one having identical
hardware (including network hardware such as switches)
and operating system on all the machines in the network. It
is considered heterogeneous if PC hardware and/or software
is different from each other in a cluster. One of the reasons
to study homogeneous PC cluster is to gain insight into the
behaviour of collective communication models used as
models usually are made under the assumption of
homogeneity. The objective of this paper is twofold, first to
study how a variety of MPI communication models perform
over PC clusters. Second, we define and measure in
practical settings the execution time of Ethernet networks.
We pinpoint the overheads and how these affect link
efficiency.
 Among all technologies, including Infiniband [5],
Quadrics [6], and Myrinet [7], we have decided to focus on
Ethernet which is readily available for experimentation.
 The paper is organized as follows, in Section II some
related work is presented. In Section III experimental
methods are presented and in Section IV the results are
presented. Section V contains discussion of the results
presented. Finally in Section VI conclusion and future work
is presented.

II. RELATED WORK
 There has been a lot of work on MPI communications
performance of PC cluster. Most of work is performed on a
heterogeneous Beowulf PC clusters. In our work we focus
on studying the performance of MPI collective
communications on homogeneous Beowulf PC cluster
consisting of 20 identical machines. In [9] the authors have
used MPIBench a software for benchmarking the
performance of MPI functions using a highly accurate,
globally synchronized clock. In [10] the authors have
developed a MagPIe library which optimizes MPI’s
collective communication and have used a LogP model for
short messages and LogGP model for long messages (Table
1). In [11] a nice comparison is made among the common

65Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 73 / 103

parallel communicaton models appearing in the vast
literature, such as Hockney, LogP, LogGP, and PlogP. All
these models appearing in the literature make an assumption
of a homogeneous environment and are listed in Table 1
[11].

Table 1: Common Communication Models

Model Time Parameters

Hockney T = l + m/b l : is latency of network
b: is bandwidth

Log P T= o + (k/w -1)*max
(g,o) + L + o

o: overhead time to transmit or
receive
g: gap min time interval
between message
p: number of processors
l: upper bound on latency
k: number of bytes in a
message
w: size of the network package
in bytes

Log GP T= o + (k-1)G + L + o G: gap per byte for long
messages

P Log P

Same as Log P but
with each parameter
being dependent on
message size.

Same as Log P but dependant
on message length m
L: end to end latency

However analytical models can not truly replace actual
performance measurements. In our work we present
empirical results of the MPI collective communication
routines. Such functions provide insight to communicating
on both wireless and wired Peer-to-Peer systems.

III. EXPERIMENTAL METHODS

A. Performance Measurement
 The factors which affect performance are many and may
be listed as:

1. Hardware related: CPU clock speed and number of
CPUs on motherboard, memory, and network
adapters.

2. Network related: Type of hardware, cable, fast-
ethernet, switches, and routers. Protocols used
TCP/IP, UDP/IP and others.

3. Software related: Operating system type, user
buffering, kernel buffering of data, types of MPI
routines used for example collective
communications. MPI eager and rendezvous
protocols, efficiency of algorithms, and polling or
interrupts.

From the above we can define execution time as a function
of both hardware and software. Execution Time will be a
function of topology, number of nodes, message size,
switch, router, network adapter, type of algorithm, link type,
overhead computer and operating systems, physical
medium, MPI related, TCP/IP related, and Ethernet related.
This is indeed a very complex function in which latencies of
both hardware and software have to be considered. Hard

disk, RAM, and cache access times with network interface
card, PCI, and PCI Express transportation times need to be
considered in calculation of execution time. Also the
latencies of network devices should be considered such as
the switches which are in the 2 to 20 µsec range [8]. In
routers the processing delay due to software processes
would be considerably higher. DSL or Cable internet
connections have less than 100 milliseconds (ms) delays but
less than 25 ms are desired. Satellite Internet connections
have an average of 500 ms or higher latency. The peak
theoretical bandwidth of a network connection is fixed by
the technology used but the actual throughput (bandwidth)
varies with time and is affected by high latencies. Excessive
latencies on the network causes bottlenecks that hinder flow
of data therefore decreasing effective bandwidth.
The total time of sending a message from one peer to
another peer computer can be represented in terms of
execution times and communication time as,

 execBcommexecA tttTime ++= , (1)

where exect time can be defined as,

 fCKtexec /⋅= . (2)

where K is instructions per program, C is clock cycles per
instruction and f is CPU frequency. The time involves the
message’s journey from the transmitting computer’s
memory, user space to kernel space to the network interface,
through the physical medium, to the switch, and then to the
receiver computer’s network interface, and up to the
application.
 In Peer-to-Peer applications collective operations are
rampant. Broadcast, scatter, and gather routines are common
and their communication time depends on the size of each
message, number of messages, interconnection structure,
and network contention. The communication time can be
written as

 ctscomm ttmtt +⋅+= . (3)

In the above equation st is the message latency assumed
constant and includes the overhead time at the source and
destination; tt is the transmission time computed as 1/B
where B is link bandwidth given in Q bits/sec; and m
represents message to send. The contention time ct is burst
dependent and usually removed for simplicity. The time
complexity is)(mO for m data items. Usually one sends
messages from one computer to multiple destinations. The
1-to-N fan-out broadcast is when the same message is sent
to N destinations sequentially, then the communication time
is

66Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 74 / 103

)(tscomm tmtNt ⋅+= , (4)
and for the scatter and gather communication models is,

)/(ntmtNt tscomm ⋅+= . (5)
In scatter a unique message is sent from source to every
other destination and in gather a unique message is received
from every other nodes.
 The time complexity is)(NmO for one source
connecting to N destinations. In (5), n is the total number of
nodes and N = n-1. For a tree type structure the time
complexity of 1-to-N fan-out will depend on number of
nodes at each level and the number of levels. The
disadvantage of a binary tree implementation is if one node
fails then all the nodes below it will not receive the
message.
 For an Ethernet LAN network, communication time can
be defined as:

 EpqtEmcomm ttttmtt +++⋅+= (6)

where all terms depend on message size and message time
at Media Access Control (MAC); mt is dependant on
message size and would be same for a homogeneous
network and would be some factor multiplied by message
size, sizem⋅α ; Em represents the number of bits in an

Ethernet packet; qt is the queuing delay; pt is the
propagation delay defined as d/c, where d is the length of
the link and c is speed of light in medium having a value
less than 8103x m/sec (e.g. Copper wire .77c); Et is the
Ethernet interframe gap which is 12 bytes (96 bits).
The traffic intensity can be defined as

 BpmT Ei /)(⋅= (7)

where p is the average packet arrival rate. Therefore iT
approaching close to 0 will indicate small delay;

iT approaching to 1 is an indication of large delay.
 The communication overhead can affect transmission
efficiency. The transmitted Ethernet packet has a payload
which is TCP/IP encapsulated in addition to the application
header. TCP header consists of 20 bytes and the IP header
consists of at least 20 bytes. The transmitted Ethernet frame
has a preamble of 8 bytes and an interframe gap of 12 bytes.
The number of Ethernet packets per second on the link will
be,

EthernetPacketsPerSecond = B / [8 *(FrameSize +
Interframe gap 12 bytes + Preamble 8 bytes)]
 (8)

The Ethernet protocol efficiency is defined as,

 Efficiency = Payload size/ Frame size (9)

and the throughput is

 Throughput = Efficiency x B (10)

Therefore for every Ethernet packet on the link, a 96 bit
interframe gap and 64 bits of preamble would be overhead.
If the link has the capacity of 1 Gbps then for a minimum
Ethernet frame size of 64 bytes transmitted, the link will
consist of 7.62 x 10^8 bits/sec due to Ethernet frame and an
overhead of 2.38 x 10^8 bits/sec due to interframe gap and
preamble combined. For a Gigabit Ethernet the minimum
frame size would be 512 bytes when operating in half-
duplex mode. The Ethernet protocol efficiency is low for
small packets (e.g. 54.76% for 64 bytes) and high (e.g.
97.53% for 1518 bytes) for large packets and hence the
throughput is low for small packets and high for large
packets.
 Latency can have detrimental affects lasting few seconds
or can be persistent depending on source of delays. Both
bandwidth and latency are two main entities to measure
network performance. Since software related latencies are
hard to measure and define, one resorts to empirical
methods as done in the next section.

B. Beowulf PC cluster Specifications
Our testbed consists of a PC cluster including 20 Lenovo

machines with the following specifications: Intel Core™ 2
Duo CPU, E4400 2.00GHz, 1.00 GB of RAM. Network
Card: Broadcom Netlink, Gigabit Ethernet, Driver date
8/28/2006 version 9.81.0.0. The PC are connected to a
Gigabit D-Link Ethernet switch. Each machine has RedHat
Enterprise AS Linux operating system installed, and use
LAM 7.0.6/MPI 2.

C. MPI Benchmarks
The Message Passing Interface (MPI) is a standard

interface that is broadly used with distributed computing
applications [12]-[15]. The following MPI-based
benchmarks are used to test the communication performance
of the nodes:

a) All-to-all: every node sends a message to every
other node.

b) Broadcast: one node sends one message to every
other node.

c) Gather: all nodes send a different message to a
single node.

d) Scatter: a single node sends a different message to
every other node.

e) Point-to-Point: a single message is sent/received
between 2 specific nodes.

The implementation details of the above collective
communications are usually unknown to the programmer.

67Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 75 / 103

The MP1-1 standard specified the “blocking collective
communications” only while the MPI-2 standard defines
“non-blocking” routines which perform better with some
applications. MPI related software performance will depend
on the type of message passing protocols, eager
(asynchronous communication) or rendezvous
(synchronous), type of message buffering (user and system),
sender-receiver synchronization (e.g. polling or interrupt),
and efficiency of the algorithms used to implement the
collective communication routines.
 There are many benchmarking software available on the
internet such as MPIBench or mpptest. However, most
benchmarks available for collective communication basically
use the following procedure to measure the execution time.

1. All processes arrive at Barrier
2. Start time
3. MPI_collective_fn
4. All processes arrive at Barrier
5. End time
6. PTime = End_t ime – Start_time

where MPI_collective_fn is one of the MPI functions all-to-
all, gather, scatter, broadcast, and Point-to-Point.

D. Analysis of Execution Time (PTime)
 In the benchmark procedure above, PTime consists of
time to execute the MPI_collective_fn function and twice
the time of Barrier.
 First, the time spent at the transmitting computer would
involve sending data by the kernel of system to the network
interface card (NIC) and the time NIC takes to pack bytes in
an Ethernet frame to send the frame on the physical wire.
Depending on type of NIC architecture, a typical Ethernet
NIC would have specifications as given in Table 2.

Table 2. Gigabit Ethernet Network Interface Specifications.

Speed Interface Data
Width Clock

Time for 1
byte

transfer
1 Gbps GMII 8 bits 125 MHz 8 ns

10 Gbps XGMII 32 bits 156.25
MHz .8 ns

 To transmit an Ethernet frame the time to transmit from
Medium Access Control (MAC) to Physical (PHY) for a 1
Gbps link would be

 tT = 8 ns * Ethernet_Frame_size (10)

One thing about Gigabit Ethernet is its clock rate at 125
MHz but more data is transmitted per time. The transfer rate
is higher since 125 MHz x 2 bits per signal (i.e. per wire
pair in Cat 5E cable) x 4 signals per time = 1 Gbps.
Therefore, on the motherboard if PCI Express is available
then with a maximum transfer rate of up to 250 MB/s then
full speed of Gigabit Ethernet is achievable.
 Next, the switch receives the Ethernet frame, and
processes the frame with a typical delay of 2 to 20 µsecs [8].

It is then sent out to the destination computer where again
the NIC on receiving computer processes it (PHY taking
anywhere from 200 to 300 nanoseconds depending on
technology) and sends it to the MAC layer, then onto the
TCP/IP layers up to the application. The process of
transmittance, reception, and acknowledgement is repeated
according to TCP/IP, Ethernet framing, and depending upon
the application’s instructions, i.e. MPI collective_fn
function and time of Barrier. The Barrier is used to
explicitly control the flow of execution. There are at least 3
types of Barrier implementations [9], namely,
 a) Counter implementation (linear barrier)

b) Tree implementation
c) Butterfly barrier

The time complexity of barrier with counter implementation
is)(nO . For both the tree and the butterfly implementations
the time complexity is)(log nO , where n is the number of
nodes. From the above, PTime depends on how MPI
collective_fn and Barrier are implemented in LAM
7.0.6/MPI 2, as summarized in Table 3 (for large number of
nodes).

 Table 3. Time Complexity

Linear
Model

PTime
Barrier Implementation

a) Counter b) Tree and c) Butterfly

MPI_alltoall O(nNm) + O(n) O(nNm) + O(log n)

MPI_Bcast O(Nm) + O(n) O(Nm) + O(log n)

MPI_Gather O(Nm) + O(n) O(Nm) + O(log n)

MPI_Scatter O(Nm) + O(n) O(Nm) + O(log n)

IV. RESULTS

The MPI benchmarks are run on a PC cluster by first

fixing the number of nodes in a communication group to 2
and varying the size of messages from x Kbytes to y Mbytes
(n2 where n = 0,1,2,3,4…,). Then the number of nodes in
communication group is iteratively incremented up to 20
nodes.

The figures show Minimum Round Trip (MRT) time
measured in granularity of µsecs for messages of sizes
ranging from 256 KB to 2 MB.

In Figure 1 all-to-all minimum round trip time is plotted
versus number of nodes in a PC cluster. Fig. 1 show MRT is
almost constant (with little variation) for a communication
group consisting of anywhere from 2 to 9 nodes in
comparison with 10 to 20 nodes which shows MRT linearly
increasing.

In Figure 2, broadcast MRT time is plotted versus
number of nodes. From the figure we observe MRT
increases with increase in the number of nodes again with a
steeper slope for large message sizes within each group.
Note, from the figure it shows somewhat a step wise
increment in MRT values.

68Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 76 / 103

In Figures 3 and 4, gather and scatter MRT time is
plotted versus number of nodes, respectively. Both gather
and scatter have a similar shape for MRT. The shape is more
pronounced for large message sizes within each group. For
gather and scatter communications it is seen from the figures
MRT for small number of nodes e.g. 2, 3 and for large
number of nodes, e.g. 16-20 takes on values which are much
larger than the MRT of the number of nodes in between.
MRT takes on a minimum for 8, 9 nodes and slightly higher
for 10 nodes. It is also interesting to note that skewed shape
flattens out as the message size is reduced. The figures of
scatter and gather show unexpected behavior in MRT for
nodes up to 9. The reason for this is presented under the
discussion section.

In Figure 5, Point-to-Point benchmark is plotted with
logarithmic scale for MRT and messages sizes ranging from
4 bytes to 8 Mbytes.

Comparing all-to-all communication with the others it is
seen all-to-all has the highest MRT as expected.

Figure 1. All-to-all benchmark showing MRT for message sizes of 256K

B, 512KB, 1MB, 2MBand for different size of PC cluster.

Figure 2. Broadcast benchmark showing MRT for message sizes of
256KB, 512KB, 1MB and for different size of PC cluster.

Figure 3. Gather benchmark showing MRT for message sizes of 256KB,
512KB, 1MB, 2MB and for different size of PC cluster.

Figure 4. Scatter benchmark showing MRT for message sizes of 256KB,
512KB, 1MB, 2MB and for different size of PC cluster

Figure 5. Point-to point benchmark showing MRT log scale versus
message sizes of 4 bytes to 8 Mbytes.

