
ADVCOMP 2021

The Fifteenth International Conference on Advanced Engineering Computing and

Applications in Sciences

ISBN: 978-1-61208-887-7

October 3 - 7, 2021

Barcelona, Spain

ADVCOMP 2021 Editors

Cosmin Dini, IARIA, USA/EU

Evgeny Pyshkin, University of Aizu, Japan

Marcin Hojny, AGH University of Science and Technology, Poland

 1 / 58

ADVCOMP 2021

Forward

The Fifteenth International Conference on Advanced Engineering Computing and Applications in
Sciences (ADVCOMP 2021) continued a series of events on fundamentals of advanced scientific
computing and specific mechanisms and algorithms for particular sciences. The conference
contributions presenting novel research in all aspects of new scientific methods for computing and
hybrid methods for computing optimization, as well as advanced algorithms and computational
procedures, software and hardware solutions dealing with specific domains of science.

With the advent of high-performance computing environments, virtualization, distributed and
parallel computing, as well as the increasing memory, storage and computational power, processing
particularly complex scientific applications and voluminous data is more affordable. With the current
computing software, hardware and distributed platforms effective use of advanced computing
techniques, this becomes more achievable.

We take here the opportunity to warmly thank all the members of the ADVCOMP 2021 technical
program committee, as well as all the reviewers. The creation of such a high-quality conference program
would not have been possible without their involvement. We also kindly thank all the authors who
dedicated much of their time and effort to contribute to ADVCOMP 2021. We truly believe that, thanks
to all these efforts, the final conference program consisted of top-quality contributions. We also thank
the members of the ADVCOMP 2021 organizing committee for their help in handling the logistics of this
event.

ADVCOMP 2021 Chairs

ADVCOMP 2021 Steering Committee
Dean Vucinic, Vrije Universiteit Brussel (VUB), Belgium, FERIT, Croatia
Juha Röning, University of Oulu, Finland
Alfred Geiger, T-Systems Information Services GmbH, Germany
Marcin Hojny, AGH University of Science and Technology, Poland
Hans-Joachim Bungartz, TUM, Germany
Alice E. Koniges, University of Hawai‘i at Mānoa, USA
Andreas Rausch, TU Clausthal, Clausthal-Zellerfeld, Germany

ADVCOMP 2021 Publicity Chairs
Lorena Parra, Universitat Politecnica de Valencia, Spain
José Miguel Jiménez, Universitat Politecnica de Valencia, Spain

 2 / 58

ADVCOMP 2021
Committee

ADVCOMP 2021 Steering Committee
Dean Vucinic, Vrije Universiteit Brussel (VUB), Belgium, FERIT, Croatia
Juha Röning, University of Oulu, Finland
Alfred Geiger, T-Systems Information Services GmbH, Germany
Marcin Hojny, AGH University of Science and Technology, Poland
Hans-Joachim Bungartz, TUM, Germany
Alice E. Koniges, University of Hawai‘i at Mānoa, USA
Andreas Rausch, TU Clausthal, Clausthal-Zellerfeld, Germany

ADVCOMP 2021 Publicity Chairs
Lorena Parra, Universitat Politecnica de Valencia, Spain
José Miguel Jiménez, Universitat Politecnica de Valencia, Spain

ADVCOMP 2021 Technical Program Committee
Waleed H. Abdulla, University of Auckland, New Zealand
José Abellán, Catholic University of Murcia, Spain
Mohamed Riduan Abid, Alakhawayn University, Morocco
Francisco Airton Silva, Federal University of Piauí, Brazil
M. Azeem Akbar, Nanjing University of Aeronautics and Astronautics, China
Haifa Alharthi, Saudi Electronic University, Saudi Arabia
Sónia Maria Almeida da Luz, Polytechnic Institute of Leiria - School of Technology and Management,
Portugal
Madyan Alsenwi, Kyung Hee University, Global Campus, South Korea
Mohamed E. Aly, California State Polytechnic University, Pomona, USA
Daniel Andresen, Kansas State University, USA
Alberto Antonietti, Politecnico di Milano / University of Pavia, Italy
Ehsan Atoofian, Lakehead University, Canada
Vadim Azhmyakov, Universidad Central, Bogota, Republic of Colombia
Carlos Becker Westphall, University of Santa Catarina, Brazil
Raoudha Ben Djemaa, ISITCOM | University of Sousse, Tunisia
Rudolf Berrendorf, Bonn-Rhein-Sieg University, Germany
Estêvão Bissoli Saleme, Federal University of Espírito Santo, Brazil
Sergiy Bogomolov, Newcastle University, UK
Alessandro Borri, CNR-IASI Biomathematics Laboratory, Rome, Italy
David Bouck-Standen, Kingsbridge Research Center, UK
Hans-Joachim Bungartz, TUM, Germany
Xiao-Chuan Cai, University of Colorado Boulder, USA
Graziana Cavone, Polytechnic of Bari, Italy
Mete Celik, Erciyes University, Turkey
Jinyuan Chen, Louisiana Tech University, USA
Rangeen Basu Roy Chowdhury, Intel Corporation, USA
Vassilios V. Dimakopoulos, University of Ioannina, Greece
Inês Domingues, IPO Porto Research Centre (CI-IPOP), Portugal
Shi Dong, Northeastern University, Boston, USA

 3 / 58

Maha Elarbi, University of Tunis, Tunisia
Javier Fabra, Universidad de Zaragoza, Spain
Akemi Galvez, University of Cantabria, Spain / Toho University, Japan
Leonardo Garrido, Tecnologico de Monterrey, Mexico
Alfred Geiger, T-Systems Information Services GmbH, Germany
Tong Geng, Boston University, USA
Jing Gong, KTH Royal Institute of Technology, Sweden
Teofilo Gonzalez, UC Santa Barbara, USA
Bernard Grabot, LGP-ENIT, France
Maki Habib, American University in Cairo, Egypt
Yang He, University of Technology Sydney, Australia
Mohd Helmy Abd Wahab, Universiti Tun Hussein Onn Malaysia, Malaysia
Marcin Hojny, AGH University of Science and Technology, Poland
Wladyslaw Homenda, Warsaw University of Technology, Poland
Tzung-Pei Hong, National University of Kaohsiung, Taiwan
Mehdi Hosseinzadeh, Washington University in St. Louis, USA
Paul Humphreys, Ulster University | Ulster University Business School, UK
Andres Iglesias, University of Cantabria, Spain / Toho University, Japan
Joanna Isabelle Olszewska, University of West Scotland, UK
Hiroshi Ishikawa, Tokyo Metropolitan University, Japan
Félix J. García Clemente, University of Murcia, Spain
Attila Kertesz, University of Szeged, Hungary
Alice E. Koniges, University of Hawai‘i at Mānoa, USA
V M Krushnarao Kotteda, University of Wyoming, USA
Seyong Lee, Oak Ridge National Laboratory, USA
Maurizio Leotta, University of Genova, Italy
Clement Leung, Chinese University of Hong Kong, Shenzhen, China
Yiu-Wing Leung, Hong Kong Baptist University, Hong Kong
Yiheng Liang, Bridgewater State University, USA
Stephane Maag, Telecom SudParis, France
Elbert E. N. Macau, Federal University of Sao Paulo - UNIFESP at Sao Jose dos Campos, Brazil
Marcin Markowski, Wroclaw University of Science and Technology, Poland
Mirko Marras, University of Cagliari, Italy
Mohamed Wiem Mkaouer, Rochester Institute of Technology, USA
Sébastien Monnet, Savoie Mont Blanc University (USMB), France
Shana Moothedath, University of Washington, Seattle, USA
Jaime Moreno, IBM TJ Watson Research Center, USA
Laurent Nana, University of Brest, France
Ehsan Nekouei, City University of Hong Kong, Hong Kong
Marcin Paprzycki, Systems Research Institute | Polish Academy of Sciences, Poland
Prantosh Kumar Paul, Raiganj University, India
Damien Pellier, Université Grenoble Alpes, France
Sonia Pérez-Díaz, University of Alcalá, Spain
Antonio Petitti, Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing
(STIIMA) - National Research Council of Italy (CNR) , Italy
Tamas Pflanzner, University of Szeged, Hungary
Agostino Poggi, Università degli Studi di Parma, Italy
Andreas Rausch, Technische Universität Clausthal, Germany

 4 / 58

Carlos Reaño, Queen's University Belfast, UK
Michele Risi, University of Salerno, Italy
Michele Roccotelli, Politecnico di Bari, Italy
Ivan Rodero, Rutgers University, USA
Juha Röning, University of Oulu, Finland
Diego P. Ruiz, University of Granada, Spain
Julio Sahuquillo, Universitat Politècnica de València, Spain
Subhash Saini, NASA, USA
Hamed Sarvari, George Mason University, USA
Alireza Shahrabi, Glasgow Caledonian University, Scotland, UK
Justin Shi, Temple University, USA
Costas Vassilakis, University of the Peloponnese, Greece
Flavien Vernier, LISTIC – Savoie University, France
Juan Vicente Capella Hernández, Universitat Politècnica de València, Spain
Dean Vucinic, Vrije Universiteit Brussel (VUB), Belgium / FERIT, Croatia
Hanrui Wang, Massachusetts Institute of Technology, USA
Lei Wang, University of Connecticut, USA
Adriano V. Werhli, Universidade Federal do Rio Grande - FURG, Brazil
Gabriel Wittum, Goethe University Frankfurt, Germany
Mudasser F. Wyne, National University, USA
Cong-Cong Xing, Nicholls State University, USA
Feng Yan, University of Nevada, Reno, USA
Carolina Yukari Veludo Watanabe, Federal Unversity of Rondônia, Brazil
Michael Zapf, Technische Hochschule Nürnberg Georg Simon Ohm (University of Applied Sciences
Nuremberg), Germany
Vesna Zeljkovic, Lincoln University, USA
Ruochen Zeng, NXP Semiconductors, USA
Penghui Zhang, Arizona State University, USA
Qian Zhang, Liverpool John Moores University, UK

 5 / 58

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 6 / 58

Table of Contents

Statistical and Principal Component Analysis in the Design of Alkaline Methanol Fuel Cells
Tanja Clees, Bernhard Klaassen, Igor Nikitin, Lialia Nikitina, and Sabine Pott

1

Towards Demystifying Transformations of Tchaikovsky's Children's Album with Support of Computational
Models: Problem Conceptualization
Evgeny Pyshkin

6

A Novel Application of Machine Learning to a New SEM Silicate Mineral Dataset
Benjamin Parfitt and Robert Welch

11

Physical and Computer Modeling of Extra-High Temperature Processes: Problems and Challenges
Thi Thu Trang Nguyen, Marcin Hojny, and Tomasz Debinski

18

AMPRO-HPCC: A Machine-Learning Tool for Predicting Resources on Slurm HPC Clusters
Mohammed Tanash, Daniel Andresen, and William Hsu

20

Budget-aware Static Scheduling of Stochastic Workflows with DIET
Yves Caniou, Eddy Caron, Aurelie Kong Win Chang, and Yves Robert

28

Synapse: Facilitating Large-scale Data Management in Research Contexts
Daniel Andresen and Gerrick Teague

36

Pattern Dependent Optimized Mowing of Football Fields with an Autonomous Robot
Tahir Majeed, Ramon Christen, Michael Handschuh, and Rene Meier

44

Powered by TCPDF (www.tcpdf.org)

 1 / 1 7 / 58

Statistical and Principal Component Analysis
in the Design of Alkaline Methanol Fuel Cells

Tanja Clees
University of Applied Sciences

Bonn-Rhein-Sieg and Fraunhofer Institute
for Algorithms and Scientific Computing

Sankt Augustin, Germany
email: Tanja.Clees@scai.fraunhofer.de

Bernhard Klaassen
Fraunhofer Institute for Algorithms

and Scientific Computing
Sankt Augustin, Germany

email: Bernhard.Klaassen@scai.fraunhofer.de

Igor Nikitin
Fraunhofer Institute for Algorithms

and Scientific Computing
Sankt Augustin, Germany

email: Igor.Nikitin@scai.fraunhofer.de

Lialia Nikitina
Fraunhofer Institute for Algorithms

and Scientific Computing
Sankt Augustin, Germany

email: Lialia.Nikitina@scai.fraunhofer.de

Sabine Pott
Fraunhofer Institute for Algorithms

and Scientific Computing
Sankt Augustin, Germany

email: Sabine.Pott@scai.fraunhofer.de

Abstract—In this paper, the electrochemical alkaline methanol
oxidation process, which is relevant for the design of efficient fuel
cells, is considered. An algorithm for reconstructing the reaction
constants for this process from the experimentally measured
polarization curve is presented. The approach combines statistical
and principal component analysis and determination of the trust
region for a linearized model. It is shown that this experiment
does not allow one to determine accurately the reaction constants,
but only some of their linear combinations. The possibilities
of extending the method to additional experiments, including
dynamic cyclic voltammetry and variations in the concentration
of the main reagents, are discussed.

Index Terms—modeling of complex systems; observational data
and simulations; advanced applications; mathematical chemistry.

I. INTRODUCTION

Fuel cells are environmentally friendly portable energy
sources based on obtaining electricity as a result of electro-
chemical reactions. They are similar to galvanic cells; the
difference is that the main reagents in fuel cells can be
replenished many times. Among fuel cells, a special group
is formed by the so-called direct fuel cells, in which the
intermediate stage of the production of gaseous hydrogen is
omitted and the oxidative reaction proceeds directly. In fact,
this is the same combustion reaction, but here the energy is
released not in the form of heat or mechanical pressure of gas,
but in the form of electric power. Among the various fuels
in such cells, the most common are alcohols, methanol and
ethanol. We consider the methanol oxidation reaction to reduce
the number of intermediate reagents for modeling. Although
acidic reactions are easier to model and have been well studied,
they rely on the use of expensive noble metal electrodes. The
alkaline environment allows the use of cheaper materials for
the production of electrodes.

The main problem for the analysis of electrochemical alka-
line methanol oxidation is the large number of intermediate

reagents and reactions, as well as the fact that the elementary
reaction constants are not known a priori, and they must be
reconstructed from the experiment. Moreover, such quantities,
as surface coverages of the electrode, are experimentally not
measurable and require mathematical modeling. The challenge
here is to consider the systems of differential-algebraic equa-
tions of high dimension. Additional complication comes from
the stiffness of the system: some components evolve much
faster than others. There are also slow reactions that inhibit
the entire process and lead to the unattainability of a stationary
state and hysteresis effects in the current-voltage dependence.

In this paper, we continue our research on mathematical
modeling of alkaline methanol oxidation in the context of
design of efficient fuel cells. A detailed description of the
mathematical model is given in our previous paper [1]. In our
other papers, a model reduction [2] of the system from Or-
dinary Differential Equations (ODE) to Differential-Algebraic
Equations (DAE) was performed; a chemical interpretation for
hysteresis effect [3] in dynamics of the system is presented;
a footprint of the dynamics in the form of electrochemical
impedance spectrum [4] was analyzed. Our papers extend the
approaches of [5]–[8] for analysis of this and analogous elec-
trochemical processes, paying more attention to mathematical
aspects of the problems. We use the electrochemical measure-
ment methodology from [9]. We also use general methods of
model data analysis [10], most of which are implemented as
ready-to-use procedures in the system Mathematica [11].

The main goal of the experiments under consideration is the
reconstruction of the reaction constants describing the under-
lying electrochemical processes. Note that the reconstructed
values of the constants for alkaline methanol oxidation are
given in [1]. The main purpose of this work is to estimate the
reconstruction accuracy of the reaction constants.

In Section II, an overview of the mathematical model
of the reactions in alkaline methanol oxidation is given. In

1Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 8 / 58

Section III, the method of statistical and principal component
analysis for estimating the reconstruction accuracy of the
reaction constants in the considered process is presented.
Section IV summarizes the obtained results.

The experimental measurements used in this paper were
carried out by our colleagues at INES / TU Braunschweig
[1]–[4].

