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Forward

The Eleventh International Conference on Advances in Future Internet (AFIN 2019), held between
October 27, 2019 and October 31, 2019 in Nice, France, continued a series of events dealing with
advances on future Internet mechanisms and services.

We are in the early stage of a revolution on what we call Internet now. Most of the design principles
and deployments, as well as originally intended services, reached some technical limits and we can see a
tremendous effort to correct this. Routing must be more intelligent, with quality of service consideration
and 'on-demand' flavor, while the access control schemes should allow multiple technologies yet
guarantying the privacy and integrity of the data. In a heavily distributed network resources, handling
asset and resource for distributing computing (autonomic, cloud, on-demand) and addressing
management in the next IPv6/IPv4 mixed networks require special effort for designers, equipment
vendors, developers, and service providers.

The diversity of the Internet-based offered services requires a fair handling of transactions for
financial applications, scalability for smart homes and ehealth/telemedicine, openness for web-based
services, and protection of the private life. Different services have been developed and are going to
grow based on future Internet mechanisms. Identifying the key issues and major challenges, as well as
the potential solutions and the current results paves the way for future research.

We take here the opportunity to warmly thank all the members of the AFIN 2019 technical program
committee, as well as all the reviewers. The creation of such a high quality conference program would
not have been possible without their involvement. We also kindly thank all the authors who dedicated
much of their time and effort to contribute to AFIN 2019. We truly believe that, thanks to all these
efforts, the final conference program consisted of top quality contributions.

We also thank the members of the AFIN 2019 organizing committee for their help in handling the
logistics and for their work that made this professional meeting a success.

We hope that AFIN 2019 was a successful international forum for the exchange of ideas and results
between academia and industry and to promote further progress in the field of future Internet. We also
hope that Nice, France provided a pleasant environment during the conference and everyone saved
some time to enjoy the charm of the city.
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Abstract — Management and Orchestration (M&O) are 

essential activities in 5G slicing systems. Essentially, the 

integrated M&O based on The European Telecommunications 

Standards Institute (ETSI) Management and Orchestration 

(MANO) is the basis, but enriched, in order to cope with 

slicing. In particular, supporting technologies like Network 

Function Virtualization (NFV) and Software Defined Networks 

(SDN) are considered, to deliver functional components for 5G 

slicing M&O. The multi-tenant, multi-domain, multi-operator, 

end-to-end (E2E) features of the 5G slicing determine a high 

complexity for M&O. Consequently, many different 

architectural variants have been already proposed, studied and 

developed in recent studies, standards and projects. The study 

in this paper is useful because, despite many efforts, (spent in 

the last five years) much heterogeneity and different solutions 

still exist, even at the M&O architectural level.  This paper 

analyzes the existing common parts and differences between 

several 5G slicing architectures, in an attempt to identify a 

degree of “convergence”, while considering the MANO as a 

base architecture. 

Keywords — 5G slicing; Management and Orchestration; 

Software Defined Networking; Network Function Virtualization. 

Service management; Resource management.  

I.  INTRODUCTION  

The emergent 5G mobile network technologies offer 
powerful features, in terms of capacity, speed, flexibility and 
services, to answer the increasing demand and challenges 
addressed to communication systems and Internet [1][2]. 5G 
can provide specific types of services to satisfy 
simultaneously various customer/tenant demands in a multi-
x fashion (the notation –x stands for: tenant, domain, 
operator and provider).   

The 5G network slicing concept (based on virtualization 
and softwarization) enables programmability and modularity 
for network resources provisioning, adapted to different 
vertical service requirements (in terms of bandwidth, latency, 
mobility, etc.) [2]-[6]. In a general view, a Network Slice 
(NSL) is a managed logical group of subsets of resources, 
Physical/Virtual network functions (PNFs/VNFs), placed in 
the architectural Data Plane (DPl), Control Plane (CPl) and 
Management Plane (MPl). The slice is programmable and 
has the ability to expose its capabilities to the users.   

Network Function Virtualization [7]-[9] and Software 
Defined Networks can cooperate [10] to manage and control 
the 5G sliced environment, in a flexible and programmable 
way.   

Management and Orchestration (M&O) is a crucial 
subsystem in 5G. Such topics constitute the object of 
standardization organizations and forums among which The 
3rd Generation Partnership Project (3GPP), The 5G 
Infrastructure Public Private Partnership (5GPPP), and ETSI 
are representative [11]-[16]. They cooperate in order to 
harmonize their specifications. For instance, the 3GPP-
defined management system interacts with ETSI’s NFV 
MANO system to enable the resource management for 
virtualized Core Network (CN), virtualized Radio Access 
Network (RAN) and network slicing. ETSI collaboration 
with 3GPP – especially the Service and System Aspects Fifth 
(SA5) Working Group – is a key throughout the specification 
work of both ETSI NFV Releases 2 and 3, to ensure 
interoperability between management systems. 

ETSI NFV has recently designed new features to support 
5G networks. 5G resource M&O aspects were added on top 
of the NFV Release 2 framework. New NFV Release 3 [9] 
topics related to 5G include: “Support for network slicing in 
NFV”, “Management over multi-administrative domains”, 
and “Multi-site network connectivity”.  These features are 
essential to address the variety of applications expected to 
run on top of a 5G system, whether using distributed 
resources over multiple sites, centralized or a combination of 
both. 

However, it is recently recognized that a complete 
understanding of the relationship of an M&O system and a 
slicing system is still missing [2]. Even more, it is not yet a 
general/common agreement on the slice itself; several 
definitions exist, having major impacts and relationships to 
the M&O.  

In the simplest view, a slice is a service with resource 
guarantees. Here, the slicing system and the orchestration 
system are identical. At the other end of approaches, a slice 
is a complex entity, i.e., a collection of resources 
(computing, networking, storage) – that constitute a virtual 
logical network (and customizable), embedded in some 
physical networking infrastructure. Inside such a slice, the 
slice owner/tenant has partial or even full freedom to enforce 
its own management and control (M&C) policies and 
actions. Many studies and standards adopted the slice 
complex definition; this is also considered in this work, 
given the high flexibility that it can offer to the tenants. On 
the other hand, the complex structure of such a slice induces 
M&O complexity and leads to a large variety of possible 
architectural approaches. 
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Given the rather large variety of architectural proposals, 
there is an interest to evaluate in what degree they have 
similar approaches of the main “core” architectural 
functional set of blocks. This similarity level will be called 
here “convergence”, although this word has usually a richer 
semantic. The focus of this paper is on management and 
orchestration sub-systems. Due to space limitation, this text 
cannot afford to offer detailed explanations about the 
architectures presented; the objective is to identify the major 
point of similarity of different approaches. 

Therefore, this paper is mainly an overview type. Its 
structure is described below. Section II outlines the 
stakeholder roles, given that such definitions determine 
essentially the overall architecture.  Section III evaluates 
whether a unified view exists at architectural level, expressed 
in so-called meta-architecture. Section IV performs an 
analysis of some factors that lead to non-convergent refined 
M&O architectures. Section V uses some examples extracted 
from various studies and projects to illustrate the 
heterogeneity of solutions. Section VI summarizes 
conclusions and future work.  

II. STAKEHOLDER ROLES  

The layered structure of the 5G slicing M&O strongly 
depends on the definition of stakeholder roles (also called 
business model). Different business models aim to support 
multi-tenant, multi-domain end-to-end (E2E) and multi-
operator capabilities. A basic model (see A. Galis, [17]) 
defines four roles:  

Infrastructure Provider (InP) – owns and manages the 
physical infrastructure (network/cloud/data center). It could 
lease its infrastructure (as it is) to a slice provider, or it can 
itself construct slices and then lease the infrastructure in 
network slicing fashion.  

Network Slice Provider (NSLP) – can be typically a 
telecommunication service provider (owner or tenant of the 
infrastructures from which network slices are constructed). 
The NSLP can construct multi-tenant, multi-domain slices, 
on top of infrastructures offered by one or several InPs.  

Slice Tenant (SLT) – is the generic user of a specific slice, 
including network/cloud/data centres, which can host 
customized services. The SLTs can request from a NSLP to 
create a new slice instance.  The SLT can lease virtual 
resources from one or more NSLP in the form of a virtual 
network, where the tenant can realize, manage and provide 
Network Services (NS) to its individual end users. A NS is a 
composition of Network Functions (NFs), defined in terms of 
the individual NFs and the mechanism used to connect them. 
A single tenant may have one or several slices in its domain. 

End User (EU) - consumes (part of) the services supplied 
by the slice tenant, without providing them to other business 
actors. 

The above business model is recursive (see Ordonez et 
al., [3]), i.e., a tenant can at its turn to offer parts of its sliced 
resources to other tenants. Other variants of business models 
are presented in [17]. 

Several recent Public Private Partnership (PPP) Phase 

I/II collaborative research are running, having as objectives 

5G technologies [17]. Some of them extended the list of role 

definitions to allow various possible customer-provider 

relationships between verticals, operators, and other 

stakeholders. In [2] one can find a more refined business 

model:  

Service Customer (SC): uses services offered by a 

Service Provider (SP). The vertical industries are considered 

as typical examples of SCs.  

Service Provider (SP): generic role, comprising three 

possible sub-roles, depending on the service offered to the 

SC: Communication SP offers traditional telecom services; 

Digital SP offers digital services (e.g., enhanced mobile 

broadband and IoT to various verticals); Network Slice as a 

Service (NSaaS) Provider offers an NSL and its services. 

The SPs have to design, build and operate services using 

aggregated network services.  

Network Operator (NOP): orchestrates resources, 

potentially from multiple virtualized infrastructure 

providers (VISP). The NOP uses aggregated virtualized 

infrastructure services to design, build, and operate network 

services that are offered to SPs.  

