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Foreword

The Seventeenth Advanced International Conference on Telecommunications (AICT 2021), held
between May 30 – June 3rd, 2021 covered a variety of challenging telecommunication topics ranging
from background fields like signals, traffic, coding, communication basics up to large communication
systems and networks, fixed, mobile and integrated, etc. Applications, services, system and network
management issues also received significant attention.

The spectrum of 21st Century telecommunications is marked by the arrival of new business
models, new platforms, new architectures and new customer profiles. Next generation networks, IP
multimedia systems, IPTV, and converging network and services are new telecommunications
paradigms. Technology achievements in terms of co-existence of IPv4 and IPv6, multiple access
technologies, IP-MPLS network design driven methods, multicast and high speed require innovative
approaches to design and develop large scale telecommunications networks.

Mobile and wireless communications add profit to large spectrum of technologies and services.
We witness the evolution 2G, 2.5G, 3G and beyond, personal communications, cellular and ad hoc
networks, as well as multimedia communications.

Web Services add a new dimension to telecommunications, where aspects of speed, security,
trust, performance, resilience, and robustness are particularly salient. This requires new service delivery
platforms, intelligent network theory, new telecommunications software tools, new communications
protocols and standards.

We are witnessing many technological paradigm shifts imposed by the complexity induced by
the notions of fully shared resources, cooperative work, and resource availability. P2P, GRID, Clusters,
Web Services, Delay Tolerant Networks, Service/Resource identification and localization illustrate
aspects where some components and/or services expose features that are neither stable nor fully
guaranteed. Examples of technologies exposing similar behavior are WiFi, WiMax, WideBand, UWB,
ZigBee, MBWA and others.

Management aspects related to autonomic and adaptive management includes the entire
arsenal of self-ilities. Autonomic Computing, On-Demand Networks and Utility Computing together with
Adaptive Management and Self-Management Applications collocating with classical networks
management represent other categories of behavior dealing with the paradigm of partial and
intermittent resources.

We take here the opportunity to warmly thank all the members of the AICT 2021 Technical
Program Committee, as well as the numerous reviewers. The creation of such a broad and high quality
conference program would not have been possible without their involvement. We also kindly thank all
the authors who dedicated much of their time and efforts to contribute to AICT 2021. We truly believe
that, thanks to all these efforts, the final conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the AICT 2021 organizing committee for
their help in handling the logistics and for their work to make this professional meeting a success.

We hope that AICT 2021 was a successful international forum for the exchange of ideas and
results between academia and industry and for the promotion of progress in the field of
telecommunications.
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Application of Deep Transfer Learning for Optimal Wireless Beam Selection in a
Distributed RAN

Chitwan Arora and Abheek Saha
Hughes Systique Corporation,

Gurgaon, India,
email:chitwan.arora@hsc.com,abheek.saha@hsc.com

Abstract—This paper continues previous explorations in the
area of deep learning applications in the field of cellular wireless
networks, specifically the problem of identifying optimal beams
in a highly directional urban environment, using topographical
data. In our previous work, we have studied the problem
and demonstrated how deep-learning can be used on static
topographical data for prediction of optimal beams. In this
paper, we show a potential architecture for realization of the
same for a network of nodes in a given area, taking into account
challenges of computational complexity, response time andthe
inherent architecture of the next generation RAN. This is
achieved by usingdeep transfer learningas a way of translating
between a global feature space inherent to the coverage area
and local variations thereof, specific to the location of each
radio-unit.

Keywords—Transfer Learning; Deep Learning; Beam predic-
tion; Distributed/Cloud RAN

I. I NTRODUCTION

It is well recognized that Deep Learning (DL) is one
of the foundational technologies for 5th generation cellular
networks, especially in the problem of beam selection and
channel estimation in higher frequency bands (mmwave) for
urban environments where the radio-environment is highly
directional. The problem of urban canyons and shadowing
due to buildings is well known [1]. One of the most promising
technologies to deal with this problem is the use of machine
learning; in this approach, we use Light Detection and Rang-
ing (LIDAR) or Global Positioning System (GPS) maps of a
given urban topology to determine the wireless propagation
capabilities of the coverage area. It is premised that using
deep-learning, we can radically speeden up the process of
optimal beam selection for any given User Terminal (UT), if
we know its position. To this end, the International Telecom-
munications Union (ITU) organized a competition in 2020
[2] to explore deep-learning approaches on a multitude of
real-world data. The authors participated in this competition
and our approach was recognized as achieving 70% accurate
prediction of the top-5 beams for a UT in any position in
the coverage region. Other competitors showcased solutions,
which yielded more than 90% accuracy.

Given that we are already achieving good results using
deep learning, it is time to consider the next step of practical
deployment of these technologies in the field. It is here
that we come up against the biggest engineering challenges.
Deep learning algorithms are well known to be prodigious
consumers of both computing power and energy; further vast

amounts of training data are required to adequately “train”the
neural networks (NN). Running a multi-layer neural network
in each individual radio unit (RU) for an urban geometry
with multiple RHs per sq.km. of coverage area is clearly
wasteful (both in terms of computing power as well as
energy consumption) and furthermore, very expensive. What
is required is to use the combined resources of multiple nodes
operating in a common environment, in order to maximally
utilize the expensive computing resources in the radio front-
end. This is what we shall explore further in this article.

The rest of this paper is organized as follows. In Section II
we review the problem in further detail, with a survey of the
relevant literature. In Section III, we review the technologies
of transfer learningandmultiview learningas modifications
introduced in the standard deep-learning methodologies and
show how they are relevant to our environment. In Section
IV, we present our analysis of the ITU-R dataset and show
how it is relevant to the problem at hand. The simulations
and corresponding results are work-in-progress and we hope
to report our results in a subsequent revision of this paper.

II. PROBLEM DESCRIPTION

In Figure 1, we show the conceptual layout of a 5G cellular
network in an urban environment. As we know, the 5G
network architecture utilizes thecloud Radio Access Network
(RAN) concept, where the RAN is disaggregated into the
Radio Unit (RU), the Distributed Unit (DU) and the Core
Unit (CU). The RUs are placed in diverse locations within the
coverage region and are configured to create multiple radio-
beams, focusing on specific hotspots. The RUs are connected
to a smaller number of DUs, which provide the baseband
processing. Finally, the CUs are deployed as a cloud and
are designed to provide core signaling and control func-
tions, including the radio-resource management and beam
processing functions. ML algorithms can be hosted in various
ways within the architecture, most notably within the RAN
intelligent controllers (RIC). Some of these schemes have
been explored in [3]. There are many possible configurations
of this basic architecture, each pertaining to a different use
case. A good overview is given in [4].

A. Network Operation

This system works as follows. When a user terminal enters
the system, it detects a common signaling channel (low
bandwidth, blind detectable) and then signals its position

1Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-860-0
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Figure 1. Conceptual View of Distributed RAN covering an urban location

to the network. The network responds to it by identifying
a list of predicted top-N beams for it to use. The UT
then successively attempts to setup a high-bandwidth data
connection with the RU servicing each beam in the list
till it achieves success. A beam corresponds to a precoding
filter f on the transmitter side and a post-coding vectorw

on the receiver side. For a given channel matrixW (p, i)
corresponding to the channel experienced between the UT
at positionp and the base-station/RUi the received signal is
given by (1).

r = ‖wTW (p, i)f‖ (1)

Obviously, the optimum beam is the one which maximizes
the signal strength. We assume a large number of fixed
beams, each identified by a tuple ofB → 〈b, w, f〉, where
b is the beam-id. Each beam is serviced by a given RU
(this is invisible to the UT, but important for the beam
allocation problem, as we shall see later). The creation and
configuration of the individual beams is done externally and
available to the network as a database.

Clearly, our algorithm for predicting beams based on UT
position has a local (RU specific) as well as a global element
to it. Each RU sees an individual view of the environment
based on the static topographical features relative to its
position, as well as the position of the UT. These static
features include high buildings, wide streets, overpassesand
other similar features which could potentially either obstruct
the signal or provide new reflective paths for it. On the other
hand, the system as a whole has to take into account the
alignment for all the RUs relative to a given position to
determine the optimal beam list.

Matching the tiered nature of the problem, within the
network as well, there are tiered layers of control. The
near realtime RAN intelligent controller (rt-RIC)is typically
placed in the DU and theNon-Realtime RAN Intelligent
Controller (nrt-RIC) is typically placed in the core (Figure
2). The rt-RIC provides closed loop control at very tight
latencies, typically focusing on local, high-speed control. The
rt-RIC algorithms operate within tight constraints of compute

Figure 2. Conceptual View of GnodeB in ORAN

power and latency, in order to fit within the constraints
of the DU environment. The nrt-RIC, on the other hand,
provides slower control to the DUs using a relatively higher
latency link. It has substantially larger compute and memory
resources at its disposal, and can afford to take a global
view of the network, due to its ability to store and process
data from multiple DUs and RUs. This will subsequently
play a role in the actual deployment of our ML based beam
prediction solution, as we shall discuss in Section IV.