II. THE MODEL

Figure 1a shows the chemical reaction network under con-
sideration. Figure 1b shows an experimental setup containing
an evacuated teflon cell with a rotating electrode. A detailed
description of reactions and setup can be found in [1]. In the
experiments, the voltage η in the cell changes along a certain
profile, and the current Icell through the cell is measured. In
particular, Cyclic Voltammetry (CV) experiments use a saw-
like voltage profile shown in Figure 1c.

The resulting cell response is shown in Figure 2a. Note
that at low voltage values, the profiles for the increasing and
decreasing half-cycles of the saw run approximately along the
same curve. In this zone, the reagents are in equilibrium,
their concentrations depend only on the voltage, following
the so-called Polarization Curve (PC). At higher voltages, a
new reagent is formed. Its reactions are slow, as a result, the
equilibrium is disturbed, a delay appears in the response of
the system, and a characteristic hysteresis is formed on the
CV-plot.

The evolution of the system is described by ODE of the
form

dθi/dt = Fi(θ, η), i = 1..6, Icell = F7(θ, η), (1)

where θi ∈ [0, 1] are surface coverages for 6 reagents. The
right-hand sides of the equations are polynomials in θi, the
exact form of which is given in [1]. Some monomials corre-
sponding to electron exchange reactions have an exponential
voltage dependence. The purpose of the experiments is to
reconstruct the reaction constants ki, which are the coefficients
of the monomials in the given model. In total, there are 14 re-
action constants for the considered system of reactions. In the
normalization used in [1], the reaction constants are measured
in [mol/(m2s)], while their numerical values vary over a wide
range. Therefore, it is convenient to use the decimal logarithms
of the reaction constants as model parameters: pi = log10 ki.

III. STATISTICAL AND PRINCIPAL COMPONENT ANALYSIS

In this work, we will consider the PC-part of the CV-curve,
shown in detail in Figure 2b. In this part, the state of the system
can be considered stationary, and the terms with derivatives in
(1) can be omitted. As a result, a closed polynomial system
on θi is formed, which can be solved. The obtained θi as a
function of voltage can be substituted into the expression for
the current, resulting in a model response function Icell =
f(η, p). In Figure 2b, the red curve corresponds to the model,
and the blue dots to the measured values. It can be seen that
the model reproduces the experiment very well.

For reconstruction in [1], a fitting procedure is used that
minimizes the sum of the squares of the deviations of the
model from the values measured in the experiment:

L2
2 =

∑
i(f(ηi, p)− fexp,i)2. (2)

The p-values obtained at the minimum point represent the
reconstructed reaction constants. The accuracy of the recon-
struction is determined as follows [10]. At the minimum, the
sensitivity matrix X and related matrices are determined:

Xij = ∂f(ηi, p)/∂pj , cov = ε2(XTX)−1 (3)
σi = (covii)

1/2, corrij = σ−1
i covij σ

−1
j , (4)

the covariance matrix cov, the diagonal values of which
determine the standard deviations of the parameters σi, and
the correlation matrix corr. The value ε appearing in the
definitions represents the estimate of the experimental data
error fexp,i, calculated by the formula ε2 = L2

2/Ndof , Ndof =
Npt −Npar. Here, Npt is the number of experimental points,
Npar is the number of model parameters, Ndof is the number
of degrees of freedom for a fit, in our case:

Npt = 21, Npar = 14, Ndof = 7, (5)
L2
2 = 2.08 · 10−9A2, ε = 1.72 · 10−5A. (6)

The obtained small value of ε corresponds to the good quality
of the fit. In fact, this value corresponds to the size of the dot
on the graph Figure 2b.

In the case when the parameter errors are large and highly
correlated with each other, Principal Component Analysis
(PCA) must be performed to interpret the result. The con-
fidence region in parameter space is an ellipsoid that can
be stretched in some directions and compressed in others.
In stretched directions, measurements have a large error, in
compressed directions – small one. The values and directions
of the semi-axes of the ellipsoid can be determined using
Singular Value Decomposition (SVD) of the sensitivity matrix:

X = uλvT , uTu = 1, vT v = vvT = 1, ak = ε/λk. (7)

Here, the matrix X is Npt×Npar rectangular, u is Npt×Npar

semi-orthogonal, λ is Npar×Npar diagonal, v is Npar×Npar

orthogonal. The ak values represent the semi-axes of the error
ellipsoid. The columns of the v matrix (or the rows of the vT

matrix) represent the directions of the axes of the ellipsoid
in the parameter space, while the columns of the u matrix
represent the profiles of the principal components in the space
of experiments. Figure 2d shows such profiles for the first four
components, in red-green-blue-cyan order for ui,1−4. These
profiles show the variation of PC curve when the parameters
are displaced along the axes of the error ellipsoid.

Note: addressing the question, why we choose PCA
for the analysis, and not another factorizing method, e.g.,
Independent Component Analysis (ICA) or Curvilinear Com-
ponent Analysis (CCA), etc. These methods are very close
to PCA, and ICA even uses SVD in the main phase of
the computation, so called signal whitening. However, these
methods belong to different fields of application; ICA is used

2Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 9 / 58

Fig. 1. (a) network of chemical reactions, (b) experimental setup, (c) saw-like voltage profile. Images from [1], [2].

Fig. 2. (a) CV plot with selected PC part, (b) fit of PC curve by the model, (c) sensitivity analysis, (c) principal component analysis (for color coding see
main text).

TABLE I
PARAMETER CENTRAL VALUES AND TRUST REGION OF LINEAR MODEL

pj 0.949 -4.5 0.398 -0.563 4.72 -3.46 0.352 -0.101 1.2 -8.66 1.89 -1.08 -1.72 -7.82
dpj 0.3 0.1 0.3 0.4 1.5 0.1 0.1 0.06 0.1 0.1 0.08 0.2 0.15 0.15

TABLE II
RESULTS OF PRINCIPAL COMPONENT ANALYSIS

λk, A ak vjk
8.12 · 10−3 2.12 · 10−3 −0.531 0.014 0.461 −0.459 0.140 −0.013 −0.007 0 0 0 0 −0.522 0.032 −0.032
1.21 · 10−3 1.43 · 10−2 0.396 −0.159 −0.251 0.250 0.214 −0.010 −0.018 0 0 0.002 0 −0.769 0.167 −0.167
2.71 · 10−4 6.36 · 10−2 −0.078 0.639 −0.052 0.058 −0.402 0.065 −0.065 0 0 0.004 0 −0.052 0.451 −0.451
1.24 · 10−4 0.139 −0.066 −0.711 0.091 −0.074 −0.191 −0.058 0.066 0 0 −0.014 0 0.197 0.443 −0.443
7.79 · 10−6 2.21 0.305 −0.063 0.211 −0.123 −0.728 −0.290 0.277 0 −0.001 −0.113 0 −0.234 −0.206 0.206
5.1 · 10−6 3.38 0.546 0.214 0.540 −0.152 0.408 −0.204 0.205 0 0 −0.056 0 0.192 0.160 −0.160
8.51 · 10−7 2.02 · 101 0.315 −0.066 0.148 −0.264 −0.163 0.336 −0.449 0.001 0.032 0.679 −0.003 −0.010 −0.033 0.033
1.69 · 10−7 1.02 · 102 0.033 −0.083 0.508 0.459 −0.114 0.441 −0.349 −0.001 −0.029 −0.434 0.003 −0.033 −0.046 0.046
2.52 · 10−8 6.84 · 102 0.240 −0.003 −0.304 −0.617 −0.003 0.439 −0.030 −0.003 −0.080 −0.518 0.012 0.021 0.013 −0.013
7.81 · 10−9 2.21 · 103 0.047 −0.001 −0.075 −0.135 0.004 −0.582 −0.722 0.008 0.212 −0.257 −0.039 0.031 0.004 −0.004
5.92 · 10−10 2.91 · 104 0 0 −0.002 −0.002 0 −0.165 −0.159 −0.037 −0.972 0.022 0.002 0.007 0 0
9.35 · 10−13 1.84 · 107 0 0 0 0 0 0.024 0.024 0.485 −0.028 0 −0.874 0 0 0
3.38 · 10−13 5.09 · 107 0 0 0 0 0 0.014 0.014 −0.874 0.028 0 −0.485 0 0 0

0 ∞ 0 0 0 0 0 0 0 0 0 0 0 0 0.707 0.707

3Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 10 / 58

to separate independent sources in signal processing, while
CCA is a method of non-linear dimensionality reduction.
PCA and the underlying spectral decomposition are general
statistical methods for data analysis. Here, we only need to
perform a statistical analysis of the measurement errors, for
which the standard PCA method is best suited.

Details of implementation: it is recommended in [10] to
use the formula (3) when there is no independent estimate
of measurement errors. In this case, the measurement error is
obtained from the χ2-criterion. Assuming the same error for
all measurements, one has χ2 = L2

2/ε
2, in case of a good

fit, χ2 = Ndof is fulfilled; from here one can find ε. The
geometric meaning of this definition is that for a good fit the
deviations of the experimental points from the model can be
considered appearing due to a random measurement error, and
the standard deviation of such a variation characterizes this
error. The term Ndof = Npt − Npar in the denominator of
this definition, instead of the traditional Npt − 1, takes into
account the influence of the fit parameters, which take on a
part of the experimental scatter.

The sensitivity matrix is determined using finite difference
schemes of the form

X+
ij = (f(ηi, p+ dp(j))− f(ηi, p))/dpj , (8)

X−
ij = (f(ηi, p)− f(ηi, p− dp(j)))/dpj , (9)

Xij = (f(ηi, p+ dp(j))− f(ηi, p− dp(j)))/(2dpj), (10)

where X±
ij – forward/backward, Xij = (X+

ij + X−
ij)/2 –

central difference scheme. Here, dp(j) = (0, ..., dpj , ..., 0)
represents a vector with non-zero entry on j-th place. Such
derivatives, for j = 1, are shown in Figure 2c, red line
for central, green/blue lines for forward/backward schemes,
respectively. More precisely, up to the next order, is the central
difference scheme, which should be taken as the final answer.
Other profiles are needed to evaluate the non-linearity of the
function. Indeed, for linear functions, all these three profiles
coincide, and their deviation from each other is a measure of
non-linearity. In practice, we adjust the dpj variation so that
the curves deviate from each other by ∼ 20%. This analysis
is performed for all j; the results are shown in Table I. Such
variations define a box-like trust region where a linear model
can be applied.

Another detail is the presence of failures in the definition
of the model function. Since this definition uses the solution
of a high degree polynomial system, the applied numerical
procedures can lose solutions sometimes. Such failures are
rare, estimated in ∼ 0.5% cases. However, this is sufficient
to destabilize the automatic minimization procedures, with
the result that achieving the true minimum is not guaran-
teed. The methods described in [1] help in this situation,
including finding the starting point manually and applying
random search with discarding the failed cases. Automatic
minimization algorithms were applied to the resulting starting
points, which slightly improved the objective function. Finally,
we made sure visually and by formal ε-criterion that the fit
has a good quality. Since the failures also occur when using

finite-difference schemes, some of the dpj parameters required
fine tuning to completely eliminate the failed cases.

The next surprise was the degeneration of the matrix XTX ,
which makes the usage of the formulas (3), (4) impossible.
The degeneration is seen in Table II, where the last row has
a zero eigenvalue. The eigenvector for this value corresponds
to the simultaneous variation of the parameters δp13 = δp14.
Formally, this direction corresponds to the infinite scatter ak,
meaning that it is impossible to measure the corresponding
linear combination of constants. Indeed, a detailed analysis of
the model given in [1] shows that such a variation corresponds
to the exact symmetry of the system and does not change
the observed values. In fact, the system depends only on the
difference between the logarithmic parameters p13 − p14, or,
in the original notation, on the ratio of the corresponding
reaction constants. This symmetry takes place only for a
stationary system on the PC-part of the CV-curve. Dynamics
can break this symmetry and make these constants individually
measurable.

Further, in Table II, the first three lines correspond to the
variation ak that is located within the previously defined trust
region of the linear model. The fourth line is also located in
the trust region, with a tension. The following directions are
outside of the trust region. Thus, the first four directions appear
to be measured more or less accurately, while the rest of the
directions have too large scatter. This conclusion is the main
result of the PCA.

Note that the determination of the covariance and correlation
matrices in this problem becomes meaningless. The point is
not only that the sensitivity matrix is formally degenerate.
There are many directions along which the error ellipsoid is
strongly stretched, in the projections on axes of the initial pa-
rameters giving very large errors, strongly correlated between
different parameters. It is PCA/SVD method that sheds light on
the structure of solutions in the problem under consideration.

To improve the obtained result, in addition to considering
the complete dynamic problem, other experiments can be
included in the analysis. In particular, the experiments with
variations of the volume concentrations of the main reagents
c1,2 can be used. These concentrations enter polynomially in
the model [1], and accordingly extend the model response
Icell = f(η, c1, c2, p) and the sensitivity matrix X . The
reconstruction accuracy for such an extension can be analyzed
using the general methodology described here.

Implementation in Mathematica: we use Mathematica
[11] for the calculations described above. The NSolve
method is used to solve a stationary polynomial system; for
the obtained set of solutions, real roots are selected from the
interval θi ∈ [0, 1]. The system also has a spurious solution
(θi = δi4, Icell = 0), which also needs to be removed.
As a result of numerical instabilities, with these selections,
the roots sometimes disappear, leading to the aforementioned
failures of the algorithm. To solve the dynamic system,
NDSolve method is used, able to integrate both ODE and
the partially reduced DAE system [2]. Systems are highly
stiff and the integration algorithm also fails sometimes. In

4Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 11 / 58

the fitting algorithm [1], to select the starting point, the
interactive configuration tool Manipulate is used. After
that, we used automatic methods for minimizing the L2-
norm, local FindMinimum and global NMinimize. In this
work, we have used NonlinearModelFit, which provides
a convenient interface to the same optimization methods. The
differentiation algorithm requires setting up finite-difference
schemes, which can be passed to the fitting method via the
Gradient option. Further, the calculation of the covariance
and correlation matrix turns out to be impossible due to the
degenerations described above. At this point, the standard
computation should be replaced with PCA using the available
method SingularValueDecomposition.

IV. CONCLUSION AND FUTURE WORK

We considered an algorithm for reconstructing the reaction
constants from the experimentally measured polarization curve
for the electrochemical alkaline methanol oxidation process.
Our approach combines statistical and principal component
analysis. We define formal criteria for reconstruction accuracy
based on the estimate of the trust region for the linearized
model. As a result of the analysis, it turned out that the
described experiment does not make it possible to determine
precisely all 14 reaction constants, but only 4 their certain lin-
ear combinations. Of the remaining orthogonal combinations,
one corresponds to the symmetry of the stationary system and
is fundamentally indeterminate in the described experiment.
The remaining 9 combinations have insufficient reconstruction
accuracy. To improve this result, other experiments should
be involved in the analysis, including fully dynamic cyclic
voltammetry and variations in the concentration of the main
reagents. We are going to expand the developed methodology
for additional experiments elsewhere.

REFERENCES

[1] T. Clees et al., “Mathematical modeling of alkaline methanol oxidation
for design of efficient fuel cells”, Advances in Intelligent Systems and
Computing, vol 947, 2020, pp. 181-195.

[2] T. Clees et al., “Parameter identification and model reduction in the
design of alkaline methanol fuel cells”, Int. J. On Advances in Systems
and Measurements, vol. 13, 2020, pp. 94-106.

[3] T. Haisch et al., “The origin of the hysteresis in cyclic voltammetric
response of alkaline methanol electrooxidation”, Physical Chemistry
Chemical Physics, vol. 22, 2020, pp. 16648-16654.

[4] T. Clees et al., “Electrochemical impedance spectroscopy of alkaline
methanol oxidation”, in Proc. INFOCOMP 2017, pp. 46-51, Pub. IARIA
2017.

[5] U. Krewer, T. Vidakovic-Koch, and L. Rihko-Struckmann, “Electro-
chemical oxidation of carbon-containing fuels and their dynamics in
low-temperature fuel cells”, ChemPhysChem, vol. 12, 2011, pp. 2518-
2544.

[6] U. Krewer, M. Christov, T. Vidakovic, and K. Sundmacher, “Impedance
spectroscopic analysis of the electrochemical methanol oxidation kinet-
ics”, J. Electroanalytical Chem., vol. 589, 2006, pp. 148-159.