Virtualization Infrastructure SP (VISP): offers 

virtualized infrastructure services and designs, builds, and 

operates virtualization infrastructure(s) (networking and 

computing resources). Sometimes a VISP offers access to a 

variety of resources by aggregating multiple technology 

domains and making them accessible through a single 

Application Programming Interface (API).  
Data Centre SP (DCSP): designs, builds, operates and 

offers data center services. A DCSP differs from a VISP by 

offering “raw” resources (i.e., host servers) in rather 

centralized locations and simple services for consumption of 

these raw resources.  
The hierarchy of this model (in the top-down sense of a 

layered architecture) is: SC, SP, NOP, VISP, DCSP. Note 
that, in practice, a single organization can play one or more 
roles of the above list. 

III. A GENERIC 5G MANAGEMENT META-ARCHITECTURE 

The analysis of the convergence degree between many 

architectural proposals (in 5G and in particular, in 5G 

slicing) leads to the question: is there any high-level 

consensus architecture?  Recently, the document [2], 

authored by 5G PPP Architecture Working Group has 

identified a set of requirements for a consensus/meta 5G 

high-level architecture (collecting some M&O fundamental 

functionalities). The identified features are general for 5G 

and in particular applicable also to the slicing approach. 

This architecture should be able to support:  

a. individual control of NFs (their distribution/placement, 

number of instances, deployment of an execution 

environment, management of the instances’ states, start/stop 

the instances). 

b. individual NFs chaining into services (NF graphs) 

facilitated by different control mechanisms at network level 

(e.g., the NFs chaining can be SDN -controlled).  
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c. different underlying execution environments: various 

virtualization techniques (virtual machines (VM), 

containers, or plain processes) in clusters of different sizes 

(from a CPU board to an entire large-scale data center) over 

different, specialized “technological domains” - i.e., from 

some simple hardware, up to complex networking 

environments (wireless, optics, cable). 

d. working across different “organizational”, or 

administrative domains, i.e., owned by network operators or 

companies and using various business models (e.g., network 

operators can be separated from cloud infrastructure 

operators).  

e. a large range of applications with different specific 

requirements (in terms of resource, deployment, 

orchestration and optimization goals);  

f. subdivision of the infrastructure in logical separated 

and isolated slices – while offering different levels of 

guaranteed performance to their tenants. 

Note that slicing capabilities – can be seen as part of a 

M&O system. However, there is no general consensus on 

this inclusion. There are proposals to position a slicing 

system underneath or above a MANO system. 

Several core roles have emerged from the above 

requirements: end user, function developer, application 

developer, validation and verification entity, tenant (owner 

of applications), operator (not necessarily encompassing 

slicing operator) infrastructure provider (network, cloud), 

etc., [2]. These can be mapped onto the roles described in 

Section II. Overlaps can exist between some of the above. 

Also, the mapping of the above roles on real organizations 

roles is flexible. 

The requirements listed above actually drive the 

definition of the M&O meta-architecture, in the sense that 

no matter the solution will be, the six functionalities should 

be included. These define a general level of convergence 

from architectural point of view. A particular architecture 

will be a refinement of the meta-one. 
Another general aspect is related to the different time 

scales of different operations. One can distinguish between 
“orchestration” and “control” actions. The first are mid-
long-time scales operations, relatively heavy-weight (e.g., 
optimization of the overall structure of a service, group of 
services, or slices). The second class comprises short time 
scales operations (e.g., light-weight operations, flow routing, 
etc.). We defend here the idea that such a logical separation 
should exist (it is natural) between functional elements 
performing the orchestration w.r.t. those dedicated to control; 
however, in different refinements of the meta-architecture 
this separation is not quite obvious; this, again, leads to 
heterogeneity of approaches. 

The basic framework for a high-level meta-architecture is 
offered by ETSI NFV (Figure 1). The main M&O blocks are: 
the NFV Orchestration (NFVO), VNF Manager (VNFM) 
and Virtual Infrastructure Manager (VIM). If the principle of 
separation between the orchestration and control is applied, 
then the specific network configuration tasks (e.g., 
connectivity - related) can be outsourced to a separate SDN 

controller, working under command of the NFVO. An 
alternative could be, to split the NFVO into two parts – 
orchestrator and controller. 

 

 

Figure 1.  Network slice management in an NFV framework  (ETSI GR 

NFV-EVE 012 V3.1.1, [14] ) 

NFV -Network Function Virtualization; EM - Element Manager; 
MANO - Management and Orchestration (NFVO – NFV Orchestration; 
VNFM – VNF Manager; VIM Virtual Infrastructure Manager); VNF/PNF –
Virtual/Physical Network Function; NFVI -NFV Infrastructure; NS-
Network Service; OSS-Operations Support System. 

 
The slicing support feature (i.e., yes/no) introduces 

significant differentiation between particular architectures. 
The slice management can be included into the NFVO 
(because a network slice instance (NSLI) can be actually 
seen as a guaranteed network service), or a separate slice 
manager exists (controlled by NFVO). The service 
management can be defined as separated from resource 
management, or they can be treated together. A cleaner 
architecture is resulting in the former case. 

In multiple domain cases, the NFVOs should federate in 
some form with peer NFVOs, placed in a single or in 
multiple organizations. In some approaches, a hierarchy of 
service management instances is developed, having on top a 
multi-domain manager (working at abstract level) and then 
single-domain managers. The latter should perform also peer 
interactions. 

A typical set of functional M&O blocks for a single-
domain meta-architecture is [2] (top-down ordered levels): 
[Service management, Orchestrator, (MANO controller, 
SDN controller), VIM, Resources]. In a multi-domain 
environment, each domain should have the previous set and 
above all a multi-domain service manager should exist. Note 
that inter-domain (horizontal) peer interactions must exist 
between peers (e.g., Orchestrator_X <---> Orchestrator_Y). 

The basic 5G slicing high level architecture proposed by 
ETSI [14] (Figure 1), can be considered as a meta-
architecture comprising the six features exposed above. To 
the original ETSI NFV architecture [7][8], several new 
functional blocks have been added in order to support the 
network slicing (ETSI-NFV EVE 012 [14]). 

The 3GPP TR 28.801 document [15] defines three new 
management functions: Communication Service 
Management Function (CSMF) – it translates the 
communication service requirements to NSL requirements; 
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Network Slice Management Function (NSMF) - responsible 
for the management (including instances lifecycle) of NSLIs 
(it derives network slice subnet requirements from the 
network slice related  requirements); Network Slice Subnet 
Management Function (NSSMF) - responsible for the 
management (including lifecycle) of Network Slice Subnet 
Instances (NSSIs).  

An interface is defined, i.e., Os-Ma-NFVO Reference 
Point (RP) with ETSI NFV-MANO. To interact in an 
appropriate way with NFV-MANO, the NSMF and/or 
NSSMF need to determine the type of NS or set of NSs, 
VNF and PNF that can support the resource requirements for 
a NSLI or NSSI, and whether new instances of these NSs, 
VNFs, and the connectivity to the PNFs, need to be created, 
or existing instances can be re-used. 

Starting from the above basic architecture and 
considering different visions (shortly presented in the 
Introduction section), several groups developed a large set of 
variants of refined architectures [17]. Some of them are 
substantially different from each other. Currently there is a 
high heterogeneity seen in this area. The question analyzed 
in this paper is: how much convergence/similarity and how 
much mutual compliancy exists among them?  

IV.  WHERE DOES  THE HETEROGENEITY COME FROM? 

This section will summarise the factors leading to   
heterogeneity in the area of particular architectures. Note 
that, given the topics complexity, this analysis cannot be 
exhaustive. Some aspects are not touched, or only briefly 
mentioned, such as: abstraction aspects, slice isolation and 
security, slice composition, monitoring issues and slice 
optimization, details on multi-domain interactions, 
technological details and so on.   

The services deployment is inherently heterogeneous, 
depending on applications to be supported. An example is 
the traffic locality property (at the edge of the network/slice 
or crossing the core part). An orchestrator should be aware of 
such traffic properties and, if necessary, deploy the 
corresponding network functions at the mobile edge. The 
orchestrator needs to have enough topology information of 
slices in order to be able to install appropriate functions at 
right places. 

The execution environments at the infrastructure level 
could also be heterogeneous. The infrastructure should 
provide an interface to the orchestrator, via which different 
functions execution can be started, stopped, paused, or 
migrated; the interface also provides means to influence the 
transport of data. Variants can exist: 

• The infrastructure hides (to MANO) its information 
on the type of execution elements available. The 
infrastructure management chooses the right (i.e., 
“functionally possible”) realization of a function 
(virtual machine (VM) or container, etc.). This 
abstraction simplifies the MANO tasks, but makes 
difficult for the infrastructure manager to decide 
what is “performance-optimal” in the absence of 
information about the performance requirements of 
an entire service, and the relationships to other 
services. 

• The infrastructure provides to the MANO 
information on available types of execution 
resources (quantity, locations, etc.). So, the MANO 
has enough information to optimize the execution 
environment. The price paid is a higher burden for 
MANO. Note that such an approach should consider 
the degree of trust between the infrastructure 
provider and MANO entity, especially in multi-
domain environment. 

The hardware heterogeneity at infrastructure level can 
also determine many variants, e.g., virtualization methods 
and other factors (e.g., Field programmable gate arrays 
(FPGA), Graphics processing unit (GPU) implementations, 
hardware accelerators, etc.). 

The classical principle of vertical separation of services 
in network-related (i.e., connectivity–oriented) and 
application-level services (e.g., caching, video transcoding, 
content-oriented, web server, etc.) could be preserved or not. 
The separation will require one orchestrator vs. separate 
network/service orchestrators. One can speak about 
segregated or integrated orchestration, respectively. 
Concerning slicing, one can define some slices offering 
essentially connectivity services and other dedicated to high-
level applications. The clear separation of areas of 
responsibility over resources could be an advantage for 
operational stability (e.g., a segregated RAN orchestrator 
could still maintain basic RAN services even if an 
application-oriented orchestrator fails). On the other hand, 
the integrated orchestration could be attractive, in particular 
for operators, if both kinds of services could be orchestrated 
in the same fashion (and possibly even with the same 
orchestration infrastructure). These two options also 
determine heterogeneity at M&O architectural level. 