We now consider the ML algorithm. The input to the ML
is the topographical information about the coverage region
and labelled data corresponding to specific locations within
the region and the beam/RU to which it maps. The format of
the topographical data can take many forms, such as LIDAR
scans [5] from the perspective of individual positions within
the coverage area, with the reflections identifying local ob-
stacles, along with GPS topographical data and images taken
by wide-angle cameras. In other literature, topographicaldata
is in the form of 3-d maps (for example, as provided by
OpenStreetMaps) or in the form of GPS contour data [6][7].
The labelled data comprises of actual measurements from
specific UTs at specific positions identifying the UT location
and the empirically measured optimal beam id (or topN

beams). This will be used to train the DL model.
The problem thus can be summarized as follows. Assum-

ing that we have topographical information for the network
coverage area, how do we build an RU specific view, as
well as a global view of the propagation characteristics, and
subsequently map this to optimal beam positions.

B. Literature Survey

There is a lot of recent literature in beam identification for
mmwave communication. In [5], the problem is presented
from the perspective of the UT attempting to compute the
optimal beam list, based on LIDAR data. In [8], the authors
present the problem in a vehicular perspective, using realtime
LIDAR measurements to fingerprint a position relative to
other vehicles in a given highway. In [9], the authors present
a network oriented approach using coordinated beams and a
centralized deep-learning model, similar to the problem we
are addressing. However, the authors use directly measured
signal strengths as the input. Each BS individuallylearns
the system and the coordination is purely on the basis of

2Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-860-0
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selection, not in the model itself. In [10], the authors focus
on the beam sweeping pattern itself as the output to the ML,
as opposed to the beam prediction itself.

For our particular problem, we shall use the technology
of transfer learning(TL). The area of transfer learning is an
active field in DL theory; comprehensive surveys are given
in [11][12]. The success of transfer learning is predicated
on the ability to extract features in the preliminary part of
the DL model; this problem is surveyed in [13][14]. The
authors in [15][16] analyze the transferability of the extracted
features, by selectively migrating some layers of a pre-trained
DL model and comparing it to the performance of the same
with randomized starting weights. This is extended in [17]
into a concept of aJoint Adaptation Network, which will be
used in the rest of our paper.

The problem ofmultiview learningis also an area of active
research; see the surveys in [18]-[20]. The advantage of
multi-view learning is that it enables significant simplification
of the input data to be processed at individual nodes, by using
commonality to remove redundancies and noise. Multi-view
learning seems to be peculiarly applicable to a network node
scenario as we have presented in Section II. However, there
doesn’t seem to be much published research in this domain.

III. A DAPTATIONS OFDEEPLEARNING TO A

DISTRIBUTED/HIERARCHICAL ENVIRONMENT

If we analyze our problem from the TL angle, we see
that we have a large number of independently operating
nodes, each of which has to learn variations of the same data,
i.e., the topography of the coverage region independently.It
has been pointed out that we can make substantial savings
by coordinating the learning procedure in some way. The
two major technologies that we have considered aretransfer
learning and multiview learning, which are summarized in
the following Subsections.

A. Transfer Learning

TL is a method whereby the information acquired by
particular DL model can betransferred in suitably adapted
form to another DL model. The transfer can be cross-domain
or (as in our case), intra-domain. In our particular situation,
we can have a central system whichlearnsabout the topology
by processing all the path specific data available to the system
and then transfers the learned model to individual RUs for
their use. To implement the transfer scheme, we need to
decide two things. First is what exactly to transfer and the
second is how to accomplish it.

While there are many variants of transfer learning, one of
the most appealing is that offeature basedtransfer learning.
In this mode, thefeaturesof the data are extracted and learnt
by the main ML and then transferred to the subsequent MLs;
these MLs take this feature knowledge and further refine it.
Features are fairly intuitive (especially when geographical
data is involved) and it is possible to extract them efficiently
from raw data. In our case, a feature could be a large building
or other artefact that significantly impacts the propagation

characterestics within the environment. It is well known that
a DL based learning engine learns features in all its layers,
starting with the most generic and moving towards the more
specific; the problem then becomes selecting the layer within
which the features are learnt at the optimal level of specificity.
A second problem is the applicability of the features and how
to use them in the target inference engine. In our particular
environment, it is not just a matter of weighting the feature
set, but rather of determining the applicability of a feature
and its impact on the inference problem as a whole.

B. Multiview Learning

When we have multiple data sets from a single common
environment (for example, RSSI readings for different UT
positions from the perspective of multiple base-stations/RUs),
a primary problem is the risk of over-fitting, especially if the
data is simply concatenated together and fed into a single DL
engine. This is the problem that multiview learning tries to
avoid. On the other hand, simply separating out the data and
treating them completely independent data-sets leads to insuf-
ficient training, especially if individual data-sets are small, or
uneven. There are many different ways to implement multi-
view training, each of which focusses on a different aspect of
the problem. Co-training looks at maximizing the agreement
between different views, whereas multi-kernel learning and
subspace learning operate by implementing a certain structure
on the underlying data-space.

IV. A RCHITECTURE FORDEEPADAPTATION LEARNING

FOR THERAN BEAM SELECTION PROBLEM

We now come to the realization of the beam-selection
algorithm. In our earlier work [21], we described a generic
realization as a single centralized inference engine as a Deep
Neural Network (DNN) of 11 layers, using UT position
as the index, in conjunction with the angles of arrival and
departure and signal strength as labels to match optimal
beams with UTs in other, unlabelled positions within the
coverage area. As shown in the ITU-R challenge referenced
above, it is possible to augment the data set with other
parametric information. For example, LIDAR/image data is
highly perspectival; by providing LIDAR based ranging data
from individual BS locations, we can augment the empirical
wireless information and get better training of individual
inference engines.

In Figure 3, we show conceptually how the beam selection
algorithm works. The algorithm is broken up into two tiers.
The central algorithm learns the common features of the
urban environment and transfers the DNN with pre-trained
layers to the RU specific tier. This tier then augments the
DNN with local data and computes the final inference engine.
For global data, we use the GPS data indexed by position
with labelled information about UTs which were able to
acquire beams (with associated signal quality). Based on this,
we can form a top level view of the predicted coverage
for beams which is learned by the engine. In the local
tier, we augment this information by using signal strength
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Figure 3. Hierarchical implementation of beam prediction DL engine

measurements (and LOS/NLOS computation ) for individual
UTs with respect to the position of the associated RU. This
allows the RUs to create shortlists of predicted beams, which
are then consolidated to form an overall list for advertising to
the UTs. To improve the performance of the DNN at the RU,
we can augment the central model by using local data specific
to the RU. In our case, we use images of the horizon from the
RU position. These images can highlight the presence of tall
buildings or other obstructions in the surrounding area, which
can be utilized to predict the possibility of LOS paths from
different UT positions. Using self-supervised auto-encoders,
we can identify the key feature-sets of each image and then
match the endoded version to beam directions. By adding this
information to the feature level data derived from the top level
model, we hope to build accurate, but computationally simple
local DNNs, which can be implemented relatively cheaply at
the RU.

V. CONCLUSIONS

We have taken the baseline of the ITU-R data-set as
described in [5] as the starting point as one of the few
available empirical data-sets available in the field of wireless.
The data-set provides GPS, LIDAR and imagery based data.
As described above, we must start with the GPS based data
as the global data-base. Primary analysis at the global level
will be targetted at learning the features of the data-set. Once
we have a good understanding of where these features are
captured, we will consider the problem of moving the pre-
trained DNNs to the RU and adding image data analysis to
the same. This shall be explored in the final version of this
article.
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Abstract—Multiple-Input and Multiple-Output (MIMO) is ex-
pected to be one of the most crucial technologies towards the 5G
mobile communication systems and beyond. The understanding
of the performance and limits of MIMO detectors is essential in
order to transmit signals at high rates and with high reliability.
In this paper, we present an evaluation of MIMO detectors over
non-gaussian impulsive noise. The traditional MIMO detectors
are designed assuming noise modeled as gaussian second-order
statistics. However, many works have presented non-gaussian
impulsive noise in different MIMO scenarios degrading the
detector performance. Also, we investigate an alternative to
symmetric α-stable distribution to model impulsive noise called
the gaussian mixture model. The simulation results show that the
Symbol Error Rate (SER) performance depends on not only the
quality of the signal but also the impulsiveness level of the noise.

Keywords—Impulsive noise, non-gaussian model, alpha-stable
distribution, GMM.

I. INTRODUCTION

Multiple-Input and Multiple-Output (MIMO) technology
has been receiving considerable attention recently from the
wireless communication field. Nowadays, wireless systems are
demanding higher data rates with reliability, being efficient in
terms of bandwidth. In this context, MIMO plays a key role
in achieving highly efficient spectrum usage with a relatively
small number of antennas involving large amounts of data.
Thus, MIMO techniques have been investigated by researchers
and engineers in several contexts, such as 4G and 5G networks,
distributed antennas, heterogeneous network, IEEE 802.11ac
and millimeter-wave impacts due to its high frequency [1].