[7] B. Beden, F. Kardigan, C. Lamy, and J. M. Leger, “Oxidation of
methanol on a platinum electrode in alkaline medium: effect of metal
ad-atoms on the electrocatalytic activity”, J. Electroanalytical Chem.,
vol. 142, 1982, pp. 171-190.

[8] F. Ciucci, “Revisiting parameter identification in electrochemical
impedance spectroscopy: Weighted least squares and optimal experi-
mental design”, Electrochimica Acta, vol. 87, 2013, pp. 532-545.

[9] A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals
and Applications, Wiley 2000.

[10] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C, Cambridge University Press 1992.

[11] Mathematica 12, Reference Manual, http://reference.wolfram.com, [re-
trieved: August, 2021]

5Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 12 / 58

Towards Demystifying Transformations of Tchaikovsky’s Children’s Album with

Support of Computational Models: Problem Conceptualization

Evgeny Pyshkin
University of Aizu

Tsuruga, Ikki-Machi, Aizu-Wakamatsu, Fukushima, 965-8580, Japan
Email: pyshe@u-aizu.ac.jp

Abstract—Though the studies of rich metaphors hidden in the
musical compositions lay mostly in scope of art and musicology,
there is still large space for formal methods based on mathe-
matical models and computer technology that can be helpful in
discovering complementary insights to how the composition is
structured, what are its relationships to the precursors’ works,
and how it affects the later works of the same or other authors.
Our idea is to investigate how computational models can enhance
musicology research on music style identification and comparative
analysis using the case study of Tchaikovsky’s Children’s Album.

Keywords–Musicology; music information retrieval; human-
centric computing; similarity; music modeling.

I. INTRODUCTION

In my recent talk on Jan 6th, 2021, in the University of
Aizu “Tchaikovsky. Children’s (?) Album: Time, Metaphors,
Rediscoveries” [1], I discussed the phenomenon of Piotr
Tchaikovsky’s “Children’s Album” for piano solo (Op. 39) [2].
This masterpiece was composed and published as far as in
1878, but today it still remains one of constant topics of interest
for researchers [3][4]. Though the study of rich metaphors
hidden in the pieces thought to be for children rather lies
in the scope of art and musicology, there is still a large
research space for formal methods based on mathematical
and computational models, which may give additional insights
into our understanding of the structure and organization of
the whole work, its relationships to precursors (such as “43
Clavierstücke für die Jugend” by Robert Schumann [5]), as
well as the reasons for significant differences between the
original manuscript and the first published edition. Surpris-
ingly, in musicology literature, one of the first careful studies
of transformations between the manuscript and the published
edition can be found in the early 1990s only; thus, more than
100 years after the whole work was completed [6][7]. These
studies mostly remain in scope of music and art theory, with
almost no involvement of machine learning approaches. Today,
it is commonly not disputed that computer science and artificial
intelligence may contribute to musicology research on music
style identification and comparative analysis. In this study, we
try to discover appropriate formal models that would enhance
the analysis and understanding of Tchaikovsky’s “Children’s
Album”, which can be considered as a very good example
of applied human-centric computing research in the frame of
art and humanities, where solutions cannot be designed within
a certain context only, but require intensive cross-disciplinary
efforts so as to bridge the communities working in different
contexts and using different vocabularies [8].

The remaining text is organized as follows. Section II
provides a brief review of state-of-the-art research on linking
musicology and computerized analysis of music compositions
with a particular attention to the case study of Tchaikovsky’s
“Children’s Album”. Section III sketches a number of promis-
ing models that may contribute to music stylistic similarity
recognition and evaluation aimed at bridging the gaps between
musicology studies and computer models.

II. RELATED WORK

According to Nattiez, music is a symbolic fact charac-
terized by the complex configuration of interpretants [9]. In
music, we use various connected but independent models
including letter-based notations, such as Helmholz or scientific
pitch notation (that can be considered as simple syntax based
language constructions), complex symbolic notations in the
form of graphic note scores ranging from hardly formalizable
ancient models, such as Znamenny chant, at one pole, or
relatively strict Mensural notation, at another pole, up to
modern sheet music (based on many rules but giving some
freedom to support the individual styles of composers), piano
roll notation, tablature, MIDI representations, as well as audio
signals and even spectral models, such as acoustic fingerprints.
The great variety of models used for music representation is
one of reasons why music provides an interesting and complex
use case for experimenting with information retrieval, object
recognition and classification algorithms. Music representation
complexity can be explained by the presence of two arrays of
elements and relationships, where the first one corresponds to
the elements that can be treated mathematically (pitch, rhythm,
or harmony), while the second one includes non-mathematical
elements such as tension, expectancy, and emotion [10].

A. Bridging the gap between pure musicology and applied
human-centric computer technology

Current approaches to music similarity evaluation (in-
cluding our own work on melody extraction and similarity
estimation using Earth Mover’s Distance algorithms [11])
mostly target the searching and retrieval systems including
well-known apps, such as Shazam [12], without a perfect fit
to the problems of stylistic similarity evaluation. From this
point of view, models of functional representation of music
harmony and harmonic similarity estimation [13] seem to be
more adequate to the problem of style identification. Indeed,
usually, listeners can recognize similarity of compositions
because of their harmonic similarity (see Figure 1). However,
it does not immediately lead us to clearly conclude about the
composition’s stylistic resemblances or dependencies. Even

6Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 13 / 58

harmonic equivalence may not be enough to recognize the
melody, as demonstrated in [14] and later analyzed in [15]
in the experiments with melodies distorted by substituting the
note octave by randomly selected ones within three octaves:
every note in the sequence keeps its position on the scale,
but the tune varies over a three-octave range (similarly to an
example of such distortion shown in Figure 2).

Figure 1. Harmony resemblance between Beethoven’s Moonlight Sonata and
its variation

Figure 2. Distorted note sequence of Beethoven’s Moonlight Sonata with
keeping harmonic equivalence

Harmonic functions were core elements of SPEAC music
representation system developed by Cope [16][17], which is an
implementation of augmented transition network, a finite-state
automaton with recursive succession rules between music sub-
phrases allowing for logical syntax substitutions [18]. Cope’s
SPEAC system is based on a hierarchical representation of the
structure of music composition in nested contexts beginning
from notes and chords up to chapters and parts (see Figure 3
(a)). Five identifiers contributing to SPEAC acronym stand
for statement S, preparation P , extension E, antecedent A,
and consequent C, all of which are kinds of abstractions
assigned to groups of notes “depending on levels of tension
between intervals, metrical placement, and agogic emphasis,
measured both in the preceding and following groups” [18].
Succession rules defined by Cope limit possible transitions
between the SPEAC states (see Figure 3 (b)). Therefore,
SPEAC progressions are like genome sequences using SPEAC
identifiers as bases enforced by harmonic tension weights
and hierarchical relationships between progressions at different
levels. Modeling music structure using SPEAC-analysis can
be a promising approach to recognize music style similarity
through SPEAC progression similarity as well as with the help

of comparison between the corresponding graphs, specifically
with respect to recent SPEAC-analysis implementations avail-
able as libraries in universal languages, such as Python [19].

Figure 3. Progression bases in SPEAC system by David Cope.

Due to a large number of applications of using deep neural
networks for object recognition and classification (especially
for image recognition, including such subjective trait as image
aesthetics), machine learning approaches and recurrent neural
networks may be promising for music style identification,
classification and analysis. Though, in contrast to a variety of
works on computer music generation, we argue that the main
challenge is not to teach AI to create art objects, but to be able
to help us in perceiving objects created by humans [20].

B. Renditions and Implications of “Children’s Album”
Since both Tchaikovsky and Schumann belong to the ro-

mantic tradition rooted in part of leitmotif music by Beethoven
and Wagner, on the one hand, and in the new music language of
Glinka, Chopin and Liszt, on the other hand, certain harmony
and music development similarity surely exists in their works.
According to the network of influences on classical composers
originally described by Smith and Georges et al. in the original
Classical Music Navigator [21], Schumann is one of composers
who greatly influenced Tchaikovsky (along with Balakirev,
Beethoven, Chopin, Delibes and others) as shown in Figure 4.

However, admitting Schumann’s influence to Tchaikovsky
does not lead us to automatically judge the “Children’s Album”
as an imitation of Schumann’s pieces for the young (also with
long history of editions but rather few scholarly studies [23])
even though Tchaikovsky claimed it explicitly in the subtitle
for the published edition “24 simple pieces for children like
Schumann” (but not in the manuscript! [24]). What if this
subtle (?) subtitle is a kind of hint that Tchaikovsky gave
us? Like saying: “Well, it is definitely not “like Schumann”!
Should you then believe in the appropriateness of all made
transformations?” These transformations (see Figure 5) destroy
the structure of the album as an indissociable whole, and
deform the micro-cycles existing in the manuscripts (where the
Doll cycle is the clearest case), as well as evident harmonic
links, for instance, between the first and the last pieces in the
manuscript, “Morning prayer” and “The hurdy-gurdy man is
singing”, respectively.

An idea that changes in the order of compositions between
the manuscript and first published edition were mistakenly in-
troduced by the publisher could not be accepted as convincing
enough: indeed, Tchaikovsky approved this version. Nekhaeva
suggested that these transformations can be considered as a
“gesture of the composer, a natural desire to overcome the
temporary barrier and directly appeal to future generations of
musicians” [4]. This opinion supports an existing hypothesis

7Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 14 / 58

Figure 4. “Influenced-by” relationships for Tchaikovsky (as in Classical Music Navigator [22]

claiming that Tchaikovsky probably preferred to hide some
metaphors so that they are not so explicitly exposed as in the
manuscript. From the perspective of musicology, we could not
expect to find a final answer (and perhaps it is not needed).
Instead, a possibility to incorporate formal computational
approaches into informal art discourse can, produce a number
of important additional insights for better understanding of
genesis of one of Tchaikovsky’s masterpieces in piano music.

C. Dataset Issues
In the process of study, we need to investigate, what are the

suitable computational approaches that may contribute to style
identification. Because of the subjectivity of style attribution
and style dependency analysis, a possibility to construct and
assess different computational models should be considered.
It may be that particular models can contribute to particular
characteristics of music style recognition.

We also need to define a dataset with the selection of
compositions including the following components:

• 24 piano compositions from the “Children’s Album”;
• Selection of characteristic piano compositions by

Schumann, including those from Op. 68;
• Selection of compositions with expected high degree

of style similarity, which were attributed by their
authors as imitations, such as piano works of Liszt,
Chopin, Schumann (referential dataset);

• Selection of other characteristic compositions (e.g.,
by Tchaikovsky), where style similarity was reported
by musicology experts (referential dataset). The stud-
ies [25][26] can provide information for selection of
relevant referential datasets.

III. PROMISING APPROACHES FOR FURTHER STUDIES

There is a number of works contributing to music analysis
based on audio signal processing. Detection music file similar-
ity based on tonality, tempo and chord progression similarity
(that can be extracted from sound files using signal processing
algorithms as demonstrated in [27]) is very helpful to improve

8Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 15 / 58

Figure 5. “Children’s Album”: Original structure is destroyed in the published version.

algorithms of music retrieval, but may not be enough to judge
about stylistic and harmonic similarity or about the presence
of transformed citations where the key, tempo and melody
can be significantly modified compared to the original but
keeping almost intangible traits of similarity, still perceptible
by an experienced ear.Great opportunities provided by signal
processing algorithms enforced by hierarchical semi-Markov
models of music enable automatic music transcription for given
audio signals [28]. Though these works are naturally closely
related to music similarity analysis, the findings could not be
directly applicable to the problem of developing computational
models of style similarity, which remains challenging even if
the note score is available.

Similarity detection based on note sequences (e.g., in [29])
can give interesting insights into the genesis of music styles,
but does not help much in solving specific problems of influ-
ence assessment, where study of exact or slightly transformed
note sequences may be insufficient. However, the idea of
grouping compositions based on weaker traits of similarity in
their themes and sub-themes [30] can be promising.

With respect to studies on analysis of acoustic spectral fin-
gerprints for unique identification of the music fragments (e.g.,
according to the algorithms described in [31][32]), comparison
between such fingerprints can give one component for similar-
ity analysis. Figure 6 displays an example of piano composition
spectral representation constructed using the online tool [33].

Among other interesting works relevant to this study, there
are studies on approaches using deep neural networks for
object recognition applied to the case of music for a variety of
adjacent problems, including music genre classification [34],
content-based music recommendation [35], music style model-
ing [36], deep leaning-based music generation [37], and style-

Figure 6. Sample spectrogram of “A New Doll” (Op. 39, orig. No. 6): first
30 measures recorded by Evgeny Pyshkin at Yamaha YDP-144

specific based music composition [38]. In addition, considering
music as a semi-chaotic natural process with recurrencies and
irregular cyclicities analyzed and visualized with the help of
recurrence plots [39] (similar to spoken pitch as we did in our
prosody visualization research [40]).

IV. CONCLUSION

In this study, the problem of music style identification is
sketched via a brief analysis of computational models and
technical solutions that may be helpful to musicologists in
their research on genesis and implications of musical com-
positions with an example of exploring the links between
Tchaikovsky’s “Children Album” and Schumann’s “Album
für die Jugend”. With the help of computer technology we
can discover more findings to support meaningful hypotheses
about the possible reasons explaining significant discrepancies
between Tchaikovsky’s manuscript and the following editions
of “Children’s Album”.

Naturally, the outcomes from such compact joint musi-
cology and computer science studies can naturally address
the broader scope of research on music style understanding,
modeling, and recognition for the benefit of both computer
technology and humanities so as to provide interesting use

9Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 16 / 58

cases for AI applications as well as “a further strand of
evidence for systematic musicology to exploit” as nicely
formulated by Collins in [41].

ACKNOWLEDGEMENT

Many thanks to Natalia Bogach, John Blake, and Andrey
Kuznetsov for their helpful suggestions during our discussions
of this study. The work is supported by the University of Aizu
Research Funding.

REFERENCES

[1] “International talk: Piano concert talk “Tchaikovsky” was held!” 2021,
retrieved: Aug, 2021. [Online]. Available: https://www.u-aizu.ac.jp/
osip/en/information/post-206.html

[2] P. Tchaikovsky, Children’s Album. Op 39. Yurgenson, 1878.
[3] A. Lazanchina, “Fenomen detstva v fortepiannykh tsiklakh R. Shumana

i P. Tchaikovskogo (The phenomenon of childhood in piano cycles by
R. Schumann and P. Tchaikovsky),” Transactions of Russian Academy
of Science Samara Research Center, 2015, pp. 1224–1227, (In Russian).

[4] I. Nekhaeva, “The modern measurement of Tchaikovsky (Definition
experience of the “modernity” concept on example of the “Children’s
Album” by PI Tchaikovsky),” Tomsk State University Journal of
Cultural Studies and Art History, vol. 30, 2018, pp. 146–147,
retrieved: Aug, 2021. [Online]. Available: http://case.asu.ru/files/form
312-31545.pdf#page=146

[5] R. Schumann, 43 Piano Pieces for the Youth. Op 68 (Orig. Title in
German: 43 Clavierstücke für die Jugend). Schuberth and Co., 1848.

[6] A. Kandinskiy-Rybnikov and M. Mesropova, “Vremena goda i Det-
skiy albom Tchaikovskogo: Tsyklichnost i problemy ispolneniya
(Tchaikovsky’s The Seasons and Children’s Album: Cyclicity and
performing problems),” in Tchaikovsky: Voprosy istorii, teorii i ispol-
nitelstva (Tchaikovsky. Questions on history, theory, and performing).
Moscow Conservatory, 1990, pp. 120–137, (In Russian).

[7] ——, “O ne opublikovannoy P.I. Tchaikovskim pervoy redaktsii “Det-
skogo alboma” (On an unpublished first edition of the “Children’s
album” by P.I. Tchaikovsky),” in Voprosy muzykalnoy pedagogiki
(Issues of Musical Pedagogy). Muzyka, 1997, pp. 138–161, (In
Russian).