 Segregated orchestrators lead to a more complex overall 
architecture. One must assign areas of responsibilities from a 
resource perspective (which orchestrator controls - what 
resources); one should identify services pertaining to each 
orchestrator. The split of service is also a problem, i.e., the   
service description should define the “network” and 
“application-facing” parts of the service. Aligning the control 
decisions taken by these two kinds of orchestrators in a 
consistent way is also not trivial. In an integrated 
orchestration approach, all these problems disappear. 
However, an integrated orchestrator might be very complex 
if required to treat substantially different services (a one-
size-fits-all orchestration approach is rather not the best 
choice). An integrated orchestrator is a more challenging 
piece of software (from both dependability and performance 
perspectives) but would result in a simpler overall 
architecture.  

Considering the above rationale, we defend the idea that 
from the slicing point of view, a segregate orchestrator is a 
better choice. 

However, in practice, both approaches have been 
pursued in different projects. Currently, a final verdict 
commonly agreed, on segregated versus integrated 
orchestration is not yet available. Apparently, there is no 
need to standardize this option, as long as both of them 
could be realized inside a meta-architecture. So, for the time 
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being, we can state that M&O heterogeneity, from this point 
of view, will last. 

Another architectural choice is on “flat” or 
“hierarchical” orchestration. In the flat solution, a single 
instance of a particular orchestrator type is in charge of all 
assigned resources. In the hierarchical solution, there are 
multiple orchestrators (a “hierarchical” model is needed, 
when orchestrators know to talk to each other). Note that a 
hierarchical orchestrator is not necessarily a segregated one, 
because all hierarchy members could deal with the same type 
of services. 

In many projects and studies, the hierarchical M&O 
option is chosen [6][17]-[20]. However, several issues 
should be solved in each of the two solutions [2]: 

• The number of hierarchy levels and each member 
responsibility area could be fixed or adaptive (upon 
load changes the responsibility areas can be 
split/merged; new hierarchy levels can be 
added/removed and new orchestrator instances can 
be started or some old ones can be stopped). 
However, the adaptive option is highly complex, 
given the inherent dynamicity capability required. 

• North/south vertical interfaces between the 
orchestrators must be defined. In a flat model, the 
service requests are received by an orchestrator’s 
northbound interface (NBI). At its south bound the 
orchestrator communicates with NBI of the 
abstracted infrastructure (VIM). These two NBIs are 
structurally different. In a hierarchical model, an 
orchestrator should be able to communicate with a 
lower level orchestrator through a different interface 
than for VIM.  So, an orchestrator should be able to 
use different NBIs (NBI of a VIM, or NBI of a 
lower-level orchestrator). It is still in study to create 
uniform interfaces; the advantage would be that from 
the perspective of a higher-level orchestrator, it 
always talks to a VIM-style interface. The recursive 
orchestration could be much easier implemented.  

• Horizontal interfaces (east/west) should be defined 
between peer orchestrators (those who are on the 
same level), if they are allowed to negotiate directly 
with each other (for resources). Such interfaces are 
naturally to exist in cross-domain slicing scenarios. 

• Multi-domain scenarios create new problems (e.g., 
in the case of a multi-domain “federated” slice) 
[6][18]. In a flat model, each orchestrator of a 
domain is actually multi-orchestration capable, i.e., it 
can discuss/negotiate with other domains’ 
orchestrators. In the hierarchical model, a higher-
level orchestrator could exist, in charge of 
harmonizing multiple organizations cooperation. 
However, several issues are not fully solved today: 
which entity would run that multi-domain 
orchestrator, trust issues, preservation of domains 
independency, assuring the fairness, etc.  

• Mapping of the orchestration entities (and their 
areas of responsibility) onto “domains” (in a very 
general sense of the word) is still an open research 

issue and it is also a factor of heterogeneity of the 
refined M&O architectures. For instance, one could 
have separate orchestrators for different 
technological domains (e.g., computational 
resources, optical networking infrastructure, wireless 
edge, etc.). However, the word “domain“ can be 
associated to organizations/companies boundaries. 
Such domains have overlap with the technological 
ones.  A third semantic is that a “domain” could be a 
subdivision of a larger infrastructure into an edge 
domain, a core domain, etc. (each one spanning 
multiple technologies, possibly dealing with all 
kinds of services in a non- segregated way). 

• Relationship of the M&O system and a slicing 
system is another factor of architectural variability, 
depending on what the definition of a slice is. A 
largely agreed solution is to have a general 
orchestrator (configured offline), capable to trigger 
the construction of a new slice and then to install in 
this new slice its own dedicated orchestrator (before 
the slice run-time). To still assure the basic services 
outside any slice (e.g., packet forwarding at network 
level) one can construct an additional special 
orchestrator installed outside of all slices. Currently, 
many combinations have been proposed, and there is 
still no consensus on such matters. The convergence 
of solutions will be determined probably by the 
adoption of a more unique definition of a slice – 
which could assure better inter-operability.  

V. EXAMPLES  OF SLICED 5G MANAGEMNT AND 

ORCHESTRATION ARCHITECTURES  

This section will provide some examples to illustrate the 
major M&O options and also the heterogeneity of the refined 
architectures. Given the limited dimension of this paper, the 
examples are included mainly for illustrative purposes, i.e. 
this text cannot cover a large set of refined architectures. 

The 5GPPP Working Group details a 5G multi-domain 
architecture by defining four planes [1]: Service, M&O, 
Control and Data planes. The architecture also includes a 
Multi-Domain Network Operating System containing 
different adaptors and network abstractions above the 
networks and clouds heterogeneous fabrics. The M&O plane 
comprises a general Service Management, the Software-
Defined Mobile Network Orchestrator (SDMO) and the 
ETSI NFV lower level managers (i.e., VNFM and VIM). 
The SDMO is composed of a domain specific application 
management, an Inter-slice Resource Broker and NFV-
NFVO. The SDMO performs the E2E management of 
network services; it can set up slices by using the network 
slice templates and merge them properly at the described 
multiplexing point. Note the definition of a separated Control 
Plane. It is “horizontally” separated in two parts: intra and 
inter-slice control functions. “Vertically”, it is organized in 
SDN style, i.e., with three planes: Control applications (inter 
and intra-slice); SDN controllers; SDN nodes (these are 
actually slicing control function blocks realized as 
PNF/VNFs). Note also the flexibility of SDN-NFV 
cooperation: some slicing control functions are seen and 
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realized as SDN nodes.  The SDN controllers are two types: 
Software-Defined Mobile Network Coordinator (SDM-X) 

and Software-Defined Mobile Network Controller (SDM-C). 
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Figure 2. Run-time view of a multi-domain slicing hierarchical architecture example 1  

(adapted from ETSI GR NFV-EVE 012 [14] and Ordonez-Lucena [3][19]) 

 
NS – Network Service; NSL - Network Slice; VNF – Virtualized Network Function; VNFM – VNF Manager; SDN Software Defined Networking; LCM –

Life Cycle Management; VIM – Virtual Infrastructure Manager  

In Figure 2, a multi-domain hierarchical slicing 
architecture (viewed at run-time phase) is presented 
according to the proposal from ETSI GR NFV-EVE 012 [14] 
and J.Ordonez-Lucena et al. [3][19]. The main M&O entity 
is the Network Slice Provider (NSLP). Note the multiple 
levels of orchestrators and separation between service and 
resource management. Inside NSLP, a highest layer NSL 
Orchestrator (NSLO) (configured offline) has a main role in 
the creation phase of slices and also in the run-time phase. In 
the creation phase, NSLO receives the order to deploy a 
NSLI for a tenant (or the NSLP decides itself to construct a 
slice). The NSLO should have enough information 
(including on multi-domain resource availability) in order to 
check the feasibility of the order. To accomplish this, it 
interacts with a lower level Resource Orchestrator (RO) 
(which aggregates resource information from several 
domains (InPs)), and also accesses the VNF and NS 
catalogues. 

The NSL provider plays a role of an infrastructure tenant; 
it rents the infrastructure resources owned by the underlying 
infrastructure providers, and uses them to provision the NSL 
instances. The RO uses the set of resources supplied by the 
underlying VIMs/WIMs and optimally dispatches them to 
the NSL instances. All the NSL instances are simultaneously 
provided with the needed resources to satisfy their 
requirements and preserve their performance isolation. Note 
that in this high-level architecture proposal it is not detailed 
how the multi-domain capable RO is implemented in order 
to assure inter-domain independence.  

For each network slice instance (NSLI), individual M&O 
entities are dynamically created. Each NSLI has its own 
management plane (to get slice isolation) composed of: NSL 

Manager, NS Orchestrator (NSO), Tenant SDN Controller 
and VNF Manager (VNFM). 

Taleb et al. [6] recently proposed a multi-domain slicing 
hierarchical, complex orchestration architecture (see Figure 
3). It is structured into four major strata: Multi-domain 
Service Conductor, Domain-specific Fully-Fledged 
Orchestration, Sub-Domain Management and Orchestration 
(MANO) and Connectivity, and Logical Multidomain Slice 
Instance stratum. The architecture introduces (at top level) a 
novel architectural plane - Service Broker (SB), to handle 
incoming slice requests from verticals, for instance Mobile 
Virtual Network Operators (MVNO), and application 
providers. The main SB operations are: NS admission 
control and negotiation, considering service aspects; 
management of slice user/owner relationship enabling a 
direct tenant interface with the MSC plane; billing and 
charging; NSLI scheduling, i.e., start and termination instant 
of time, related with slice composition and decommission.  