Authors argue that the performance of wireless commu-
nication systems is mainly governed by wireless channel
characteristics [2]. Measurement and environmental condi-
tions, such as multipath and noise create additional difficulty
within already existing detection challenges faced by MIMO
systems. Especially for classical MIMO detectors, which rely
on second-order statistical noise assumptions, they may suffer
severe impact via meaningful degradation in non-gaussian sce-
narios [3]. Thus, one way to improve the reliability of MIMO
systems is by analyzing undesirable effects of channel and
noise, thereby evaluating MIMO detectors while considering
realistic models. Notably, characteristics of impulsive noise
have been modelled accurately by non-gaussian processes [4],
demonstrating better fitting than gaussian model in several
scenarios due to man-made and electromagnetic interference
noises. Also, studies have investigated the presence of non-
gaussian noise components in millimeter wave scenarios [5]–
[7] at high frequencies.

Several statistical models have been proposed to describe
non-gaussian impulsive noise. In particular, stable distributions
is one of the most used ones for this purpose [4]. They offer
more freedom degrees than the gaussian model by adjusting
free distribution parameters, allowing us to describe how
impulsive the noise is. This model has been explored in many
different communication scenarios, such as acoustic chan-
nels [8], wireless communication solutions [9], and satellite
communications [10]. Moreover, the α-stable model presents
relevant properties for noise modelling such as generalized
central limit, stability property, and heavy tails [4].

Additionally, many approaches have been studied modelling
impulsive noise by Gaussian Mixture Models (GMM) [8],
[11]. They claim that the GMM is capable of represent-
ing heavy tailed impulsive noise by an arbitrary addi-
tive, independent and identically distributed (i.i.d.), symmet-
ric, non-gaussian GMM noise. Moreover, the expectation-
maximization (EM) algorithm for estimating the distribution
parameters is a well-known tool based on maximum likeli-
hood. Thus, we purpose the GMM as a beneficial comple-
mentary alternative to α-stable distribution to model noise in
MIMO systems.

MIMO detectors based on exhaustive searching and channel
estimation have been proposed with high performance if com-
pared to traditional detectors in non-gaussian environments [3].
However, those detectors usually have too high computational
complexity, making them infeasible in practical scenarios.
On the other hand, the classical detectors have unknown
performance in non-gaussian noise environments depending on
the impulsiveness level. Therefore, the comprehension of the
relationship between impulsiveness levels and the performance
of detectors is crucial in the making decisions about the choice
of methods.

In this article, we examine the performance of MIMO
detectors in non-gaussian impulsive noise, highlighting the
noise models in such technology and Monte Carlo analysis
for relevant distribution parameters. This study also describes
an alternative to model impulsive noise, called the gaussian
mixture model, and its impact for MIMO detector evaluation.
This work uses the Rayleigh fading model, which may repre-
sent realistic narrowband mmWave systems [12].

This paper is organized as follows. In Section II, we describe
the MIMO system, presenting the channel and noise model.
MIMO detectors are presented in Section III. In Section IV,
the main results are presented and discussed, comparing the
performance of the tradition MIMO detectors in non-gaussian
scenarios by simulations. In Section V, we present our final
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remarks.

II. MIMO SYSTEM

Consider a MIMO digital system with NR antennas at the
receiver and NT antennas at the transmitter. The NR antennas
are spaced, such that the received signals may be considered
independent of each other. The k-th symbol received by the
m-th antennas is given by:

ym(t) =

NT∑
n=1

sn(t)hmn(t)p(t) + wm(t), (1)

where sn(t) represents the transmitted symbol from the n-
th antenna, originated from a modulation scheme, hmn(t)
represents the channel model between the n-th transmitting
antenna and m-th receiving antenna, wm(t) corresponds to
the channel noise, and p(t) is a rectangular pulse.

We assume the time-domain channel model coefficients
hm(t) as a Rayleigh distribution, being defined by

hmn(t) = hmn,r(t) + jhmn,q(t), (2)

where hmn,r(t) and hmn,q(t) are gaussian processes with
mean zero and variance equal to 1/2. We also assume that
the differences in propagation times of the signals from the
transmitters to the receivers are small relative to the symbol
duration.

III. IMPULSIVE NOISE MODEL

The α-stable and gaussian mixture model are the most
frequently used distributions to model impulsive noise. Those
models have different characteristics presented in this section.

A. Symmetric α-Stable Model

Reasons for statistical modelling using α-stable distributions
are based on crucial properties, such as generalized central
limit theorem and stability. According to the generalized cen-
tral limit, if the sum of independent and identically distributed
random variables with or without finite variance converge,
then the limit distribution must be α-stable. Another relevant
property states that the sum of two independent random
variables with the same characteristic exponent (α value) is
also α-stable, known as stability property. Finally, we consider
that the signal exhibits heavy tails and skewness, which is well
represented by α-stable model.

There are different parametrizations of α-stable distribution
of the characteristic function. We assume the parameters θα =
(α, β, γ, δ) and the following characteristic function [4]:

ϕ(ω;θα) = exp(−γα|ω|α[1− jΘ(ω;α, β)] + jδω), (3)

with

Θ =

{
β(tan πα

2 )(sign ω), α 6= 1
−β 2

π (ln |ω|), α = 1,
(4)

where
α is the characteristic exponent such that 0 < α < 2,

β is the symmetry parameter such that −1 ≤ β ≤ 1,
γ is the dispersion parameter such that γ > 0,
δ is the location parameter such that −∞ < δ <∞.
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Figure 1. Probability distribution function of symmetrical α-stable with β =
δ = 0 and γ = 1.

We also assume a symmetric α-stable (SαS) class because it
has proved to be very useful in modelling impulsive noise [13].
For such distribution class, β = 0 and δ = 0 [14]. Figure 1
shows the α value variation representing the impulsiveness
level of the distribution, where a low value of α suggests high
impulsiveness and a non-gaussian behavior, and a high value of
α means that the distribution is close to the gaussian behavior,
which α = 2 is the gaussian case.

B. Gaussian Mixture Model

The GMM is a linear combination of gaussian functions
where the sum of all weight coefficients is equal to one. Thus,
a random variable y with GMM distribution is defined by its
probability density function as

p(y) =

M∑
i=1

ciN(xi|µi, σi), with

M∑
i

ci = 1, (5)

where ci is the weight of the i-th Gaussian distribution
function, M represents the number of Gaussian distributions
in the mixture, and N (xi|µi, σi) is a Gaussian distribution
function given by

N(xi|µi, σi) =
1√

2πσi
e
− (xi−µi)

2σ2
i , (6)

where µi and σi represents mean and variance, respectively,
of the i-th Gaussian. Figure 2 illustrates the gaussian mixture
model representing the impulsive noise, which results in a
heavy tail distribution.

IV. MIMO DETECTORS

We consider three different detectors based on frequency
nonselective MIMO channel and Rayleigh fading. Those
methods are designed for recovering the data symbols with
additive gaussian noise assumptions. However, in practical
scenarios, those assumptions can mislead the real performance
of MIMO systems making them unfeasible depending on
channel estimation.
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Figure 2. Probability distribution function of gaussian mixture model with
two gaussians with parameters µ1 = µ2 = 0, σ1 = 10, and σ2 = 1.

A. Maximum Likelihood Detector

The maximum likelihood detection is optimum in terms
of performance assuming gaussian noise model. This detec-
tor minimizes the average error probability by finding the
minimum Euclidean distance. This technique requires high
computational complexity due to the searching algorithm.

ŝMLD = arg min
s

∣∣∣∣∣ym −
NT∑
n=1

hmnsn

∣∣∣∣∣
2

, (7)

where sn is a symbol among a set of possible constellation
symbols used in the transmission.

B. Minimum Mean-Square-Error Detector

The MMSE detector estimates the transmitted symbols
based on the linear combination of the received signals. The
linear combination is given by

ŝMMSE = WHym, (8)

where W is a weighting matrix. In order to minimize the
mean square error, the weighting matrix is represented by

J(W ) = E
[
||sMMSE −WHym||2

]
. (9)

The weight vectors inside the matrix can be obtained by

wn = R−1rsny , (10)

where R is the autocorrelation matrix of the received signal
ym, and rsny = E[snym].

C. Inverse Channel Detector

The ICD detector is similar to MMSE, where the estimation
is designed using a linear combination of the received signal.
However, in ICD the interchannel interference is eliminated
due to the weighting matrix with NR = NT . Therefore, the
estimation is given by

ŝICD = H−1ym, (11)

where WH = H−1.

V. RESULTS

This section presents computer simulation results for the
performance evaluation of MIMO detectors. We examined the
Symbol Error Rates (SER) for different levels of impulsiveness
and quality of signal considering 2x2 MIMO systems. The
simulations assessed the error rate performance based on the
Monte Carlo method where each point of the SER curves
employed at least 50 errors in the estimation. All simulations
were performed considering baseband with BPSK modulated
signal and unity energy, being the antennas statistically inde-
pendent of one each other. In addition, Rayleigh flat fading was
assumed as the multipath propagation model in the wireless
channel.

The SER metric is usually computed versus the signal-
to-noise ratio (SNR). However, the infinite variance of non-
Gaussian SαS processes prevents to compute the signal-to-
noise ratio as a measurement of signal quality. In this work,
we use the geometric signal-to-noise ratio (GSNR) [R] instead
of the SNR. The GSNR is given by

GSNR =
1

2Cg

(
A

S0

)2

, (12)

where the normalization constant Cg = eCe ≈ 1.78 is the
exponential of the Euler constant (Ce), used to ensure that
GSNR corresponds to SNR when the channel is Gaussian (α =
2); S0 is the geometric power of a SαS random variable; and
A is the root-mean-square value of the signal.