[8] E. Pyshkin and J. Blake, “A metaphoric bridge: Understanding software
engineering education through literature and fine arts, society,” Society.
Communication. Education, vol. 11, no. 3, 2020, pp. 59–77.

[9] J.-J. Nattiez, Music and discourse: Toward a semiology of music.
Princeton University Press, 1990.

[10] R. B. Dannenberg, “Music representation issues, techniques, and sys-
tems,” Computer Music Journal, vol. 17, no. 3, 1993, pp. 20–30.

[11] A. Kuznetsov and E. Pyshkin, “Searching for music: from melodies
in mind to the resources on the web,” in proceedings of the 13th
international conference on humans and computers, 2010, pp. 152–158.

[12] A. Wang, “The Shazam music recognition service,” Communications
of the ACM, vol. 49, no. 8, 2006, pp. 44–48.

[13] J. P. Magalhaes and W. B. de Haas, “Functional modelling of musical
harmony: an experience report,” ACM SIGPLAN Notices, vol. 46, no. 9,
2011, pp. 156–162.

[14] D. Deutsch, “Octave generalization and tune recognition,” Perception
& Psychophysics, vol. 11, no. 6, 1972, pp. 411–412.

[15] W. R. Thurlow and W. P. Erchul, “Judged similarity in pitch of octave
multiples,” Perception & Psychophysics, vol. 22, no. 2, 1977, pp. 177–
182.

[16] D. Cope, “Experiments in musical intelligence (EMI): Non-linear
linguistic-based composition,” Journal of New Music Research, vol. 18,
no. 1-2, 1989, pp. 117–139.

[17] ——, Computer models of musical creativity. Mit Press Cambridge,
2005.

[18] P. da Silva, “David Cope and experiments in musical intelligence,” 2003.
[19] N. Golzitsky, “SPEAC-analysis Python library,” 2021, retrieved:

Jun, 2021. [Online]. Available: https://github.com/GolzitskyNikolay/
SPEAC-analysis

[20] A. Kuznetsov and E. Pyshkin, “Function-based and circuit-based sym-
bolic music representation, or back to Beethoven,” in Proceedings of
the 2012 Joint International Conference on Human-Centered Computer
Environments, 2012, pp. 171–177.

[21] C. H. Smith and P. Georges, “Composer similarities through “The Clas-
sical Music Navigator”: Similarity inference from composer influences,”
Empirical Studies of the Arts, vol. 32, no. 2, 2014, pp. 205–229.

[22] C. H. S. Smith, “Classical music navigator,” 2014, retrieved: Jun,
2021. [Online]. Available: http://dbtune.org/cmn/

[23] B. R. Appel, Actually, taken directly from family life: Robert
Schumann’s Album für die Jugend. Princeton University Press,
2014, pp. 171–202. [Online]. Available: https://doi.org/10.1515/
9781400863860.171

[24] “Tchaikovsky: Otkrytyi mir. Detskiy albom (Tchaikovsky: Open
world. Children’s Album,” 2015, retrieved: Aug, 2021 (In Russian).
[Online]. Available: https://www.culture.ru/catalog/tchaikovsky/ru/item/
archiv/detskiy-albom-24-legkih-pesy

[25] P. Georges, “Western classical music development: a statistical analysis
of composers similarity, differentiation and evolution,” Scientometrics,
vol. 112, no. 1, 2017, pp. 21–53.

[26] P. Georges and N. Nguyen, “Visualizing music similarity: clustering
and mapping 500 classical music composers,” Scientometrics, vol. 120,
no. 3, 2019, pp. 975–1003.

[27] M. Thomas, M. Jothish, N. Thomas, S. G. Koolagudi, and Y. S. Murthy,
“Detection of similarity in music files using signal level analysis,” in
2016 IEEE Region 10 Conference (TENCON). IEEE, 2016, pp. 1650–
1654.

[28] R. Nishikimi, E. Nakamura, M. Goto, K. Itoyama, and K. Yoshii,
“Bayesian singing transcription based on a hierarchical generative
model of keys, musical notes, and f0 trajectories,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 28, 2020, pp.
1678–1691.

[29] S. Cunningham, V. Grout, and H. Bergen, “Mozart to Metallica: A
comparison of musical sequences and similarities.” in CAINE, 2005,
pp. 332–339.

[30] B. Laskowska and M. Kamola, “Grouping compositions based on
similarity of music themes,” PloS one, vol. 15, no. 10, 2020, p.
e0240443.

[31] W. Hatch, “A quick review of audio fingerprinting,” 2003, retrieved:
Jun, 2021. [Online]. Available: http://www.music.mcgill.ca/wes/docs/
finger2.pdf

[32] P. Cano, E. Batle, T. Kalker, and J. Haitsma, “A review of algorithms for
audio fingerprinting,” in 2002 IEEE Workshop on Multimedia Signal
Processing. IEEE, 2002, pp. 169–173.

[33] “Spectrum analyzer,” retrieved: Aug, 2021. [Online]. Available:
https://academo.org/demos/spectrum-analyzer/

[34] Y. M. Costa, L. S. Oliveira, and C. N. Silla Jr, “An evaluation of convo-
lutional neural networks for music classification using spectrograms,”
Applied soft computing, vol. 52, 2017, pp. 28–38.

[35] A. Van Den Oord, S. Dieleman, and B. Schrauwen, “Deep content-based
music recommendation,” in Neural Information Processing Systems
Conference (NIPS 2013), vol. 26. Neural Information Processing
Systems Foundation (NIPS), 2013, pp. 1–9.

[36] S. Dai, Z. Zhang, and G. G. Xia, “Music style transfer: A position
paper,” arXiv preprint arXiv:1803.06841, 2018.

[37] J.-P. Briot, G. Hadjeres, and F.-D. Pachet, “Deep learning techniques
for music generation–a survey,” arXiv preprint arXiv:1709.01620, 2017.

[38] C. Jin, Y. Tie, Y. Bai, X. Lv, and S. Liu, “A style-specific music
composition neural network,” Neural Processing Letters, vol. 52, 2020,
pp. 1893–1912.

[39] J.-P. Eckmann, S. O. Kamphorst, and D. Ruelle, “Recurrence plots
of dynamical systems,” World Scientific Series on Nonlinear Science
Series A, vol. 16, 1995, pp. 441–446.

[40] N. Bogach et al., “Speech processing for language learning: A practical
approach to computer-assisted pronunciation teaching,” Electronics,
vol. 10, no. 3, 2021, p. 235.

[41] N. Collins, “Computational analysis of musical influence: A musico-
logical case study using MIR tools.” in ISMIR, 2010, pp. 177–182.

10Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 17 / 58

A Novel Application of Machine Learning to a
New SEM Silicate Mineral Dataset

Benjamin Parfitt
Principal Research Scientist

Reiform
Washington, DC, USA

ben@reiform.com

Robert M. Welch
Department of Earth and Planetary Sciences

Harvard University
Cambridge, MA, USA
rwelch@g.harvard.edu

Abstract—Machine Learning (ML) continues to find appli-
cations in the geosciences, specifically in the classification of
minerals from spectral or elemental data. We begin by exploring
the use of four different methods for classification of elemental
mineral samples from Scanning Electron Microscopy (SEM) and
microprobe analysis in terms of structure, group, and subgroup.
We create the most extensive silicate mineral group and subgroup
classifiers available to the best of our knowledge, and achieve
precision and recall values as high as the current state-of-
the-art methods, which cover fewer groups and subgroups.
Finally, we attempt to leverage the knowledge of structural
families to improve classification performance on mineral groups,
and reapply this process to improve performance on mineral
subgroups. The train, test, validation split of data used in this
paper will be posted online, along with the code and a webpage
called MINdicator where anyone can use the new models easily.

Index Terms—machine learning, ensemble learning, mineral-
ogy, silicates.

I. INTRODUCTION

Mineralogists group naturally occurring crystalline solids,
called minerals, into seven different families. One of these is
the silicate family, which makes up ≈90% of all minerals
in the earth’s crust and is critical for rock formation [1].
Determining what silicate minerals are present in a sample
is therefore crucial in determining rock forming processes,
histories of metamorphism, and tectonic history, and has
countless other applications [2], [3].

Geoscientists currently make mineral predictions by us-
ing petrographic microscopes and spectroscopy methods [4].
These methods have been invaluable for the field of mineral-
ogy since its inception in the late 1800s. However, there are
drawbacks. The process requires an in-depth knowledge of
mineralogy to derive an accurate classification. Even with a
high degree of mineralogical knowledge, the identification is
not always reproducible. As the process stands today, the time
to correctly identify a group of samples is directly related to
how many samples one has since there is not a reliable, in-
depth, automated method of classifying a wide range of silicate
minerals through chemical analyses [5]. The identifications
of mineral family, group, and subgroup are based on real
elemental data, and are used to train our data-driven ML
models. This type of data-driven model provides a high degree
of automation and reproducibility, and a path to parallelize the
process of silicate mineral identification.

Machine learning techniques offer an expressway between
data collection and data analysis that is normally time con-
suming and requires a high degree of domain knowledge con-
cerning mineral identification. It has been shown that machine
learning can expedite the process of mineral identification
from Raman Spectroscopy [6], X-ray fluorescence (XRF) [5],
and Electron Microprobe Analysis (EMPA) analyses [7]. Ad-
ditionally, some methods have used deep learning and Convo-
lutional Neural Networks (CNN) to identify minerals using
standard RGB images [8] and hardness measurements [9].
Machine learning provides rapid, reproducible methods for
determining the mineral in question. Other methods also use
random forest classifiers and ensemble learning to improve
mineral identification within rock cross sections by using
spectral signatures from SEM and hyperspectral analysis of
rock cross-sections [10], [11].

Existing methods that operate on weight oxide data have yet
to utilize a large dataset, which is necessary to capture the wide
range of variability in the silicate group. We have developed
several methods to determine structure, group, and subgroup
classification that are state-of-the-art because we classify more
classes with higher accuracies than previous methods, while
utilizing a more robust and challenging dataset. To our knowl-
edge, we are the first to classify family structure. Additionally,
we classify 12 more groups and 7 more subgroups than any
previous method using SEM data [5]–[7]. We achieve macro
F1-scores (Section II-B) of 98.4%, 92.3%, and 90.7% on struc-
tural families, groups, and subgroups, respectively. Finally, we
investigate the effectiveness of utilizing the explicit divisions
of structures and groups in order to improve classification
quality of groups and subgroups, respectively. These tests
show promising results that warrant further investigation.

The remainder of the paper is structured as follows: Sec-
tion II contains background information on mineralogy and
machine learning, Section III contains an overview of related
work, Section IV contains the details of our dataset, Section
V describes our methods for classification, Section VI con-
tains results, Section VII contains a discussion, Section VIII
our methods for classification using the explicit divisions of
structure and group, Section IX contains the results of that
effort, Section X provides additional discussion, and Section
XI provides concluding remarks.

11Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 18 / 58

II. BACKGROUND

A. Mineralogy
Minerals are naturally occurring crystalline solids with

a repeatable pattern. Due to differences in chemistry and
crystal structure, minerals are broken into seven families:
silicates, oxides, sulfates, sulfides, carbonates, native elements,
and halides [1]. The silicate family of minerals contains
six structural groups which are also denoted as subfamilies.
These are nesosilicates, cyclosilicates, sorosilicates, inosili-
cates, phyllosilicates, and tectosilicates/framework silicates, all
of which have lattice differences [1]. Differences in crystal
lattice configurations will alter the type of ions that can
perform solid solution in a mineral, which alters the number
of different elements present within a mineral group. For
instance, clay minerals (a phyllosilicate) allow for a greater
degree of solid solution than wollastonite (an inosilicate)
due to lattice differences [1], [12]. Though silicate minerals
cover a wide range of chemical variability, the structure of a
mineral family, group, or subgroup creates a unique chemical
”fingerprint” due to physical chemistry [13]. For example,
this means that, in theory, the amphibole group is chemically
unique from quartz or chlorite [4], [14], [15]. This creates a
”fingerprint”; if an individual knows the chemistry, they can
forecast the structure [13].

Geologists commonly determine mineral chemistry by a
spectroscopy method, typically either Raman, SEM, Energy-
Dispersive Spectrum X-Ray Fluorescence (EDS/XRF), or
EMPA. These methods work by subjecting a mineralogical
sample to a high intensity electromagnetic radiation source
or electron beam. The released energies are then reported as
weight percent oxide counts.

B. Machine Learning
Decision trees [16] are a simple tree structure in which

training data are split at each tree node on some learned
condition until only one class is remaining. The resulting tree
is then used to classify unknown data samples. Extremely
randomized trees (Extra Trees) [17] is an ensemble learning
method that randomizes the data splitting at the nodes within
the decision trees used. Both of these tree methods are
computationally efficient. The K-Nearest-Neighbors (KNN)
classifier finds the k closest known samples to some unknown
sample (by euclidean distance), and uses the classes of the
known samples to predict the unknown class. A drawback of
this method is sensitivity to high dimensional spaces, both
in accuracy and efficiency, making it more computationally
expensive than the tree methods. The final method employed
is the Support Vector Machine (SVM) [18], which finds a
hyperplane that provides maximal separation for two sets of
data. Unseen data points are then plotted and classified by
their position relative to the hyperplane. The data can first
be operated on by a kernel to map it to a different space,
allowing non-separable data to be separated. In order to apply
this method to our multiclass problem space, the problem
is converted into several “one-vs-rest” binary classification
problems.

One weakness of many publications in ML is the use of
evaluation metrics that do not fully report the results [6].
Some background terminology: True Positive (TP) are all the
correctly labeled samples from the class of interest; False
Positives (FP) are samples labeled as the class of interest, but
actually in another; False Negatives (FN) are samples labeled
as another class, but actually in the class of interest. Often,
the only metric used is accuracy over all points. Computed
over all points, this is simply (all correct points)/(all points).
However, if 90% of the points are from class A, and the
classifier labels all data as A, then an accuracy of 90% will
be reached, which is misleading. This is why using metrics
such as recall and precision is important. Recall is defined as
(TP/(TP+FN)). If we measure using per class metrics from
our previous example, class A will have 100% recall, and all
other classes will have 0% recall. At this point the average
recall can be calculated, providing a realistic picture of the
results (at best 50%). Another metric that is important is
precision, defined (TP/(TP+FP)). However, it is often more
cumbersome to report the pair of metrics for each class, so
the F1-score, defined as (2×Precision×Recall)/(Precision +
Recall), is often used as a comprehensive metric. The macro
F1-score, which is the average F1-score across all classes, is
commonly used to evaluate models. Note that this is unaffected
by the imbalance of data in the evaluated dataset. One final
metric that is employed in the later sections of our evaluation
is the average top-3 recall, (top-3 recall, for brevity). To
calculate this metric, the probability vector V is taken from
each classifier. Normally, the position of the largest value in
V is used as the class identified, but instead the three largest
values are observed and if any of those correspond to the
correct class, the vector is considered “correct”. Then, the
average recall over all classes is computed as normal.

When large datasets are at hand in ML settings, the data
are broken into three sets: train, validation, and test. The
train set is used for training the model. The validation set
is used to validate the model and tune the choices of various
hyperparameters. The test set is used to test, or evaluate, the
performance of the final trained model. By using these three
sets it is ensured that the test data is not used to tune the
hyperparameters, which would create a model that is tuned
specifically for the test data and that creates misleading results.

III. RELATED WORK

Several ML methods, namely KNN, SVM, Extremely Ran-
dom Trees, Weighted Neighbors [19], and CNNs, are reviewed
as methods for mineral identification from Raman spectra [6].
The primary dataset used consisted of 3950 Raman spectra
samples from 1214 mineral species, with some rather large
class imbalances. A novel ML approach is introduced that
achieves 89.31% accuracy, although precision and recall are
not reported which leaves uncertainty when considered along-
side the class imbalances. Further, the use of another novel
method leveraging CNNs on the fusion of Raman, visible and
near-infrared, and laser-induced breakdown spectroscopy data
are explored as a method to improve accuracy of classification.

12Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 19 / 58

This is shown to far outperform the use of a single dataset,
reaching 92.76% accuracy. Again, neither precision nor any
other more comprehensive metric is reported, leaving uncer-
tainty of the performance of the model.