V. DISCUSSION
 In this section we discuss the results of all-to-all,
broadcast, gather, scatter, and Point-to-Point functions used
in the benchmarks. First note, the message size being
transmitted is fixed in the case of broadcast and Point-to-
Point. In the second case of all-to-all, gather, and scatter, the
message size is divided equally within the communication
group and depends on the number of participating nodes.
Let m denote the message size and n denote the number
of nodes,
 ii nms /= for 20,...,3,2=i (11)

where is is the actual message size being transmitted or
received by each communicating node. Therefore,

20321 ssss >>> L since 1+< ii nn . As the number
of nodes are increased the message size being sent or
received goes down. From (5) one knows that latency
depends on message size (and of course is a function of
time): as the message size 1+is is less than is therefore the

per message latency of is is larger than 1+is . However this
is not always the case as seen in the scatter and gather
routines. When a host application transmits to its
destination, non-blocking sends are posted by MPI,

69Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 77 / 103

reducing latency for certain nodes (e.g. 9 in the scatter
figure) and the TCP protocol is used for reliability. It must
wait for a period of time to receive an acknowledgment. If
the reply does not arrive within the expected period the data
is retransmitted. On Ethernet LAN the wait time is not
more than a few µsecs. Thus, the overhead time has a major
affect on latency.
 A number of factors together are involved in having a
major affect on MRT as shown in the scatter and gather
plots. First, varying the size of the message has affect.
Second, the implementation of LAM-MPI routines are not
known to the programmer, which model is being used
whether linear or tree type. Third, which protocol MPI is
using either eager or rendezvous protocols. The LAM-MPI
constructs the message and sends it through the network to
the destination computer which must accept and act upon
the message contents. LAM-MPI uses either the eager
protocol or the rendezvous protocol depending on message
size. With the eager protocol, as soon as a message is
posted both the envelope and data are sent to the destination.
If on the destination the receive operation is not posted then
buffering has to be done; this buffering involves an
additional data duplication. In the rendezvous protocol,
when a message is posted the envelope is sent to the
destination and buffered. As soon as a receive is posted the
destination sends an acknowledgement to the sender which
then only will be the data send by the sender In this case
buffering of the data is avoided and used for large messages.
 Fourth, TCP/IP protocol is being used by LAM-MPI
protocols on top of TCP/IP protocols which cause higher
latencies in communicating a message from sender to
destination. The actual application bytes packed in an
Ethernet frame are much less due to MPI application,
TCP/IP, and Ethernet headers. In some cases, as depicted in
the figures of scatter and gather, when the message size
decreases among the communication nodes it can happen
that MRT decrease down to a certain value and, as the
message size is further decreased beyond the minimum
MRT point, the MRT will start to increase again. The
explanation of such a behavior is due to the factors
mentioned above (i.e. the implementation of the scatter and
gather algorithms in MPI, eager and rendezvous protocol
switching depending on message size, plus TCP overhead
and the increase of overhead ratio as the Ethernet frame size
decreases).

VI. CONCLUSION AND FUTURE WORK
 In this paper we have studied the performance of MPI
collective communications routines on a gigabit Ethernet
LAN. The experiments were performed to represent a Peer-
to-Peer scenario in which one has different sizes of nodes in
a group and variations in message size. All the benchmark
routines presented closely represent typical communications
of a Peer-to-Peer system i.e. broadcasting, gathering,

scattering, all-to-all, and point-to-point. The results show in
the case of gather and scatter that as the message size is
decreased among the increasing nodes there is no set
predictable pattern MRT takes. We have seen that many
factors affect the performance of collective communications
in a wireline (Ethernet) environment. Our next target is to
extend our study to the area of Peer-to-Peer over wireless
networks.

ACKNOWLEDGMENT
The authors would like to thank CSSE Research Center for
carrying out experiments on the PC cluster. The authors
would also thank the anonymous reviewers for their valuable
and insightful comments.

REFERENCES

[1] S. Lin, A. Pan, R. Guo, and Z. Zhang., “Simulating Large-
Scale Peer-TO-Peer Systems with WiDS Toolkit”, White
Paper, Microsoft, Jan. 2008.

[2] M. Li, W. Lee, and A. Sivasubramaniam, “Efficient Peer-to-
Peer Information Sharing over Mobile Ad Hoc Networks”, In
MobEA, 2004.

[3] X. M. Huang, C.Y. Chang, and M.S. Chen, “PeerCluster: A
Cluster Based Peer-to-Peer Sytem”, IEEE Transactions on
Parallel and Distributed Systems”, vol. 17, No. 10, Oct. 2006,
pp. 1110-1123.

[4] B. Parviz and K. Miremadi, “Building a Peer to Peer Message
Passing Environment by Utilizing Reflection in .NET.”, In
Proceedings of PDPTA'2006. pp.1096~1102.

[5] InfiniBand Trade Organization., http://www.infinibandta.org/
[6] http://en.wikipedia.org/wiki/Quadrics, Sept. 3, 2011.
[7] Myricom Inc., http://www.myri.com, Sept 3, 2011.
[8] CISCO Inc., http://www.cisco.com, Sept 3, 2011.
[9] F. A. Vaughan, D. A. Grove, and P. D. Coddington,

“Communiation Issues for Two Cluster Computers,” ACSC
’03 Proceedings of the 26th Austrailasian computer science
conference, vol 16, 2003.

[10] T. Kielmann and H. E. Bal, “Fast Measurment of LogP
Parameters for Message Passing Platforms”, 4th Workshop on
Runtime Systems for Parallel Programming (RTSPP), pp. 1176-1183,
held in conjunction with IPDPS 2000, Cancun, Mexico, May 1-5,
2000. Lecture Notes in Computer Science, Vol. 1800.

[11] J. P. Grbovic, et al, “Performance Analysis of MPI Collective
Operations”, Journal Cluster Computing, Vol 10, Issue 2,
June 2007, pp. 127-143.

[12] R. Riesen, “Communicaton Patterns”, Parallel and Distributed
Processing Symposium, 25-29 April 2006.

[13] A. Leko, et al, “Practical Experiences with Modern Parallel
Performance Analysis Tools : An Evaluation”, Parallel and
Distributed Processing, IPDPS 2008 IEEE Symposium 14-18
April 2008, Miami, Fl, pp. 1-8.

[14] B. Wilkinson and M. Allen, Parallel Programming
Techniques and Applications Using Networked Workstations
and Parallel Computers, Second Edition, Pearson Prentice
Hall, 2005.

[15] F. Noor and S. Misbahuddin, “Using MPI on PC Cluster to
Compute Eigenvalues of Hermitian Toeplitz Matrices”,
Lecture Notes in Computer Science, 2010, vol 6081, pp 313-
323.

70Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 78 / 103

Coalitions and Incentives for Content Distribution

over a Secure Peer-to-Peer Middleware

Maria-Victoria Belmonte, Manuel Díaz and Ana Reyna

Department of Languages and Computer Science

E.T.S.I. Informática. Bulevar Louis Pasteur, N.35

University of Málaga (UMA), 29071, Málaga, Spain

e-mail: {mavi, mdr, reyna}@lcc.uma.es

Abstract— Nowadays, Peer-to-Peer is responsible for

more than 60% of Internet traffic. These protocols have

proved to save bandwidth and computing resources in

content distribution system. But, problems related to user

behaviour, such as free riding, still persist, and users

must be motivated to share content. In previous work, we

have designed and simulated a coalition and incentive

theoretical mechanism for content distribution that aims

to fight against problems in user behaviour. In this pa-

per, we present a real implementation of it. Since devel-

oping a peer-to-peer application from scratch is a labori-

ous and error prone task, we use SMEPP, a middleware

that aims to ease the development of secure distributed

application, to implement it.

Keywords-coalitions; incentives; peer-to-peer; middleware;

overlay.

I. INTRODUCTION

Nowadays, Peer-to-Peer (P2P) protocols are responsible
for more than 60% of Internet traffic, in spite of anti-piracy
laws [1]. Many Internet applications are taking advantage of
P2P architecture, since P2P paradigm abandons central serv-
ers to give way to a network where all nodes play the role of
server and client simultaneously. This brings new perspec-
tives to application scalability; where an excess of nodes in
the client-server paradigm could lead to saturation or even a
system crash, in the P2P paradigm it means greater capacity.

P2P protocols enable content distribution in a cost-
effective way, as they do not require a centralised provider to
handle all the demands. Instead, a P2P protocol can use its
clients' bandwidth for content distribution, saving the band-
width and computing resources of the system. However, the
performance and availability of these systems relies on the
voluntary participation of their users, which is highly variable
and unpredictable. Empirical studies have shown that a large
fraction of the participants share little or no files. For in-
stance, in [1], the authors affirm ―in Gnutella 25% of the
users do not share any files, Furthermore, about 75% of the
clients share 100 files or less‖ (including the 25% that do not
share) ―and only 7% of the clients share more than 1000 files.
This 7% of users together offer more files than all of the other
users combined‖. More recently, Handurukande et al. [3] also
observed the same behaviour in the eDonkey P2P network

and concluded that this is common to most P2P file sharing
systems. This phenomenon is known as ―free-riding‖, and is
still an open issue on content distribution systems [4]. P2P
content distribution systems need mechanisms that motivate
peers to share their content.

In [5], we presented a new coalition formation scheme

based on game theory concepts which formally prove how

coalitions improve P2P systems performance, encouraging

participants to contribute resources, receiving in return a

better quality of service. Empirical results obtained through

simulations illustrated how our approach encourages

collaborative behaviour, preventing the free-riding problem

and improves the overall performance of the system. Until

now, this mechanism has been a theoretical proposal, whose

features have been demonstrated only through simulations. In

this paper, we present a real distributed implementation of the

mechanism.

The development of distributed applications in general,

and concretely P2P, is a laborious and error prone task, since

many issues must be considered, from network protocols, to

security. In order to facilitate the software development of

this kind of system, new tools and methodologies capable of

abstracting all the underlying complexity should be used. A

middleware can simplify and reduce the development time of

the design, implementation and configuration of applications,

thus allowing developers to focus on the requirements of

their applications. In [5], we presented SMEPP (Secure

Middleware for Embedded Peer to Peer systems), a new

middleware especially, but not exclusively, designed for

Embedded Peer to Peer (EP2P) systems. This middleware

was designed to overcome the main problems of existing

domain specific middleware proposals [6]. The middleware

is secure, generic and highly customisable, allowing it to be

adapted to different devices, from PDAs and new generation

mobile phones to embedded sensor actuator systems, and

domains, from critical systems to consumer entertainment or

communication [8].

 In this paper, we take advantage from SMEPP middle-

ware to implement our coalitions and incentives mechanism

for distributed content distribution. On the one hand we

prove the suitability of using a P2P middleware, and on the

other, we demonstrate that our mechanism can be developed

as a real distributed application.

71Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 79 / 103

The structure of this paper is as follows. The following

section presents an overview of SMEPP middleware. In

Section III, the main features of our content distribution

mechanism are introduced. Section IV focuses on the im-

plementation issues. Finally, conclusion is presented in Sec-

tion V.

II. SMEPP MIDDLEWARE OVERVIEW

SMEPP middleware is based on three main pillars, its ab-
stract model, its reusable and flexible architecture and its built
in security. A detailed description of SMEPP middleware is
beyond the scope of this paper, nevertheless we believe it is
essential to introduce its main features. In addition, in Section
IV, some details, required for the implementation, will be
given. More details of SMEPP can be found in [5] .

The abstract model defines the entities involved and how
they relate in P2P environments (illustrated in Figure 1). It
defines the concepts of peer, group and service. The function-
ality of the application is offered in the form of services,
which can be published or consumed only inside groups of
peers. The group definition determines the level of security
inside a group. To access a group the peer has to provide the
suitable credentials, this is internally managed by the mid-
dleware. The service discovery is effectively performed
thanks to the underlying structured overlay network that im-
plements CHORD protocol [9]. In addition, the abstract
model also defines the API, which is generic and language
independent, and defines the functionality exposed by the
middleware with a high level of abstraction, this is the way
the programmer can interact with the middleware.

The architecture of SMEPP is based on software compo-
nents. Component-oriented paradigms have proved to be a
good approach to designing a middleware. Software compo-
nents offer several features (reusability, adaptability, etc.)
which are particularly suitable for dynamic environments and
rapidly changing situations that a middleware has to face.
This is especially interesting for our application. A specific
component framework has been designed for the implementa-
tion of the middleware. The developer has several tools which
allow the tuning of the middleware for a specific platform,
device or communication protocol.

Security is the most distinctive feature of SMEPP. Since
its conception the security aspect was considered, and tackled
transversally on the architecture and on the service model
definition, this ensures that the middleware is capable of
providing a high level of customisable security.

The SMEPP performance results showed that overall re-
source consumption of the middleware was relatively small,
the overall memory consumption peak being 1,83MB and the
highest average memory consumption being 670kB. More-
over regarding the usage of CPU, the middleware uses rela-
tively little CPU time (max being 2% of CPU capacity on a
2GHz Intel Core2 Duo). Taking into consideration that the
middleware is designed to work on small capability devices,
this is a good result. Furthermore, the suitability of SMEPP
was demonstrated by the development of two different inno-
vative real-life applications in the domains of Context Aware
Mobile Telephony and Environmental Monitoring in Indus-
trial Plants [8]. This was formerly implemented in JXTA [10],
where a new version of the application over SMEPP proving
the benefits of using middleware was developed. A compari-
son between JXTA and SMEPP can also be found in [11].

In this paper, we demonstrate how our coalitions and in-
centives mechanism for content distribution can be easily
implemented over SMEPP, taking advantages of its features,
such as the built in security and the structured overlay look up
mechanism for content discovery.

III. COALITION AND INCENTIVES MECHANISM OVERVIEW

The central idea of our mechanism is sharing the task of

downloading a file between a set of peers making up a coali-

tion. On the one hand, the downloader benefits as the total

download time is reduced. On the other hand, the burden on

the uploader (or provider) peer is also alleviated, since the

total task is divided between the members of the coalition.

And in addition, providers are rewarded for their participa-

tion in the coalition.

 More concretely, these rewards aim to encourage partici-

pants to contribute resources, receiving in return a better

quality of service. In this way, each peer that participates in a

coalition is lending "bandwidth" to other coalition peers, in

Figure 1. SMEPP abstract model

Figure 2. Coalitions and incentives mechanism

72Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 80 / 103

exchange for profit or utility. Each participant or provider

receives a reward each time it participates in a coalition, and

is penalised each time it downloads. The reward that a pro-

vider obtains by performing a task inside a coalition is calcu-

lated using the game-theory concept of core [12]. The core

ensures that each coalition participant receives a fair utility

in return for the bandwidth that it supplies. In our model,

these utilities are used to compute the Responsiveness bonus

(Rb), which represents the overall contribution of the peer to

the system. Therefore, this value will determine the quality

of service of each peer. The higher Rb the better quality of

service, this is the key to encouragement.

 Each peer can play three different roles: downloader,

participant or manager (In Figure 2, Pb is the downloader, P0

is the manager, and Pq and Pm are the participants). To sum

up: the download process starts when a peer decides to

download a file. In order to download this file, the

downloader has to find file providers in the network (discov-

ery). Once the providers are found, a coalition manager is

elected. The manager selection does not imply centralization,

because any potential participant can become the manager

with equal probability. Next, the manager sends offers to the

potential candidates (the rest of the providers). Each provider

answers the offer, and once the manager has received all of

them (or a timeout is reached), it has to divide up the task

between the potential coalition members (those participants

who answered). This process, called Task Assignment, es-

tablishes the coalition itself, and after this, the download

itself starts. During the download, the downloader periodi-

cally sends acknowledgement information to the manager,

who runs a checking mechanism to guarantee the quality of

service in the coalition, adapting to network traffic and help-

ing to avoid some attacks of malicious peers (such as free-

riding). After these checks, the Rb of all the members of the

coalition is updated using the utilities obtained after the Coa-

lition Payment Division.