Below the SB, a Multi-domain Service Conductor (MSC) 
plane is defined, to perform service management across 
federated domains. The MSC stratum analyzes and maps the 
service requirements of incoming multi-domain slice 
requests onto the respective administrative domains. It also 
maintains the desired service performance throughout the 

entire service life-cycle. Inside MSC, a Service Conductor 
(SC) is placed on top; the SC analyses and maps the service 
requirements of incoming slice requests onto appropriate 
administrative domains and maintains the desired service 
performance during service lifecycle. Below SC, a Cross-
domain Slice Coordinator is defined for each slice, which 
aligns cloud and networking resources across federated 
domains and carries out the Life Cycle Management (LCM) 
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operations of a multi-domain slice. It also establishes and 
controls inter-domain transport layer connectivity, assuring 
the desired performance. A multi-domain NSLI can combine 
several Fully-Fledged NSLIs that belong to distinct 
administrative domains, to get an E2E multi-domain (i.e., 
federated NSLI).  

For each domain a Fully-fledged NetSlice Orchestration 
Plane is constructed, dealing with specific operations 
associated to slices instance in that domain (such as service 
management and slice lifecycle management). The lower 
layers of this specific orchestration plane comprise NFV 
MANO functionalities (NFVO, VNFM and VIM). Low level 
connectivity tasks between VNF/PNFs are performed by an 
SDN controller.  

The 5G-MoNArch H2020 project [20] develops a 
hierarchical architecture consisting of four layers: Service, 
M&O, Controller and Network layer (similar to that 
proposed in [1] by 5GPPP). The overall functional 

architecture is presented in Figure 4. The Service layer 
comprises Business Support Systems (BSS), business-level 
Policy and Decision functions, and further applications and 
services operated by a tenant or other external entities.  

The M&O layer contains M&O functions from different 
network, technology, and administration domains (e.g., 
3GPP public mobile network management, ETSI NFV 
MANO, ETSI Multi-access Edge Computing functions 
[ETSI MEC16], management functions of transport network 
or enterprise networks. The M&O layer is divided into an 
End-to-End (E2E) service M&O sublayer and an additional 
sublayer containing domain-specific management functions. 
An E2E network slice is composed of Network Slice Subnet 
Instances (NSSIs), typically each from a different network 
domain, including subnets from radio access network (RAN), 
transport, and core network domains, or private networks. 
The M&O layer performs cross-domain coordination actions.  
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Figure 4. 5G-MoNArch high-level structure of the overall functional architecture (Source: [20]) 

 
Note again the architectural separation between the 

management and control. The Controller layer comprises 
two types of controllers- cross-slice and the intra-slice (XSC 
and ISC, respectively). On top of the controllers, there are 
Control Applications; together they realise the network 
programmability in SDN style. Each network domain has a 
dedicated controller that is aware of the domain technology 
and implementation characteristics.  

Other architectures are proposed and developed in 
different research projects [17]. Again, all of them satisfy the 
characteristics of the meta-architecture described in Section 
III. However, different specific developments are present in 
their refined version. 

VI. CONCLUSIONS AND FUTURE WORK 

This is an overview-type paper; it analyzed different 
M&O architectures for 5G slicing, in order to evaluate the 
degree of their similarity/convergence, given the large 
variety of proposals existing in various studies, standards and 
projects. 

It has been shown that business model definitions 
(actors) and their roles (Section II) have an important impact 
on the high-level definition of the architectural assembly. 
Actually, the variety of business models is a primary factor 
of architectural heterogeneity, given the different definition 
of actors and roles, adopted mainly from business reasons 
and only secondly from technical ones. Also, the definition 
of a slice itself is still not globally agreed upon and this 
naturally leads to different architectures. 

 However, a unifying meta-architecture has been defined 
(see Section III), answering to some basic requirements for 
5G systems and, in particular, for 5G M&O slicing. It has 
been derived from ETSI MANO work complemented with 
additional functionalities slice-oriented. The most relevant 
architecture examples found in literature and developments 
are essentially compliant with the basic meta-architecture. It 
is important to note that, all relevant architectures proposed 

in different studies, standards and projects generally try to 
achieve the main meta-architecture capabilities. 

On the other hand, many factors are inducing 
heterogeneity of the refined architecture variants, such as: 
multi-domain, multi-tenant, multi-operator, multi-technology  

 Future work can go further to consider more deeply the 
multi-x aspects, implementation and performance. Future 
work can concentrate on M&O issues such as: an appropriate 
cooperation between slice-specific management functional 
blocks. Policies need to be captured in a way that they can be 
automatically validated. This automation enables slice-
specific functional blocks to be authorized to perform the 
corresponding management and configuration actions in a 
timely manner. 

Designing computationally efficient resource allocation 
algorithms and conflict resolution mechanisms at each 
abstraction layer is also a way to flexibly assign resource on-
the-fly to slices.  

Lastly, one should mention new approaches for 5G 
slicing M&O architectures: usage of artificial intelligence 
and in particular, machine learning techniques in order to 
provide more M&O automation and capabilities of dealing 
with big volumes of data [21]-[24]. This domain is only at its 
beginning, so is an open field for further studies. 
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Abstract—This paper focuses on the concept of Network
Function Virtualization (NFV): the implementation of requests
consisting of various service functions on servers located in
data centers. This paper attempts to minimize both the cost
of routing and service function assignment of requests from
source to destination node on a network. This problem falls
under the class of Integer Linear Programming (ILP), which
is NP-Hard and cannot be solved in polynomial time. Towards
developing a solution, it is proposed to split the problem into two
separate optimization subproblems: shortest path routing and
service function assignment. We utilize Dijkstra’s Shortest Path
algorithm and a Greedy method for service function assignment
to propose a new heuristic algorithm that minimizes the total cost
of routing and service functions assignment. The experimental
results suggest that the proposed algorithm matches the optimal
ILP solution within acceptable limits.

Keywords – Network Function Virtualization; Integer
Linear Programming; Dijkstra’s Shortest Path Algorithm;
Greedy Heuristic.

I. INTRODUCTION

In the last few years, the rise of powerful new networking
technologies and big data has generated a strong need for
equally powerful, versatile network services. Internet traffic
is higher than it has ever been, and continues to grow in
an exponential fashion. The current technologies available to
respond to this increased need are inflexible, featuring rigid
physical servers that host several separate packages of an
operating system with its respective network functions. These
functions, such as Deep Packet Inspection, Firewalls, and Con-
tent Delivery Network (CDN) Servers, are chained to exactly
one operating system, dramatically reducing the efficiency of
their host. Servers are forced to run at efficiencies far below
their optimal rate, and as the demand for traffic increases
has become more and more dynamic in nature, this current
technology is simply inadequate. The concept of Network
Function Visualization (NFV) has risen as a solution to these
presented challenges. NFV, at its core, involves the deployment
of several network functions in the form of software on high
volume shared servers in data centers. Network controllers
dictate the route of this flow from the source node, through
the data centers, and to the destination. This concept allows
for the programmability of network control, thus allowing the
network to adapt flexibly to the required functions. Also, NFV
greatly increases the efficiency of each of these servers, and
while there remains room for improvement, the decoupling
of function and operating system offers versatility with the

potential to break through the current limitations. The process
of implementing virtual network functions onto a single server
and allocating the necessary resources to carry it out is called
service function chaining (SFC). SFC creates a chain of dif-
ferent services to be carried out in an appropriate order, taking
available resources, size, and other factors into consideration.
This process may be automated to provide the fastest and most
efficient execution of a set of assigned services, and this has
been the focus of much of the previous work regarding the
topic.

Section II delves into the contributions of this paper with
respect to existing solutions. Section III establishes the math-
ematical model of the problem, including the constraints
and objective function that are to be minimized. Section
IV introduces and explains the algorithm we have devised
using pseudo-code and a run-time analysis in comparison with
existing solutions. The experimental results are graphed and
explained in Section V, and Section VI contains the conclusion
and final remarks.

II. RELATED WORK AND PAPER CONTRIBUTION

Previous authors have utilized an ILP based solution in order
to place virtual network functions into appropriate data centers.
These authors have also provided heuristics and several ap-
proximation algorithms to solve this problem. However, unlike
this proposed model, few of them have taken into consideration
the routing cost from source to its destination while assigning
and placing network functions.

Blenk et al. [1] delved into the placement of hypervisors,
which serve as a layer between a Software Defined Network
(SDN) controller and networks, consisting of various neces-
sary functions. The authors stated the importance of a ”good
placement” of these hypervisors. Amaya et al. [2] explored
the specifics of service chaining, creating a model that allows
various orderings to be ranked and evaluated. They also derive
a route from their ordering and apply various constraints to the
data centers. Ghasem et al. [3] explored the details of service
chaining and the concept of network function virtualization,
while Addis et al. [4] focused on the benefits of optimizing
the route taken by function virtualization requests. Crichigno
et al. [5] considered a routing and placement scheme like the
one proposed in this work, however they propose a different
heuristic to solve the problem. Subsequent analysis in this
paper suggests that the proposed algorithm has superior run
time complexity as compared to Crichingo et al. [5]. Cohen,
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et al. [6] proposed a near optimal placement of virtual net-
work functions using approximation algorithms guaranteeing
a placement with theoretically proven performance. Luizelli et
al [7] formulated a network function placement and chaining
problem and proposed an ILP model to solve it. Moens et
al. [8] proposed a formal model for virtual network function
placement (VNF-P) with focus on a hybrid scenario with part
of services provided by dedicated physical hardware and the
rest provided using virtualized service instances. Gupta et al.
[9] provided a mathematical model for the placement of VNFs
which ensures the service chaining as required by the traffic
flows.