Random forest, SVM, and neural networks are used to
predict mineral composition of eight different mineral classes
for rock cross-sections by using hyperspectral imagery and
SEM data [11]. The random forest method is able to achieve
root-mean-squared error 0.02 on an unseen region of the rock
section used to train the classifer. However, when moved to
new samples the errors ranged from 0.03 to 0.12 for the lowest
errors for each model.

A Classifier Chain Random Forest (CCRF) performs multi-
class tasks by using a chain of binary classifiers, each of which
is a random forest model, and where each step builds on the
results of the previous classification. Applying this method
to a hyperspectral image of a rock cross section achieved
accuracies between 66.96% and 94.65% for six classes [10].

A decision tree is used to identify twelve different mineral
groups from 4601 SEM-EDS analyses with a relatively bal-
anced dataset [5]. This novel approach to determine minerals
in thin sections reports 100% accuracy for the twelve minerals
the study set out to identify. It should be noted that the dataset
has a limited sample size of minerals from only igneous rocks
and multiple samples are from the minerals identified to create
their dataset. In this study, there is no exploration of options
for solid solutions in mineral groups.

A set of 5 minerals from river sediment samples are identi-
fied using EMPA and EDS analyses [7]. Three different novel
ML algorithms are used, with the most successful achieving
≈92% accuracy. The authors show that ML algorithms can be
used to classify geologic samples.

Many of these existing methods rely on additional spectral
data, which is more computationally expensive to process and
more expensive to obtain than EMPA or SEM data. Previous
methods that operate on weight oxide data (such as SEM
or EMPA) have yet to utilize a large dataset or classify the
structural groups or mineral groups of samples. Our focus is on
creating methods to determine structure, group, and subgroup
for a larger number of classes than previously achieved, using
a much larger dataset.

IV. THE DATASET

The dataset used is > 99% composed of data available from
Earthchem [20], [21]. Each mineralogical sample contains the
source DOI, location, methodology, sample ID, and chemical
data. These analyses are chosen because they are the most
common and accurate analysis types available to geoscientists.
As dense as this source is, it contains only 10 viable clay
mineral samples. To supplement clay mineral data, the other
< 1% of our data were taken from two publications, one
with microprobe analyses [22], and one with wet chemistry
analyses [23].

In order to get only exact or near-exact data samples for
training and evaluating our models, any EarthChem data that
used “<” in measurement is discarded, as this is a clear

indicator of uncertainty. All samples whose sum total weight
oxide was not within 10% of 100%, that is, | weight oxide−
100 |< 10, are also discarded. We allow the room for error
because there is inherent error within SEM or EMPA analyses
due to a wide variety of inconsistencies within the sampling
and preparation steps [24]. The dataset is split into train, test,
and validation sets. The size of each set for subgroups, groups,
and structure samples is provided in Table I. This shows that
our dataset is much larger than datasets used in the past.
Additionally, this new dataset has 17 subgroups and 20 groups
(Table I), which is twelve groups and seven subgroups more
than two previous datasets [5] [7], and is the only dataset
to make the distinction between family structure, group, and
subgroup.

V. PREDICTING THE STRUCTURE, GROUP, AND SUBGROUP
WITH MACHINE LEARNING

We evaluate the performance of four ML models as applied
to the tasks of classifying structure, group, and subgroup label.
For each task, we evaluated the following 4 methods:

1) Decision Tree,
2) K-Nearest Neighbors algorithm (KNN),
3) Support-Vector Machine (SVM),
4) Extremely Randomised Trees (Extra Trees).

The implementation from sklearn in Python [25] was used
for all methods. These 4 methods are chosen because they
all have been shown to be effective for solving mineral
classification tasks in the past [5]–[7], and we hope to build
on those successes with our much larger dataset and new set
of tasks. The hyperparameters and metadata for most methods
are constant throughout the experiments. All parameters for
respective methods are listed below:

1) random state=1, criterion=’gini’
2) Neighbors: (Subgroup, 20), (Group, 25), (Structure, 25)
3) decision function shape=’ovo’, kernel=’linear’, C=18
4) random state=42, criterion=”gini”

The k chosen for the KNN algorithm is lower for subgroups
because the lowest represented classes in those subsets have
fewer points than the lowest represented classes in the group
or structure subsets. The train set is used to train the four
classifiers for each method, and validation set is used to choose
the best of the four classifiers. This is done because the choice
of the best model is considered a form of parameter tuning,
which is the purpose of the validation data. The best classifier
is then evaluated on the test data. The macro-F1 metric is

TABLE I
THE NUMBER OF SAMPLES IN EACH OF THE TRAIN, TEST, AND

VALIDATION SETS, FOR THE SUBGROUP, GROUP, AND STRUCTURE
CLASSIFICATION TASKS.

Set Subgroup Group Structure
Train 145161 282213 282213
Test 29032 56442 56442
Validation 19354 37629 37629
Classes 17 20 6

13Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 20 / 58

used to evaluate all models across all classes to choose the
best model.

VI. RESULTS OF PREDICTION ON VALIDATION DATA

As shown in Table II, the KNN classifier performs best
on the validation data in every task. The performance of the
best model from each task on the test data is then evaluated,
with results shown in Table III. The difference between the
average recall and average precision of the subgroup classifier,
about 7%, is the largest such gap of any of the classifiers. The
subgroup, group, and structure classifiers all break 90% for the
macro F1-score, with the structure classifier reaching 98.4%.

The disparity between the smallest and largest classes when
considering the number of training points per class is quite
large, and is reported in detail for the group classification
dataset in Table IV. The class with the most points is olivine,
and the class with the least is wollastonite, which has 99.96%
fewer points than olivine.

The effect of having very few training points on the F1-score
of the model is reported in Figure 1. All classes that achieve
an F1-score lower than 90% have a number of data points
99% lower than the number of data points contained in the
class with the most points. The worst performing model has a
number of data points more than 99.9% lower than the class
with the most points. Interestingly, the class with the fewest
points, wollastonite, achieves a perfect F1-score of 100%. This
is discussed in detail below.

VII. A BRIEF DISCUSSION OF THE RESULTS

As can be seen in Figure 1, it is not true that having
few samples will prevent a model from classifying the class
correctly, but rather that having many samples will increase
the likelihood of high performance on a class. Also, all of the
classes that receive worse than 0.9 as the F1-score have very
few training samples.

The varying F1-scores for the low-sample classes are due to
two factors: the uniqueness of crystal structure and the number
of data-points per class.

Amphiboles and pyroxenes are both inosilicates that differ
in structure, but have similar chemistry (which is the data used
to classify the samples) [14] [26]. If a decrease in accuracy was
solely due to similar chemistry, it would be apparent in these
two classes. This is not the case, as amphiboles and pyroxenes
have approximately the same accuracy, demonstrating that the

TABLE II
THE MACRO F1-SCORE OBTAINED ON THE VALIDATION DATA AFTER

TRAINING EACH ML ALGORITHM ON THE DATA FOR SUBGROUPS,
GROUPS, AND STRUCTURE DATASETS.

Macro F1-score
ML Algorithm Subgroup Group Structure
DecisionTree 88.428 90.905 97.672
KNN 91.084 92.278 98.279
ExtraTree 86.518 87.952 96.695
SVM 86.844 88.421 96.675

TABLE III
THE PRECISION, RECALL, AND F1-SCORE FOR THE BEST CLASSIFIER FOR
EACH TASK FROM SUBGROUP, GROUP, AND STRUCTURE, AS INDICATED IN

TABLE II ON THE TEST DATASET.

Subgroup Group Structure
Metric (KNN) (KNN) (KNN)
Precision 95.327 93.295 97.845
Recall 88.551 92.186 98.994
F1-score 90.764 92.332 98.404

high number of training points allows us to discern one from
another (Figure 1).

Inversely, wollastonite has a far greater F1-score than zeo-
lite. While they both have relatively few training points, they
have drastically different F1-scores. This is most likely caused
by the uniqueness of the wollastonite lattice structure and,

TABLE IV
THE F1-SCORE, TRAINING DATA POINTS, TRAINING DATA POINTS AS A
FRACTION OF THE LARGEST CLASS, AND TRAINING DATA POINTS AS A
FRACTION OF THE MEAN POINTS IN ALL CLASSES, FOR EACH GROUP.

Group F1− |Train| |Train|/ |Train|/
Score(%) Max(Train)% Mean(Train)%

Aenigmatite 92.68 188 00.21 01.33
Amphibole 96.82 12054 13.40 85.42
Analcime 80.00 95 00.11 00.67
Chlorite 92.59 140 00.16 00.99
Clay Mineral 81.08 99 00.11 00.70
Cordierite 98.18 142 00.16 01.01
Epidote 85.39 211 00.23 01.50
Feldspar 99.81 56443 62.74 400.00
Feldspathoid 98.07 1294 01.44 09.17
Garnet 99.62 27471 30.54 194.68
Kyanite Group 95.08 161 00.18 01.14
Melilite 97.08 412 00.46 02.92
Mica 97.53 10870 12.08 77.03
Olivine 99.88 89961 100.00 637.54
Prehnite 96.00 58 00.06 00.41
Pyroxine 99.34 82301 91.49 583.25
Quartz 100.00 113 00.13 00.80
Serpentine 82.93 91 00.10 00.64
Wollastonaite 100.00 36 00.04 00.26
Zeolite 54.55 73 00.08 00.52

10−3 10−2 10−1 100

0.6

0.8

1

Relative Training Points

F1
-S

co
re

Other Groups Wollastonite Zeolite
Amphibole Pyroxene

Fig. 1. The relative number of training data points per each group class
(points in class/max(points in classes)) versus the F1-score of the best model
for the group task (from Table I) on test data.

14Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 21 / 58

therefore, chemical fingerprint. The dichotomy between the
accuracy of the zeolite and wollastonite groups show that sam-
ple count is not the sole indicator for performance of a class.
Wollastonite is the only silicate mineral in the pyroxenoid
group in our dataset. As noted by [27], pyroxenoids have a
unique structure from the pyroxenes and other mineral groups.
This uniqueness is compounded with that fact that ≈40-50%
of wollastonite is captured by CaO in our dataset. This value
is two orders of magnitude larger than any other CaO data-
point in the dataset. It is this uniqueness of wollastonite
that allows us to determine and discern from other silicate
minerals without a robust dataset. As the other members of
this low data-point cluster do not share the same uniqueness
as wollastonite, it can be observed that their low sample count
hinders their accuracy. Zeolites in particular suffer from this
issue. Zeolites accept a far greater range ion exchange then that
of wollastonite [12]. This wide range of chemical impurities
decreases the uniqueness of zeolites.

The reasoning for the difference between wollastonite and
zeolite holds for the other groups with relative training points
less than 10−2, demonstrating that with a low number of
relative training points, a mineral’s lattice structure dictates
the accuracy.

VIII. IMPROVING GROUP AND SUBGROUP PREDICTION

The silicate structural groups and mineral groups provide
explicit divisions to create subsets of the data, and we aim
to leverage this knowledge to improve classification results
for the group and subgroup classification tasks. In order to
utilize these divisions to attempt to improve the classifications
of mineral groups, a high performing classifier of structural
class, say S, is used. For a given data point v, which is
a vector of elemental weights, the probability vector that is
the output of S(v) is appended to the end of v. This is the
initial augmentation step. At this point, a classifier is trained to
classify mineral groups using the augmented data points. The
structural classifier S is chosen based on the average top-3
recall rather than the F1-score in order to increase the chances
that the correct class is indicated strongly in the probability
vector returned by S(v), even if it is not the highest value in
the vector. This choice was supported when testing using a
subset of the data for the augmented group classification task.
The results are omitted for brevity. In this way, additional
data that the model can use to separate the various classes is
explicitly provided by leveraging domain specific knowledge.
The use of multiple models is an adaptation of ensemble
learning, which demonstrated success in [6]. The macro-F1
metric is used to evaluate the resulting models across all
classes in order to choose the best model to use on the test
data for each task.

IX. RESULTS OF PREDICTION USING AUGMENTED
MODELS

The best models for the group and structure tasks, as eval-
uated by the top-3 recall metric, are both the KNN classifiers.

This is shown in Table V. These are also the best models as
evaluated by F1-score, shown in Table II.

The results of evaluating (on the validation data) the best
models for the subgroup and group tasks, trained with data
augmented by the best top-3 models, are displayed in Table VI.
The change in F1-score from the old models to the new models
is also displayed. The best models are KNN for both subgroup
and group. The KNN subgroup classifier has a higher F1-
score than the best models from the non-augmented training,
while the new group classifier performs worse. The largest
improvement for both the subgroup and group models is in
the SVM, with an improvement of over 3% in both cases.
All subgroup models showed improvement, while only the
ExtraTree and SVM were improved of the group classification
models, while the KNN group model F1-score and the decision
tree F1-score decreased by 0.029% and 2.046%, respectively.

When evaluated on the test data, both the subgroup and
group models performed worse across precision, recall, and
F1-score than the non-augmented methods, as shown in Table
VII. The F1-score for the subgroup model decreased by
just under 0.06%, while the F1-score for the group model
decreased by more than 2%. This is also shown in Table
VII. The greater decrease in accuracy from the group model
reflects the worse performance on the validation set. The only
subgroup classes that performed worse in the new model
were clinopyroxene, kaersutite, and phlogopite, by -0.004%,
-1.001%, and -0.007%, respectively.

The per-class change in F1-score is displayed in Figure 2
for the groups only, as this experienced the larger decrease.
The classes experience both increases and decreases in F1-
score. The largest increase of just under 10% is for Analcime,
the worst performing class in the original model. The largest

TABLE V
TOP-3 RECALL OF THE CLASSIFIERS SHOWN IN TABLE II (EVALUATED ON

THE VALIDATION DATA) FOR GROUP AND STRUCTURE CLASSIFICATION.
THE BEST RESULTS ARE IN BOLD.

Top-3 Recall (%)
Task Group Structure
DecisionTree 93.168 98.860
KNN 97.883 99.770
ExtraTree 88.466 97.427
SVM 97.179 99.568

TABLE VI
THE RESULTS OF EVALUATION ON THE VALIDATION DATA AFTER

TRAINING THE SUBGROUP AND GROUP CLASSIFIERS ON THE DATASET
AUGMENTED WITH THE HIGHEST TOP-3 RECALL FROM THE PREVIOUS
CLASSIFIER. ”CHANGE” INDICATES THE CHANGE IN ACCURACY FROM

THE CLASSIFIERS TRAINED WITH THE ORIGINAL DATA TO THOSE TRAINED
WITH THE AUGMENTED DATA. THE BEST RESULTS ARE IN BOLD.

SubGroup (%) Group (%)
ML Algorithm Macro F1 Change Macro F1 Change
DecisionTree 89.286 0.858 88.860 −2.046
KNN 91.107 0.023 92.249 −0.029
ExtraTree 86.888 0.370 88.765 0.813
SVM 90.255 3.411 91.778 3.358

15Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 22 / 58

TABLE VII
THE RESULTS OF RUNNING THE BEST CLASSIFIERS (AS INDICATED IN

TABLE VI) ON THE TEST DATASETS AFTER AUGMENTING THEM WITH THE
PROBABILITIES FROM THE CLASSIFIERS WITH THE HIGHEST TOP-3
RECALL. AVERAGE PRECISION, RECALL, AND F1-SCORE OVER ALL

CLASSES ARE REPORTED.

SubGroup (%) Group (%)
Metric KNN Change KNN Change
Precision 95.204 −0.123 92.057 −1.237
Recall 88.546 −0.005 90.462 −1.724
F1-score 90.705 −0.060 90.302 −2.030

decrease of just over 25% is for wollastonite. Zeolite also
experienced a substantial decrease in F1-score, of over 10%.
All three of the most affected classes had less than 1% of the
mean points in all group classes used for training (Table IV).