For the GMM, we use two gaussians, i.e., M = 2, where
one gaussian has much higher variance than the other one in
order to represent the impulsiveness of the noise. Thus, the
variances are given by

σ2
1 = ξ · σ2

2 . (13)

where σi are the variances of the i-th gaussian, and ξ is the
relationship between them, describing how different they are.
We assume that the first variance has higher value than the
second one, i.e., ξ > 1, and their occurrences are described
by c1 = 0.1 and c2 = 0.9. In this case, the total variance is
given by the weighted sum of the variances as

σT = c1 · σ1 + c2 · σ2. (14)

A. Noise Model Analysis

First, we show in Figure 3 the MIMO performance in
the gaussian scenario as a reference scenario indicating no
presence of impulsiveness. This behavior of the detectors is
expected in environments where the gaussian model describes
well the noise model.

Figure 4 presents the MLD, MMSE, and ICD detectors
over SαS noise with parameter α = 1.9, a low impulsive
noise scenario. The SER of detectors are clearly higher than
in the gaussian case, since the impulsiveness degrades them.
However, the ML detector has low SER values at high GSNR.
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Figure 3. MIMO 2x2 over gaussian noise.
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Figure 4. MIMO 2x2 over alpha-stable noise with α = 1.9.

Figure 5 shows the detectors over SαS noise with parameter
α = 1.3. This scenario represents a severe impulsive noise
where all detectors are degraded. We also visualize that MLD
has a similar performance to other detectors in this scenario
even for high GSNR values.
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Figure 5. MIMO 2x2 over alpha-stable noise with α = 1.3.

Figures 6 and 7 present the same detectors over GMM noise
with two gaussians and means equal to zero. They have dif-
ferent variances, which one represents an usual class of noise
with weighting of c1 = 0.1, and another one represents the
impulsive component with higher variance and weighting of
c2 = 0.9. In this scenario, the impulsiveness level is given by
the relation between the variances σ1 and σ2. Figure 6 presents
the detectors over GMM with low impulsiveness level, given
by ξ = 2.
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Figure 6. MIMO 2x2 over GMM noise with ξ = 2.

Figure 7 shows the performance of detectors over GMM
with impulsiveness level given by ξ = 10. In this scenario,
the detectors have higher SER if compared to the scenario
with ξ = 2 due to the high impulsiveness level.
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Figure 7. MIMO 2x2 over GMM noise with ξ = 10.

B. Impulsiveness Analysis

A crucial analysis of detectors over impulsive noise is
the impulsiveness level. As the detectors are operating not
respecting the gaussian assumption, then we can not affirm
the exactly behavior of the system. However, we expect that
less impulsive is the noise better is the performance of the
detectors. So, we evaluate all detectors over the two models,
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SαS and GMM, evaluating their impulsiveness level. Each
model has a different parameter associated, being α for SαS
and ξ for GMM. We adopt a constant GSNR for each noise
model and compute the SER versus different values of α and
ξ.

Figure 8 presents the SER of MIMO detectors for GSNR of
10 and values of α from 1.1 (more impulsive) to 2 (gaussian
case). In high impulsiveness scenario, i.e., low value of α,
higher is the SER of the detectors, as expected. However, the
MLD is more sensitive to the impulsiveness level than the
other detectors. In addition, we can affirm that the SαS model
may represent higher impulsiveness level than the GMM, in
terms of the detectors performance.
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Figure 8. MIMO 2x2 over SαS with different impulsiveness levels.

Figure 9 shows the SER of MIMO detectors for GSNR of 10
and values of ξ from 2 to 20, representing the relation between
the variances σ1 and σ2. In high impulsiveness scenario, all
detectors have higher SER performance, where they are more
sensitive for ξ values from 2 to 10. Also, we can note that
the detectors performance degrade smoother over GMM than
over SαS model.
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Figure 9. MIMO 2x2 over GMM with different impulsiveness levels.

VI. CONCLUSION

In this paper, we evaluated traditional MIMO detectors
over non-gaussian scenarios for different impulsiveness levels.
Indeed, the traditional MIMO detectors have high error rates in
impulsive noise scenarios making them infeasible for current
wireless systems. On the other hand, depending on the noise
power (GSNR), the detectors work well for impulsiveness
levels that are not severe. Also, depending on the model
used, the detectors can be more sensitive in relation to the
impulsiveness level represented by their parameters. Therefore,
studies in impulsive noise scenarios must pay attention for
not only the GSNR value, but also for the impulsiveness level
considered and how it impacts the detectors.

Future works may investigate the Gaussian mixture model
including the number of Gaussian components and its effect
in impulsive noise fitting. Also, future studies may use these
results to produce adaptive detectors based on impulsiveness
parameters, reaching better performance than the traditional
detectors.
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Abstract—In this paper, we present the performance analysis
and cost optimization of an Infrastructure-as-a-Service (IaaS)
cloud model with a capacity control policy. The Virtual Machines
(VM) are modeled as parallel resources, which can be either
in active or in standby state. The capacity of the cloud is
controlled by changing the number of active VMs. We define
a cost model, that the cloud provider encounters. It takes into
account both energy consumption and performance measures.
The major objective of the work is to provide a tractable analytic
model, which is suitable for practical use. For this purpose,
we model the cloud services by an M/M/m/K queue. We
propose a simple control policy, in which a predefined portion
of VMs are always active. The remaining ones are activated
simultaneously when the number of requests reaches a threshold
and deactivated when the number of requests falls below the
predefined portion of active VMs. We call it as shifted N -
policy. We provide the stationary analysis of the model. We
derive closed form results for the distribution of the number of
requests and for several performance measures. The cost model
leads to a discrete optimization task, which we approximate by a
nonlinear continuous optimization task. After applying numerous
approximations, we reduce the problem to a nonlinear equation
with a specific structure including factorial terms. We provide
the approximate solution of the optimization task. The major
result of the work is the closed form approximate solution
formula, which gives the optimal threshold under the most
relevant range of parameters. The formula gives insight into the
dependency of the optimum on the model and cost parameters.
We provide also illustrating examples for the most important
approximations and validate the approximate solution formula
by numeric optimization.

Keywords—optimization; cloud model; queueing model; N-policy

I. INTRODUCTION

Cloud computing [1] [2] is a distributed computing
paradigm gaining more importance in the last decade. This is
driven by rapidly growing demand for computational resources
needed by applications in many areas, like e.g., business,
science or web-applications. In this work, we deal with
Infrastructure-as-a-Service (IaaS) type Cloud service, in which
computing resources are delivered to customers. One of the
key attribute of Cloud services is the virtualization which
enables to decouple the computing resources from the physical
hardware and deliver them to customers as Virtual Machines
(VM).

Performance evaluation of Cloud services plays a central
role for Cloud service providers to get insights into the
relationships among the used resources and the performance
in order to meet the performance requirements of the user.
The users want guaranteed performance and probably will

also require Service Level Agreements (SLAs) on Cloud
performance in a later, mature phase of business models for
Cloud service. However, Cloud depends on many factors,
which makes its performance evaluation to a complex issue.
Analytic models are either too simplified to obtain meaningful
relationships or lead to rather complex numeric solution,
which does not provide an explicit relationships among the
used resources and the performance. There are many research
works on performance modeling of Clouds. In [3], a multi-
level interacting stochastic sub-models approach is proposed,
which provides a numeric method to compute the performance
measures. For an overview on research works on performance
evaluation of clouds the reader is referred to the survey [4]
and the references herein.

Cloud cost optimization enables the Cloud service provider
the service provisioning at minimum cost. It requires an energy
efficient resource management technique. Such resource man-
agement and allocation policies for Clouds are summarized in
[5] [6]. One efficient resource control mechanism for Clouds is
the threshold based activation and deactivation of VMs, which
can be modeled by hysteresis queue. Such resource control is
proposed in [7], in which computational algorithms are pro-
vided for computing the optimal thresholds. Another numerical
approaches to cloud cost optimization are presented in [8] and
[9]. Optimization of Clouds is even more complex issue than
its performance evaluation. Hence it is not surprising, that the
vast majority of works on Cloud cost optimization proposes a
computational solution.