This paper is unique in attempting to explore a solution
toward minimizing cost by splitting the problem into two
subproblems: optimization of both network service function
assignment among data centers and the routing cost. Since the
problem is ILP, which is NP-Hard and cannot be solved in
polynomial time, we search for a solution of lower complex-
ity. Utilizing a Greedy method and Dijkstra’s shortest path
algorithm [10][11], we create a heuristic algorithm in order to
minimize both costs. The algorithm provides complete source
to destination route for all requests along with the assignment
of the network functions requested.

III. MATHEMATICAL FORMULATION OF THE PROBLEM

A. Model

We represent the network using a graph G = (V,E), where
V represents the set of nodes on the graph and E represents the
links that connect each node. In this set V of nodes, we define
derived subset D ⊆ V as the set of data centers where each
network function will be virtualized. Each network function
is denoted by f ∈ F . A request r ∈ R from source node
srcr to destination node dstr contains a group of n functions
fr,1, fr,2, . . . , fr,n ∈ Fr to be implemented by the network.
For a pair of nodes (i, j) ∈ E, ci,j is the predetermined
cost of traversing that link, from node i to node j. xri,j is
a binary variable (either 0 or 1) that denotes whether that
link is traversed or not by request r. For each data center
d ∈ D, Wd is the maximum capacity available on data center
d to virtualize the network function. There are many types
of resources that may be denoted by this variable, including
storage, memory, and CPU cores. We denote the resource
required to virtualize network function f ∈ F from data
center d ∈ D as wd,f , and the cost of virtualizing the network
function on the data center is denoted by cd,f . We define yrd,f
as another binary variable, specifying whether or not a function
in f is virtualized or not on a specific data center d on a certain
request r.

B. Objective

This problem involves routing and assignment, so it requires
two functions to optimize the problem.

First, we aim to minimize the total Service Function Assign-
ment cost across the given request. That is, the sum, across
all services f ∈ F and data centers d ∈ D, of the cost of

implementing a given function multiplied by whether or not
the service is implemented (crd,f · yrd,f ).

min
∑
r∈R

∑
f∈F

∑
d∈D

crd,f · yrd,f (1)

Next, we aim to minimize the routing cost for all requests
r ∈ R, given as the sum across all pairs (i, j) ∈ E of the
product of associated cost and whether that link is traversed
or not (ci,j · xri,j).

min
∑
r∈R

∑
(i,j)∈E

ci,j · xri,j (2)

The overall objective function is to minimize both the
service function assignment cost, as well as total routing cost.

min
∑
r∈R

∑
(i,j)∈E

ci,j · xri,j + min
∑
r∈R

∑
f∈F

∑
d∈D

crd,f · yrd,f (3)

C. Constraints

We constrain decision variable xri,j to equal 1 when the link
is traversed from node i to node j in a route r and 0 when
not traversed:

xri,j =

{
1 if traversed
0 else (4)

Similarly, decision variable yrd,f is set to 1 when a service
function f is assigned to the data center d in a route r and 0
when it is not:

yrd,f =

{
1 if assigned
0 else (5)

The third constraint governs the virtualization of each net-
work function f for a route r, allowing each to be implemented
only once on a data center.∑

d∈D

yrd,f ≤ 1,∀r ∈ R, f ∈ F (6)

Additionally, we must ensure the balance of inflow and
outflow for each node. Thus, we create a flow constraint for
each node traversed in a particular route. The source node must
have an outflow of 1, while the destination has an outflow of
-1. Every node in between must have a net flow of 0, where
the inflow equals outflow.

∑
(i,j)∈E

xri,j −
∑

(i,j)∈E

xrj,i =

 1, i = srcr
−1, i = dstr
0, otherwise

(7)

Each data center has a maximum ability to implement
functions, and we attempt to prevent possible overuse of a
data center d by adding a capacity constraint to each d. This
constraint prevents each data center from virtualizing functions
whose total resource requirement exceeds the given capacity
of the center.∑

f∈F

wd,f · yrd,f ≤Wd,∀r ∈ R, d ∈ D (8)
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We must ensure that there is both an inflow and outflow
out of an assigned data center. Therefore, we require the
outflow at each data center to be greater or equal to the binary
variable denoting its activation. A data center d that virtualizes
a function f for route r, for example, will have a yrd,f value
of 1; this constraint requires its outflow to also be at least 1. A
data center that is unused, meanwhile, may carry any outflow.

∑
j∈V

xri,j ≥ yrd,f ,∀i ∈ V, d ∈ D, r ∈ R (9)

D. Proposed Solution

The above problem belongs to the class of ILP problems,
which are NP-Hard problems that cannot be solved in poly-
nomial time. In order to develop a heuristic solution to the
problem, we propose splitting the overall problem into two
separate optimization subproblems: a) find the shortest route
from a source to a destination node, and b) assignment of the
network functions through appropriate data center from source
to destination node. This novel approach leads us to propose
a heuristic that will utilize Dijkstra’s shortest path algorithm
and a Greedy network function assignment algorithm to solve
the problem.

First, we have an assignment problem, with an objective
function given by (1). We also utilize (5) governing data center
use, (6) limiting service functions to be implemented just once,
and (8) that applies the capacity constraint.

We can then model the remainder of the problem as a pure
shortest path problem, using Dijkstra’s algorithm to develop a
solution. For this, we have an objective function given by (2),
and constraints (4) and (7).

Finally, we can tie the two problems together using (9),
giving us a solution to the overall problem.

IV. ALGORITHM FOR MODIFIED ROUTING AND GREEDY
ASSIGNMENT

Based on the above problem split, we propose an algorithm
using Dijkstra’s shortest path and a Greedy heuristic algorithm
to assign network functions to solve the problem.

A. Proposed Modified Dijkstra’s Algorithm with Greedy Ser-
vice Function Assignment

We propose a heuristic algorithm that may be utilized on
networks. The algorithm requires an input of a graph G with
vertices V and edges E. In addition, we specify the costs
of implementing a service on each data center (crd,f ) and the
cost of routing services from all nodes i to j (ci,j). Finally,
we set the capacity of each data center (Wd) and the resources
taken by each network function on a data center (wd,f ). The
algorithm returns values for xri,j which dictate the route taken
by the network functions, as well as yrd,f , which denotes the
data centers that are assigned to implement each network
function. The algorithm also assumes the use of an adjacency
matrix to implement the network graph and allow us to easily
find the neighbors of a node in the graph through lookup.

We begin by going through each of the requests in a set R.
Using the source and the destination nodes of this request, we
use Dijkstra’s algorithm to discover the shortest path for the
request, returning the list of nodes that make up the path as
SPr. From here, we create two separate lists: the first, PDCr,
will store data centers found on the shortest path given by
Dijkstra’s, while the second list, NDCr, will store data centers
that are neighbors along the shortest path. The shortest path is
iterated through and data centers found on the path are added
to the first list. Using an adjacency matrix, we define a function
neighbors(n) to return all nodes that are linked to node n.
Any data centers found among these neighbors are added to
NDCr.

Next, we provide network function assignment for the
functions requested by r. For each, we use a Greedy heuristic
algorithm in order to select a data center from all those
detected by the previous scan, using the list comprised of
the union of PDCr and NDCr. This is done by comparing
the different costs of crd,f for each data center and ensuring
that the necessary resources are available for implementation.
Once the lowest cost data center d has been located, we set the
corresponding value of yrd,f to equal 1, signifying the use of
that data center for the function. We then update the available
resources of the data center by reducing its capacity Wd by
wd,f . If the data center is on the path, the shortest path SPr

does not need to be updated. However, if the data center is
found from the neighbors list, we insert a one-link detour to
that node into SPr. This process is repeated for every function
in the request. This is the key modification to the shortest path
algorithm, hence we call it the modified Dijkstra’s algorithm.

By the process described above, we expect a majority of
the network functions requested to have been assigned and
virtualized at an appropriate data center. However, there is a
possibility that the request still has unassigned functions, in
which case we propose the use of a breadth-first search (BFS)
to locate a capable data center. Once a data center is located
by BFS, if it contains the necessary resources, we assign to it
the remaining functions and update its capacity, yrd,f , and SPr

accordingly. This is the worst-case scenario of the algorithm.
Once all functions have been assigned, we use SPr to

update the values of xri,j for the route, setting the variable
to 1 when the link is traversed. After this process has been
repeated for every request, the algorithm return xri,j and yrd,k,
for all r ∈ R.