A. Task Assignment

 Given a collection of providers, the task assignment has

to determine the task that each provider will be responsible

for, this is the input bandwidth that each participant will

provide to the coalition. If there are few participants (under a

threshold) no selection has to be done, otherwise only some

providers will be chosen for the coalition.

 To do so, and to determine the input bandwidth of a par-

ticipant, the progressive filling algorithm is used. This algo-

rithm provides the max-min fairness [13]. A bandwidth allo-

cation is max-min fair if and only if an increase of the input

bandwidth of a peer x within its domain of feasible allocation

is at the cost of decreasing some other input bandwidth of a

peer y. So, it gives the peer with the smallest bidding value

the largest feasible bandwidth.

B. Checking Mechanism

The checking mechanism makes the system less vulner-

able to peer failures, churns and network congestion prob-

lems, while it ensures the quality of service of the coalition.

The mechanism works as follows, during the download of a

file; the downloader sends acknowledgement information to

the manager with a predefined frequency. The manager cal-

culates the difference between the bytes sent and the ones

which should have been sent (according to the task assigned

to each participant). If this difference exceeds a predefined

threshold, the coalition is reconfigured in order to provide

better quality of service. Moreover, the manager also checks

that the downloader Rb is high enough to keep downloading.

The central idea is that if the coalition is not working as it

was expected or the downloader is abusing the system, the

coalition is cancelled.

Since the update of Rb values are calculated by the man-

ager and are based on the acknowledgement sent by the

downloader, the downloader could avoid the penalty if it

sends faked acknowledgement. But the checking mechanism

performed by the manager will stop the coalition if the ac-

knowledgement is too small, so the downloader will not be

penalised, but neither will they receive the file.

C. Coalition Payment Division

The hallmark of our mechanism is that the coalition

payment division ensures fairness, thanks to the game theory

concept of core. This means that peers won't be negatively

affected if they have lower capacity. The details of this are

explained in the following paragraph.

Let's call coalitional value V(S), to the total utility or

profit of a coalition S. For every peer in the coalition, Pi ∈ S,

we must distribute V(S) between the peers, and assign an

amount or utility (xi) to every peer Pi ∈ S. The problem is to

distribute V(S) in a stable and fair way so the coalition peers

have no reason to abandon it.

Firstly, we must calculate V(S). The profit obtained by S

is calculated as the difference between the time required for

the download with just one uploading participant (only P0,

the manager) minus the time it takes with the coalition S (all

the participants, including the manager). Then the coalitional

value is given by the following equation:

where t0 is the time that it would take the P0 to upload the

whole file (being P0 the only uploader or provider),
 the

upload bandwidth of P0 and
 the upload bandwidth of the

remaining participants of S.

Secondly, we use the core to distribute V(S) between the

coalition members. A utility distribution belongs to the core

if there is no other coalition that can improve on utilities of

all of its members. The stable utility division (xi) to every

peer Pi ∈ S is given, then, by the following equation (in

detail in [5]), where
 is the download bandwidth of P0 .

73Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 81 / 103

D. Responsiveness Bonus Computation

As it has been said, peers with higher utility will get a

better quality of service. In our approach the utility accumu-

lated by each peer () is proportional to the resources that

it supplies, and it is calculated as a heuristic function of xi.

The value of will be reduced when Pi acts as a download-

ing peer, and incremented when it is a provider or uploading

peer. The heuristic uses the xi values obtained by Pi by

means of (Upload points) and (Download points).

 and accumulate the utility obtained by each coalition

formation process in which Pi participates.

Let us call Fsi to the number of files shared (the total size

in bytes) by a peer Pi. The value of the peer is calculated

using the following equation:

The values are between zero and one. The interpreta-

tion of this formula is that if the peer uploads more than

downloads, it gets the maximum value, also true when, it is

not uploading but sharing. If neither uploading nor sharing;

its is set to zero. In any other case, it is calculated as the

ratio between the upload and the download points (the

parameter allows us to regulate the relation to in-

crease/decrease the penalty/reward).

Therefore, we use this value to decrease the download

bandwidth
 (using it as a multiplier of the

download bandwidth of the peer Pb when it wants to

download a file). Initially, the of the peers is 1, a higher

responsiveness bonus (closer to 1) will mean that Pi will

be able to use most of its bandwidth capacity. Otherwise, a

 closer to 0 will reduce its bandwidth capacity, (in fact, it

could even avoid creating the coalition for the download

when it is 0). Thus, our incentive mechanism penalises the

selfish behaviour of the peers, and provides incentives for

collaborative behaviour.

E. Experimental Results

 In [5], we presented some simulation results. These ex-

periments confirmed the benefits of using our mechanism.

On the one hand download times are improved, and on the

other hand, free riders are stopped, this lead to an improve-

ment of the system's effectiveness.

 Our own simulator was used to run the experiments. It

was configured to simulate a P2P network of 1000 peers

during 2000 units of simulated time (steps). All peers had the

same bandwidth capabilities. The collection of files shared in

the network was defined with different sizes (from 10000KB

to 90000 KB), and a random number of copies (between 5

and 500) of these were delivered through the network at the

start of the simulation. Each peer had a random number of

initially stored files, and the objective of the simulation was

that every peer download the files that were not initially

stored. Our simulations, considered three types of users (or

behaviours): free riders (FR), collaborative (C) and adaptive

(A). The first, do not share at all, the second share as much

as possible, and the last, only share if they want to download.

Depending on the behaviour of each peer (that is randomly

assigned in each simulation) it will face its downloads in

different ways.

Figure 4. Free tider detection (% detection vs simulation time) Figure 3. Average download time using coalitions (diamonds)

and not using them (squares) (simulation time vs bytes)

74Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 82 / 103

TABLE II. SMEPP API

Group management Service management
createGroup publish

joinGroup unpublish

leaveGroup getServices

getGroups getServiceContract

getGroupDescription startSession

getPeers Peer management
getIncludingGroups newPeer

getPublishingGroup getPeerId

Message handling Event handling

invoke event (raise)

receiveMessage receiveEvent

reply subscribe

receiveResponse unsubscribe

 TABLE I. BYTES DOWNLOADED IN SIMULATIONS

 No coalitions Coalitions

 Pop. 1 Pop. 2 Pop. 1 Pop. 2

FR 157 Gb 123 Gb 24 Gb 20 Gb

C 156 Gb 92 Gb 130 Gb 82 Gb

A 91 Gb 84 Gb

Total 313 Gb 306 Gb 154 Gb 186 Gb

 To analyse the impact of the different behaviours on the

system the experiments were run with two different popula-

tions. The first one without adaptive users: 50% FR, 50% C

and 0% A, called Population 1. And the second with adaptive

users: 40% FR, 30% C and 30% A, called Population 2. In

addition, to analyse the impact of the use of coalitions, simu-

lations were run with and without incentive policies: No

Coalitions (NC), where no incentive mechanism was consid-

ered and Coalitions (C), which implemented our proposal.

After repeating the simulation experiments 100 times we

took the average to give the results. Two main metrics were

considered: downloaded bytes and average download time.

 In Table I the bytes downloaded per populations and per

behaviour for both scenarios, with and without coalitions, is

shown. In Population 1, when coalitions were used the total

amount of bytes downloaded was reduced to 50% with re-

spect to NC, but 84% of this reduction was due to the free

riders detection. This showed how the algorithm prevents

free riders from abusing, avoiding the overhead of the system

resources. In Figure 4, the free rider detection effectiveness

of our approach is shown (Population 2). More than 50%

were detected at step 300 and the 100% were stopped at step

1500.

 In Population 2, when adaptive users were introduced,

the benefit of using of coalitions was higher (than in Popula-

tion 1). The total amount of bytes was reduced by 39% with

respect to NC, where 83% was due to the free rider’s detec-

tion. In addition, comparing coalitions in both populations,

the total amount of downloaded bytes were increased by

20% using Population 2, proving that adaptive users benefit

the system. Note that in Population 2 there were fewer free

riders and collaborative users, therefore, less shared files in

the network, this justifies the smaller amount of total bytes

downloaded with respect to Population 1.

 In addition to the analysis of the downloaded bytes, the

average download time offered even better results. In Figure

3, the average download time using and not using coalitions

is shown for Population 2. Experiments showed that using

coalitions the average download time was smaller. As ex-

pected, the benefit of using coalitions is increased as the file

size grows. When adaptive users were introduced the

download times were improved compared with NC, what

demonstrated the effectiveness of our incentive mechanism.

More details about the configuration and results of the ex-

periments can be found in [5].

F. Related Works

The incentive mechanisms in P2P networks for content

distribution [4] have been classified in different categories.

Our approach belongs to reciprocity based mechanisms:

peers that contribute more get a better quality of service.

Other publications also included in this category are

[14][15][16][17][18][19].

 From the approaches above, those based on mutual recip-

rocity, like Bit Torrent [16], Emule [15] or [14], do not fit

the asymmetric nature of a collaborative relationship, since

the peer's decision to upload to another peer is based on the

direct exchange of data/services/credits between two peers

that have mutual interests (same content). However, our

approach, unlike the ones above, encourages cooperative

behaviour by forming coalitions of peers that help each other

to download files. So any peer can participate in a coalition

increasing its Rb, and this will lead to a higher download

bandwidth for further downloads from any other peer in the

system.

 The indirect reciprocity-based approaches, like

[17][18][19] or our approach, consider peers' overall contri-

bution to the network, and so they encourage cooperation.

 2Fast [17] is also based on creating groups of peers that

collaborate in order to download files. However, the system

does not enforce fairness and does not specify how the helper

may reclaim its contributed bandwidth in the future. Again in

[19], where the peer contribution is based on the number of

peer uploads and downloads, the computed peer contribution

does not guaranty that the peers receive fair utility in return

for the bandwidth that they supply. Finally, Karakaya et al.

[14] propose a distributed framework in which each peer

monitors its neighbours (recording the number of messages

coming or going), and the free-riders are located and iso-

lated. However, and unlike this approach, stopping free rid-

ers is not the only goal of our approach, indeed we also wish

to increase the effectiveness of the download mechanism.

IV. IMPLEMENTATION

When faced with the implementation of our content distri-

75Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 83 / 103

TABLE III. MECHANISM MESSAGES

Message Sender Receiver

Manager offer Downloader (C) Manager (C)

Offer answer Participant (S) Manager (C)

Acknowledge Downloader (C) Manager (C)

Cancel Manager (C) Participant (S)

New Download user Downloader(C)

Task Manager (C) Participant (S)

Query Rb Manager (C) Rb manager(R)

Update Rb Manager (C) Rb manager(R)

bution mechanism, first, the functionality has to be modelled

as a service, since SMEPP is service oriented. Then, two

main implementation issues must be tackled: first, the con-

tent discovery, and second the query and update of the Re-

sponsiveness bonus. Both issues will take advantage of the

structured overlay network offered by SMEPP.

 As we have already stated, SMEPP is based on the con-

cept of peer, group and service. Its API offers primitives to

abstract the peer management, group management, and the

service management, but also for events and message han-

dling. The SMEPP API is summarised in Table II.

A. Content Discovery

The content discovery process is responsible for finding

the peers that provide a specific file in the network. This task

is tackled differently in popular P2P systems. In Napster, this

responsibility was delegated to central servers which were

also responsible of storing the files; In Emule, the task is

delegated to many different servers that only store provider's

references, not the files. Gnutella implements a pure distrib-

uted algorithm to find providers, forwarding query messages

through the neighbours. BitTorrent or One-Click Hosting

(like megaupload, rapidshare, etc.), do not provide any

mechanism for content discovery. In BitTorrent, torrent files

containing the description of the shared file are published

through webs, mail, forums, etc so, the user must find this

torrent file in order to join or to start a download. The same

goes for one-click hosting, where search engines or webs

specialised in download links are used to find the sources of

the content.

As SMEPP integrates Service Discovery functionality,

we take advantage of this in order to be able to efficiently

discover the file a peer wants to download. We could also

opt for an implementation based on events, but the file

search would be less efficient and the implementation effort

would be bigger. SMEPP defines the services through con-

tracts (A XML File). The contract provides descriptive in-

formation on the service, while the implementation is the

executable service (e.g., a Java service) exposed to the mid-

dleware through grounding. A service contract describes

―what the service does‖ (viz., the service signature), ―how it

does it‖ (viz., the service behaviour), and it may include

other extra-functional service properties (e.g., QoS). When a

service is published, SMEPP generates a key from the con-

tract; this key determines which peer in the group is respon-

sible for this service. The structured SMEPP overlay network

(which uses CHORD protocol [9]) determines the range of

keys a peer is responsible for, and enables a fast search

mechanism thanks to the key space defined within the group.

To take advantage of this effective search mechanism, we

define a contract for each shared file. This way if two peers

share the same file, they will publish the same contract,

which will result in the same key, and therefore, the same

responsible peer. Thus, peers which share the same file, will

publish the same service on the same peer.

B. Responsiveness Bonus Management

 In addition to the content discovery, the storage (query

and update) of the Rb is another important implementation

issue. The Rb represents the overall contribution of a peer, so

it has to be updated every time a peer participates in a coali-

tion (as downloader or as participant or manager, typically

the former will decrease the Rb and the latter will increase

it.). Every time a manager set up a coalition for a

downloader, it has to query the downloader's Rb, in order to

determine the bandwidth that the coalition will provide.

 There are several choices to implement this. On the one

hand we can opt for a centralised storage server. This would

simplify the update and query processes, and would require

less communication effort than in a pure distributed scenario.

But this came at a price: that of a single point of failure. On

the other hand, the pure distributed scenario, requires a com-

plex algorithm for the calculation of the Rb value, such as the

ones used in distributed consensus systems [20] which re-

quires a lot of effort to maintain consistency. Finally, we can

opt to take advantage of the structured overlay network in a

similar way as for the approach of the implementation of

content discovery. As foreseen, in this paper we choose this

last option for the implementation of our mechanism.

 The central idea is that every peer has to delegate the

task of storing and updating its Rb value to another peer, like

in [21]. Using the unique identifier of the peer and a hash

function, a peer can find the peer responsible for storing the

value of any other peer in the network. This functionality is

offered by the overlay network

 The Rb management functionality will be encapsulated

into a service, this service will be responsible for storing and

updating a peer's Rb. When a peer joins the group, it must

publish an Rb service with its id (as was proposed for files in

content discovery). To update or query an Rb a peer just need

to invoke the middleware primitive getServices, specifying

the id of the peer it wants to update or query in a contract

template.

76Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 84 / 103

C. Final Implementation

As has been stated, in our approach each peer can work

as participant, manager or downloader. The functionality

required is summarised in Table III. The table shows the

messages sent between the different services. At least three

services need to be defined in order to fulfil the requirements

of this application:

 Main Service (C): This service enables the download

and the manager functionality.

 Sharing Service (S): This service encapsulates the

functionality of participants.

 Rb Management (R): This service is responsible for

enabling the update and the query of the Rb value of

each peer.

Each peer must at least publish one Main Service, one Rb

Management service and as many Sharing services as files it

shares.

The code of a SMEPP peer running our mechanism is il-

lustrated in the Figure 5. For the sake of simplicity we skip

base cases, the steps are the following: first we use the new-

Peer primitive to create the SMEPP peer (this connects the

peer to the SMEPP network and assigns it an Id). For secu-

rity, SMEPP requires the provision of valid Credentials in

order to successfully join the network. The PeerManager

object allows us to invoke peer's primitives. Next the peer

has to find the concrete group where our P2P content distri-

bution mechanism is running, to do this, it performs a search

of a group providing its description, using getGroups primi-

tive. Once the group is found, the peer joins it with join-

Group primitive. Next, the peer publishes all the, previously

explained, services. This is performed using the publish

primitive. Up to this point, we have a peer in the group shar-

ing files, to start a download the user will invoke the local

service specifying the file info (NewDownload message), this

will start the exchange of our mechanism's message between

the different peers in the group, performing the coalition and

incentives mechanism (as explained in Section III).