X. DISCUSSION OF THE RESULTS OF THE AUGMENTED
MODELS

The F1-scores from training with the augmented data were
higher for several of the classifiers than those from the original
models on the validation data for both the subgroup and
group tasks, which shows promise for the method. However,
the results on the test data were worse in both cases, which
indicates that there are considerable improvements to be made
before this technique can be viable. The ultimate decrease
in accuracy for the KNN classifiers and the large increases
shown by both SVM classifiers are likely due to the increase
in dimensionality of the feature vectors. This increase, which
is caused by augmenting the vectors with the data regarding
either the structure or group classification, could be mitigated
by the use of some dimension-reducing method, such as
Principal Component Analysis (PCA) [28]. The changes of
the group classification results are discussed in depth, as
the changes are much larger than those for the subgroup
classification.

The groups whose performance improves by more than
0.1% after augmentation are serpentine, cordiedite, aenig-
matite, analcime, epidote, and the kyanite group. These im-
provements are likely a result of the new model, as the

Fig. 2. The difference in classification F1-score from the original Group
classifier to the Group classifier with structure data. Higher indicates better
performance from the Group classifier with structure data.

train, validation, and test datasets are all constant between
experiments. These mineral groups are from different struc-
tural sub-families, which disallows the possibility of crystal
lattice structures dictating the change in performance after
augmentation. The groups whose F1-scores decrease after
augmentation are also from different structural subfamilies,
maintaining this pattern.

Wollastonite and zeolite experience the most significant
decrease in performance, and have the fewest and fourth fewest
training points of all classes, respectively (Table IV). The
low point count contributes to this observed performance loss.
Additionally, the other groups that lose performance all have
point counts less than 100, which is 7% of the mean points
per class and 0.12% of the max point in any class. Also,
by augmenting the feature vectors with resulting structural
predictions, the uniqueness of the wollastonite samples that
allowed them to perform well with few training samples may
be reduced. The inverse holds for groups with a point count
greater than 100. Mineral groups over this relative point count
either experience very little change, or a notable increase
in F1-score. This coupling between low point counts and a
decrease in performance after augmentation leads us to believe
that one can successfully apply structure augmentation to
groups with high counts of relative training points.

XI. CONCLUSION AND FUTURE WORK

Previously, [5]–[7] demonstrated success using ML as a tool
for mineral identification. We have expanded on their ideas
by not only using a larger dataset of silicate minerals, but
by being able to identify more classes at the same level of
accuracy as the studies before us. We also note that although
we have created the most extensive silicate mineral classifiers
to the best of our knowledge, classes with fewer instances
could still be improved. This leads us to believe that the
development of future models that incorporate even more data,
along with deeper structural information, will perform even
better. Additionally, the use of methods to create synthetic data
to balance the classes could be beneficial in future efforts. It
is also anticipated that the use of dimension reduction will
greatly improve classification results. To aid in the collection
and development of the models, we will be offering free use of
these models through a website [29], and the ability to upload
labeled data to improve the model.

ACKNOWLEDGMENT

We thank Jack Hay and Mia Ratino for their time spent
in discussions, reading drafts, and providing feedback. We
also thank Reiform for funding the compute resources for
this project and hosting the open source ML models on their
servers.

REFERENCES

[1] W. A. Deer, R. A. Howie, and J. Zussman, An Introduction to the
Rock-Forming Minerals. Mineralogical Society of Great Britain and
Ireland, 01 2013. [Online]. Available: https://doi.org/10.1180/DHZ

[2] T. Koljonen and L. Carlson, “Behaviour of the major elements and
minerals in sediments of four humic lakes in south-western Finland,”
Fennia, no. 137, pp. 5–47, 1975.

16Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 23 / 58

[3] M. Hopkins, T. M. Harrison, and C. E. Manning, “Low heat flow inferred
from > 4 Gyr zircons suggests Hadean plate boundary interactions,”
Nature, vol. 456, no. 7221, pp. 493–496, 2008.

[4] W. A. Deer, R. A. Howie, and W. S. Wise, Rock Forming Minerals;
Single Chain Silicates, 2nd ed. London: Geological Society of London,
1997.

[5] E. Akkaş, L. Akin, H. Evren Çubukçu, and H. Artuner, “Application of
Decision Tree Algorithm for classification and identification of natural
minerals using SEM-EDS,” Computers and Geosciences, vol. 80, pp.
38–48, 2015.

[6] P. Jahoda, I. Drozdovskiy, S. J. Payler, L. Turchi, L. Bessone,
and F. Sauro, “Machine learning for recognizing minerals from
multispectral data,” Analyst, vol. 146, pp. 184–195, 2021. [Online].
Available: http://dx.doi.org/10.1039/D0AN01483D

[7] H. Hao, X. Jiang, Y. Sun, W. Dou, and Q. Gu, “A Method for Classifica-
tion of Heavy Mineral Based on Machine Learning,” Proceedings - 2020
IEEE 22nd International Conference on High Performance Computing
and Communications, IEEE 18th International Conference on Smart
City and IEEE 6th International Conference on Data Science and
Systems, HPCC-SmartCity-DSS 2020, pp. 991–998, 2020.

[8] Y. Zhang, M. Li, S. Han, Q. Ren, and J. Shi, “Intelligent identification
for rock-mineral microscopic images using ensemble machine learning
algorithms,” Sensors, vol. 19, no. 18, 2019. [Online]. Available:
https://www.mdpi.com/1424-8220/19/18/3914

[9] X. Zeng, Y. Xiao, X. Ji, and G. Wang, “Mineral identification based
on deep learning that combines image and mohs hardness,” Minerals,
vol. 11, no. 5, 2021. [Online]. Available: https://www.mdpi.com/2075-
163X/11/5/506

[10] I. C. Contreras, M. Khodadadzadeh, and R. Gloaguen, “Multi-label
classification for drill-core hyperspectral mineral mapping,” Interna-
tional Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences - ISPRS Archives, vol. 43, no. B3, pp. 383–388,
2020.

[11] L. Tuşa et al., “Drill-core mineral abundance estimation using
hyperspectral and high-resolution mineralogical data,” Remote Sensing,
vol. 12, no. 7, 2020. [Online]. Available: https://www.mdpi.com/2072-
4292/12/7/1218

[12] W. A. Deer, R. A. Howie, W. S. Wise, and J. Zussman, Rock-
forming minerals. Volume 4B. Framework silicates: silica minerals.
Feldspathoids and the zeolites, 2nd ed. London: Geological Society of
London, 2004.

[13] D. H. Brouwer, S. Cadars, J. Eckert, Z. Liu, O. Terasaki, and B. F.
Chmelka, “A general protocol for determining the structures of molec-
ularly ordered but noncrystalline silicate frameworks,” Journal of the
American Chemical Society, vol. 135, no. 15, pp. 5641–5655, 2013.

[14] F. C. Hawthorne et al., “Ima report: Nomenclature of the amphibole
supergroup,” American Mineralogist, vol. 97, no. 11-12, pp. 2031–2048,
2012.

[15] P. Bayliss, “Nomenclature of the trioctahedral chlorites,” Canadian
Mineralogist, vol. 13, pp. 178–180, 1975.

[16] W. A. Belson, “Matching and Prediction on the Principle of
Biological Classification,” Journal of the Royal Statistical Society
Series C, vol. 8, no. 2, pp. 65–75, June 1959. [Online]. Available:
https://ideas.repec.org/a/bla/jorssc/v8y1959i2p65-75.html

[17] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Machine Learning, vol. 63, no. 1, pp. 3–42, 2006.

[18] C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning,
vol. 20, pp. 273–297, 1995.

[19] R. J. Samworth, “Optimal weighted nearest neighbour classifiers,” The
Annals of Statistics, vol. 40, no. 5, pp. 2733 – 2763, 2012. [Online].
Available: https://doi.org/10.1214/12-AOS1049

[20] “Earthchem.” [Online]. Available: http://portal.earthchem.org/
[21] K. Lehnert, Y. Su, C. H. Langmuir, B. Sarbas, and U. Nohl, “A global

geochemical database structure for rocks,” Geochemistry, Geophysics,
Geosystems, vol. 1, no. 5, 2000.

[22] J. Środoń, E. Zeelmaekers, and A. Derkowski, “The charge of compo-
nent layers of illite-smectite in bentonites and the nature of end-member
illite,” Clays and Clay Minerals, vol. 57, no. 5, pp. 649–671, 2009.

[23] C. S. Ross and S. B. Hendricks, “Minerals of the montmorillonite
group their origin and relation to soils and clays.” Geological survey
professional paper 205-b,, vol. 23-79, pp. 23–79, 1943.

[24] T. O. Ziebold, “Precision and Sensitivity in Electron Microprobe Anal-
ysis,” Analytical Chemistry, vol. 39, no. 8, pp. 858–861, 1967.

[25] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[26] N. Morimoto, “Nomenclature of Pyroxenes,” Mineralogy and Petrology,
vol. 39, no. 1, pp. 55–76, 1988.

[27] B. E. Warren and J. Biscoe, “The crystal structure of the monoclinic
pyroxenes,” Zeitschrift für Kristallographie - Crystalline Materials,
vol. 80, no. 1-6, pp. 391–401, 1931.

[28] I. Jolliffe, Principal Component Analysis. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 1094–1096. [Online]. Available:
https://doi.org/10.1007/978-3-642-04898-2 455

[29] J. Hay and B. Parfitt, Jun 2021. [Online]. Available:
https://mindicator.reiform.com/

17Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 24 / 58

Physical and Computer Modeling of Extra-High Temperature Processes:

Problems and Challenges

Nguyen Thi Thu Trang

AGH - University of Science and Technology

al. Mickiewicza 30, 30-059 Krakow, Poland

e-mail: nguyen@agh.edu.pl

Marcin Hojny

AGH - University of Science and Technology

al. Mickiewicza 30, 30-059 Krakow, Poland

e-mail: mhojny@agh.edu.pl

Tomasz Dębiński
AGH - University of Science and Technology

al. Mickiewicza 30, 30-059 Krakow, Poland

e-mail: debinski@agh.edu.pl

Abstract—The paper describes the methodology of

integrated modeling of extra-high temperature steel

processing in supporting the design of new technologies

(e.g. soft-reduction and direct strip casting processes). The

work is supplemented with examples of the practical use of

the proposed methodology in supporting physical

simulations. The problems and challenges of the proposed

solution are briefly described.

Keywords - Finite Element Method; Monte Carlo

method; physical simulation; computer simulation;

mushyzone; Smoothed Particle Hydrodynamics.

I. INTRODUCTION

The contemporary approach to the issues of
engineering new processes involves the extensive
application of computer technologies and methods.
Then, the development of electronics, including
computers and implementation of numerical simulation
methods, has led to the construction of equipment
allowing complex technological processes to be tested
in the laboratory scale. As the tests are conducted on
actual materials, the term “physical simulation” has
been adopted as opposed to the numerical simulation.
The physical simulation is directly related to a new type
of computer controlled tensile testing machines, able to
change the experiment conditions automatically during
the experiment according to the programme adopted by
the engineer. The evaluation of mechanical properties of
samples subjected to various simulation variants is the
basis for developing a special “process map”, which
enables the optimal parameters of the continuous
casting machine to be determined when casting a
specific steel grade [1]. It allows the casting process
parameters (e.g. casting speed, cooling rate in the
primary and secondary zones) to be adjusted so as to
avoid the potential threat of cracks. As may be
concluded from the above description, each steel grade
requires separate tests. The main problem concerning
the experimental work is the sample heterogenous
temperature. Keeping temperature constant during the

whole experimental procedure is difficult [2]. There are
also some problems and challenges with the
experimental and numerical simulation procedure:
- prediction of extra-high temperature strain-stress
relationships,
- prediction macro/microstructure (grain size),
- prediction of heat transfer coefficients (necessary for
numerical simulations),
- extremely high distortions of the mesh during
simulation of deformation at temperatures close to the
solidus line,
- deformation experiments at temperatures close to the
solidus line (semi-solid state).

A lack of good methods for semi-solid steel
simulation and significant inhomogeneity in strain
distribution lead to a weak accuracy of the resulting
stress field. In order to solve the above problems, the
methodology integrating the areas of physical and
computer simulation was proposed. A schematic
diagram of the integrated modeling methodology
combining the advantages of physical and computer
simulation is presented in Figure 1. It consists of three
main layers: physical simulation, computer simulation
and supporting equipment. The proposed solution uses a
methodological research capability of modern Gleeble
3800 thermo-mechanical simulators to simulate
physical processes [1] (first layer), and the benefits of
numerical modeling (second layer, DEFFEM3D
software [1][2]). Mathematical models are the original
solutions of the developed DEFFEM 3D software, such
as the thermo-mechanical model of steel deformation in
the semi-solid state with variable density, and the multi-
scale model of resistance heating coupled with grain
growth modelling in the micro scale. More details about
mathematical models can be found in monograph [1].

Supporting equipment (third layer) includes
scanning microscope, Zwick Z250 testing machine,
thermal imaging camera, 3D system scanning and
tomograph.

18Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 25 / 58

Figure 1. The scheme of the methodology (coupled modeling - physical and computer simulation) with examples application.

II. APPLICATION EXAMPLES

 The developed methodology was used in the course
of research and development works on the interest rate
of new technologies for the aircraft industry:

- application of the methodology in computer-
aided design of casting critical parts of aircraft
engines. Simulations of casting in ceramic
molds obtained using the lost wax method.
Figure 2(a) presents an example temperature
distribution during cooling of the blade of jet
engine.

- support in the design of hot forming
technology for the strengthening of the
intermediate hull directing airflow in a jet
engine. Simulation of the resistance heating of
the sheet before the forming process. Figure
2(b) presents an example temperature
distribution during resistance heating of the
blank.

Figure 2. Application examples (aicraft industry).

III. CONCLUSIONS

The developed numerical tool (DEFFEM 3D
software), combined with the capabilities of modern
thermo-mechanical simulators of the Gleeble series,
allows theoretical support for the design of new
technologies. This allows for restricting the number of
expensive experimental tests to the minimum, e.g. by
selecting a suitable heating schedule to achieve the
desired temperature at the sample section, or getting
additional information about the process, eg. estimating
zones with diversified grain growth dynamics, or
information on local cooling rates at any point within
the volume of the sample tested. Further research will
focus on developing numerical tools based on particle
methods, such as SPH (smoothed particle
hydrodynamics). This approach will allow to solve
some of the problems related to the modeling of steel
deformation in the semi-solid state using the finite
element method.

ACKNOWLEDGMENT

The work was realized as a part of fundamental

research financed by the Ministry of Science and Higher

Education, grant no. 16.16.110.663.

REFERENCES

[1] M. Hojny, Modeling steel deformation in the semi-solid

state. Advanced Structured Materials, vol.47, Springer,

Switzerland, 2018.

[2] M. Hojny, T. Dębiński, M. Głowacki and Trang Thi

Thu Nguyen, “Spatial Thermo-Mechanical Model of

Mushy Steel Deformation Based on the Finite Element

Method,” Archives of Foundry Engineering, vol. 21,

pp.17-28, 2021.

19Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 26 / 58

AMPRO-HPCC: A Machine-Learning Tool for
Predicting Resources on Slurm HPC Clusters

Mohammed Tanash
Computer Science Department

Kansas State University
Manhattan, United States
e-mail: tanash@ksu.edu

Daniel Andresen
Computer Science Department

Kansas State University
Manhattan, United States

e-mail: dan@ksu.edu

William Hsu
Computer Science Department

Kansas State University
Manhattan, United States

e-mail: bhsu@ksu.edu

Abstract—Determining resource allocations (memory and
time) for submitted jobs in High Performance Computing (HPC)
systems is a challenging process even for computer scientists.
HPC users are highly encouraged to overestimate resource
allocation for their submitted jobs, so their jobs will not be killed
due to insufficient resources. Overestimating resource allocations
occurs because of the wide variety of HPC applications and
environment configuration options, and the lack of knowledge
of the complex structure of HPC systems. This causes a waste
of HPC resources, a decreased utilization of HPC systems, and
increased waiting and turnaround time for submitted jobs. In
this paper, we introduce our first ever implemented fully-offline,
fully-automated, stand-alone, and open-source Machine Learning
(ML) tool to help users predict memory and time requirements
for their submitted jobs on the cluster. Our tool involves imple-
menting six ML discriminative models from the scikit-learn and
Microsoft LightGBM applied on the historical data (sacct data)
from Simple Linux Utility for Resource Management (Slurm).
We have tested our tool using historical data (saact data) using
HPC resources of Kansas State University (Beocat), which covers
the years from January 2019 - March 2021, and contains around
17.6 million jobs. Our results show that our tool achieves high
predictive accuracy R2 (0.72 using LightGBM for predicting
the memory and 0.74 using Random Forest for predicting the
time), helps dramatically reduce computational average waiting-
time and turnaround time for the submitted jobs, and increases
utilization of the HPC resources. Hence, our tool decreases the
power consumption of the HPC resources.