The proposed heuristic algorithm utilizes Dijkstra’s shortest
path algorithm and a Greedy method in order to calculate an
optimal route for a set of requests R. The first component
of the algorithm uses the shortest path algorithm to find a
path SPr from the source node srcr to the destination node
dstr. The second uses a Greedy method to find an optimal
data center d ∈ D along the previously discovered path for
each service function f ∈ Fr. The Greedy method runs with
a linear complexity, while Dijkstra’s algorithm implemented
with a binary heap will run in logarithmic time. Additionally,
the neighbor search is implemented as a simple table lookup
due to the adjacency matrix implementation of the network
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Algorithm 1 Modified Dijkstra’s Algorithm with Greedy
Service Function Assignment

Input: G(V,E); ci,j∀(i, j) ∈ E ; Wd∀d ∈ D ;
wd,f , cd,f∀d ∈ D

Output: yrd,f , xri,j∀r, d, f
for all r ∈ R do
srcr = source node of request
dstr = destination node of request
SPr = Dijkstra(srcr, dstr)
initialize PDCr (set of data centers found on shortest
path SPr) as φ
initialize NDCr (set of data centers found among path
neighbors) as φ
for node n ∈ SPr do

if n ∈ D then
PDCr = PDCr ∪ n

end if
for node m ∈ neighbors(n) do

if m ∈ D then
NDCr = NDCr ∪m

end if
end for

end for
for all f ∈ Fr do

Select d ∈ PDCr ∪ NDCr, the data center that im-
plements function f at lowest cost, contains necessary
resources (Greedy Assignment)
set yrd,f = 1
update resources for d appropriately
if d ∈ NDCr then

update SPr, insert d
end if

end for
if any f ∈ Fr remains unimplemented then

run breadth-first search (BFS) starting from the most
connected node ∈ SPr

if data center d is found by BFS then
implement f ∈ Fr (provided d has necessary re-
sources available)
update yrd,f
insert path to d into SPr

end if
end if
update all xri,j using SPr

end for
return xri,j , y

r
d,f ∀r, d, f

and is O(|V |). Therefore, we may conclude that the total
algorithm is dominated by the first stage Dijkstra’s algorithm
run-time complexity. The worst case running time of our
implementation of Dijkstra’s algorithm with a binary heap is
given by O(|E|log|V |), and we call the Dijkstra’s once for
each request R in a scenario. Therefore, our total run time for
the proposed heuristic algorithm is O(|R||E|log|V |). Notably,
as a comparison, the algorithm of Crichigno et al. [5] utilizes
Dijkstra’s algorithm twice, resulting in a worst-case run-time
of O(|R||D||E|log|V |), where D is the total number of data-
centers contained in the topology. Thus the proposed heuristic
algorithm is able to run at a faster run time by a factor of |D|
as compared to the algorithm proposed by Crichigno et al. [5].

V. EXPERIMENTAL RESULTS

A. Simulation Setup

We tested the algorithm using two different network topolo-
gies. The simulations were carried out using a Python script
running on a 2.70 GHz. The first is the NSF-Net graph, form-
ing an approximate outline of the United States of America and
placing nodes at major cities, including Chicago, New York,
Atlanta, and Los Angeles. The second is a fully connected
hexagon graph with a central node connecting the 6 vertices.
The graphs of the same topologies differ from each other
in network configuration and data center specifications. For
example, Figure 1 features an NSF-Net graph, but with various
link costs. Figure 2 features the same topology, however, each
of its links has a cost of 1, and the graph denotes different data
centers. Each of these data centers implements functions at a
different price than Figure 1. Similarly, Figures 3-5 correspond
to a fully connected hexagon graph with one data center B (in
Figure 3), data centers B and C (in Figure 4) and data centers
B, C and T (in Figure 5).

For each topology, we generated 4 requests r ∈ R consisting
of a group of functions f ∈ F to be virtualized. Each
one of these requests had a different source and destination
node found across the topology that the route must traverse
between. These routes are designated by Route 1-4 in the
results (Figures 6 to 10).

For every request within each topology, we only changed
the source and the destination nodes (srcr, dstr) of the route
with respect to the various data centers. These costs of
implementing the network function on the data centers were
randomly distributed among a set of target values to provide
a more reliable testing set. The evaluation metrics for the
results are as follows: for each test case using the selected
topology configuration (from Figures 1-5), the simulation
compares the costs for the routes (Routes 1-4) as given by
the proposed heuristic algorithm with that of the optimal ILP
solution. Figures 6-10 depict the comparison of the routing
cost, assignment cost and the overall cost, given by the sum
of the routing and assignment cost, for the algorithmic and
optimal ILP solution. The next section discusses the results in
detail, in particular the gap between the proposed algorithm
and the optimal ILP solution.
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Fig. 1. NSF 1 Network Graph

Fig. 2. NSF 2 Network Graph

Fig. 3. HEXAGON 1 Network Graph

Fig. 4. HEXAGON 2 Network Graph

Fig. 5. HEXAGON 3 Network Graph

B. Simulation Results and Discussion

The first test involved the NSF-Net with routing costs
randomly generated from 1 through 5. Data centers were
placed at Nodes 12, 8, 7, and 5, with implementation costs
given by Figure 1. The data centers were chosen to emulate
central locations in the continental United States, allowing
direct access to a larger set of nodes on the graph. The
algorithm was able to compute a solution that equals the
optimal total cost in Route 1, and was within 23% over the
optimal cost in the remaining 3 routes.

In the second test using the NSF-Net, we set each route
link to 1 and increased the weights of the data center cost,
simulating an assignment cost-dominated scenario. Data cen-
ters were moved to 14, 10, 5, and 0 as seen by Figure 2. The
algorithm matched the optimal net cost in two of the routes
and was able to come close to reaching the optimal overall
cost, within 22%.

The third test involved the fully connected hexagonal net-
work, as shown in Figure 3. We designated one of the nodes on
the periphery, B, as the data center and gave the assignment
and routing costs an approximately equal weight. Since we
assigned only 1 data center, the requests were able to meet the
optimal assignment cost on each route. The overall algorithmic
cost was an acceptable range of 20% within optimal cost.

The fourth test added another data center to node C, as
shown in Figure 4. These tests were designed to add variation
to the routing costs, as the request may route through multiple
centers, incurring a different cost each time. Overall, as shown
in Figure 9, the results of the algorithm come within 24% of
the optimal case in each scenario.

The final test incorporated another data center at node T
and increased the cost of assigning each function on a node,
as shown in Figure 5. In addition, the cost of implementation
for each function was increased. In this trial, as shown in
Figure 10, the algorithm was able to come the closest to the
optimal ILP solution, within 2.9%.

Overall, we find that the proposed heuristic algorithm
produces solutions over the five different configurations that
match the optimal ILP solutions within an acceptable range,
while providing an efficient practical solution.
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Fig. 6. NSF-Net 1 route, assignment and total cost comparison for Algorithm
vs ILP Optimized
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Fig. 7. NSF-Net 2 route, assignment and total cost comparison for Algorithm
vs ILP Optimized
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Fig. 8. HEXAGON 1 route, assignment and total cost comparison for
Algorithm vs ILP Optimized
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Fig. 9. HEXAGON 2 route, assignment and total cost comparison for
Algorithm vs ILP Optimized
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Fig. 10. HEXAGON 3 route, assignment and total cost comparison for
Algorithm vs ILP Optimized

VI. CONCLUSIONS

This paper poses an optimization problem of service func-
tion assignment and shortest path for network function virtual-
ization and proposes a solution that splits the problem into two
separate optimization subproblems: shortest path and service
function assignment. The algorithm uses the combination of
a modified Dijkstra’s shortest path algorithm and Greedy
heuristic algorithm for network function assignment. Some of
the key challenges lie in thoroughly validating the algorithm
performance on larger networks. In future work, we propose
to expand the scope of testing to validate the algorithm
against larger network configurations, using more complex
optimization packages such as Gurobi, CPLEX, etc.
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Abstract - There has always been a growing need for online
access solutions that use strong authentication methods
without encumbering the user. Current solutions that are easy
to use and deploy offer weak security, while those that offer
strong security are hard to use and deploy. The solution
architecture presented in this paper allows users to continue
using their existing authentication method, which in itself may
be weak, but can be made stronger by augmenting it with
standard Bluetooth devices that are part of the user’s everyday
work environment. These Bluetooth devices seamlessly offer
additional factors of authentication without any explicit user
intervention. This approach creates opportunities for adaptive,
continuous and risk-based authentication where proximity of
known Bluetooth devices is an input to risk management
policies.

Keywords - bluetooth devices; user convenience; adaptive
online authentication; browser extension.

I. INTRODUCTION

"On the Internet, nobody knows you're a dog" [1] is an
adage and meme about identity verification on the Internet,
or rather lack thereof. It began as a cartoon caption by Peter
Steiner and was published by The New Yorker on July 5,
1993. Ironically, a quarter of a century later, we still seem to
be battling the same challenges of identity verification for
Web applications, though on a different scale. Despite the
collective desire of the security industry to get rid of
knowledge-based authentication, passwords still remain the
primary method of proving a person’s identity on the
Internet. This absence of progress has not been for lack of
trying. There have been several approaches that augment the
single authentication factor based on what-you-know, with a
second factor based on what-you-have, or even a third one
based on what-you-are. All these multi-factor solutions
demand a dedicated hardware token. While these hardware
tokens enhance the level of assurance associated with the
authentication process, they also add complexity, thereby
reducing usability, especially for millennials who are born
and raised in the social media era and shun products that lack
crisp user experience. For this reason, multi-factor
authentication techniques are generally confined to
controlled settings, such as enterprise and office
environments where the possession of dedicated tokens can
be made mandatory. However, the need for strong
authentication is universal and is equally applicable in
everyday Internet use outside these controlled environments.

This paper describes a technique of authenticating users
based on their typical surroundings and work environment,

by checking the presence of known or expected Bluetooth
devices in the proximity of the user. The list of what devices
to look for can either be explicitly specified by the user, or it
can be implicitly learned by the system through previous
successful logins.

The rest of the paper is organized as follows. Section II
provides a background to the authentication challenge, and
explains why the industry is still looking for a solution.
Section III describes the detailed design, architecture and
implementation of one such solution. Section IV offers an
analysis of this proposed architecture in terms of security and
user experience. We then offer our conclusions in Section V.

II. BACKGROUND

When using a Web browser to authenticate to an online
service provider, a user typically enters his/her credentials
into the Web page. In most cases, these login credentials are
username and password. This single (what-you-know) factor
is very easy to deploy, but universally considered weak. To
improve the security of authentication, a second factor is
added. This factor can be a smart card connected to the
computer, a One-Time Password (OTP) generated on a
dedicated device, a numeric code sent to the user’s phone,
etc. In all cases, the user has possession of this hardware
token (what-you-have) that constitutes the second factor.