To summing up, SMEPP simplifies the implementation

of this kind of application, as the above code shows. Not

only abstracting the underlying complexity but also offering

an efficient look up mechanism for file discovery. Moreover,

it tackles the security issues internally, without additional

effort.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented the implementation of a

coalition and incentive based P2P content distribution sys-

tem.

Our mechanism is based on game theory and takes into

account the rational and self-interested behaviour of the

peers. The central idea is that incentives encourage participa-

tion; each time a participant contributes in a coalition they

receive a reward. The fairness of the rewards division within

a coalition is guaranteed by means of the game theory con-

cept of core. These rewards are accumulated in the Respon-

siveness bonus, which represents the overall contribution of

the peer to the system, and this is used to increase or de-

crease the quality of service of the downloads the peer per-

forms. This way our approach manages to promote the coop-

eration, and therefore, reduces the free riding phenomenon.

Moreover, simulations showed that download times are im-

proved.

When dealing with the development of real distributed

applications, is has been proven that to use a middle-

ware simplifies the implementation issues. In this paper, we

proposed to use SMEPP middleware to ease the distributed

implementation of the above mechanism. SMEPP is a Secure

Middleware for Embedded Peer to Peer Systems and another

of our publications.

// CREATE NEW SMEPP peer

 String configFile = args[0];

 Credentials myCredentials = new Creden-

tials("");

 PeerManager peer =

 PeerManager.newPeer(myCredentials, config-

File);

//Join P2P group (find and join)

 GroupDescription myP2PGroup =

 new GroupDescription("P2PGroup ",

 new SecurityInformation(1), "P2PGroup");

GroupId[] groupIds =

 peer.getGroups(myP2PGroup);

//(...)

 GroupId gid = groupIds[0];

 peer.joinGroup(gid);

//PUBLIHS SERVICES

//Main Service

 PeerServiceId psid = peer.publish(gid,

ContractLoader.loadFromFile("MainService.xml"),

 new SMEPPServiceGroun-

ding(MainService.class),

 null,

 null);

//Rb management service

 psid =

 peer.publish(gid,

 ContractLoader.loadFromFile("RbMgr.xml"),

 new SMEPPServiceGrounding(RbMgr.class),

 null,

 null);

//File Sharing services

foreach (file f in sharedFiles){

 String fContract =

 GenerateContract(f,"SharingS.xml");

 psid = peer.publish(gid,

 ContractLoader.loadFromFile(fContract),

 new SMEPPServiceGrounding(SharingS.class),

 null,

 null);

 //Invoke local service to start downloads

 }

}

Figure 5. SMEPP peer code

77Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 85 / 103

 For the real implementation of our content distribution

system different issues have been taken into account. Mainly,

two issues must be addressed: content discovery (taking

advantage of the middleware overlay), and the storage, query

and update of the Responsiveness bonus. Taking advantage

of the middleware, the complexity of the development of the

distributed application is abstracted, moreover the process of

content discovery is delegated in the middleware, what

greatly eases the implementation, as foreseen.

As future work, we plan to implement our coalition ap-

proach over Gnutella protocol [22]. The objective would be

to compare and analyse the performance of these two im-

plementations.

ACKNOWLEDGMENT

This work is partially supported by EU funded project
FP6 IST-5-033563 and Spanish projects TIN2008-01942 and
P07-TIC-03184.

REFERENCES

[1] Ipoque Internet Study 2008-2009.
http://www.ipoque.com/resources/internet-studies/internet-study-
2008_2009. 26.09.2011.

[2] Saroiu, S., Gummadi, P. K., and Gribble, S. D, ―Measurement study of
peer-to-peer file sharing system‖. In Kienzle, M. G. and Shenoy, P. J.,
Multimedia Computing and Networkin, pp. 156–170. SPIE, San Jose,
CA, USA. 2002.

[3] Handurukande, S. B., Kermarrec, A.-M., Le Fessant, F., Massouli´e,
L., and Patarin, S. , ―Peer sharing behaviour in the edonkey network,
and implications for the design of server-less file sharing systems‖.
SIGOPS Oper. Syst. Rev., vol. 40, pp. 359-371, 2006.

[4] Karakaya, M., Korpeoglu, I., and Ulusoy, O. , ―Free riding in peer-to-
peer networks‖. Internet Computing, IEEE, vol. 13, pp. 92–98, 2009.

[5] Belmonte M.V., Díaz M., and Reyna A., ―A Coalition based incentive
mechanism for P2P content distribution systems‖ Proceedings of the
3rd. international conference on agents and artificial intelligence. pp.
15-24. ICAART 2011. Rome, Italy, January - 2011.

[6] Díaz M., Garrido D., Reyna A., and Troya J.M.,―SMEPP: A Secure
Middleware for P2P Systems‖. Horizons in Computer Science.
Volumen III. Nova Publisher 2010.

[7] Díaz M., Garrido D., and Reyna A. ―SMEPP and the internet of
things‖. In Workshop on Future Internet of Things and Services.
CD.ROM, 2009.

[8] Caro, R.J., Garrido, D., and Plaza Tron, P. , ―SMEPP: A Secure
Middleware For Embedded P2P‖, 2009. ICT-MobileSummit
Conference Proceedings. IIMC International Information Management
Corportaion, 2009.

[9] Stoica I., Morris, R., Karger, D.R., Kaashoek, M.F., and Balakrishnan,
H., ―Chord: A scalable peer-to-peer lookup service for internet
applications‖. In SIGCOMM, pp. 149–160, 2001.

[10] The JXTA home page. www.jxta.org. 26.09.2011

[11] Deliverable 6.4 SMEPP Validation. www.smepp.net 26.09.2011

[12] Kahan, J P. and Rapoport, A., ―Theories of coalition formation‖, L.
Erlbaum Associates, Hillsdale, New Jersey London,1984.

[13] Bertsekas, D.P. and Gallager, R.G., and Humblet, P., ―Data networks‖
Prentice-Hall, New York, NY, USA, 1987.

[14] Karakaya, M., Korpeoglu, I., and Ulusoy, O. ―A connection
management protocol for promoting cooperation in Peer-to-Peer
networks‖. Computer Communications, 31, pp. 240-256. 2006.

[15] Kulbak, Y., Bickson, D., et al.(2005). The emule protocol specification
http://www.cs.huji.ac.il/labs/danss/p2p/resources/emule.pdf;
15.06.2011.

[16] Cohen, B. ―BitTorrent protocol specification‖.
http://www.bittorrent.org/beps/bep_0003.html 26.9.2011

[17] Garbacki, P., Iosup, A., Epema, D., and van Steen,M. ―2fast :
Collaborative downloads in p2p networks‖. In Peer-to-Peer
Computing, IEEE International Conference on, pp. 23–30. IEEE
Computer Society, Los Alamitos, CA, USA. 2006.

[18] Karakaya, M., Korpeoglu, I., and Ulusoy, O. ―Counteracting free
riding in Peer-to-Peer networks‖. Computer Networks, 52, pp. 675–
694. 2008.

[19] Mekouar, L., Iraqi, Y., and Boutaba, R. ―Handling Free Riders in Peer-
to-Peer Systems‖. Agents and peer-to-peer computing: 4th
international workshop, AP2PC 2005, Utrecht, The Netherlands, July,
pp. 58–69. Springer-Verlag, New York, NY, USA. 2006.

[20] Zhou, R., Hwang, K., and Cai, M. ―GossipTrust for Fast Reputation
Aggregation in Peer-to-Peer Networks‖ IEEE Transactions on
Knowledge and Data Engineering, CA, USA, pp.1282-1295. 2008.

[21] Kamvar, S.D., Schlosser, M.T., and Garcia-Molina, H.. ―The
Eigentrust algorithm for reputation management in P2P networks‖.
In Proceedings of the 12th international conference on World Wide
Web (WWW '03). ACM, New York, NY, USA, pp. 640-651. 2003.

[22] ―Gnutella Protocol Specification‖. Online. http://www. stanford.edu/
class/cs244b/gnutella_protocol_0.4.pdf.26.09.2011.

78Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 86 / 103

On the Performance of OpenDPI in Identifying P2P Truncated Flows

Jawad Khalife, Amjad Hajjar

Faculty of Engineering, IT department

Lebanese University

Beirut, Lebanon

jawad_khalife@hotmail.com, arhajjar@idm.net.lb

 Jesús Díaz-Verdejo

Dept. Signal Theory, Telematics and Commun.

University of Granada

Granada, Spain

jedv@ugr.es

Abstract—This paper aims to show the impact on classification

accuracy and the level of computational gain that could be

obtained in applying deep packet inspection on truncated peer

to peer traffic flows instead of complete ones. Using one of the

latest open source classifiers, experiments were conducted to

evaluate classification performance on full and truncated

network flows for different protocols, focusing on the detection

of peer to peer. Despite minor exceptions, all the results show

that with the latest deep packet inspection classifiers, which

may incorporate different helper technologies, inspecting the

first packets at the beginning of each flow, may still provide

concrete computational gain while an acceptable level of

classification accuracy is maintained. The present paper

discusses this tradeoff and provides some recommendations on

the number of packets to be inspected for the detection of peer

to peer flows and some other common application protocols. As

such, a new sampling approach is proposed, which

accommodates samples to the stateful classifier’s algorithm,

taking into consideration the characteristics of the protocols
being classified.

Keywords-IP traffic classification; p2p; peer to peer; deep

packet inspection; DPI optimization

I. INTRODUCTION

Traffic identification is a hot research topic, especially
when it comes to complex Internet applications, such as P2P
(peer to peer), using port obfuscation, encryption, and
tunneling [1]. As they inspect the full packet payloads to
match specific protocol patterns or signatures, DPI (Deep
Packet Inspection) based methods [2], are characterized by
the high level of classification accuracy they provide.
However, the associated high computational cost and some
user privacy issues arise some concerns regarding their use
in real environments, especially in high-speed networks.

Optimizing DPI based methods, is thus becoming an
important research trend attempting to enhance the classifier
performance in terms of low computation, while maintaining
an acceptable level of accuracy.

Reducing the input size required by the classifier through
sampling can be considered one of DPI optimization means,
which is not only supposed to reduce computational
requirements, but also to ensure an acceptable level of user
privacy. While different sampling policies exist, traffic
sampling could be applied on two different levels: on the
packet payload level, through partial packet payload
inspection, and on the flow level, through inspecting only a
few packets from within the complete traffic flow.

In [3], we studied how far DPI could be optimized
through packet level sampling. Results showed that, unless
just few bytes (not more than 128 Bytes) were truncated
from the end of the packet payload, a sharp decrease in the
accuracy will be apparent.

As part of our work in progress, this paper attempts to
optimize DPI classifiers through flow sampling to which we
will refer as flow truncation. It is important to note that we
consider truncation as a particular case of the sampling
technique, by inspecting a certain number of elements at the
beginning of a stream (first bytes in a packet payload, first
packets in a flow). We focus on P2P applications as we
consider that identifying p2p traffic is one of the most
complex classification tasks, especially when compared with
other common application protocols. In fact, and as shown in
[1], most works were emphasizing on their ability to detect
p2p traffic as a key indicator of the quality of the classifier,
and most importantly, were providing a better understanding
of P2P traffic characteristics as part of the detection
mechanism.

While flow sampling is supposed to decrease the
classification time, it is still a lossy process, which would
affect accuracy. What impact would the flow truncation
process have on DPI accuracy and at which computational
gain? This is the question we are trying to answer in this
work through our conducted experiments and the obtained
results.

Our goal(s) through this work can be defined as follows:

1) To determine a minimum number of packets to be

inspected within a p2p flow to be classified with an

acceptable level of accuracy. To generalize for other

protocols.

2) To discover to what extent per-flow sampling would

optimize DPI classifiers in the sense of decreasing

computational costs while maintaining an acceptable level

of classification accuracy.
The remaining of this paper is organized as follows:

Section II provides an overview of DPI optimization means
and parameters for their evaluation, focusing on flow
sampling techniques and putting our work in perspective
with previous works in the literature. Section III describes
the dataset we used for the experiments, and the OpenDpi [4]
tool in the way it analyzes and labels packets and flows.
Section IV provides a description of the way we used to
truncate the flows. Section V shows our conducted
experiments’ results in terms of accuracy and computational
cost and highlights on some important results and special

79Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 87 / 103

cases. Finally, Section VI presents the conclusion and future
work.

II. STATE OF ART IN DPI OPTIMIZATION

DPI [2] based identification methods have no restrictions
on inspecting the full contents of the payloads. As such, there
are some concerns related to both user privacy and
computational performance.

In this paper, we will focus on software based
optimizations which concept is to reduce the size of DPI
input through sampling techniques [5] that are considered as
a general mean of input reduction. As many works [6] [7] [8]
show, sampling techniques can be integrated within the
traffic classification process.

Amongst the ways of categorizing sampling techniques
we have the per-packet payload sampling [3] [9] [10], i.e.,
sampling bytes from within the packet payload, and the per-
flow packet sampling [7] [8] [11] [12], i.e., sampling a subset
of packets from within the whole traffic flow or a
combination of both [13].

Per-flow packet sampling for DPI classification is shown
in many papers with different sampling policies: Bloom
filters in [8], Deep Packet Inspection using Parallel Bloom
Filters [14] [15], k-ary sketch [16], Related sampling [12],
and Mask-match sampling in [17]. Chen et al. [7] suggested
six sampling strategies and showed how they affect DPI
identification systems.

In [3], we tested per-packet payload sampling. In this
paper, we consider per-flow packet sampling. However, we
did not follow any specific sampling policy. Instead, given
an accuracy level to be maintained, we simply recommend to
only inspect a predetermined number of packets Nmin at the
beginning of a traffic flow (p2p or other protocols). Thus, the
sampling rate will be Nmin packets per flow.

Although an in-depth comparison of different sampling
methods is beyond the scope of this paper, we will briefly
compare the most relevant ones to our work. Our
optimization concept is detailed in Subsection II.C.

Some of the sampling modes discussed in [7] can timely
investigate the traffic load conditions of the links. However,
their results were difficult to generalize since they were
affected by many factors as they concluded.

Sampled NetFlow was mentioned in [11], where Carela-
Español et al. find that packet sampling has a severe impact
on the performance of the classification method. They were
able to achieve an overall flow classification accuracy of
85% for a sampling rate of 1/100.

RelSamp (Related Sampling) [12] proposes that flows,
parts of the same application session, are given higher
probability. However, in [12] RelSamp was compared to
Sampled NetFlow, which is a sampling technique for
network monitoring rather than traffic classification.

Mask-match sampling method discussed in [17],
provided 94% accuracy for UDP flows for a sampling rate of
0.1. However, this method focuses mainly on long flows, and
the validity of the samples is related to the randomness of the
ID field of the IP packets headers.

Similar to our work, Canini et al. [8] used Bloom filter to
sample the first 10 packets of each flow while a negligible

loss in the accuracy was encountered (0.0047%). However,
they used L7 filter and they encountered some false positive
figures due to Bloom Filters. Fernandes et al. [13] also
proposed a similar work, where a combination of per-flow
and per-packet sampling was used to capture only few
packets (7 packets) per flow and a fraction of its payload
without a significant impact on accuracy. However, the
analysis in [13] did not provide protocol oriented results
(such as p2p) and experiments were based on L7-filter tool.