In this paper, we present a performance evaluation and
optimization of an IaaS Cloud model with a proposed simple
threshold based resource control, but in contrast to the vast
majority of relevant works we provide an approximate explicit
formula for determining the only threshold of the control
mechanism. The formula holds in most relevant range of
parameters. The newly introduced resource control is called
as shifted N -policy. According to this policy, a predefined
portion of VMs are always active. The remaining ones are
activated simultaneously when the number of requests reaches
a threshold (like in N -policy) and deactivated when the
number of requests falls below the predefined portion of active
VMs. This explains the name of the policy. The cloud is
modeled by multi-server M/M/m/K queue. Note that, as
pointed out in [10], the M/M/m queue can be an acceptable
approximation of the GI/GI/m queue until the coefficient of
variations of both the interarrival and the service times are not
far from 1.
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We present closed form results for the stationary distribu-
tion of the number of requests and for several performance
measures in the shifted N -policy M/M/m/K model. The
cost model leads to a discrete optimization task, which can be
approximated by a nonlinear continuous optimization task. It
turns out that the objective function is not convex everywhere
on its definition range. After applying several approximations,
including Stirling’s formula, we reduce the problem to a
nonlinear equation with a specific structure including factorial
terms. We provide the approximate solution of the optimiza-
tion task for a bounded range of parameters. The major contri-
bution of the work is the proposed shifted N -policy resource
control and the closed form approximate solution formula for
the optimal value of the threshold N under the most relevant
range of parameters. The secondary contribution of the work
is the stationary analysis of the shifted N -policy M/M/m/K
model. The advantage of using the proposed shifted N -policy
is that it makes the cloud resource management very simple
due to the approximate analytic formula for the optimal
threshold, i.e., no need for computational algorithm. On the
other hand it leads to somewhat higher optimal cost than other
more complex computational solutions, like e.g., the hysteresis
policy with multi-thresholds. The proposed optimization can
be used for example for the use case ”Enabling add-on services
on top of the infrastructure”, like e.g., computing-as-a-service,
analytics or Business Intelligence(BI)-as-a-service.

We also provide illustrating examples for the most important
approximations and validate the approximate solution formula
by numeric optimization in the relevant range of parameters.

The rest of this paper is organized as follows. Section II is
devoted to the description of the model. The stationary analysis
of the queueing model is given in Section III. In Section IV, we
construct the cost function to be optimized. The approximate
minimization is discussed in Section V. In Section VI, we give
illustrative examples for the approximations and provide the
numeric validation of the approximate solution formula. The
work is concluded in Section VII.

II. CLOUD MODEL DESCRIPTION

A. IaaS cloud model

The IaaS Cloud delivers low-level computational resources
to the users. The Physical Machines (PMs) are grouped into
two pools: active (running) and standby machines. The PMs
in standby can represent either turned-on (but not ready) or
turned-off machines. The computational resources are pro-
vided to users in the form of VMs. Total number of available
VMs is M > 100, from which 0.1M ≤ L ≤ 0.5M VMs are
always active. The resource control is realized by threshold
based activation and deactivation of the remaining M − L
VMs. The model has buffer with capacity for K −M ≥ 1
VMs. When all active VMs are busy upon arrival of a new
request then the request is directed into the buffer, where it
waits until getting an access to a VM becoming free. When
the buffer is full upon arrival of a new request, then the request
is lost.

B. Shifted N-policy queueing model

The queueing system modeling the IaaS cloud is an
M/M/m/K queue with shifted N -policy. In the queueing
context the VMs are called as servers. The request arrive
according to Poisson process with rate λ > 0 and the service
times are exponentially distributed with parameter µ > 0.
The arrival process and the service process are assumed to be
mutually independent. The system has m = M ≥ 1 servers
and buffer capacity for K −M ≥ 1 requests.

The control of the VMs is realized by the newly proposed
shifted N -policy. According to this policy L < M servers
are always active. When the queueing system is empty then
the remaining M − L servers are in standby. They will be
activated simultaneously when the number of requests in the
system reaches the threshold L + 1 ≤ N ≤ M . After having
all the M servers active, M − L servers will be deactivated
simultaneously, when the number of requests in the system
reaches again L. This policy has hysteresis-like characteristic
upwards (in number of requests), which makes it suitable to
be used for energy efficient resource control. However, it is
much simpler than the hysteresis queue, which could facilitate
the developing of analytically tractable approximation.

The queue is always stable, since it can be modeled by
a finite state Continuous-Time Markov chain (CTMC). The
utilization of the system, denoted by ρ is given by

ρ =
λ

Mµ
. (1)

C. Cost model

The cloud provider encounters different type of costs with
different weights. These are taken into account by the help of
cost parameters, which are defined by
• Con - cost of an active VM/time unit,
• Coff - cost of a standby VM/time unit,
• CW - cost of waiting of a request (=holding a request in

the buffer)/time unit ,
• CR - cost of loss of an arriving request,
• CA - activation cost of a VM (changing from standby to

active state),
• CD - deactivation cost of a VM (changing from active to

standby state).
Using these parameters the cloud cost can be specified by

the following function

Ccloud = E[ number of active servers ] Con (2)
+ E[ number of standby servers ] Coff

+ E[W ] CW + ploss λ CR,

+ ( activation rate of standby VMs ) (M − L) CA

+ ( deactivation rate of active VMs ) (M − L) CD.

where E[ ] stands for the expected value of a random
variable, W is the waiting time of the requests in the buffer
and ploss is the probability of loss.
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Note that the operation of N -policy implies that one of the
major trade-off of the model is the relation Con−Coff versus
CW , which in fact appears also in the approximate formula for
computing the threshold N (via parameter A see in subsection
V-D).

III. ANALYSIS OF THE QUEUING MODEL

Let n ≥ 0 be the number of requests in the system. The
process {n(t), t ≥ 0} is a finite state CTMC.

A. State diagram

The state diagram of the M/M/m/K queue with shifted
N -policy can be seen in Figure 1.
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Figure 1. State diagram.

Basically the states are denoted according to the number of
requests in the system. However, the notation of the states,
in which the L < n < N , depends on the number of active
servers. If there are L active servers then the states are denoted
by the number −(N −n). Otherwise (i.e., there are M active
servers) the default numbering, n are used. On this way the
states can be described as a contiguous range [−(N − L −
1), . . . ,K].

B. Stationary analysis

We perform the stationary analysis rather by utilizing the
principle of global balance equations instead of applying the

standard way by means of equilibrium equations. This results
in shorter derivations for the stationary distribution of the
number of requests in the system. We define the stationary
probability, pi as the probability that the system is in state i,
for −(N − L− 1) ≤ i ≤ K.

1) Global balance equations: We marked the selected set
of states used for the balance equations on the state diagram.
Each case is marked by a separator line and an associated
number in small square, which is used to identify the case.

1) (i+ 1)µpi+1 = λpi, i = 0, . . . , L− 1,
2) Lµp−(N−L−1) + λp−1 = λpL,
3) Lµp−j+λp−1 = λp−(j+1), j = −(N−L−2), . . . ,−1,
4) (L+ 1)µpL+1 = λp−1,
5) (k + 1)µpk+1 = λpk + λp−1, k = L+ 1, . . . , N − 1,
6) (r + 1)µpr+1 = λpr, r = N, . . . ,M − 1,
7) Mµpt+1 = λpt, t = M, . . . ,K − 1.

2) Stationary distribution of the number of requests: By
solving the balance equations we get the stationary distribution
of the number of requests as

pk =
(λµ )k

k!
p0, for k = 0, . . . , L,

pk = (
λ

Lµ
)N−L

( λ
Lµ )k − 1

1− ( λ
Lµ )N−L

pL,

for k = −(N − L− 1), . . . ,−1,

pk =

k−1∑
i=L

i!

k!
(
λ

µ
)k−ip−1, for k = L+ 1, . . . , N,

pk =
N !

k!
(
λ

µ
)k−NpN , for k = N + 1, . . . ,M,

pk = (
λ

Mµ
)k−MpM , for k = M + 1, . . . ,K. (3)

The probabilities pL, p−1, pN and pM are probabilities of
events representing some boundary in the operation of the
considered queueing model. They are given by

PL =
(λµ )L

L!
p0,

p−1 = α pL, where α = (
λ

Lµ
)N−L−1

1− λ
Lµ

1− ( λ
Lµ )N−L

,

pN =

N−1∑
i=L

i!

N !
(
λ

µ
)N−ip−1 =

(λµ )N

N !
sL,N α pL,

where sL,N =

N−1∑
i=L

i!

(λµ )i
,

pM =
N !

M !
(
λ

µ
)M−NpN , (4)

3) Performance measures: The performance measures
ploss, ps1 = P { the number of active VMs = L } and E[W ]
influence the cloud cost. They are given by
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ploss = pK = (
λ

Mµ
)K−MpM = (

λ

Mµ
)K
MM

M !

N !

(λµ )N
pN .(5)

ps1 =

L∑
k=0

pk +

−1∑
k=−(N−L−1)

pk (6)

=

L∑
k=0

(λµ )k

k!
p0 +

−1∑
k=−(N−L−1)

(
λ

Lµ
)N−L

( λ
Lµ )k − 1

1− ( λ
Lµ )N−L

pL

=

L∑
k=0

(λµ )k

k!
p0 +

N−L−1∑
k=1

( λ
Lµ )k − ( λ

Lµ )N−L

1− ( λ
Lµ )N−L

pL

=

L∑
k=0

(λµ )k

k!
p0 +

λ
Lµ−( λ

Lµ )N−L

1− λ
Lµ

− (N − L− 1)( λ
Lµ )N−L

1− ( λ
Lµ )N−L

pL.