This second-factor hardware token has to be issued or
configured by the service provider, thereby adding to the cost
and complexity of deployment. The user cannot unilaterally
select his/her own hardware tokens, such as one or more of
the following devices: mobile phone, wireless keyboard,
wireless mouse, wearable devices, wireless speaker, or any
other Bluetooth enabled device and then use them as second-
factor when authenticating online. These devices have to be
issued by the Identity Provider. The reason for this restriction
lies in the underlying authentication technology that
demands a tight coupling of cryptographic algorithm
between the client device and the backend authentication
server. For example, the use of OTP or Public Key
Infrastructure (PKI) requires both the device and the server
to be updated together. How do the secret algorithm and the
counter get exchanged between the device and the server?
Will authentication flow use OATH Challenge-Response
Algorithm (OCRA) [2], a challenge-response flavor of OTP?
Similar complexities arise when using public key
cryptography protocols.

The Fast Identity Online (FIDO) standard [3] addresses
some of these issues by relaxing the tight binding between
edge devices and backend authentication servers. However,
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this adds a new constraint of only using devices that have
FIDO stack built into them. The list of such devices, though
slowly growing, is still a tiny fraction of the otherwise
abundantly available Bluetooth devices.

There are additional usability concerns with existing
approaches. For example, one-time numeric codes pushed to
user’s phone assume the phone is on the network and then
also require manual action for the user to type the codes into
a browser window. Biometric systems need specialized
scanners and backend modifications. FIDO Universal Two
Factor (U2F) [3] tokens require an action on the part of the
user, such as pushing a button manually on the device.

Our solution enables an adaptive authentication
framework so that the user’s login is controlled by the
presence of Bluetooth devices that can be preselected by the
user. This authentication solution works without any explicit
user action or interaction with hardware tokens, thereby
addressing the following shortcomings identified in other
existing approaches:

1. Devices for two-factor authentication have to be
customized. They are also selected at the discretion
of the authentication server or identity provider.

2. The deployment of these two-factor authentication
devices is costly for merchants. Most often than not,
this cost is indirectly passed to the user.

3. Users are required to carry these devices, which
negatively impacts user experience.

4. The turn-around time to replace a device is long.
User cannot select a new device unilaterally.

III. PROPOSED SOLUTION

This section describes the philosophy, architecture and
implementation of the proposed solution.

A. Approach Overview

The solution presented in this paper can enable an
adaptive authentication framework so that the user’s login is
controlled by the presence of Bluetooth or Bluetooth Low
Energy (BLE) devices that are explicitly or silently selected
at user’s discretion, and not dictated by the Identity Provider.
In addition to the primary authentication method (e.g.,
username and password), the presence of such previously
identified Bluetooth devices is also checked. Virtually any
Bluetooth device can be used based on user preference.
Some examples include a user’s mobile phone, wearable
device (such as smart watch or fitness band), wireless
keyboard, wireless mouse, wireless headphone, wireless
speaker, smart pen, modern workout bench, weight scale,
etc.

Risk based authentication already relies on data signals,
such as network information, to confirm user’s location,
typing patterns to confirm user behavior, etc. Similarly,
proximity of known Bluetooth devices can also indicate a
trusted environment and hence allow for a more frictionless
user login experience.

The challenge is to build this data signal handling into
Web applications and enforce them through Web agents

running on the user’s computer. Web browsers can check the
presence of Bluetooth devices in proximity by using Web
Bluetooth Application Programming Interface (API) [5] or
browser extension. One example of such Web browser
extension is SConnect [4] that allows Web applications to
seamlessly connect to security devices using a range of
communication protocols, including Bluetooth.

B. High Level Design

The solution is largely based on common existing Web
authentication system design, with slight enhancements
added on both client and server sides in order to support the
proximity of known Bluetooth devices as second factor
authenticators. Figure 1 illustrates these components.

Figure 1. High-level block diagram of solution components.

These enhancements are simple to implement, yet
powerful in their impact on delivering a seamless and secure
authentication experience.

1) Client Modifications: On the client side, modification
is done to the authentication page where the user would
normally enter his/her username and password. The login
page is augmented through a JavaScript code that uses Web
Bluetooth API to silently scan and retrieve the list of
Bluetooth devices found in proximity of the user’s primary
access device, for example his/her Personal Computer (PC).
This API is currently only available in some modern
browser versions. However, in the cases where Web
Bluetooth API is not yet available on the user’s browser,
browser extension can be used to poly-fill the required
functionality. This is standard practice in Web application
development to compensate for missing browser capability
by using an external library or component.

A list of the Bluetooth devices which are found in
proximity of user, some minimal information about these
devices, and the credentials entered by the user are then sent
to the backend authentication server. The device
information may contain its name, type, signal strength, etc.
The user information can be as simple as user identifier, or
could include actual credentials such as password, OTP or
some other form of challenge-response.

Authentication
Server

Internet

Web Browser
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Figure 2 shows a sample of code snippet that can be
used for scanning Bluetooth devices in proximity using Web
Bluetooth API specification. Once inserted into the login
page, this script is expected to trigger itself when page is
loaded. It makes the necessary API calls to instruct the Web
browser to start scanning for Bluetooth devices. The script
collects some minimal but useful information from every
Bluetooth device detected in proximity of the device on
which this Web browser is running. It then constructs the
authentication request payload using this information. When
the user has completed the login process, the login page
along with this script is unloaded. Just before this unload
step, the script can also do necessary clean up and instruct
the Web browser to stop scanning for Bluetooth devices.

Figure 2. Code snippet for scanning Bluetooth devices.

A sample of the authentication request payload could
look like the data blob shown in Figure 3. The payload
would still contain the user credentials as before, but in
addition it will now also contain information regarding
Bluetooth devices which are found in proximity. Examples
of such information are device identifier (ID), device name,
service IDs, appearance types, transmission power class,
signal strength, and connection status. Individually each
piece of information is minimal, but when used collectively,
they are quite useful and unique enough to distinguish one
device from another. Upon receiving authentication request
payload, the backend authentication server then uses all this
information to determine whether user is really who he
claims to be.

A better alternative design could be to direct the client to
look only for a predetermined collection of Bluetooth
devices, guided through a set of high-level filter criteria.
These criteria are determined by the server and passed to the
client. The client then returns information related to devices

that match these criteria. This design has several benefits,
such as faster scanning time, collection of more relevant
device information, and thereby smaller authentication
request payload sent to the server. Furthermore, this
approach is equally secure since it significantly reduces the
risk of exposing policy or user-device mapping information.

Figure 3. Authentication payload sent by browser to server.

2) Server Modifications: On the server side,
modification is done to the back-end authentication logic
and infrastructure. The server needs to be able to accept
additional payload in the authentication request. It then
processes the information contained in this payload,
including the information about Bluetooth devices. In
addition to matching the username/password against user
database, the authentication logic now also does verification
of Bluetooth device information against the user/device
database using policies that control how this new device
information is expected to contribute to the final
authentication decision. For example, one policy may
require the presence of only one known device in the
proximity of the user, while another policy may mandate
that at least two such devices be present.

This processing not only yields a decision to grant or
deny access to requested resource, but perhaps more
importantly it also feeds the outcome into machine learning
infrastructure that will make future authentication decisions
smarter and more accurate.

C. Environment Initialization

Depending on the expected security level and type of
authentication flow that is offered, the user may be requested
to perform a set of minimal setups prior to using the system.
Performing these optional setups has benefits. It increases
the overall security of device selection and identification
process. It also provides a fine grain control for the users to
choose which devices they want to explicitly trust and use
for this purpose. This is done through two sequences: device
pairing and device binding. The user is free to choose either
of these sequences or both of them, if so desired.

1) Device Pairing: As the name suggests, pairing means
introducing two Bluetooth capable devices to each other.

GET /authenticate HTTP/1.1
{

“username”: “bob”, “password”: “1234”,
“devices”: [

{“id”: “00:11:22:33:FF:EE”,
“serviceIDs”: “0x2a01”,
“appearance”: “0x10”,
“txPower”: “4dBm”,
“rssi”: “-40dBm”,
“connected”: “false”},

{“id”: “00:12:23:34:AB:CD”,
“serviceIDs”: “0x3440”,
“appearance”: “0x20”,
“txPower”: “0dBm”,
“rssi”: “-52dBm”,
“connected”: “true”}

]
}

let btScan;
let btDevices = [];

// scan for BLE devices on page load
window.onload = () => {

let bt = navigator.bluetooth;
let opts = {acceptAllAdvertisements: true};

btScan = bt.requestLEScan(opts).then(() => {

let eventName = ‘advertisementreceived’;
bt.addEventListener(eventName, event => {
let device = event.device;
btDevices.push({
‘name’: device.name,
‘id’: device.id,
‘serviceIDs’: event.uuids,
‘appearance’: event.appearance,
‘txPower’: event.txPower,
‘rssi’: event.rssi,
‘connected’: device.gatt.connected

});
});

});
};

// stop scanning for BLE devices on page unload
window.onunload = () => {
btScan.stop();
};
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After the pairing handshake, each device knows about the
other. For example, pairing a Bluetooth headset with your
smartphone or paring the smartphone with the infotainment
system of your car. In the context of this paper user pairs
one or more Bluetooth devices to his computer. This process
is either done through tools available from the computer OS,
or can be driven through the Web application itself with the
help of either Web Bluetooth API or browser extension.
This step is optional, but preferred as it increases trust level
of the paired device, hence increasing the security of
authentication. Only connection specific information is
retrieved from the device. Device application related data
such as workout history of a fitness band, are neither needed
nor fetched during pairing. This can allay concerns about
security and privacy of user data when such devices are
used for two-factor authentication.

2) Device Binding: By “device binding” we mean the
mapping of a user account to certain Bluetooth devices. This
mapping is maintained on the authentication server. There
are two ways authentication server can construct this map:

1. The user is asked to explicitly select devices.
2. The authentication server implicitly builds this list

of devices over time, by monitoring available
devices at the time of multiple successful logins.