III. OPTIMIZATION THROUGH FLOW TRUNCATION

Our goal in optimizing DPI is to maintain classification
accuracy level as high as possible while trying to decrease
the required computational cost.

In this subsection, we will focus on both the theoretical
concept of optimizing the processing time through flow
truncation, and on the quasi-theoretical estimation for this
parameter as well.

Theoretically, the model of the DPI classifier proposed in
[18] includes 5 processing blocks. Cascarano et al. studied
the cost of each block and concluded that the most important
is the cost of the pattern-matching block, which according to
the study, has a linear dependence on the number of input
characters.

For simplicity reasons, and according to the target of the
experiments, we will model individual packet classification
as a process composed of just two modules or steps:

 A packet-handling module, mainly devoted to preprocess
the packet and identify the flow the packet belongs to
(reading the packet, getting flow identifiers, searching for
the flow in active flow list, etc.). This processing is
mainly related to packet header.

 A packet-inspection module (referred to as “pattern
matching block” in [18]), devoted to the classification of
the packet. This module handles both the header and the
payload of the packet.

Thus, the time cost related to individual packet
classification tpc, can be approximated as:

 tpc=th + ti

where th is the packet handling time, and ti is the packet
inspection time.

In our concept of optimization through flow truncation,
we emphasize on ti as we consider it to be the only sensitive
term to flow truncation. Through flow truncation, we intend
only to classify packets which ordinal number inside the
flow is lower than a predefined threshold (Nmin) within each
flow. However, this does not mean that packets over Nmin are
not be parsed at all. On the contrary, these packets still have
to be handled by the classifier simply for determining to
which flow they belong. The difference is that for these
packets the inspection part is to be omitted. So, it is
important to note that, for these packets, th cannot be avoided
by the classifier, as it is evidently impossible to know if a
given packet belongs to an existing flow without parsing its
header at least. The decision to inspect the packet or not

80Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 88 / 103

depends on its ordinal number being lower or higher than
Nmin.

As a result, with flow truncation, we are supposed to
eliminate packet inspection time ti for packets which position
in the flow is over Nmin. This is supposed to decrease the
global classification time for the whole traffic according to
the following simple approximations:

 With no flow truncation, the time for analyzing a flow
tfc can be approximated as:

 tfc =p∙E[th + ti

where Np is the number of packets in the flow and E[th
+ ti]=E[tpc] is the average packet classification time.
E[tpc] depends on the flow size and the length of the
payloads, and on the protocol to which the flow
belongs.

 With flow truncation, assuming Np > Nmin, the time for
analyzing a flow, t’fc , becomes:

 t’fcp∙E[th]+min∙E[ti

Our proposal, based on Nmin, and to the best of our
knowledge, is different from the other sampling methods in
the following points:

 Most sampling policies were general with no specific
attention on the detection of a particular protocol (or
class of protocols), while our aim is to find the number
of packets Nmin necessary for the detection of each
particular protocol. This approach fits with our long-
term objective, which is the detection of P2P flows.

 Most sampling policies provide sampling rates, which
implies that the number of sampled packets will
increase as long as the flow is under course while in our
proposal, it is fixed to Nmin per flow, which is an
efficient method that yields higher computational gains
for large flows.

 Most sampling policies neglect the effect of non
sampled packets, while in our proposal we have to
parse all packets.

 In some papers, experiments were restricted to DPI as
implemented by L7-filter tool while in the latest
classifiers, such as OpenDPI, the DPI technology is
being enhanced through integration with other helper
methods such as behavioral and statistical analysis.

To conclude with common features for all sampling
methods, Guo et al. [6] showed that as the packet sampling
probability decreases, the false negative rates become higher.
Therefore, it can be stated that: the maximum value of
sampling rate is limited by the affordable computational cost
and the minimum value of sampling rate is limited by the
acceptable accuracy value.

As our sampling rate is defined as: “Nmin packets per
flow”, what is the recommended value for Nmin to identify
p2p and other protocols? The following sections will help in
answering this question through experimental results.

IV. OPENDPI AND TESTBED

For the experiments, we used OpenDPI, which is derived
from the commercial PACE product [19]. The core of
OpenDPI is a software library designed to classify internet
traffic according to application protocols. In its current
version, up to 101 different protocols can be identified,
including some P2P protocols. In addition to pattern
matching, OpenDPI incorporates different techniques such as
behavioral (by searching for known behavioral patterns of an
application in the monitored traffic) and statistical analysis
(by calculating some statistical indicators that can be used to
identify transmission types, as mean, median and variation of
values used in behavioral analysis and the entropy of a flow).
Our experimental setup is described next.

First, we use a customized tool based on the OpenDPI
library, which is able to follow and differentiate the packets
in each flow and to provide both flow and packet based
outputs. Second, we used a dataset of real traffic captured at
the access link of a medium size institution over 3 days.
Complete flows in both directions were captured at a border
router. We have chosen a subset of randomly selected files
(totaling 3 GB) from our original dataset on which we run
classification experiments. Then, by using the customized
OpenDPI tool over the database subset and using complete
flows with full packet payloads, we have built the "ground
truth", i.e., the set of correctly labeled flows and packets
(without truncation) that will be used as the reference for the
analysis of flow truncation as described in the following
section.

V. FLOW TRUNCATION RESULTS AND ANALYSIS

To be able to generate accuracy results without
truncating flows, we customized OpenDPI to output the
packet ordinal number inside the flow the packet belongs to
at which detection is achieved. As described in OpenDPI
documentation, the flow is classified according to the first
recognized packet. In what follows, we will refer to this
number as packet detection number or flow detection
number. Then, to truncate flows, we have customized the
code to be able to classify, within each flow, only packets
with numbers less than Nmin , and as mentioned in Section II,
to solely handle remaining packets just for determining to
which flow they belong. Note that with this customization,
we could obtain computational measurements and validate
accuracy results obtained previously through the flow
detection number.

A. Accuracy Results

As shown in [1], a common framework is not yet defined
for traffic classification methods. Therefore, we referred to
existing works in the literature most of which commonly
considered values above 90% as acceptable levels of
classification accuracy. The distribution (histogram) of the
flow detection number for both P2P and non-P2P protocols
is depicted in Figure 1 for the full dataset, which contains
40340 P2P flows out of 4859208. As shown, there is a big
number of flows for which the detection is achieved with just
a few packets. Proportionally, the number of flows with high

81Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 89 / 103

(i.e., greater than 50) flow detection number is almost
negligible.

In fact, if we represent the percentage of flows that have
been classified vs. the flow detection number (Figure 2), we
can see that an important fraction of the flows can be
classified with Nmin below 20. Moreover, all protocols are
mainly being detected within the first ten packets with a flow
accuracy value of 99.90%.

As depicted also in Figure 2, for Nmin=4, flow accuracy
degrades to 84.35% while it jumps to 99.15%, for Nmin=10. It
is noticed that for Nmin values greater than 10, only a very
slight increase in accuracy is obtained. For example, for
Nmin=20, accuracy becomes 99.54%, with an increase of
0.39% compared to Nmin=10.

Regarding the behavior on a per protocol basis, Figure 3
shows the average flow detection number for most common
protocols in the dataset. Although some protocols like
iMESH and Bitorrent show higher average values, most
protocols averages were below 10 packets. If we further
analyze the results on a per protocol basis, similar results
could also be obtained. As an example, Figure 4 shows the
histogram of the flow detection number for two relevant
protocols: Bittorent (Figure 4.a) and http (Figure 4.b). Thus,

an accuracy value of 99.91% for http and 99.18% for
Bittorrent can be achieved if the 10 packets rule is still being
respected for both protocols.

It is worthy to note that according to [19], OpenDPI in
bandwidth management systems only scans for patterns in
the first 1-3 packets for unencrypted and 3-20 packets for
encrypted communication protocols: A fact which does not
apply to OpenDPI in traffic classification systems, as shown
in our experiments.

As it was clearly noticed from the previous results, in
order to reach 99.15% of p2p flow accuracy, the classifier
should inspect at least 10 packets. The same applies for
remaining protocol. As a result, one optimal value to be
recommended for Nmin is 10. However, this is not mandatory
as it is related to the required level of accuracy.

B. Computational Cost Results

Different set of evaluation tools and parameters were
proposed for comparing classifiers, such as, Netramark [20]
TIE [21] and perfprofiling for Snort [6]. However, according
to [22], a commonly agreed upon workload for the
evaluation of deep packet inspection architectures is still
missing. In our case, we needed higher level evaluation
parameters regardless of the pattern matching technique,
therefore, we have chosen simple processing time as in [7]
[18] using Linux monitoring tools [23]. For this purpose, we
evoked the insertion into the classifier code at the proper
places, of time related function calls providing granular
results at the microseconds’ level. We compiled the classifier
code with GCC v4.4.3 with -O3 optimization level, on the
testing server having the hardware specifications of 8 GB of
memory, 2 Intel(R) Xeon(R) 2.66GHz processors with 4
cores each.

Tests were performed over one of the captured files for
Nmin=20. The most relevant features are shown in Table I,
while Table II shows the results.

Flow and packet classification times were calculated by
dividing the classification time for all the flows respectively
by the number of flows for tfc and by the number of packets
for tpc. Consequently, the gain in processing time when using
truncated flows is 9.63%. .

Figure 1. Histogram showing the number of detected p2p and non p2p

flows in function of the flow detection number. Data for detection packet
number over 100 is negligible and is not shown.

Figure 2. Global flow accuracy as a function of the packet detection

number.

Figure 3. Average detection packet number for different protocols in

the dataset.

82Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 90 / 103

As shown through the previous results, a computational
time gain of 9 % can be obtained by classifying the first only
20 packets while maintaining an accuracy level of more than
99 %.

In Table I, the percentage of flows with Np less than Nmin
is important for the effectiveness of the truncation. In fact,
the smaller this value is, the bigger the time gain would be
and the flow truncation will become more effective. In
showing the importance of this parameter, we have chosen
Nmin=20 instead of Nmin=10 as the accuracy is slightly
different between these values, as depicted in Figure2. Then,
we referred to comparing the quasi-theoretical and
experimental measured values of the time gain. We
measured the average for ti=5.35µs, Np=42, with Nmin=20,
then, when multiplied by the total number of flows, (3) gives
the total processing time for all the flows. The obtained
result is a quasi-theoretical value of 11.8 % for the time gain
instead of 9.63%, which is the measured one. Effectively,
this difference is due to the assumption we took that all of
the flows should have theoretically an average number of
packets (Np=42) more than Nmin=20, which is not exactly the
case for the capture file we tested, having 30% flows with Np
less than Nmin as shown in Table I.

C. Comparison with other sampling schemes

In comparing our approach (for Nmin=20), with EIM
(Equidistant Invariable Mode) [7] having a sampling rate of
7/13, 164084 packet samples are to be inspected, which

means 36% increase in the classification time due inspecting
additional 140,634 packets. Figure 1, shows that, for Nmin=7,
97.96% of accuracy could be obtained, which applies to EIM
scheme only if the first 7 packets were sampled, otherwise,
EIM accuracy will drop to an unacceptable value, due to the
stateful inspection of OpenDPI, as explained next.

D. Classifying the DPI Classifier

Although a concrete gain in classification time was
obtained through flow truncation, still the 9.63% value did
not meet with our expectations. In fact, if we assume that
OpenDPI is inspecting all packets over Nmin the gain has to
be theoretically higher. However, this fact helped in reverse
engineering an important aspect of the classifier itself, which
in turn could interpret the moderate gain we obtained. In fact,
OpenDPI seems to be incorporating DFI (Deep flow
inspection) beside the DPI classification mechanism.
Specifically, OpenDPI shows a stateful or PBFS like (Packet
Based per Flow State) classification behavior. As per the
taxonomy presented in [24], PBFS based DPI classifiers
focus on the first packets of each session. Thus, they have a
built-in feature of requiring less input than other classifiers.

In this context, the sampling scheme we proposed seems
to be more convenient to PBFS classifiers as it focuses on
packets where the PBFS classification decision is being
made, whereas in most sampling methods, packets have to be
continuously inspected as long as the flow is under course. In
this regard, it may be required that all sampling works joint
with classification should be reconsidered, especially when
used with PBFS based classifiers.

E. Special cases

During experiments, some exceptional cases were
noticed. Though these cases had no significant impact on the
presented results, it is worthy to provide a preliminary
interpretation while detailed explanations should be left for
future work.

1) Deviators Flows
As shown in Figure 2, we calculated the average

detection packet number for each protocol. However, we
found some flows which detection number is much deviated

Figure 4. Histogram showing the number of detected flows in function of packet detection number for: (a) Bittorrent protocol (b) HTTP protocol.

TABLE I. CHARACTERISTICS OF THE CAPTURE FILE USED FOR

TEST

Total # flows
P2P

flows

Flows

Np< Nmin

Number of packets

Under Nmin Over Nmin

7337 188 30% 104678 200040

TABLE II. THE OBTAINED COMPUTATIONAL RESULTS

File

Nmin=20

Classification time (in µs)

All flows Flow (tfc) Packet (tpc)

Full flows 7300301 995 24

Truncated flows 6596881 899 21

83Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 91 / 103

from the calculated average, we call these flows deviators.
We validated the fact that the presence of most deviators is
due to flows that were under course during the start of the
capture. In addition, this highlights the importance of the
first flow packets to OpenDPI, which when lost, will cause
flows to be detected at packet numbers deviated from the
average.

2) Packets Changing Protocol
Some minor flows were noticed to be changing their

protocol even after the first time detection. This may lead to
an error in classification, and can be considered as one of

the weaknesses of our approach to be dealt with in future

enhancements.

VI. CONCLUSION AND FUTURE WORK

This paper aims to optimize DPI-based classifier by
decreasing the required computational cost while
maintaining acceptable levels of flow classification accuracy
for p2p and other application protocols. As opposed to many
sampling works, our approach is to reduce input requirement
through inspecting only a fixed number of packets from
within the flow beginning. Our conducted experiments show
that when inspecting the first 10 packets for all protocols,
including p2p, more than 9% of classification time can be
saved while a flow accuracy level over 99% can be still
maintained. However, future enhancements may have to deal
with some weaknesses and special cases detected within our
approach such as, deviators flows, packets changing protocol
within the same flow, studying the effect of modifying the
first packets, distinguishing between packets in the uplink
and downlink directions and their contribution in the
classification process. Finally, it is important to note that
when used jointly with stateful and PBFS based classifiers,
sampling methods should accommodate to the importance of
the first packets in classifying the whole flow. This fact
highlights the importance of our sampling approach which
accommodates samples to the stateful classifier’s algorithm
by focusing on the first packets, and takes into consideration
as well, the characteristics of application protocols being
classified by sampling a convenient number of 10 packets
sufficient for identifying most application protocols
including p2p. In this context, accommodating enhancement
means to the classifier’s algorithm from one hand, and to the
classified traffic characteristics, on the other, would be a
good practice for any related future work.

ACKNOWLEDGMENT

This work has been partially supported by Spanish
MICINN under project TEC2008-06663-C03-02.

REFERENCES

[1] T. Nguyen and G. Armitage, " A Survey of Techniques for
Internet Traffic Classification using Machine Learning", IEEE
Communications Surveys & Tutorials, v. 10, pp. 56-76, 2007.

[2] Allot Communications "Digging Deeper Into Deep Packet
Inspection (DPI)." White paper. Available at
https://www.dpacket.org 14.09.2011

[3] J. Khalife, A. Hajjar, and J. Díaz-Verdejo, "Performance of
Opendpi To Identify Truncated Network Traffic", In Proc.
DCNET 2011, pp. 51-56, Seville.