E[W ] =
−1∑

k=−(N−L−1)

(k +N − L)pk +

K∑
k=M

(k −M)pk

=

N−L−1∑
k=1

k p−(N−L)+k +

K∑
k=M

(k −M)pk

= τpL + σpM , (7)

where

τ =

λ
Lµ

(1− ( λ
Lµ )2

(8)

− (N − L)
( λ
Lµ )N−L

1− ( λ
Lµ )N−L

(
1

1− λ
Lµ

+
N − L− 1

2

)
,

σ =
λ

Mµ

1− ( λ
Mµ )K−M+1

(1− λ
Mµ )2

− (K −M + 1)
( λ
Mµ )K−M+1

1− λ
Mµ

.

IV. COST FUNCTION

A. Constructing the cost function

The cost function, to be optimized, can be constructed by
applying the cost model (2) to the shifted N-policy queue. The
so far unknown terms arising in (2) can be expressed with the
help of parameters, stationary probabilities and performance
measures of the shifted N-policy queue as follows.

E[ number of active servers ] = L+ (1− ps1)(M − L),(9)
E[ number of standby servers ] = ps1(M − L),

( activation rate of standby VMs ) = p−1λ,

( deactivation rate of active VMs ) = pL+1(L+ 1)µ.

Substituting the expressions (9) into (2) we get the cost
function, F1 as

F1 = p−1λ (M − L) CA + pL+1(L+ 1)µ (M − L) CD

+ (L+ (1− ps1)(M − L)) Con + ps1(M − L) Coff

+ E[W ] CW + ploss λ CR. (10)

After performing several rearrangements on (10) and using
the balance equation (L+1)µpL+1 = λp−1 as well as (4), (5)
and (7) we get the cost function in terms of pL and ps1 as

F1 = ((λ(CA + CD)(M − L) + η sL,N )α+ CW τ) pL

− (Con − Coff )(M − L)ps1 +MCon, where (11)

η =

(
CRλ(

λ

Mµ
)K
MM

M !
+ CWσ

(λµ )M

M !

)
.

B. Approximating the cost function

The optimization of (11) with respect to N seems not to
be tractable on analytic way due to the complex dependency
of several of its terms on N , like sL,N or ps1. Therefore
we establish approximation for (11), which on the other hand
restricts the parameter range, for which it holds.

1) Approximations for α, τ and ps1: When N−L� 1 then
( λ
Lµ )N−L � 1 holds for the traffic range λ

Lµ > 1 and thus
the term 1− ( λ

Lµ )N−L and (N −L− 1) can be approximated
by −( λ

Lµ )N−L and (N − L), respectively. Utilizing it in
the expression of α, τ and ps1 ((4), (8) and (6)) gives the
approximation α∗, τ∗ and p∗s1, respectively as

α∗ ≈ 1− Lµ

λ
,

τ∗ ≈
Lµ
λ

1− Lµ
λ

(
1

1− Lµ
λ

− (N − L)

)
+

(N − L)(N − L)

2
,

p∗s1 ≈ (N − L)pL, (12)

where at evaluating p∗s1 we also used the upper limit∑L
k=0

(λµ )k

k! ≤
1

1−Lµλ

(λµ )L

L! for L� 1.
2) Utilizing the approximately N independent regions of p0:

Unfortunately p0, which is involved in almost every term of
(11) via the expression of pL, depends on N . Now we identify
parameter regions, in which p0 is approximately independent
of N . This leads to further restriction on the parameter range.
By defining the probability sums

ps1w =
1

p0
ps1

ps2w =
1

p0

N∑
L+1

pk =

N∑
L+1

(λµ )k

k!

k−1∑
i=L

i!

(λµ )i
α
pL
p0
,

ps3w =
1

p0

M∑
N+1

pk =
N !

(λµ )N

M∑
N+1

(λµ )k

k!

pN
p0

=

M∑
N+1

(λµ )k

k!

N−1∑
i=L

i!

(λµ )i
α
pL
p0
,

ps4w =
1

p0

K∑
M+1

pk.

p0 can be given by p0 = 1
psw

with psw = ps1w + ps2w +
ps3w + ps4w. It can be seen by taking the difference of ps2w
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and ps3w with respect to N that the sum ps2w + ps3w is ap-

proximately independent of N and equals to
∑M
i=L+1

(λµ )k

k! α∗.
Furthermore it can be seen that the magnitude of ps2w + ps3w
increases rapidly with ρ and for M/L ' 2 with ρ ' 1.2 L

M
it is much higher than the one of ps1w, which depends on N
approximately linearly due to ps1w ≈ (N − L)pLp0 . Moreover
the term ps4w is independent of N in this parameter range. We
omit the details here due to the limitation on the size of the
paper. Summarizing all the above, if M/L ' 2 and ρ ' 1.2 L

M
then psw and therefore also p0 is approximately independent
of N . For this case the minimizing task reduces to find the
minimum of the function F2, which can be obtained from (11)
by omitting the N independent term MCon and dividing it by
pL. This results in

F2 = ((λ(CA + CD)(M − L) + η sL,N )α+ CW τ)

− (Con − Coff )(M − L)
ps1
pL

. (13)

3) Applying the approximations for α, τ and ps1: The
minimizing task can be further reduced to find the minimum
of the objective function F2app, which can be obtained by
applying the approximations (12) in (13). This leads to

F2app = (λ(CA + CD)(M − L) + η sL,N ) (1− Lµ

λ
)

+ CW

Lµ
λ

1− Lµ
λ

(
1

1− Lµ
λ

− (N − L)

)

+ CW
(N − L)(N − L)

2
− (Con − Coff )(M − L)(N − L). (14)

C. Approximate equation for determining the local minimum

We obtain an approximate equation for determining the local
minimum of (13) by taking its difference with respect to N
and setting ∆NF2app ≈ 0. Using ∆NsL,N = (N−1)!

(λµ )N−1 and

∆(N − L)(N − L) ≈ 2(N − L) this leads to the equation

η(1− Lµ

λ
)
(N − 1)!

(λµ )N−1
= (Con − Coff )(M − L) (15)

+ CW

Lµ
λ

1− Lµ
λ

− CW (N − L).

V. APPROXIMATE MINIMIZATION OF THE COST FUNCTION

In order to get closer to the solution of equation (15) first
we investigate its structure.

A. Structure of the equation

To identify the structure of equation (15), we simplify its
form by applying further approximations. The relation K −
M − 1 >> 1 holds usually under practical settings. Hence
the term ( λ

Mµ )K−M+1 can be neglected due to ρ = λ
Mµ < 1,

which gives an approximation for σ as

σ =
λ

Mµ

1− ( λ
Mµ )K−M+1

(1− λ
Mµ )2

− (K −M + 1)
( λ
Mµ )K−M+1

1− λ
Mµ )

≈ ρ

(1− ρ)2
. (16)

Applying again the negligibility of the term ( λ
Mµ )K−M in

the expression of η and further rearrangement leads to an
approximation for η as

η =

(
CRλ(

λ

Mµ
)K−M

(λµ )M

M !
+ CWσ

(λµ )M

M !

)

≈ CW
ρ

(1− ρ)2

(λµ )M

M !
. (17)

Using (17) in the equation (15) and further rearrangement
gives the simplified form of the equation as

(λµ )M

M !

(N − 1)!

(λµ )N−1
u0(ρ) = r(ρ,N), where (18)

u0(ρ) = CW
ρ

(1− ρ)2
(1− 1

ρML
) and

r(ρ,N) = CW

(
A(M − L) +

1

ρML − 1
− (N − L)

)
with A =

Con − Coff
CW

.

The term
(λµ )M

M !
(N−1)!

(λµ )N−1 on the left hand side (lhs) of (18)
constitutes the structure of the equation. Its magnitude varies
in a huge range for larger M and N depending on the value
of the parameters. Therefore we also use its natural logarithm
in the course of the analysis. By introducing the notation

p(ρ,N) =
(λµ )M

M !

(N − 1)!

(λµ )N−1
, (19)

the equation (18) can be given in a short form as

p(ρ,N)u0(ρ) = r(ρ,N). (20)

B. Properties of function p(ρ,N)

The approximate global solution of the considered mini-
mization task requires the knowledge of several properties of
function p(ρ,N).

1) Dependency on ρ: Applying the Stirling formula n! ≈√
2πn(n+1/2)e−n to both M and N−1 in the expression (19)

gives an approximation for p(ρ,N) as

p(ρ,N) =
(λµ )M

M !

(N − 1)!

(λµ )N−1
= (

λ

µM
)(M−N+1)M

M

M !

(N − 1)!

MN−1

≈ ρ(M−N+1)e(M−N+1)

√
N − 1

M
(
N − 1

M
)N−1. (21)
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It can be seen from (21) that the dependency of p(ρ,N)
on ρ is exponential. This leads to rapid changes under the
typical model parameter settings, e.g., increasing ρ by 2.5%
at M − N + 1 = 95 leads to 10 times multiplication due to
1.02595 ≈ 10.

2) Dependency of p(ρ,N) on N : Taking the natural loga-
rithm of (21) we get

ln(p(ρ,N)) = (M −N + 1) (ln(ρ) + 1)

+

(
(N − 1) +

1

2

)
ln(

N − 1

M
).