In the first case, once the user has logged in to online
service provider using an existing authentication method,
the Web application will use the Web Bluetooth API or
browser extension to look up for all Bluetooth devices
found in the proximity and (optionally) paired to user’s
computer. The list of these available devices is shown to
user in the Web browser. The user can now select one or
more devices he wants to bind to his account. This
information is stored in authentication server database and
all subsequent access to user account will be granted only
when the selected devices are also present at the time of
authentication.

For risk-based authentication systems where explicit
user involvement is not desired, or for user convenience, the
system can decide not to expose user to device selection
steps and can make device binding process transparent. The
authentication server automatically builds the knowledge of
which devices are relevant and associated to a user based on
the device data silently collected over time, through multiple
successful user authentications. For example, the user will
never explicitly say “I want to associate my mobile phone
and wireless mouse with my account”. However, if on every
login attempt the server notices that these two devices are
present, it will implicitly bind these to the user account.
After a certain number of such logins, as determined by the
policy, device proximity factor can be enabled. At this
point, the user can enter his login user identifier (e.g., email
address) and authentication server will allow access without
asking for any login credential, provided the same two
devices are detected in the proximity.

D. Authentication Flow

This section explains detailed flows of authentication
after the one-time environment initialization has been
completed.

1) Adaptive Silent Authentication: In this flow, all
required proximity devices are present, so the user can login
simply by providing his/her user ID. No additional
credentials such as password or OTP are required. This flow
is illustrated in Figure 4, and outlines the steps taken by a
user as well as authentication application from the initial
intent by user to login to a Web resource, to the final action
to grant access to the requested resource.

Figure 4. Adaptive authentication flow not requiring any user credential.

As shown in Figure 4, the user has two devices, D1 and
D2, in close proximity during the login attempt. The
numbered steps and message exchanges (1 to 10) are
explained below:

1. The user initiates the login process by opening a
Web browser from the access device such as a PC.

2. The Web browser client connects to the login portal
of the authentication server: the Identity Provider.

3. The Authentication server sends back the login page
to be rendered in the browser, asking the user to
enter his UserID, such as username. This login page
content also includes logic to scan for Bluetooth
devices in the proximity of the user’s computer.

4. This logic to scan for Bluetooth devices can be
implemented by some JavaScript code that is
automatically triggered by the Web browser when
the login page is loaded. This code builds a list of
devices it finds in the proximity of the user’s
computer. This is done either through direct use of
the Web Bluetooth API, or through a browser
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extension that invokes operating system level APIs
to search for Bluetooth devices.

5. In parallel, the user enters his/her UserID (not the
login credential, such as password) as required by
the Web application. This information is entered
within the same login page.

6. The Web browser sends this UserID to the
authentication server, along with the list of
Bluetooth devices found in proximity; in this case
D1 and D2.

7. The authentication server looks up the login policy
for this user, identified by UserID. It notices that the
user had previously associated two Bluetooth
devices with his/her account: a keyboard (D1) and a
smartphone (D2).

8. The authentication server analyses the list of
Bluetooth devices found in the proximity received
earlier and verifies that both devices D1 and D2 are
present.

9. The authentication server then determines that,
since both devices are present, no further
authentication credentials are required. It sends back
a “Login OK” message.

10. User is granted access to the requested resource.

The user experience of this silent login flow is similar to
password caching by the browser, or authentication server
storing a cookie in the browser and automatically granting
access to the user once that cookie is presented. However,
the proposed Bluetooth device-proximity based logic offers
a stronger assurance level since it relies on multi-factor
authentication. In addition, it allows Web applications to
create different policies to access resources of varying
security levels, or when not all the expected devices are
found in the vicinity of the access device.

2) Adaptive Step-up Authentication: An alternate flow
can be when devices found in proximity of user are different
from the expected list, thereby forcing the authentication
server to ask for additional credential from the user.
Depending upon the policy set by administrator of the
resource being accessed, this credential could be a simple
password, an OTP or even an elaborate PKI based challenge
response through a dedicated security token. This step-up
authentication flow is also triggered when no device is
found in the vicinity.

3) Continuous Authentication: The Web application can
optionally also perform continuous monitoring of the
Bluetooth devices detected during initial login to make sure
they remain in the proximity of the PC. In case they are
removed, the application can be put in “stand-by” mode
where further interaction is disallowed, until the missing
device returns. Such continuous monitoring is possible
through a browser extension. The user can now be logged in
seamlessly without having to re-enter his primary credential.
As an example of such continuous authentication, a user’s
Web session can be automatically put in “lock” mode when

he/she moves away from his/her computer with device D2
(e.g. smartphone) in his pocket, and then restored when he
returns to his/her computer.

IV. ANALYSIS OF PROPOSED SOLUTION

The design and architecture presented in this paper is a
good compromise between security and usability. It is hard
to find solutions that deliver on both. Most often,
authentication solutions that are usable are not secure, while
those that offer strong security generally do it at the expense
of usability. Similar approach has been promoted in other
reports [6] as well, further validating the value of using
Bluetooth devices for authentication.

A. User Experience

Usability and user experience (UX) are gaining
prominence in all security related products. This is not just
for aesthetics or to merely appease users. Extremely robust
and secure solutions that are not easy to use, end up
degrading overall system security since users stop using
them, and instead may find alternative options. The proposal
identified in this paper is designed to improve UX without
compromising security. It is modeled after “recognize”
rather than ask for user credentials. The intent is to reduce
user interactions with the authentication system. If a user
connects from an office network, using his laptop, during
office hours, and has his two previously identified Bluetooth
device in close proximity, some application may consider
this as sufficient authentication. Why bother the user for any
login credential in this scenario? Some critical applications
may additionally ask for only a single factor, like password.
Still other highly sensitive applications could demand a
higher assurance level of authentication like OTP or PKI
based challenge-response from a dedicated hardware token.
But this choice is based on the sensitivity of the Web
application or the value of resource being accessed. In all
cases, the surrounding environment acts as a silent “second-
factor” to authenticate the user, thereby reducing the friction
of login.

B. Security

As evident through numerous data breaches [7], attackers
can easily compromise the what-you-know factor of a user’s
login credential such as password. If access to protected
resources is controlled by this credential alone, an attacker
can have full access to the resource. The promise of two-
factor authentication (2FA) is to prevent attackers from
having this free access using stolen or shared credentials.
However, as mentioned earlier, the deployment and use of
such dedicated tokens can be cumbersome for service
providers and users alike. The silent use of Bluetooth devices
serves the same purpose, but with far less overhead. As an
attacker sends user’s credential to the server, along with any
Bluetooth devices in the proximity (if any), the server
validates this credential and then matches the list of
Bluetooth devices with the devices either explicitly bound to
the account by user, or implicitly bound by the server based
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on prior repeated successful authentications. Since the
attacker does not have the specified configuration of devices,
the login request is denied.

C. Policy

The proposed solution gives Web applications flexibility
in deciding what authentication method is needed for which
scenario. Similarly, the user is free to bind any number of
devices to his/her account. In case multiple devices are
bound to an account, the user or authentication server can
specify whether all or a specific number of devices are
mandatory for authentication. For example, a user binds
his/her phone, his/her watch, and keyboard to his/her
account, and specifies that any two of these three devices
are needed for authentication. This rule is then enforced by
the server when the user logs in.

Multiple valid login locations can be enabled with
different configurations of known devices. In this way, a
user may have a “work” or “home” configuration of specific
Bluetooth devices that need to be present when logging to
the account from these predefined locations.

D. Advantages

This adaptive and risk-based authentication using the
proximity of user selected devices offers the simplicity of a
single-factor knowledge-based authentication, but with the
added security of multi-factor authentication. It also enables
enterprise administrators to calibrate adaptive authentication
with a range of policy options. Users will see these benefits:

1. User can continue to use the existing authentication
method, e.g., password.

2. The second factor is based on devices picked by the
user, not the device enforced by service provider.

3. Use of second factor is transparent, requiring little
interaction or learning, especially when device use
is automatically detected by server.

4. User can “walk away” from the computer and Web
application is automatically put in stand-by mode.

Authentication servers will see these benefits:

1. Service provider can enforce strong multi-factor
authentication at a very low cost of deployment.

2. There is no need to distribute dedicated 2FA
hardware tokens to user. The user can use any
existing Bluetooth token.

3. Service provider can offer adaptive authentication
policies, based on resource being accessed.

4. Easy adoption by users means increased user base.

A key aspect of the approach in this paper is that
Bluetooth devices can be accessed through a standard Web
browser. There is no need to install a thick client on user’s
computer. Any Bluetooth device can be used, regardless of
what application level software stack it supports. The only
requirement is that the device advertises itself as a Bluetooth
device. This approach is different from FIDO U2F devices,
which rely on FIDO protocol stack in them. In our approach,
any Bluetooth device of user’s choice can be turned into a
two-factor authenticator hardware token. Examples of such

devices are: mobile phone, wearable devices like watch and
fitness band, wireless keyboard, wireless mouse, wireless
headphone, wireless speaker, smart pen, modern workout
bench, weight scale, etc. The list is quite long, further
validating the flexibility offered by this approach.

V. CONCLUSIONS

In the current era of digital transformation, all access
control relies on some form of user authentication. This
makes strong and context-based authentication an integral
part of any system that protects resources and only grants
access to authorized users. As the use of Internet and cloud-
based services evolves, so does the expectation of “proper”
authentication. Users now demand tailor made and fine-
grained solutions that address their needs; nothing more,
nothing less. They expect similar customization from
authentication systems. In order to respond to this trend,
identity providers will have to offer adaptive and risk-based
authentication models. The goals should be to encumber the
user with stronger authentication only if the resources being
protected are worth the effort to use these stricter measures.
The approach presented in this paper is one example of this
adaptive and seamless authentication trend. Its efficacy can
be further augmented by advances in artificial intelligence
and machine learning.
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