[4] http://www.opendpi.org 14.09.2011

[5] R. Jurga and M. Hulbój, "Packet Sampling for Network
Monitoring”, Technical Report, CERN | HP Procurve openlab
project. Available at http://www.zdnetasia.com 14.09.2011

[6] Z. Guo and Z. Qiu, "Identification Peer-to-Peer Traffic for
High Speed Networks Using Packet Sampling and
Application Signatures", In Proc. ICSP2008, pp. 2013-2019.

[7] H. Chen, F. You, X. Zhou, and C. Wang, "The study of DPI
identification technology based on sampling", ICIECS 2009,
2009, pp. 1-4.

[8] M. Canini, D. Fay, D. Miller, A. Moore, and R. Bolla, "Per
Flow Packet Sampling for High-Speed NetworkMonitoring”,
In Proc. COMSNETS'09, 2009, pp. 1-10.

[9] D. Ficara, G. Antichi, A. Di Pietro, S. Giordano, G. Procissi,
and F. Vitucci "Sampling Techniques to Accelerate Pattern
Matching in Network Intrusion Detection Systems”, In Proc.
ICC2010, 2010, pp. 1-5.

[10] G. Aceto, A. Dainotti, W. de Donato, and A. Pescapé,
"PortLoad: taking the best of two worlds in traffic
classification”, In Proc. of INFOCOM 2010,2010, pp. 1-5.

[11] V. Carela-Español, P. Barlet-Ros, A. Cabellos-Aparicio, and
J. Solé-Pareta, "Analysis of the impact of sampling on
NetFlow traffic classification”, Computer Networks, Volume
55, Issue 5, 1 April 2011, pp. 1083-1099 .

[12] M. Lee, M. Hajjat, R. Kompella, and S. Rao, "RelSamp:
Preserving Application Structure in Sampled Flow
Measurements”, In Proc. INFOCOM 2011, 2011, pp. 2354-
2362.

[13] S. Fernandes, R. Antonello, T. Lacerda, A. Santos, D. Sadok,
and T. Westholm, "Slimming Down Deep Packet Inspection
Systems”, In Proc. INFOCOM Workshops 2009, 2009, pp. 1-
6.

[14] S. Dharmapurikar, P. Krishnamurthy, T.Sproull, and J.
Lockwood, "Deep Packet Inspection using Parallel Bloom
Filters", In Proc. High Performance Interconnects 2003, 2003,
pp. 44-51.

[15] Y. Li "Memory Efficient Parallel Bloom Filters for String
Matching", In Proc. NSWCTC 2009, 2009, pp.485-488.

[16] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-
based change detection: methods, evaluation, and
applications”, In Proc. of ACM SIGCOMM Internet
Measurement Conference IMC’03, October 2003.

[17] R. Cong, J. Yang and G. Cheng, "Research of Sampling
Method Applied To Traffic Classification", In Proc. ICCT
2010, 2010, pp. 112-115.

[18] N. Cascarano, A. Este, F. Gringoli, F. Risso, and L. Salgarelli,
"An Experimental Evaluation of the Computational Cost of a
DPI Traffic Classifier", Proc. GLOBECOM’09, 2009, pp. 1-8.

[19] http://www.ipoque.com 14.09.2011

[20] S. Lee, H. Kim, D. Barman, S. Lee, C. Kim, and T. Kwon,
"NeTraMark: A Network Traffic Classification Benchmark",
ACM SIGCOMM Computer Communication Review,
Volume 41 Issue 1, January 2011.

[21] http://www.grid.unina.it 14.09.2011

[22] M. Becchi, M. Franklin, and P. Crowley, "A Workload for
Evaluating Deep Packet Inspection Architectures", In Proc.
IISWC 2008, pp.79-89.

[23] http://www.tldp.org 14.09.2011

[24] F. Risso, M. Baldi, O. Morandi, A. Baldini, and P. Monclus
"Lightweight, Payload-Based Traffic Classification: An
Experimental Evaluation", In Proc. ICC 2008, 2008, pp.
5869-5875.

84Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 92 / 103

Applying Certificate-Based Routing to a Kademlia-
Based Distributed Hash Table

Michael Kohnen, Jan Gerbecks, Erwin P. Rathgeb
University of Duisburg-Essen

Computer Networking Technology Group
Essen, Germany

{Michael.Kohnen, Erwin.Rathgeb}@iem.uni-due.de, Jan.Gerbecks@stud.uni-due.de

Abstract–Most Distributed Hash Table (DHT) algorithms have
proven vulnerable against a multitude of attacks.
Countermeasures using reputation systems to generate trust
values have been developed and analyzed. These analyses mostly
refer to unstructured peer-to-peer (P2P) networks. In this paper,
we present our concept for applying trust values to the bootstrap,
lookup, PUT and GET processes of structured P2P networks and
evaluate it using the Kademlia DHT algorithm in a binary trust
environment created by certificates.

Keywords–DHT; Security; Kademlia; Trust; Reputation;
Certificates

I. INTRODUCTION
Research has proven that Distributed Hash Table (DHT)

algorithms are vulnerable to different kinds of attacks [1].
These attacks include the Sybil Attack [2], eclipse attacks and
attacks on the routing and storage mechanisms. As one possible
solution against those threats, trust-based systems have been
invented to improve security. A lot of the existing research
about trust and reputation management in a peer-to-peer (P2P)
environment focuses on unstructured networks [3] [4].
However, considering real-world implementations, the
structured networks prevail: Popular P2P applications such as
BitTorrent [5] and eMule [6], used by millions of users,
implement the Kademlia algorithm.

We, therefore, aim to analyze the feasibility of trust and
reputation mechanisms in structured P2P networks. To test the
general functioning, we use a simplifying assumption of binary
trust created by certificates. In the following section, we
present the related work. In Section III, we explain our concept,
followed by Section IV with its evaluation. Section V
concludes the paper.

II. RELATED WORK
Marti and Garcia-Molino [7] categorize P2P reputation

systems and divides them into the three functionalities
“information gathering”, “scoring and rating” and “response”,
each having several sub functions. Furthermore, the authors
define factors influencing reputation systems and discusses
them.

Gomez Marmol and Martinez Perez [8] offer an overview
of the current state of P2P reputation systems. EigenTrust [3] is
one of the popular ones. It uses a rating system similar to
eBay’s: A node can receive either a positive or a negative
rating after a transaction. The EigenTrust algorithm then

defines how the ratings from different nodes can be combined
and normalized.

EigenTrust and the other algorithms presented in [8] either
have been tested using unstructured P2P networks or mention
structured networks only for storing the trust information. They
do not analyze the specific impact of using trust information
for routing and storing in structured networks.

Therefore, we aim to analyze the consequences of using
trust information in structured P2P networks during the joining,
routing, storing and retrieving processes. According to [9],
these processes will be referred to as bootstrap, lookup, PUT
and GET process, respectively. In this paper, we present a basic
concept of using trust values to enhance the security of a DHT
algorithm.

In the following, we discuss the trust values’ consequences
for bootstrapping and performing lookup, PUT and GET
actions. Afterwards, we evaluate our concept using the
Kademlia DHT algorithm [10].

III. OUR CONCEPT
We seek an approach that enables a node to determine the

authenticity of a result on its own. A node shall be able to
decide for itself whether it regards an action as successful. It
shall also be able to abort or ignore an action if it does not trust
the result.

To achieve this, trust values are used: We have each node
assign trust values to each other node it encounters. Then, we
define a minimum trust value another node needs to have so
that a node uses it for its actions in the network [7]. As a
consequence, a node is able to determine whether the result of
an action (bootstrap, lookup, GET, PUT) is valid. If it does not
find enough trustworthy nodes, it cancels its action in order to
protect itself from invalid results.

A. Functioning
Once a node’s trust value is known, it is used to determine

whether the node should be used. We propose to use a single
minimum trust value threshold defining whether another node
is used for outgoing requests of all kinds, as a node that does
not answer GET requests correctly, for example, should not be
used for other purposes.

Trust values are not assigned globally, but individually by
each node. Possible reasons for this are, e.g., a result node
possessing a certificate issued by another CA or the requesting

85Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 93 / 103

node using a lower minimum trust value threshold than the
responding node. This individual assignment of trust values
leads to their local storage on each node and therefore an
extension of the routing table. From this, it follows that…

• … incoming requests shall always be answered in a
correct way, regardless of the trust status of the
requesting node, and …

• … that the routing table of a node shall not only
contain nodes it trusts, but also untrusted nodes.

If nodes would only answer request coming from trusted
nodes, a network partitioning could result. The same applies to
the routing table: If a node can only answer with next hops that
it trusts, the requesting node may not be informed about
existing nodes itself may trust, but the responding node does
not.

When a node joins the network, it needs to perform a
bootstrap procedure to obtain information about other nodes to
fill its routing table. A node must send its bootstrap requests
only to trusted nodes. As mentioned before, every node has its
own view of trust, so the responses may contain all kinds of
nodes.

When a node performs a node lookup for a GET or PUT
action, it must only query nodes it trusts. During a lookup,
newly encountered nodes must be evaluated and the node must
determine if they are trustworthy before they are used. At the
end of the lookup, the candidate nodes for the GET or PUT
action must also be evaluated (if not done so already) so that
the action is performed using trusted nodes only.

B. Consequences
Our concept enables a node to determine the

trustworthiness of e.g. the retrieved results of a lookup. Every
node can individually choose a minimum trust value threshold
and decide on its own whether it regards an action or a result as
valid. The nodes do not need to refer to general assumptions
such as the amount of malicious nodes in the network to
evaluate the correctness of actions and results.

As a drawback, our concept decreases the number of nodes
that can be used for a node’s actions. A certain minimum
amount of trusted nodes is therefore essential. Furthermore, the
availability of content items cannot be as easily guaranteed as
in normal DHT networks: The assignment of content items to
nodes is not unique any longer, but it differs due to the
different trust values nodes assign to other nodes. It is therefore
possible that content inside the network cannot be found by a
node despite its existence. Possible reasons are the following:

• The content is only stored on nodes the requesting
node does not trust.

• There are not enough trusted nodes on the route to the
(trusted) nodes storing the content so that the lookup
terminates prematurely.

IV. EVALUATION
In order to analyze to which extent these effects influence

the ability of the nodes to use the network, we evaluate our

concept in a Kademlia-based DHT using a simulated network
of 1,000 nodes.

A. Assumptions
This paper is intended as a proof of concept to show that

trust values can improve secure bootstrapping, lookup, PUT
and GET in structured P2P networks. For this proof of concept,
we assume the following:

• Nodes are either fully trusted or untrusted: We assume
the existence of a certification authority. Nodes that
possess a certificate are fully trusted, other nodes are
untrusted.

• Nodes possessing a certificate are never malicious: We
assume that the algorithm generating the trust values
(here: certification) determines the trustworthiness
correctly.

The first assumption requires a central entity which does
not follow the peer-to-peer principle. The second assumption
does not necessarily hold for real networks, as also nodes that
are regarded as trustworthy may act maliciously. However, if
the DHT would not work under these “perfect” conditions, it
would not work in reality either.

The simulation scenario differentiates between nodes with
and without a certificate: Nodes without a certificate
(“No Cert” nodes) use all other nodes, whereas nodes with a
certificate (“Cert” nodes) use only other nodes with a
certificate for their actions. In this “binary trust” environment,
we are able to demonstrate the worst case for the application of
our concept. For small fractions of trusted nodes, the absolute
number of them is below 100, which is rather low. However,
we will demonstrate that even this small number of nodes is
able to operate.

B. Choice of Kademlia
We choose the Kademlia algorithm because its routing

process does not set hard restrictions on the next hop choice:
Kademlia uses the XOR operation to calculate the distance
between two IDs. During the routing process, a node uses a list
of potential next hop nodes that is ordered by XOR distance
with the closest nodes at the top of the list. When the first k
nodes on the list do no longer change and have been queried
for closer nodes, the lookup terminates and the action is
performed on those nodes. This action can either be a PUT
action or a GET action. During a PUT action, a node stores a
content item on the configured amount of nodes. Using a GET
action, a node tries to retrieve a content item.

C. Simulation Environment
Our simulation scenario consists of one large network in

which only a subset of the nodes uses trust-based routing. This
way, we can compare the performance of nodes applying and
not applying our concept. In our simulation, malicious nodes
perform a storage attack called “invalid data attack”, which
means they deliver randomly altered data if asked for a content
item. We choose this attack type, because the Kademlia
algorithm is rather robust against routing attacks: It has few
restrictions regarding the choice of the next hop, so if a node
propagates faulty routing information, the information might
well be overridden by the responses of other nodes, only

86Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 94 / 103

causing higher delays. So storage attacks generally pose a
greater threat and therefore show the influence of our concept
more clearly.

For simulation, we use the OverSim [11] framework, which
bases on OMNeT++ [12]. We vary the fraction of nodes
possessing a certificate from 0% to 100% in steps of 10% and
conduct additional simulations for fractions of 2% to 8% in
steps of 2% for a detailed analysis. For each parameter
combination, we perform 30 simulation runs using different
seeds for the random number generator.

D. Results
All figures below show the arithmetic mean and the

standard deviation of the results.

1) Bootstrap
At the beginning of each simulation run, the nodes perform

bootstrap procedures. One node per second is inserted into the
network and tries to bootstrap using a randomly chosen
existing node. The first node is always a Cert node. As No Cert
nodes use every kind of node to bootstrap, their first attempt to
bootstrap will always succeed. Cert nodes use only other Cert
nodes to bootstrap; their attempts to bootstrap may therefore
fail if the randomly selected target node of the bootstrap

request is not a Cert node. If the attempt fails, they pause for
ten seconds and try to bootstrap again until they succeed.

Figure 1 shows that for very low fractions of Cert nodes,
the mean number of bootstrap attempts of the Cert nodes is
rather high. However, this value quickly decreases when the
fraction of Cert nodes increases.

2) PUT and GET requests and malicious nodes
In order to demonstrate our concept’s resilience against

attacks, we introduce malicious nodes into the simulation
network: We vary the fraction of No Cert nodes which are
malicious from 0% to 100% in steps of 10%. As we assume
that the trust values are correct, nodes with certificate cannot be
malicious.

The measurement phase begins when all nodes have
attempted to bootstrap at least once (in our case after 1,000
seconds). During the simulation, the nodes publish content with
random identifiers and try to retrieve it. The Kademlia
algorithm makes use of replication per definition. Baumgart
and Mies argue in their S/Kademlia paper [13] that smaller
replication factors than the original Kademlia’s 20 are
sufficient. So, in our simulation, we use S/Kademlia’s default
values: Content is stored on 4 nodes during a PUT action and a
GET action tries to obtain the content from 4 nodes as well.
The GET action is regarded as successful if at least 50% of the
responses are identical. The nodes only try to retrieve content
IDs that have been published previously.

Content can be published either by Cert or by No Cert
nodes. The same also applies to retrieving content, so there are
four possible combinations of PUT and GET actions: Cert PUT
& Cert GET, Cert PUT & No Cert GET, No Cert PUT & Cert
GET and No Cert PUT & No Cert GET.