By introducing the notation

β =
N − 1

M
. (22)

this can be rewritten as

ln(p(ρ, β)) =

M

(
(1− β)(ln(ρ) + 1) + (β +

1

2 ∗M
) ln(β)

)
. (23)

Taking its first derivative with respect to β gives

d ln(p(ρ, β))

dβ
= M

(
ln(

β

ρ
) +

1

2 ∗M ∗ β

)
≈M ln(

β

ρ
), (24)

since in the typical model parameter ranges M >>
100 and thus the term 1

2∗M∗β can be neglected. The first
derivative of (p(ρ,N) with respect to N comes by us-
ing d(p(ρ,N))

dN = d(eln(p(ρ,N)))
dN = p(ρ,N)d ln(p(ρ,β))

dβ
dβ
dN =

p(ρ,N) 1
M ∗

d ln(p(ρ,β))
dβ , which yields

d(p(ρ,N))

dN
≈ p(ρ,N) ln(

β

ρ
). (25)

The ln(βρ ) divides the β−ρ plane into two disjunct subareas
regarding the characteristic of p(ρ,N) with respect to N as

p(ρ,N) is
{

monotone decreasing, if β < ρ
monotone increasing, if β ≥ ρ

}
. (26)

Hence the dependency of p(ρ,N) on N is faster than ex-
ponential, since | ln(βρ )| is increasing with decreasing N and
increasing N in the range β < ρ and β > ρ, respectively.

3) The ”low magnitude range”: We investigate the case
when p(ρ,N) = econst holds, where const is a given real
constant. With the notation of β this equation can be given by

M

(
(1− β) (ln(ρ) + 1) + (β +

1

2 ∗M
) ln(β)

)
= const.

(27)

Observe that this equation implicitly defines a boundary
function β(ρ), which separates the ”low magnitude range”
p(ρ,N) ≤ econst from the complementer range, in which
p(ρ,N) > econst. In the range p(ρ,N) ≤ econst the mag-
nitude of p(ρ,N) is less than const, which explains the name
”low magnitude range”. We say that a β−ρ point is inside and

outside of the ”low magnitude range” if p(ρ, β) ≤ econst holds
and does not hold for that point, respectively. By rearranging
(27) we get the expression of ln(ρ) along the boundary
function as

ln(ρ) =
const

(1− β) ∗M
− β

1− β
ln(β)− 1

− 1

(1− β) ∗ 2 ∗M
ln(β).

(28)

Therefore, the sensitivity of ln(ρ) with respect to the const,
ζ is given by

ζ =
1

(1− β) ∗M
. (29)

An upper limit for the factor ln(βρ ) determining the relation
between p(ρ,N) and its first derivative with respect to N (see
(25)) along the boundary function can be obtained as

ln(
β

ρ
) = ln(β)− ln(ρ) = ln(β) +

β

1− β
ln(β) + 1

−
(

const

(1− β) ∗M
− 1

(1− β) ∗ 2 ∗M
ln(β)

)
≤ 1

1− β
ln(β) + 1 ≤ −1

2
(1− β) < 0. (30)

where we used the inequality ln(β) ≤ −(1−β)− 1
2 (1−β)2

and that the term in the brackets is non-negative. Hence the
boundary curve lies under the line separating the β − ρ plane
into parts with monotone decreasing and increasing p(ρ,N)
with respect to N . The relevant region of the β − ρ plane
is restricted by β > βlow = L

M and ρ ≥ βlow due to the
limitations N > L ⇔ N

M > L
M and λ

µ > L ⇔ ρ > L
M ,

respectively. The cross point of the horizontal β = βlow and
the boundary curve is called boundary ρ and denoted by ρb.
All these are shown on the illustrating example Figure 2.

C. Constructing the approximate minimization

1) Solution regimes: For the sake of better understanding
the idea of the solution, first we consider a modified form of
the equation (20) as

p(ρ,N) = r(ρ,N). (31)

The idea of the approximate solution is based on the concept
of ”low magnitude range”. When setting the r.h.s of (31)
to 0 and the solution of r(ρ,N) = 0, let us say Ns, falls
inside of the ”low magnitude range” with const = ln(CW ),
then it ensures that the value of r(ρ,N) reaches the value of
p(ρ,N) ≤ econst = CW by decreasing N not more than 1,
since d(r(ρ,N))

dN = −CW and both the value of p(ρ,N) and
its first derivative are << CW in a large portion of the ”low
magnitude range” (up to close to its boundary). Therefore, Ns
can be considered as approximate solution of (31).

More precise specification of the inside area of the needed
boundary requires both p(ρ,N) < CW and d(p(ρ,N))

dN ≈
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Figure 2. The β − ρ boundary function, const = 10, M=200,
L=50.

p(ρ,N) ln(βρ ) > −CW to be hold. However, the second con-
dition leads to curve on β−ρ plane very close to the boundary
curve of the ”low magnitude range” with const = ln(CW ).
This is because

M

(
(1− β) (ln(ρ) + 1) + (β +

1

2 ∗M
) ln(β)

)
+ ln(− ln(

β

ρ
)) = ln(CW ) (32)

leads to a change in ln(ρ) in absolute value as
ln(− ln( βρ ))

(1−β)∗M ,
which is very small under the most relevant range of parame-
ters. For example it is ≤ 0.04 in absolute value for M ≥ 100
and −2.3 ≤ ln(βρ ) ≤ −0.35 due to 0.1 ≤ β

ρ for βlow ≥ 0.1 as
well as using β ≤ 0.7, which can be shown from the properties
of this second β − ρ curve. Therefore, the second curve can
be neglected from the specification of the required inside area
and hence it is enough to specify the needed boundary by
p(ρ,N) = const for any const.

We denote the boundary ρ under the specific condition
const = ln(CW ) by ρ0. Approximately at N = L, the
first derivative of p(ρ0, N) equals to −CW . At this point
r(ρ0, L) > p(ρ0, L). By decreasing N , from that point the first
derivative of p(ρ0, N) is in absolute value greater than that one
of r(ρ0, N), and hence an other cross point of the functions
p(ρ0, N) and r(ρ0, N) must arise, let us say at N = N1. This
is a maximum point of the cost function, since (in N ) below
this point the sign of p(ρ,N)−r(ρ,N) changes from negative
to positive. Further decreasing N it reaches the point N = N2,
where the value of the cost function is less then at Ns. The
situation is illustrated on Figure 3.

The above discussed decrease in any range of N , in which
p(ρ0, N) is monotone decreasing with respect to N , causes an
increase in the value of p(ρ0, N), which equivalently can be

N_2 N

cost

N_sN_1

value

L

Figure 3. Example cost function.

also considered as a change in const of (27) while keeping
N unchanged. This change in const corresponds to a shift
of the boundary curve to right. If ρ > ρ0 then the point in
β corresponding to N1 can fall over the βlow line. Until N2

falls still below the βlow line, the value of the cost function
at βlow is still higher than at βs (corresponding to Ns), and
therefore the global minimum of the cost function is still at
Ns. However, if N2 also falls above βlow line then the global
minimum of the cost function is at βlow (corresponding to
N=L+1). If ρ > ρ0, it can also happen that βs falls outside of
the ”low magnitude range” (= under the boundary curve). In
this case |d(p(ρ,N))

dN | > CW and there is no cross point at all,
the cost function is monotone increasing with respect to N
and hence the global minimum at βlow. Note that in the range
N > Ns there can not be any cross point of the functions
p(ρ,N) and r(ρ,N), since p(ρ,N) > 0 and r(ρ,N) < 0 in
that range.

It follows from the above argumentation that the global
minimum of the cost function is approximately at Ns in the
range of ρ < ρ0 and βlow ≤ βs < 1. Above ρ0 there is a gap
in ρ until a specific point, ρs, at which N2 reaches the βlow
line and hence the global minimum of the cost function is still
at Ns (for βlow ≤ βs < 1). Finally above ρs the position of the
global minimum of the cost function changes to N = L+ 1.

The position of ρs depends on ∆const, which is the change
in const causing a shift of the boundary ρ from ρ0 to ρs.

2) The magnitude of ∆const: The solution of r(ρ,N) = 0,
Ns can be given from (18)) as

Ns = A(M − L) +
1

ρML − 1
+ L. (33)

We use the notation

∆N = Ns − L = A(M − L) +
1

ρML − 1
. (34)

The magnitude of ∆const is about 2 ln(∆N). The first
ln(∆N) stands for the increase p(ρ0, L) → p(ρ0, N1),
i.e., from Cw up to (Ns − N1)CW ≈ (Ns − L)CW =
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∆NCw (= the value of r(ρ0, N) at βlow), on ln level
which is ln(∆NCw

Cw
). The second one stands for increase

p(ρ0, N1) → p(ρ0, N2), on ln level. During N1 → N2

the cost function F2app decreases so much as its in-
creases during Ns → N1, which is approximately (Ns −
N1) × | maximum value of d F2app

dN in [Ns, N1]| = (Ns −
N1)|p(ρ0, L)− r(ρ0, L)| ≈ (Ns −N1)|Cw − (Ns −L)Cw| ≈
(Ns −N1)∆NCw. On the other hand the change of the cost
function F2app during N1 → N2 is in the magnitude of
p(ρ0, N2)− p(ρ0, N1) (again due to the exponential character
of function p(ρ0, N), but we omit the details here due to the
limitation on the size of the paper). Putting all these together
ln p(ρ0,N2)

p(ρ0,N1) = ln( (Ns−N1)∆NCw
(Ns−N1)Cw

+ 1) ≈ ln(∆N). Note

that (Ns − N1) × | maximum value of d F2app

dN in [Ns, N1]|
overestimates the increase of the cost function F2app during
Ns → N1 and hence 2 ln(∆N) also overestimates ∆const.