Keywords—HPC; Scheduling; Supervised Machine Learning;
Slurm; Performance.

I. INTRODUCTION

High Performance Computing (HPC) resources have be-
come more available to users to run their extensive compu-
tations and simulations. One of the most important parts of
the HPC system is the batch scheduler. The batch scheduler
manages resources and queues of all submitted jobs in the
cluster. Hence, it is the part that decides where and when jobs
will run in the cluster. On the other hand, batch scheduler
performance depends on the resource requirements from the
user such as the amount of memory, requested time, and
the number of cores [1]. While these resource requirements
are the responsibility of HPC users to determine, it is a
fact that users may determine resource needs inaccurately
[2]. Also, users are highly encouraged to overestimate these
resources in order to satisfy job requirements, so their jobs

will not be killed during the run time due to insufficient
resources [3]. Overestimating job resource requirements nega-
tively impacts the performance and the utilization of the HPC
system. Moreover, over-estimating job resource process will
increase average turn-around time and average waiting time
for submitted jobs.

In this paper, we introduce the first-ever open-source,
stand-alone, highly-accurate, fully-offline, and fully-automated
tool called AMPRO-HPCC, which stands for ”A Machine-
Learning-Tool for Predicting Resources On Slurm HPC Clus-
ters”. AMPRO-HPCC aims to help HPC users predict and
estimate the required job resource allocations (memory and
time) for their submitted jobs. Our tool uses Simple Linux
Utility for Resource Management (Slurm) historical logs-data
(sacct) and involves implementation of six Machine Learning
(ML) discriminative models from the scikit-learn [4] and
Microsoft LightGBM (LGBM) [5]. Our ML tool is invoked
through Command Line Interface (CLI), and it consists of two
parts: i) System administrator part, which is responsible for
preparing data and all the required models for building the final
models and tool; ii) HPC user side, which will automatically
read the submission job script provided from the HPC user and
recommend the required job allocation resources (memory and
time) for the associated submitted job.

We have extended our previous work [6]–[8], and designed
the AMPRO-HPCC tool to help HPC users determine the
allocation of HPC resource needs (memory and time) using
supervised ML over historical data (sacct). Our open-source
tool can be found on GitHub [9].

The rest of this paper is organized as follows: Section
2, discusses the related work. Section 3 describes our pre-
diction tool, AMPRO-HPCC, which includes the workflow
model, data preparation, evaluation and building of our Mixed
Account Regression Model (MARM), and the job resource
prediction. Section 4 shows our promising results. Finally,
Section 5 presents our conclusion.

II. RELATED WORK

Simple Linux Utility for Resource Management (Slurm) is
a resource manager, which enables HPC resources to execute
parallel jobs efficiently [10]. Slurm turns a set of hundreds or
tens of thousands of computers into a single unit that you can

20Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 27 / 58

run jobs on. So Slurm makes parallel computers easy to use.
Slurm allocates resources within a cluster, manages the nodes,
and keeps track of architecture within a node such as sockets,
NUMA boards, cores, hyper threads, memory, interconnect,
generic resources, and managing licenses. Slurm manages jobs
through varieties of scheduling algorithms (fair share, gang,
advanced reservation, etc.) [11].

While there are many kinds of resource management sched-
uler such as Sun Grid Engine (SGE) [12], Tera-scale Open-
source Resource and Queue manager (TORQUE) [13], [14],
and Portable Batch System (PBS) [15], [16], Slurm is the most
popular and most used among them. Hence, we implemented
our tool based on Slurm workload manager HPC systems.

There are many studies and research focusing on predicting
the running time and the time required for running application
on the HPC systems or the cloud [17]–[29], while there are
quite a lot of research that focuses on predicting the amount
of memory required for the submitted jobs [30], [31].

Our work differs by the methodology used and the ability
to predict both memory and time required for submitted jobs
on the HPC systems. We conclude ”there does not yet exist
software that can help to fully automate the allocation of HPC
resources or to anticipate resource needs reliably by gener-
alizing over historical data, such as determining the number
of processor cores and the amount of memory needed.” [6].
Hence, we are introducing the first-ever open-source ML tool
for predicting job resources (memory and time) for submitted
jobs on the HPC systems.

III. PREDICTION TOOL AMPRO-HPCC

Figure 1 illustrates the use-case diagram of our
ML tool. We have two types of users: i) system
administrators (referred to as admin henceforth) and
ii) HPC users (referred to as users henceforth).
Modules PreProcess, BuildPerAccountModels,
BuildMixedAccountModels and
TrainSelectedMARM are available to admins, while
the Ampro-hpcc module is available to both admins and
users. The main objective of our tool is to build Mixed
Account Regression Models (MARM), which are regression
models built on a subset of slurm Accounts with the best
overall predictive performance, containing a reasonable
percentage of jobs. Here, we provide descriptions of each
module along with its inputs and outputs.

A. AMPRO-HPCC Workflow Model

Figure 2 describes the workflow model of our work as
follows: i) The user prepares and creates a new job, which
includes the requested amount of memory, time limit, quality
of service (QoS), and partition name for the proposed job.
ii) The HPC user will submit their job and passes it through
our ML model in order to predict the amount of the required
memory and the amount of time needed for the job to run. iii)
Our ML model will process the submitted job by parsing all of
the parameters needed, then predicting required memory and
time for the specific job. iv) The HPC user will get feedback

Fig. 1. Use-Case Diagram for AMPRO-HPCC

from our model regarding the needed amount of memory
and time for their submitted jobs. v) The user will have the
option to confirm or deny to use the predicted values for the
required memory and time. vi) If the user confirms the use
of the predicted amounts for either the required memory or
the required time or both, then our ML model will update
the amounts of memory and time as needed for the submitted
job. If not, then the submitted job will remain the same. vii)
The user will be notified about the changes to their jobs.
viii) Finally, either an updated job or the original job will
be scheduled for running on the cluster.

B. Data Preparation

The data preparation or Preprocess module takes the
path (path_to_data) to logs of slurm jobs accounting
information (sacct) to extract Account, ReqMem, Timelimt, Re-
qNodes, ReqCPUS, QoS, Partition, MaxRSS, CPUTimeRAW,
and State from the dataset. A description of these features
can be found at [32]. The module also asks the admin
to provide default time-limit (def_time), default qual-
ity of service (def_qos), and default partition assignment
(def_partition) to deal with some of the missing values
in the data. Finally, the admin also has the ability to specify a
set of QoS (sel_qos) and partitions (sel_partition)
that they want to select over the entire data. In addition,
the Pre-processing module does its own filtration by
only selecting jobs with State equals to ’COMPLETED’,
and having non-zero MaxRSS and CPUTimeRAW. Next, this
module standardizes Timelimit to numeric hours, MaxRSS
and ReqMem to gigabytes (GB), and Account and QoS to
numeric factors. Finally, Account, ReqMem, ReqNodes, Time-
limit, QoS, MaxRSS, and CPUTimeRAW are normalized us-

21Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 28 / 58

Fig. 2. AMPRO-HPCC Work-Flow Diagram.

ing the StandardScaler transform in Scikit-learn Python
package [4].

C. Evaluating Individual Regression Models

Before building the Mixed Account Regression Models
(MARM), the admin can evaluate individual regression mod-
els to note what may be most suited to their dataset. Al-
though optional, the BuildPerAccModels module can
provide initial insights on the quality of data and can sig-
nificantly speed up MARM building time by nominating
promising regression models for MARM overall possibilities.
The BuildPerAccModels module requires the admin to
provide the path to processed data (path_to_data), inde-
pendent variables or features (indep_vars), and a depen-
dent variable (dep_var) to train and evaluate seven popular
regression models on all data-subsets containing individual
Account. At this point, the admin can specify the minimum
number of jobs an individual Account should have in order
to be considered (min_num_jobs). The seven regression
models include: i) Lasso Least Angle Regression (LL) [33],
[34], ii) Linear Regression (LR) [34], iii) Ridge Regression
(RG) [34], iv) Elastic Net Regression (EN) [34], v) Classifi-
cation and Regression Trees (DTR) [35], vi) Random Forest
Regression, (RFR) [36], and vii) LightGBM (LGBM) [5]. The
regression models are evaluated by means of the Coefficient
of determination (R2), and root mean squared error (RMSE)
[34]. We used scikit-learn’s [4] implementation for all models
and performance metrics.

D. Evaluating Mixed Account Regression Models

Once the individual regression models have been eval-
uated, the admin can select what models should be
considered for MARM. The admin can also decide to
select all seven regression models for MARM. Our
BuildMixedAccountModels module requires a path
to processed data (path_to_data), independent vari-
ables (indep_vars), dependent variable (dep_var), the
minimum number of jobs (min_num_jobs), and the
names of the regression models to be considered for

MARM (methodnames). A mixed account regression model
MARM(N,M,X, Y) is constructed by finding N accounts
with the best performance score for a given regression model
M in predicting a dependent variable Y using independent
variables X . MARM is constructed iteratively and can be
summarized as follows:

MARM(N,M,X, Y) =

{
N

′
N = 1

MARM(N − 1,M,X, Y) ∪N
′

otherwise

where N
′ ∈ N is the Account that results in the best overall

aggregate score in terms of R2 on training (R2tr) and testing
(R2te) datasets and number of jobs (SN ′), given by:

N
′
= argmaxn∈N (R2tr(M,XA[n], YA[n]), R2te(M,XA[n], YA[n]), SA[n])

where XA[n] and YA[n] correspond to independent and
dependent variables respectively for an unique Account A[n].
Thus, the MARM of N accounts depends upon the MARM
of N −1 accounts appended with the best overall Account N

′

that results in the best overall performance. R2 scores R2tr
and R2te are calculated by randomly splitting the data into
80% (training) / 20% (testing), five times (5-fold) modeling
using the regression model M , and averaging the R2 scores
on training and testing data subsets over the five runs. A
comprehensive explanation of the Mixed Account Regression
Model (MARM) can be found in our publication [7].

E. Building MARM for Prediction

The BuildMixedAccountModels module generates
R2 score distributions over 1, 2, · · · , N for each regression
model M specified by the admin in methodnames.
Thus, the admin can determine which regression model
performs the best along with the best number of accounts
n̂ ≤ N to use. Thus, our TrainSelectedMARM module
takes the selected regression model (sel_model), path to
processed data (path_to_data), path to the intermediate
results produced by BuildMixedAccountModels
module (path_to_marm_res) independent variables

22Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 29 / 58

(indep_vars), dependent variable (dep_var) and number
of accounts (num_acc) to build the final MARM for resource
prediction.

F. Job Resource Prediction

Finally, the users of the slurm system can use Ampro-hpcc
module by providing a path to their Slurm job sub-
mission script (path_to_script), a path to selected
MARM model (path_to_model), a path to system de-
fault (path_to_defaults), and a path to the nor-
malization transform (standard Scalar inverse transform)
(path_to_stdscale) to obtain the recommended values
of time and memory. To be conservative and prevent failure
due to time and memory requirements that may underestimate
of the actual memory and time utilization, our recommended
values are increased by 10%.

IV. RESULTS AND DISCUSSION

A. Preprocessing and PerAccount Models

We applied our ML tool using the HPC resources at Kansas
State University, called Beocat. The data side has 17.6 million
instances and covers the years 2018 - 2021 of the usage. Af-
ter using PreProcessing module only selecting ’normal’
QoS, the dataset contained 7.8 million jobs spread across 21
unique accounts. Employing BuildPerAccountModels,
we evaluated all seven regression models across 21 accounts,
resulting in Figure 3 for predicting time (CPUTimeRAW) and
memory (MaxRSS) that shows boxplots of R2 and negative
RMSE score distributions. We found LGBM, DTR, and RFR
to be clear winners. Thus, we decided to only utilize LGBM,
DTR, and RFR to build MARM.

B. MARM Models in Beocat

Utilizing BuildMixedAccountModels, we constructed
MARMs to predict memory and time in Beocat using 17
out of 21 accounts (80% of the total accounts) in Beocat.
Figure 4 shows the mean R2 score distribution of DTR,
RFR, and LGBM on training and testing datasets versus the
number of best account combinations in predicting time. It
can be seen that the R2 decreases as the number of accounts
(and jobs) increases. We found RFR was the best performer
in predicting time, while LGBM was the best performer
in predicting memory. Thus, we finalized the memory and
time MARM using TrainSelectedMARM to be i) best five
account combination (spanning across 1.8 million jobs) with
an average R2 of 0.74, for building an RFR based time model
and ii) best thirteen accounts combination (spanning across
1.4 million jobs) with average R2 of 0.72, for building an
LGBM based memory model as shown in Figure 4. Using
the finalized MARMs, we randomly sampled 5000 jobs from
Beocat and ran them on a Slurm simulator with requested,
actual, and predicted time and memory values.

C. Evaluating Our Model

We assessed our model using the Slurm simulator [37],
[38], which was developed by the Center for Computational
Research, SUNY Buffalo. The Slurm simulator was chosen
because it is implemented from a modification of the ac-
tual Slurm code while disabling some unnecessary functions,
which do not affect the functionality of the real Slurm [37].

Figure 5 shows submission and execution time, which
indicates the difference between the job submission time
(timestamp that represents when the job was submitted) and
the execution time (difference between the start and end
execution time) for five thousand jobs. Our results indicate
that we have achieved almost identical running time compared
to the actual running time.

Figure 6 measures and compares system utilization using
requested jobs resources versus actual job resources versus
predicted job resources using the AMPRO-HPCC tool. Our
results show that our tool reached almost similar utilization
compared to the utilization of the HPC system that used actual
job resources because of the high prediction accuracy of our
ML tool.

Figure 7 compares and assesses the backfill-sched algo-
rithm’s performance. The graph shows more efficient perfor-
mance on the backfill-sched algorithm on the Beocat testbeds
that used our ML module than the ones that did not. The
graph shows fewer density results when using predicted values
since using our AMPRO-HPCC model decreases the number
of resources required by the user for the submitted jobs in most
cases. This situation results in helping Slurm fit more jobs on
the cluster. It also reduces the need to use the backfill-sched
algorithm and resulting in more overall system efficiency by
using these available resources.

Table 1 provides the calculated average waiting time, and
average turn-around time for Beocat jobs for requested, actual,
and predicted job resources allocation. Our results show that
our tool was able to reduce the average waiting time for
submitted jobs from 680 hours to 8.0 hours and the average
turnaround time from 692 hours to 16.4 hours.

V. CONCLUSION

Determining the allocation of HPC resources for submitted
jobs is a difficult process for HPC users. It is still an open
question how many resources the user should specify (memory
and time) for their submitted jobs on the cluster. HPC users are
encouraged to overestimate job resources for their submitted
jobs. In this paper, we have developed a novel and the
first-ever open-source, stand-alone, fully-automated, highly-
accurate, and fully-offline ML tool to help HPC users to
determine the amount of required resources (memory and
time) for their submitted jobs on the HPC clusters. Our tool
was built using supervised ML algorithms. Our tool consists
of two parts: i) the system admin part, which is responsible
for preparing and building the ML model based on Slurm
historical data and providing it to the users; ii) the user part,
which uses the ML model provided from the system admin
part, reads the submitted job script, and predicts the required

23Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 30 / 58

LR LassoLARS Ridge ElasticNet LightGBM CART RandomForest
Methods

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65
R2

Beocat_2018_2021 MaxRSS 10 Fold CV Report on R2

LR LassoLARS Ridge ElasticNet LightGBM CART RandomForest
Methods

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

Ne
ga

tiv
e

RM
SE

Beocat_2018_2021 MaxRSS 10 Fold CV Report on Negative RMSE

LR LassoLARS Ridge ElasticNet LightGBM CART RandomForest
Methods

0.26

0.28

0.30

0.32

0.34

0.36

0.38

R2

Beocat_2018_2021 CPUTimeRAW 10 Fold CV Report on R2

LR LassoLARS Ridge ElasticNet LightGBM CART RandomForest
Methods

0.86

0.84

0.82

0.80

0.78

0.76

Ne
ga

tiv
e

RM
SE

Beocat_2018_2021 CPUTimeRAW 10 Fold CV Report on Negative RMSE

Fig. 3. R2 and Negative RMSE of Seven Methods Across 21 Accounts in Beocat.