The results show that our concept allows the Cert nodes to
retrieve content published by other Cert nodes regardless of the
fraction of malicious nodes. Figure 2 shows the success ratio of
GET requests of Cert and No Cert nodes for content published
by their respective kinds in dependence of the fraction of
malicious nodes. In the absence of malicious nodes, the success
ratio for retrieving content by No Cert nodes that was also
published by No Cert nodes was the same as for the Cert/Cert

Figure 1. Mean number of Cert nodes’ bootstrap attempts

Figure 2. Success ratios of GET requests (10% Cert nodes)

Figure 3. Success ratios of GET requests (20% malicious No Cert
nodes)

0

20

40

60

80

100

120

140

160

0% 20% 40% 60% 80% 100%

M
ea

n
nu

m
be

r o
f b

oo
ts

tr
ap

 a
tt

em
pt

s

Fraction of Cert nodes

Cert nodes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

M
ea

n
G

ET
 su

cc
es

s r
at

io

Fraction of malicious No Cert nodes

Cert PUT & Cert GET

No Cert PUT & No Cert GET

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

M
ea

n
G

ET
 su

cc
es

s r
at

io

Fraction of Cert nodes

Cert PUT & Cert GET

No Cert PUT & Cert GET

Cert PUT & No Cert GET

No Cert PUT & No Cert GET

87Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 95 / 103

case. The No Cert/No Cert success ratio decreases if the
fraction of malicious nodes increases, whereas the Cert/Cert
success ratio stays close to 100%. This demonstrates that the
Cert nodes obtain a better performance than the other nodes:
They are able to retrieve the desired content successfully
despite the presence of malicious nodes. Furthermore, this
result is independent of the fraction of malicious nodes.

Figure 3 shows the GET success ratios for all four possible
combinations of PUT and GET requests. As an example, the
fraction of malicious No Cert nodes in Figure 3 is 20%. The
results show that even for small fractions of Cert nodes (2% to
4%, resulting in only 20 respectively 40 nodes), these are able
to retrieve content published by other Cert nodes. Content
stored by No Cert nodes can be retrieved increasingly
successful by Cert nodes if the fraction of Cert nodes increases.
However, the success ratio for this case is always higher than
the fraction of Cert nodes: There are four replicas of each
content item. If only one of them is stored on a Cert node, it
can be found by another Cert node. The probability that at least
one of the four nodes that store the item is a Cert node can be
computed by using the following hypergeometric probability
distribution formula:

1 −
�𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑒𝑟𝑡 𝑛𝑜𝑑𝑒𝑠

4 �
�𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠

4 �

The correlation coefficient of the simulation results and the
theoretical values is 0.995, which shows that the results are
close to the theory.

In Figure 3, it is also visible that the No Cert nodes benefit
from the presence of the Cert nodes, as the success ratio of No
Cert GET requests increases when the fraction of Cert nodes
increases.

Figure 4 reveals this tendency more clearly: It shows the
total GET success ratio of No Cert nodes (for content that is
stored on both types of nodes) for different fractions of
malicious No Cert nodes. The No Cert nodes benefit from the
presence of Cert nodes: The higher the fraction of Cert nodes
is, the better the success ratios of the No Cert nodes are as well.
This can also be seen in the results in Figure 2: Even with
100% malicious nodes, the success ratio of the No Cert/No

Cert case is not 0%: No Cert nodes can still retrieve content
items correctly if at least 50% of the responses originate from
Cert nodes.

V. CONCLUSION AND OUTLOOK
We have presented a concept that uses trust values to

enhance the security of lookups and PUT and GET actions in a
structured P2P network. Nodes shall react to incoming requests
as usual and use only trusted nodes when performing their own
actions. We have shown that this concept works as intended
using a Kademlia-based DHT: Despite the presence of
malicious nodes, nodes applying our concept are able to
continue operation normally as if no malicious nodes were
present.

Further research is required to investigate the application of
our concept to other DHT algorithms: Other algorithms have
stricter requirements regarding the placement of other nodes
into a routing table, for example. This may require an extension
of our concept.

Our simplifying assumptions regarding certification and
maliciousness do not hold in reality, so further research is
required to analyze the effects of using a reputation system to
generate the trust values. These values are typically not binary,
so research regarding the minimum trust value threshold is also
required.

Our simulations did not include message exchanges for the
determination of the trust values and did not account for
additional time required to validate the certificate. Further
analyses of performance issues are therefore required.

VI. REFERENCES
[1] Guido Urdaneta, Guillaume Pierre, and Maarten van Steen, "A Survey of

DHT Security Techniques," ACM Computing Surveys, vol. 43, no. 2, pp.
8:1-8:49, Jan. 2011.

[2] John R. Douceur, "The Sybil Attack," in IPTPS '02: Revised Papers from
the First International Workshop on Peer-to-Peer Systems, Cambridge,
MA, USA, 2002, pp. 251-260.

[3] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina,
"The Eigentrust Algorithm for Reputation Management in P2P
Networks," in Proceedings of the 12th International Conference on
World Wide Web, Budapest, Hungary, 2003, pp. 640-651.

[4] Loubna Mekouar, Reputation-based Trust Management in Peer-to-Peer
File Sharing Systems. Waterloo, Ontario, Canada: University of
Waterloo, 2010.

[5] (2011, Sep.) BitTorrent. [Online]. http://www.bittorrent.com/
[6] (2011, Sep.) eMule Project. [Online]. http://www.emule-project.net/
[7] Sergio Marti and Hector Garcia-Molino, "Taxonomy of Trust:

Categorizing P2P Reputation Systems," Computer Networks: The
International Journal of Computer and Telecommunications Networking,
vol. 50, no. 4, pp. 472-484, Mar. 2006.

[8] Felix Gomez Marmol and Gregorio Martinez Perez, "State of the Art in
Trust and Reputation Models in P2P Networks," in Handbook of Peer-to-
Peer Networking, Xuemin Shen et al., Eds.: Springer, 2010, pp. 761-784.

[9] Frank Dabek, Ben Zhao, Peter Druschel, John Kubiatowicz, and Ion
Stoica, "Towards a Common API for Structured Peer-to-Peer Overlays,"
in Proceedings of the 2nd International Workshop on Peer-to-Peer
Systems (IPTPS ’03), Berkeley, CA, USA, 2003, pp. 33-44.

[10] Petar Maymounkov and David Mazières, "Kademlia: A Peer-to-Peer
Information System Based on the XOR Metric," in IPTPS: Revised
Papers from the First International Workshop on Peer-to-Peer Systems,

Figure 4. Total No Cert GET success ratio

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

M
ea

n
to

ta
l N

o
Ce

rt
 G

ET
 su

cc
es

s r
at

io

Fraction of Cert nodes

0% mal. nodes
10% mal. nodes
20% mal. nodes
40% mal. nodes
60% mal. nodes
80% mal. nodes
100% mal. nodes

88Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 96 / 103

Cambridge, MA, USA, 2002, pp. 53-65.
[11] Ingmar Baumgart, Bernhard Heep, and Stephan Krause, "OverSim: A

Flexible Overlay Network Simulation Framework," in Proceedings of
10th IEEE Global Internet Symposium (GI '07) in conjunction with IEEE
INFOCOM 2007, Anchorage, AK, USA, 2007, pp. 79-84.

[12] (2011, Sep.) OMNeT++. [Online]. http://www.omnetpp.org/
[13] Ingmar Baumgart and Sebastian Mies, "S/Kademlia: A practicable

approach towards secure key-based routing," in Proceedings of the 13th
International Conference on Parallel and Distributed Systems, Hsinchu,
Taiwan, 2007, pp. 1-8.

89Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 97 / 103

New Heuristics for Node and Flow Detection in eDonkey-based Services

Rafael A. Rodrı́guez-Gómez, Gabriel Maciá-Fernández, Pedro Garcı́a-Teodoro
Department of Signal Theory, Telematics and Communications,

CITIC - ETSIIT, University of Granada
Granada, Spain

rodgom@ugr.es, gmacia@ugr.es, pgteodor@ugr.es

Abstract—The development and use of applications based
on peer-to-peer (P2P) networks have exponentially grown in
the last years. In fact, the traffic volume generated by these
applications supposes almost the 80% of all the network
bandwith nowadays. For this reason, the interest of Internet
Service Providers (ISPs) for classifying this large amount
of traffic has also grown in a considerable manner. In this
context, the present paper describes two detection algorithms
for eDonkey services. The first one is aimed to detect eDonkey
flows. It is based on the hypothesis that clients that begin
connections are in charge of sending the information. The
second algorithm has been developed to detect nodes that
generate eDonkey traffic. It is based on the hypothesis that
the up-rate of these nodes follows a constant pattern along
the time. Both detection algorithms have been proved in three
different groups of network traces. As a result, our detection
hypothesis is checked. Additionally, the experiments carried out
show that the proposed algorithms have a high classification
rate and a low false positive rate.

Keywords-Traffic classification; flow detection; node detection;
P2P; eDonkey.

I. INTRODUCTION

The development and use of applications based on P2P
networks have exponentially grown in the last years. Nowa-
days, several examples can be found: eMule or uTorrent, as
file sharing applications, Skype, as voice over IP application,
and Spotify, as audio flow sharing.

Traffic generated by P2P applications consumes around
80% of all the network bandwith [1]. This enormous use of
available bandwith requires the allocation of a considerable
amount of resources to guarantee the quality of the provided
services.

The ability of classifying the P2P traffic is a key issue
to ISPs, as they are forced to increase the maintenance
operations due to this excessive growth in the use of P2P
services [2].

Traffic classification methods can be divided in three
approaches: (i) based on port, (ii) based on packet content,
and (iii) based on flow features. Current P2P applications
can receive connections in any port and encrypt the content
of its messages. This feature makes the classifications based
on port and packet content difficult.

The classification methods suggested in this paper are
based on flow features, and are used to detect eDonkey

traffic, a communication protocol of P2P networks mainly
used in file sharing applications such as eMule or aMule.

Two new detection heuristics are proposed: node detection
based on up-rate, and flow detection based on inversion of
download direction.

Node detection based on up-rate relies on the next two
assumptions: (i) users of eDonkey-based applications limit
the up-rate, and (ii) the up-rate is approximately constant
around this limit established by the user.

The proposed flow detection method assumes that those
nodes with eDonkey traffic that, under certain conditions,
establish a connection will send the majority of the infor-
mation. This behavior is radically opposite to the common
client-server paradigm, in which clients establish connec-
tions and servers send the required information.

The rest of the paper is organized as follow: In Section
II, some relevant papers in the field of traffic classification
are presented, the novelty of the present contribution being
remarked. In Section III, some specially relevant concepts
regarding eDonkey are exposed. The proposed heuristics
to detect nodes and flows in eDonkey-based services are
detailed in Section IV, presenting Section V the experimen-
tal framework considered. In Section VI, the experimental
results obtained are shown and discussed. Finally, in Section
VII, principal conclusions of this work are drawn.

II. RELATED WORK

In the specialized literature, three kinds of classification
methods can be found: (i) based on well-known ports, (ii)
based on packet content, and (iii) based on flow features.
T. Karagiannis et al. [3] assure that classification methods
based on well-known ports are not valid to detect P2P traffic
nowadays. On the other hand, methods based on packet
content imply legal issues related to privacy and thus, their
field of application is enormously reduced.

There exists a huge amount of papers proposing classifi-
cation methods based on flow features analysis. A relevant
example is BLINC [4], a classification tool based on the
assumption that a host can be associated with an application
responsible to generate the majority of its traffic volume. In
the same manner as BLINC, we also propose here a node
classification method.

90Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 98 / 103

Another possibility is to classify only a subgroup of
existing protocols. This is the most common approximation
in the field of P2P classification. An example of this we
present the work of T. Karagiannis et al. [3], this is the first
work that tries to classify encrypted P2P traffic in random
ports without inspecting packet payload. The classification
is based on connection patterns of P2P networks. Our
classification methods also detect P2P encrypted traffic in
random ports.

Xu et al. [5] propose a method to identify P2P traffic
based on the data transfer behavior of P2P applications. The
authors assure that the downloaded data by a node will be
subsequently uploaded to another node in the network. Thus,
flows that download and upload the same data blocks will
be identified as P2P flows. The heuristics proposed in the
present paper are also based on the data transfer behavior of
P2P applications. As we will show in Section IV there exist
several differences with respect to the work of Xu et al.

Finally, there exist some targeted at classifying a single
protocol. As an example, Bonfiglio et al. [6] detect real
time Skype traffic exploiting the randomness introduced at
the bit level by the encryption process to detect Skypes
fingerprint from the packet framing structure. In our case,
the classification also aims at classifying only the eDonkey
protocol.

III. GENERAL CONCEPTS OF THE EDONKEY PROTOCOL

The eDonkey protocol was designed to communicate
nodes belonging to a hybrid P2P network composed by
server and client nodes. Servers are in charge of giving
access to the network and managing the information dis-
tribution in a similar manner to a dictionary, i.e., they store
the correspondence between resources and the nodes sharing
them. On the other hand, clients are the nodes that share
data, and they store the resources of the network.

In the following, a brief description of eDonkey-based
communications, with special interest in the aspects used in
the present paper, is provided. To do this in a structured
manner, we explain the process followed by a client to
download a resource from the network.

A. Client to server connection

The first step to download a resource from the network
is to connect to an eDonkey server. This connection can
be divided in two steps: (i) TCP connection from client to
server, and (ii) server challenge. To carry out this challenge
the server also tries to establish a TCP connection with the
client. This connection allows to discover if the client is able
to receive connections from other clients of the eDonkey
network. If the challenge is passed, the client will receive an
identification called high ID; otherwise, it will receive a low
ID. Thus, a high ID client can directly receive connections
from other clients in the network, while a low ID client can
not.

Once a client has accessed to an eDonkey server, it can
look for resources by describing them with certain key
words. The requested server will respond with a list of
related resources. Subsequently the client requests one or
several of them to be downloaded, and finally he will receive
a response with a list of clients that share the requested
resource.

B. Client to client connection

It is necessary to carry out client to client connections in
order to download any resource from the network. However,
a client with a low ID can not accept connections. To solve
this, there exists a procedure in the eDonkey protocol called
callback. If a client wants to connect to a low ID node,
it has to send a callback message to the corresponding
eDonkey server. This server will resend, through a previ-
ously established connection, the callback to the low ID
node who will begin a new connection. This mechanism does
not solve the case in which both nodes are low ID because
none of them are able to accept external connections.

C. Downloading of a shared file

Downloading a shared file in eDonkey protocol consist of
two steps: (i) entering the reception queue, and (ii) starting
the download. Firstly, a client A requests a file to a client
B. B answers by sending the position in which this request
is stored in its queue. Secondly, when this request reaches a
position in the queue to be served, B sends a message to A
indicating this new state so that the download process starts.

The most common situation in a download process is that
a request from client A has to wait a considerable time to be
served. Thus, after a fixed time (around 40 seconds in our
experiments) client B closes the connection with client A. B
will establish a new connection when the request from A is
able to be served. As detailed in Section IV, this behavior
will be used in our flow detection method.

IV. DETECTION HEURISTICS

Two detection methods of eDonkey protocol are now
proposed: node detection based on up-rate and flow detection
based on inversion of download direction. These methods
can work together: firstly, a node detection indicates those
nodes that generate eDonkey traffic and, subsequently flow
detection determines specifically eDonkey file sharing flows
of the detected node.

The detection heuristics used in both methods are ex-
plained in the following.

A. eDonkey flows detection

The first heuristic is aimed to detect eDonkey flows based
on the hypothesis that clients that begin connections also
send the majority of the data over that connection. As
explained in Section III, this is the most common situation
in any download process of a shared file in eDonkey.

91Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 99 / 103

Figure 1. Calculation of Kullback-Leibler distance in time.

In client-server applications, servers usually send the
majority of the data after a connection is started by a client.
This behavior is reverse to that of eDonkey protocol, and this
is the reason because we propose to use the next hypothesis
to detect eDonkey flows:

Hypothesis 1. eDonkey flows are those in which clients who
begin the connection send substantially more information
than they receive.