In order to estimate 2 ln(∆N), we impose a condition on A,
which ensures that the term A(M−L) dominates over 1

ρML −1
.

For this purpose an upper bound is set on 1
ρML −1

, which can
be obtained by setting a lower bound for ρ as βlowξ < ρ < 1.
With ξ = 1.2 this gives 1

ρML −1
≤ 5. We set A(M−L)/(A (M-

L)+ 1
ρML −1

) ≥ 0.9, which causes a difference of 2 ln(0.9) =

−0.2 in the value of ∆const corresponding to difference of
−0.2

(1−0.5)100 = 0.004 on ln(ρ) level when assuming M ≥ 100

and βlow < 0.5. With this setting we get A(M − L) ≥ 45
which implies the condition on A as

A ≥ 45

M − L
, (35)

under which A(M − L) + 1
ρML −1

≈ A(M − L).
Now we can estimate 2 ln(∆N) as

2 ln(∆N) ≈ ln(A(M − L))

= 2 ln(A) + ln(M) + ln(1− β). (36)

3) Relation for ρs: So far we discussed the way of solution
without considering the term u0(ρ) on the lhs of equation (20).
Now taking into account also the term u0(ρ), the relation for
the boundary curve crossing the βlow line at ρs can be given
by

M

(
(1− βlow) (ln(ρs) + 1) + (βlow +

1

2 ∗M
) ln(βlow)

)
+ ln(u0(ρs)) = ln(CW ) + 2 ln(∆N). (37)

By substituting the expression of u0(ρ) from (18) and using
(1− 1

ρs
M
L

) = (1− βlow
ρs

) = βlow
ρs

( ρs
βlow
− 1) we get

M

(
(1− βlow) (ln(ρs) + 1) + (βlow +

1

2 ∗M
) ln(βlow)

)
+ ln(CW ) + ln(ρs) + ln(

1

(1− ρs)2
) + ln(βlow)− ln(ρs)

+ ln(
ρs
βlow

− 1) = ln(CW ) + 2 ln(∆N).

Rearranging yields

M

(
(1− βlow) (ln(ρs) + 1) + (βlow +

1

2 ∗M
) ln(βlow)

)
= 2 ln(∆N)− ln(βlow)− ln(

1

(1− ρs)2
)− ln(

ρs
βlow

− 1).

(38)

We approximate the term 1
(1−ρs)2 ( ρs

βlow
− 1) by setting 1,

which gives an uncertainty of ≈ 7 on right hand side (rhs) of
(38) (1 ≤ 1

(1−ρs)2 ≤ 100 for ρs ≤ 0.9 and 0.28 ≤ ( ρs
βlow
−

1) ≤ 9 for βlow ≥ 0.1 and ρs
βlow

≥ 1.28 following from (30)
with βlow ≤ 0.5 and thus ln(9× 100) < 7) corresponding to
difference of 7

(1−0.5)200 ≈ 0.07 on ln(ρs) level when assuming
M ≥ 200 and again βlow < 0.5. The relation ρs ≤ 0.9 can
be justified by the approximate solution of (38) for ρs by
assuming that its rhs ≤ 14 and setting β = max (βlow) = 0.5,
since the solution in ρs is monotone increasing with respect
to βlow. Using the above approximation and (36 ) we get the
final form of the relation for ρs as

M

(
(1− βlow) (ln(ρs) + 1) + (βlow +

1

2 ∗M
) ln(βlow)

)
= 2 ln(A) + ln(M) + ln(1− βlow)− lnβlow, (39)

D. Approximate solution formula

Now putting all together we get the approximate solution
formula.

Conditions
1) 100 ≤M ,
2) 0.1 ≤ βlow ≤ 0.5 with βlow = L

M ,
3) ρ ≥ βlowξ with ξ = 1.2,
4) N − L >> 1, practically N > L+ 10,
5) K −M >> 1, practically K > M + 10,
6) A ≥ 45

M−L
Solution formula
If Conditions 1-6 hold, then

Nopt =

{
min(bA(M−L)+ 1

ρM
L

−1
+Lc,M) if ρ ≤ ρs,

L+ 1 if ρs < ρ < 1,

}
where

ln(ρs) =
2 ln(A) + ln(M) + ln(1− βlow)− lnβlow

(1− βlow) ∗M

− βlow
1− βlow

ln(βlow)− 1

− 1

(1− βlow) ∗ 2 ∗M
ln(βlow). (40)

Observe that the approximate optimal N does not depend
on CA, CD and CR. This is because they have no impact on
N in the considered range of parameters. The cost parameters
CA, CD influence N only via p0 and hence they effect the
optimal N in the range, in which p0 depends on N . The cost
parameter CR has impact on the optimal N via η and hence
it is effective only for small values of K −M .
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VI. NUMERICAL COMPARISONS

In this Section, we illustrate the approximations and validate
the approximate solution formula by numeric optimization.
The setting Con = 50, Coff = 15 Ca = 30, Cd = 20
and CR = 20 was used for all experiments. The parameters
Coff , Con have impact to the solution formula only via the
parameter A, which was varied through CW . The parameters
Ca, Cd and CR have no impact on the approximate solution
formula in the considered range of (other) parameters. We
applied 100 < M < 1000 for all experiments.

A. Illustrating the approximations

1) N independent region of p0: Figure 4 shows the depen-
dency of p0 for the parameter setting M = 300, L = 100,
K = 350 and ρ = 0.6. It can be seen on the figure that
p0 is independent of N for N ' 120, which corresponds to
N − L ≈ 20� 1.

0 50 100 150 200 250 300

parameter N

6.5

6.55

6.6

6.65

6.7

6.75

p0

10-79 The value of p0 - as dependency of N

p0

Figure 4. Probability p0 in dependency of threshold N .

2) Approximation of F2 by F2app: Figure 5 illustrates the
approximation of the cost function F2 (without taking into
account p0) by F2app in dependency of threshold N for the
parameter setting M = 300, L = 100, K = 350, CW = 50,
µ = 1 and ρ = 0.6. The figure shows a very good match. The
mismatch on the left side of the curve is caused by violating
the condition N − L >> 1 as N becomes close to L.

B. Illustration of the approximate solution formula

The comparison of the exact and approximate optimal N
of F2 can be seen in Figure 6 in dependency of ρ for the
parameter setting M = 400, L = 100, K = 450, CW = 50,
µ = 1 and ρ > 0.25 = L

M .
Figure 7 shows the exact and approximate optimal value

of F1 in dependency of ρ for different values of M with the
parameter setting L = 50, K = M + 100, CW = 50, µ = 1
and ρ > 0.25 = L

M .
Both figures show a very good match. The small bias

between the exact and approximated ρs in Figure 6 can
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Figure 5. Exact and approximate values of the cost function
F2 in dependency of threshold N .
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Figure 6. Exact and approximate optimal N (F2) in depen-
dency of ρ.

be explained by the uncertainity introduced by setting
1

(1−ρs)2 ( ρs
βlow
− 1) to 1.

C. Validation of the approximate formula

We validated the approximate solution formula by numeric
optimization in the considered range of parameters. Figure 8
shows the ratio of the approximated and the exact optimal
value of F1 for the range of parameters 100 ≤M ≤ 700 and
ρ > L

M with the parameter setting L = 50, K = M + 100,
CW = 50, µ = 1.

Similarly Figure 9 shows the ratio of the approximated and
the exact optimal value of F1 for the range of parameters
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Figure 8. Ratio of the approximated and exact optimal value
(F1) for 100 ≤M ≤ 700 and L

M < ρ.

0.1 ≤ CW ≤ 100 and ρ > 0.25 = L
M with the parameter

setting L = 50, M = 200, K = 300, µ = 1.
Both figures show a very good match until approaching the

ρ boundary L
M , where the condition 3, does not hold any more.

VII. CONCLUSION

In this paper, we proposed shifted N-policy for a simple,
but energy efficient control of number of active VMs in the
IaaS cloud. Besides of the stationary analysis of the underlying
queueing model, we provided an approximate formula for
computing the optimal threshold N , which minimizes the
cloud provider’s cost, in the most relevant parameter range.
The validation of the approximate solution formula by means
of numeric optimization shows a good match in the consid-
ered parameter range. The closed form approximate solution

Figure 9. Ratio of the approximated and exact optimal value
(F1) for 0.1 ≤ CW ≤ 100 and L

M = 0.25 < ρ.

formula enables a simple management of the cloud and gives
an insight into the dependency of the optimal threshold N on
the model and cost parameters.

A future research work is to investigate an approximate so-
lution also for the remaining parameter ranges not considered
in this work. Another, more difficult future research topic is
the joint optimization of parameters L and N .
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