Note that this heuristic is only valid for file sharing flows,
and not in the case of signaling flows. File sharing flows are
specially relevant because they are the principal responsible
of congesting the bandwidth of a network.

The proposed detection method has been developed to
be executed over offline traces. eDonkey flows are those
where the number of bytes sent by clients (who begin the
connection) are greater than the number of bytes received
plus a threshold, ThresB . This threshold is experimentally
determined by means of a study of the size distributions in
file sharing flows of the eDonkey protocol.

The selection of the threshold to be used in this method is
not critical, as we argue in Section VI, because the difference
between sent and received bytes in file sharing flows is really
noticeable.

B. eDonkey nodes detection

Here we expose a method to detect nodes which are
generators of eDonkey traffic.

The proposed method is based on the assumption that
users of P2P file sharing applications usually limit their up-
rate. This is due to the fact that these applications consume
the majority of the upload bandwidth, and consequently
users that use them without a limitation in the up-rate suffer
a decrease in the quality of their normal Web browsing.

The mentioned constant rate supposes a differentiating
feature allowing the detection of these nodes. In conclusion,
the proposed hypothesis is defined as follow:

Hypothesis 2. Nodes generators of eDonkey traffic are those
whose up-rate is quasi-constant.

To apply the previous hypothesis it is necessary to detect
a quasi-constant level in the up-rate of a node. We take as a

reference the work of J. Ramirez et al. [7], in which they use
the Kullback-Leibler (KL) divergence to detect voice activity
in audio signals. This detection is aimed to determine the
specific instant at which an evaluated audio signal changes
from only noise to contain human speech, or vice versa.
Authors use KL divergence to detect changes in mean and
variance of audio signals. In our case the KL divergence
is used to detect the absence of significant changes in the
up-rate of a node (quasi-constant up-rate).

The KL divergence can be described as an indicator of
the similarity between two probability distributions. In the
case of two Gaussian distributions pL and pR is defined as
(taken from [7]):

H(pL||pR) =
1

2
[log(

σ2
R

σ2
L

)− 1 +
σ2
L

σ2
R

+
(µL − µR)

2

σ2
R

] (1)

where σR y σL represent standard deviations of pR y pL,
and µR y µL their means.

The KL divergence is not symmetric, and thus we will use
the KL “distance” ρI,D = H(pR||pL) +H(pL||pR). In the
case of Gaussian distributions it is defined as (taken from
[7]):

ρL,R =
1

2

[
σ2
L

σ2
R

+
σ2
R

σ2
L

− 2 + (µL − µR)
2(

1

σ2
L

+
1

σ2
R

)

]
(2)

The proposed detection method can be described as
follows (Algorithm 1). Firstly, up-rate values are calculated
every t seconds. A median filter [8] of length N is applied
to the resulting values. This filter takes a window of length
N and sorts some values extracting the central one.

Secondly, the means and variances of the filter values
are calculated by means of two consecutive windows (vI y
vD) of length N (see Figure 1). The Gaussian distributions
represented by these means and variances should be very
similar if there exists a quasi-constant up-rate. Therefore, the
KL “distance” (Equation (2)) computed from these means
and variances should be minor than ThresKL to represent
a constant up-rate. If a constant rate is detected, our method
will classify the corresponding node as an eDonkey traffic
generator.

V. EXPERIMENTAL FRAMEWORK DESCRIPTION

Three groups of network traces have been used to carry
out the experimentation related to the proposed methods of
eDonkey traffic detection. In the following, the principal
features of these traces are exposed.

• Controlled environment traces (CE). The traffic gen-
erated by 5 users during 72 hours were collected. In
this period, they used aMule version 2.2.6 and shared
the same 10 files. The eDonkey server to which they
connected was se-Master Server 1. They limited the
up-rate of aMule to 30kB/s. All of them used their PCs

92Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 100 / 103

Algorithm 1 Node detection
1: for node = 0 while node < num nodes do
2: for i = 0 while i < len(up ratenode) do
3: rate filtnode ⇐ median filt(up ratenode, N)
4: vI ⇐ rate filtnode[i : i+N]
5: vD ⇐ rate filtnode[i+N + 1 : i+ 2N + 1]
6: ρL,R[i] ⇐ Equation(2)
7: if ρL,R[i] < ThresKL AND µR different to 0 then
8: return eDonkey node
9: else

10: return Not eDonkey node
11: end if
12: i ⇐ i+ 1
13: end for
14: node ⇐ node+ 1
15: end for

and Internet connection without restrictions. Every user
generated around 19,000 connections of the eDonkey
protocol and more than 7,000 of other protocols like
DNS, HTTP, SSH and SMTP.

• HTTP server traces (HS). This collection of traces
represents the traffic generated by an HTTP server from
an European University during 7 days. The server is
Apache version 2.2.0 and receives a mean of 8,971
connections per day.

• University trunk traces (UT). All the traffic of a trunk
from a Middle East University during 48 hours com-
poses these traces. There are around 73,000 IPs, 300
millions of packets transmitted, and the most common
protocols that appear are: Bittorrent, HTTP, DNS, SSL,
and FTP. After the analysis of the entire database by
means of a packet inspector application (OpenDPI
[9]), very few eDonkey packets have been detected.
This is due to the fact that the P2P file sharing appli-
cations used in this Middle East University are based
on Bittorrent protocol instead of on eDonkey.

VI. EXPERIMENTAL RESULTS

The experimentation carried out for both detection meth-
ods is focused on a double aim: (i) To study if the presented
hypotheses are valid through the evaluation of detection and
false negative rates obtained in CE traces, and (ii) to analyze
if these hypotheses present low false positive rates for other
protocols through HS and UT traces.

Following, the obtained results for flow and node detec-
tion methods are analyzed.

A. eDonkey flows detection

First of all, to execute the eDonkey flow detection method
it is necessary to determine the value of threshold the
ThresB , which is the maximum difference allowed between
the number of the sent and received bytes to consider the

Table I
DETECTION RATE OF FLOW DETECTION METHOD IN UT TRACES.

Detection rate Detected flows Total flows
BitTorrent 0.0256 854 33,304

HTTP 0.01691 50,795 3,003,161
FTP 0.01423 35 2,460
SSL 0.01244 2,808 225,685
IRC 0.00213 7 3,281

Oscar 0.00079 2 2,528
DNS 0.00001 8 1,508,413

Mail POP 0.00000 0 5,208
All 0.01139 54,509 4,784,040

evaluated node as not generator of eDonkey traffic. The
results of a study of the detection and false positive rates
in function of ThresB in the three groups of traces indicate
that there exists a wide range (between 5 and 25kB) to select
this threshold in which the success of the method is very
similar. Specifically, the threshold selected is 10kB.

In the present experiment another assumption has been
applied. An eDonkey node download or upload files from or
to more than one peer simultaneously. Thus, we can suppose
that eDonkey flows coincide temporally with other eDonkey
flows.

CE traces contain 37,089 file sharing flows of eDonkey
protocol. 28,016 of them have been detected, which implies
a detection rate of 77.53%. None of the flows belonging to
other protocols different to eDonkey have been detected (0%
of false positives). Finally, there exists a considerable false
negative rate: 22.47%. This is mainly due to two factors:

1) Low ID in some of the ends. Nodes with low ID can
not accept connections from other peers of eDonkey
network and, for this reason, they always begin the
connections, independently of being server or receiver
of the information. This situation is not valid in the
proposed detection hypothesis.

2) Service without an intermediate close of connection.
A request of a resource could be served without an
intermediate close of the initial connection (explained
in Section III). In this case, the number of bytes
received are greater than the sent.

Therefore, the proposed detection method is able to detect
file sharing flows of eDonkey protocol between high ID
nodes and with an intermediate close of connection (the most
common situation, as we mentioned in Section III).

The results obtained from HS traces show that none of
the 62,798 HTTP flows have been detected as an eDonkey
flow, which represents a 0% of false positive rate.

Flows from UT have been labeled through the execution
of a modification of OpenDPI, an application that performs
deep packet inspection [9]. We take this labels as ground
truth and compare the results of our detection method with
it obtaining the results shown in Table I.

The principal contribution in false positve rate corre-
sponds to bitTorrent protocol. This protocol is also used in

93Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 101 / 103

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70

U
p-

ra
te

 (
kB

/s
)

Time (h)

Figure 2. Typical up-rate of a monitored node from CE traces.

P2P file sharing applications. However, a principal difference
with eDonkey is that bitTorrent flows are bidirectional, so
both peers send information to the other in the same flow
and it can occur that clients that begin a connection send
more than they receive. In the same manner, FTP flows
were detected because clients frequently send more data than
servers do.

Finally, it is remarkable the false positive rate associated
to the HTTP protocol, because none of the flows in HS
traces were detected while UT traces represent a 1.69%.
After a detailed study we conclude that these false positives
are mainly caused by three factors: (i) high length of
cookie and URL in HTTP GET messages, (ii) very short
server responses, 304 (Not Modified), and (iii) HTTP POST
sending a big amount of data. This is the case of using the
Web 2.0 philosophy, but it has no significant influence in
our detection method nowadays.

B. eDonkey nodes detection

The second detection hypothesis is validated with CE
traces, as we can see in Figure 2, in which the up-rate of
a monitored node is shown. During the 72 hours of traces
there exists a quasi-constant behavior around 30kB/s, the
limit fixed in the experiment.

The up-rate suffers several descents of low duration. These
descents correspond to instants at which the monitored
client stops sending data to a peer in order to begin the
transmission with another one. The churn [10] (independent
arrival and departure by peers) is extremely high in P2P
networks, so the mentioned situation is frequent.

In CE traces, a 38.7% of flows belong to other protocols
different to eDonkey, the most common being DNS, HTTP,
SSH and SMTP. This is represented in Figure 2 as instants at
which the up-rate limit fixed in the experiment is exceeded.
So, these instants are due to additional network activity to
eDonkey traffic.

In Figure 3, the up-rate of a user in CE traces during the
first hour of the capture is shown. The up-rate presents two
well defined sections: near to zero, and around 30kB/s. Dur-
ing the first 30 minutes the up-rate is near to zero because
only a few nodes know the existence of the monitored peer.
After that, we can observe the mentioned constant behavior

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60
 0

 5000

 10000

 15000

 20000

 25000

 30000

U
p-

ra
te

 (
kB

/s
)

K
L

 d
is

ta
nc

e

Time (min)

Up-rate

Filtered up-rate
Kullback-Leibler

Figure 3. Evolution of Kullback-Leibler distance in one hour of CE traces.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20

U
p-

ra
te

 (
kB

/s
)

Time (h)

Figure 4. Up-rate of HTTP server (HS trace) during 24 hours.

around 30kB/s. The up-rate filtered is also presented in the
same figure, which allows us to appreciate the suppression
of values that extremely deviate from the expected ones.

Finally, the KL distance is also presented in this figure and
is divided in three parts: two sections near zero, separated
by a clear increase of the KL distance. KL distances near
zero represent the constant up-rate sections, and a relative
maximum of the KL distance indicates a change in the up-
rate distribution. The second section of the near zero KL
distance will be identified as generated by an eDonkey node
because it presents a constant up-rate different to zero.

Additionally, a study using all the network traces has been
carried out to select a value for the threshold ThresKL,
and a length of the window, N , for the median filter and
the KL distance. There exists a wide range of ThresKL

values that present a high detection rate in CE traces and a
low false positive one in UT and HS traces. This range is
[103, 104] and the value for ThresKL finally selected was
8,000. On the other hand, the selected value for N was 5
minutes because this is the minimum burst of constant traffic
to be detected as generated by an eDonkey node. Bursts
of traffic from eDonkey nodes with a duration less than 5
minutes are not interesting in this work, because we try to
detect nodes with a substantial consumption of bandwidth
network.

The execution of nodes detection method in CE traces
indicates that these nodes are classified as generators of
eDonkey traffic during a 86.10% of the monitored time. The
rest of the time is mainly constituted of instants at which
clients stop to share with certain client and consequently

94Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 102 / 103

their up-rates will not be constant.
Finally, the up-rate of HTTP server has also been ana-

lyzed. As we see in Figure 4, the up-rate do not present a
constant behavior, so this node was classified as eDonkey
generator only a 1.687% of the total monitored time (168
hours in total).

VII. CONCLUSIONS

In this paper, two methods to detect eDonkey traffic
without inspecting packet payload have been proposed: (i) an
eDonkey flow detection and, (ii) an eDonkey node detection.

The experimental results obtained allow us to conclude
that the proposed detection hypotheses are acceptable in
the case of eDonkey protocol. Moreover, both detection
methods present a high classification rate and a low number
of false positives. Finally, we specify that the eDonkey
flow detection process is valid for file sharing flows from
eDonkey nodes with high ID.

Additionally, in a near future we plan to raise two work
lines:

• To combine the information obtained by both methods
in order to increase the detection rate and to reduce
false positive rate.

• To explore the possibility of detecting other P2P pro-
tocols used in file sharing applications, e.g, Kademlia
or BitTorrent, through the execution of the second
method (eDonkey flow detection). We think that this
method could detect protocols used in P2P file sharing
applications because they saturate the up-rate of users
and that implies the necessity of a limitation.

ACKNOWLEDGEMENT

This work has been partially supported by Spanish
MICINN under project TEC2008-06663-C03-02.

REFERENCES

[1] A. Callado, C. Kamienski, G. Szabo, B. Gero, J. Kelner,
S. Fernandes, and D. Sadok, “A Survey on Internet Traffic
Identification,” IEEE Communications Surveys & Tutorials,
vol. 11, no. 3, pp. 37–52, Aug. 2009.

[2] A. Feldmann, “A possibility for ISP and P2P collaboration,”
in Broadband Communications, Networks and Systems, 2008.
BROADNETS 2008. 5th International Conference on, Sep.
2008, p. 239.

[3] T. Karagiannis, A. Broido, M. Faloutsos, and K. Claffy,
“Transport layer identification of P2P traffic,” in Proceedings
of the 4th ACM SIGCOMM conference on Internet measure-
ment, ser. IMC ’04. New York, NY, USA: ACM, 2004, pp.
121–134.

[4] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC:
multilevel traffic classification in the dark,” in Proceedings
of the 2005 conference on Applications, technologies, ar-
chitectures, and protocols for computer communications, ser.
SIGCOMM ’05, vol. 35, no. 4. New York, NY, USA: ACM,
2005, pp. 229–240.

[5] K. Xu, M. Zhang, M. Ye, D. M. Chiu, and J. Wu, “Identify
P2P traffic by inspecting data transfer behavior,” Computer
Communications, vol. 33, no. 10, pp. 1141–1150, Jun. 2010.

[6] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, and P. Tofanelli,
“Revealing skype traffic: when randomness plays with you,”
in Proceedings of the 2007 conference on Applications, tech-
nologies, architectures, and protocols for computer commu-
nications, ser. SIGCOMM ’07. New York, NY, USA: ACM,
2007, pp. 37–48.

[7] J. Ramirez, J. Segura, C. Benitez, A. de la Torre, and
A. Rubio, “A new kullback-leibler vad for speech recognition
in noise,” Signal Processing Letters, IEEE, vol. 11, no. 2, pp.
266–269, Feb. 2004.

[8] J. Astola, P. Haavisto, and Y. Neuvo, “Vector median filters,”
Proceedings of the IEEE, vol. 78, no. 4, pp. 678–689, Apr.
1990.

[9] Opendpi. http://www.opendpi.org/ [Last accessed in Septem-
ber 26, 2011].

[10] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-
peer networks,” in Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement, ser. IMC ’06, 2006, pp.
189–202.

95Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

Powered by TCPDF (www.tcpdf.org)

 103 / 103

http://www.tcpdf.org