1
(5

48
4K

)

2
(5

69
7K

)

3
(6

60
0K

)

4
(6

65
2K

)

5
(6

65
4K

)

6
(6

65
5K

)

7
(6

65
9K

)

8
(6

79
9K

)

9
(6

81
0K

)

10
 (6

91
4K

)

11
 (6

99
3K

)

12
 (6

99
5K

)

13
 (7

00
0K

)

14
 (7

00
9K

)

15
 (7

01
7K

)

16
 (7

03
1K

)

17
 (7

04
2K

)

of users (# of jobs)

0.56

0.58

0.60

0.62

0.64

R2

Beocat_2018_2021 MaxRSS MARM based on
CART

TrainR2
TestR2

1
(5

2K
)

2
(9

55
K)

3
(9

60
K)

4
(9

61
K)

5
(9

68
K)

6
(9

79
K)

7
(1

19
2K

)

8
(1

19
4K

)

9
(1

19
5K

)

10
 (1

27
4K

)

11
 (1

37
9K

)

12
 (1

38
7K

)

13
 (1

40
1K

)

14
 (1

40
7K

)

15
 (1

54
7K

)

16
 (1

55
8K

)

17
 (7

04
2K

)

of users (# of jobs)

0.2

0.3

0.4

0.5

0.6

0.7

R2

Beocat_2018_2021 MaxRSS MARM based on
LightGBM

TrainR2
TestR2

1
(5

48
4K

)

2
(6

38
7K

)

3
(6

52
7K

)

4
(6

57
9K

)

5
(6

58
7K

)

6
(6

80
0K

)

7
(6

80
5K

)

8
(6

80
6K

)

9
(6

80
7K

)

10
 (6

91
1K

)

11
 (6

92
2K

)

12
 (6

93
6K

)

13
 (6

94
4K

)

14
 (6

95
0K

)

15
 (7

02
9K

)

16
 (7

03
1K

)

17
 (7

04
2K

)

of users (# of jobs)

0.50

0.55

0.60

0.65

0.70

0.75

R2

Beocat_2018_2021 MaxRSS MARM based on
RandomForest

TrainR2
TestR2

1
(2

13
K)

2
(2

24
K)

3
(8

72
K)

4
(8

76
K)

5
(8

78
K)

6
(1

78
0K

)

7
(1

78
9K

)

8
(1

79
4K

)

9
(1

80
2K

)

10
 (7

28
6K

)

11
 (7

39
0K

)

12
 (7

47
0K

)

13
 (7

61
0K

)

14
 (7

61
1K

)

15
 (7

68
0K

)

16
 (7

73
3K

)

17
 (7

74
7K

)

of users (# of jobs)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R2

Beocat_2018_2021 CPUTimeRAW MARM based on
CART

TrainR2
TestR2

1
(1

1K
)

2
(9

14
K)

3
(9

21
K)

4
(9

30
K)

5
(9

31
K)

6
(1

14
5K

)

7
(1

79
2K

)

8
(1

79
7K

)

9
(1

80
2K

)

10
 (1

87
1K

)

11
 (1

87
3K

)

12
 (2

01
3K

)

13
 (7

49
7K

)

14
 (7

60
1K

)

15
 (7

68
0K

)

16
 (7

69
4K

)

17
 (7

74
7K

)

of users (# of jobs)

0.1

0.2

0.3

0.4

0.5

0.6

R2

Beocat_2018_2021 CPUTimeRAW MARM based on
LightGBM

TrainR2
TestR2

1
(2

13
K)

2
(2

18
K)

3
(2

19
K)

4
(8

67
K)

5
(1

76
9K

)

6
(1

77
8K

)

7
(1

78
9K

)

8
(1

79
4K

)

9
(1

79
6K

)

10
 (1

80
4K

)

11
 (1

87
3K

)

12
 (2

01
3K

)

13
 (2

06
5K

)

14
 (7

54
9K

)

15
 (7

65
4K

)

16
 (7

73
3K

)

17
 (7

74
3K

)

of users (# of jobs)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R2

Beocat_2018_2021 CPUTimeRAW MARM based on
RandomForest

TrainR2
TestR2

Fig. 4. R2 Versus Number of Accounts in Predicting Memory and Time Using MARM Across Beocat

24Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 31 / 58

Fig. 5. Jobs Submission and Running Time. (Note Dramatic Improvement of Y Axis Range.)

Fig. 6. Utilization (Requested vs Actual vs Predicted) for Beocat Jobs.

Fig. 7. Backfill-Sched Algorithm Performance (Requested vs Actual vs Predicted) for Beocat Jobs.

25Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 32 / 58

TABLE I
AVERAGE WAITING AND TURNAROUND TIME (REQUESTED VS ACTUAL VS PREDICTED) FOR BEOCAT

Avg Wait Time (Hour) Avg TA Time (Hour) Median Wait Time (Hour) Median TA Time (Hour)
Requested 680 ±128 692.8 ±130 713.6 715.6

Actual 0.4 ±0.08 3.62 ±1.8 0 3.09
Predicted 8.0±1.1 6.36 ±1.9 1.4 5.9

amount of the resources (memory and time). Our tool achieves
high accuracy and can significantly increase the performance
and utilization of the HPC systems. Moreover, our ML tool can
dramatically decrease the average turnaround and waiting time
for the submitted jobs. Hence, our tool increases the efficiency
and decreases the power consumption of the Slurm-based HPC
resources.

ACKNOWLEDGMENT

We thank the HPC staff at KSU, including Adam Tygart
and Kyle Hutson, for their help and technical support. We
also thank the authors of the Slurm simulator at SUNY
Buffalo for releasing their work. This research was supported
by NSF awards CHE-1726332, ACI-1440548, CNS-1429316,
NIH award P20GM113109, and KSU.

REFERENCES

[1] D. G. Feitelson, D. Tsafrir, and D. Krakov, “Experience with using
the parallel workloads archive,” Journal of Parallel and Distributed
Computing, vol. 74, no. 10, pp. 2967–2982, 2014.

[2] C. B. Lee, Y. Schwartzman, J. Hardy, and A. Snavely, “Are user run-
time estimates inherently inaccurate?” in Workshop on Job Scheduling
Strategies for Parallel Processing. Springer, 2004, pp. 253–263.

[3] M. Hovestadt, O. Kao, A. Keller, and A. Streit, “Scheduling in hpc
resource management systems: Queuing vs. planning,” in Workshop on
Job Scheduling Strategies for Parallel Processing. Springer, 2003, pp.
1–20.

[4] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[5] G. Ke et al., “Lightgbm: A highly efficient gradient boosting decision
tree,” Advances in neural information processing systems, vol. 30, pp.
3146–3154, 2017.

[6] D. Andresen, W. Hsu, H. Yang, and A. Okanlawon, “Machine learn-
ing for predictive analytics of compute cluster jobs,” arXiv preprint
arXiv:1806.01116, 2018.

[7] M. Tanash, H. Yang, D. Andresen, and W. Hsu, “Ensemble prediction
of job resources to improve system performance for slurm-based hpc
systems,” in Practice and Experience in Advanced Research Computing,
2021, pp. 1–8.

[8] M. Tanash et al., “Improving hpc system performance by predicting
job resources via supervised machine learning,” in Proceedings of the
Practice and Experience in Advanced Research Computing on Rise of
the Machines (learning), 2019, pp. 1–8.

[9] tanash1983, “Tanash1983/ampro-hpcc: A machine-learning-tool for
predicting job resources on hpc clusters.” [Online]. Available:
https://github.com/tanash1983/AMPRO-HPCC

[10] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility
for resource management,” in Workshop on job scheduling strategies for
parallel processing. Springer, 2003, pp. 44–60.

[11] “Slurm workload manager - documentation,”
https://slurm.schedmd.com/, retrieved: 06, 2021.

[12] W. Gentzsch, “Sun grid engine: towards creating a compute power
grid,” in Proceedings First IEEE/ACM International Symposium on
Cluster Computing and the Grid. IEEE Comput. Soc. [Online].
Available: https://doi.org/10.1109/ccgrid.2001.923173

[13] G. Staples, “Torque resource manager,” in Proceedings of the 2006
ACM/IEEE conference on Supercomputing, 2006, pp. 8–es.

[14] “Torque resource manager,” http://www.adaptivecomputing.com/products
/torque/, retrieved: 06, 2021.

[15] B. Nitzberg, J. M. Schopf, and J. P. Jones, “Pbs pro: Grid computing
and scheduling attributes,” in Grid resource management. Springer,
2004, pp. 183–190.

[16] “Pbs professional open source project,” https://www.pbspro.org/, re-
trieved: 05, 2021.

[17] J.-W. Park and E. Kim, “Runtime prediction of parallel applications with
workload-aware clustering,” The Journal of Supercomputing, vol. 73,
no. 11, pp. 4635–4651, 2017.

[18] T.-P. Pham, J. J. Durillo, and T. Fahringer, “Predicting workflow
task execution time in the cloud using a two-stage machine learning
approach,” IEEE Transactions on Cloud Computing, vol. 8, no. 1, pp.
256–268, 2017.

[19] S. Kim, Y.-K. Suh, and J. Kim, “Extes: An execution-time estimation
scheme for efficient computational science and engineering simulation
via machine learning,” IEEE Access, vol. 7, pp. 98 993–99 002, 2019.

[20] A. Matsunaga and J. A. Fortes, “On the use of machine learning
to predict the time and resources consumed by applications,”
in 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing. IEEE, 2010. [Online]. Available:
https://doi.org/10.1109/ccgrid.2010.98

[21] A. Tyryshkina, N. Coraor, and A. Nekrutenko, “Predicting runtimes of
bioinformatics tools based on historical data: five years of galaxy usage,”
Bioinformatics, vol. 35, no. 18, pp. 3453–3460, 2019.

[22] M. Naghshnejad and M. Singhal, “Adaptive online runtime prediction
to improve hpc applications latency in cloud,” in 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD). IEEE, 2018,
pp. 762–769.

[23] Q. Wang, J. Li, S. Wang, and G. Wu, “A novel two-step job runtime
estimation method based on input parameters in hpc system,” in 2019
IEEE 4th International Conference on Cloud Computing and Big Data
Analysis (ICCCBDA). IEEE, 2019, pp. 311–316.

[24] F. Nadeem, D. Alghazzawi, A. Mashat, K. Faqeeh, and A. Almalaise,
“Using machine learning ensemble methods to predict execution time
of e-science workflows in heterogeneous distributed systems,” IEEE
Access, vol. 7, pp. 25 138–25 149, 2019.

[25] M. H. Hilman, M. A. Rodriguez, and R. Buyya, “Task runtime prediction
in scientific workflows using an online incremental learning approach,”
in 2018 IEEE/ACM 11th International Conference on Utility and Cloud
Computing (UCC). IEEE, 2018, pp. 93–102.

[26] D. Ardagna et al., “Predicting the performance of big data applications
on the cloud,” The Journal of Supercomputing, pp. 1–33, 2020.

[27] Y.-K. Suh, S. Kim, and J. Kim, “Clutch: A clustering-driven runtime
estimation scheme for scientific simulations,” IEEE Access, vol. 8, pp.
220 710–220 722, 2020.

[28] O. Aaziz, J. Cook, and M. Tanash, “Modeling expected application
runtime for characterizing and assessing job performance,” in 2018 IEEE
International Conference on Cluster Computing (CLUSTER). IEEE,
2018, pp. 543–551.

[29] T. Saillant, J.-C. Weill, and M. Mougeot, “Predicting job power con-
sumption based on rjms submission data in hpc systems,” in Interna-
tional Conference on High Performance Computing. Springer, 2020,
pp. 63–82.

[30] T. Taghavi, M. Lupetini, and Y. Kretchmer, “Compute job memory
recommender system using machine learning,” in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2016, pp. 609–616.

[31] E. R. Rodrigues, R. L. Cunha, M. A. Netto, and M. Spriggs, “Helping
hpc users specify job memory requirements via machine learning,” in
2016 Third International Workshop on HPC User Support Tools (HUST).
IEEE, 2016, pp. 6–13.

26Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 33 / 58

[32] “Slurm workload manager,” retrieved: 04, 2021. [Online]. Available:
https://slurm.schedmd.com/sacct.html

[33] B. Efron et al., “Least angle regression,” Annals of statistics, vol. 32,
no. 2, pp. 407–499, 2004.

[34] G. Bonaccorso, Machine learning algorithms. Packt Publishing Ltd,
2017.

[35] W.-Y. Loh, “Classification and regression trees,” Wiley interdisciplinary
reviews: data mining and knowledge discovery, vol. 1, no. 1, pp. 14–23,
2011.

[36] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[37] N. A. Simakov et al., “A slurm simulator: Implementation and para-
metric analysis,” in International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems.
Springer, 2017, pp. 197–217.

[38] “Github - ubccr-slurm-simulator/slurm simulator: Slurm simulator:
Slurm modification to enable its simulation,” https://github.com/ubccr-
slurm-simulator/slurmsimulator, retrieved : 05, 2021.

27Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 34 / 58

Budget-aware Static Scheduling
of Stochastic Workflows with DIET

Yves Caniou∗, Eddy Caron∗, Aurélie Kong Win Chang∗, Yves Robert∗†
∗ENS Lyon, France

†University of Tennessee, Knoxville, TN, USA
emails: {yves.caniou

∣∣ eddy.caron
∣∣ aurelie.kong-win-chang

∣∣yves.robert}@ens-lyon.fr

Abstract—Previous work has introduced a Cloud platform
model and budget-aware static algorithms to schedule stochastic
workflows on such platforms. In this paper, we compare the
performance of these algorithms obtained via simulation and via
execution on an actual platform, Grid’5000. We focus on DIET, a
widely used workflow engine, and detail the extensions that were
implemented to conduct the comparison. We also detail additional
code that we made available in order to automate and to ease the
reproducibility of such experiments.

Keywords – DIET; static workflow scheduling; Cloud platform.

I. INTRODUCTION

Public Cloud has emerged as an interesting tool for scientists,
offering an infrastructure adaptable on demand, with a vari-
ety of available options and performances. Multiple workflow
engines for Cloud platforms have been designed, with more
and more functionalities [1] - [2]. These workflow engines
aim at helping users to pick the most appropriate resources for
their intended work, in terms of the number and characteristics
of the Virtual Machines (VMs) selected for execution. The
main objective is to enable easy-to-produce applications while
guaranteeing that, given a constrained budget, rented resources
are used up to the maximum of their capacity.

In [3], we described a Cloud platform model, and we de-
tailed and compared several static budget-aware scheduling
algorithms in an extensive simulation campaign. One major
objective of this work is to further validate the conclusions of
the simulation study by conducting real-life experiments with
the same scientific workflows on the French national validation
platform Grid’5000 [4] and assess the accuracy of simulation
results on a real-life platform. Additional contributions are the
evolution of DIET (Distributed Interactive Engineering Tool-
box) to handle static scheduling, and a tool that automatically
generates DIET code to execute the target workflows.

The rest of the paper is organized as follows. We first study
related work in Section II. Then, in Section III, we introduce
the DIET middleware and describe the new DIET functionali-
ties. In Section IV, we overview the budget-aware algorithms
that we aim at comparing. Section V details the experimental
framework. Results are reported in Section VI, with a com-
parison analysis between real executions on Grid’5000 and the
corresponding simulations.

II. RELATED WORK

A. Workflow engines

Many scientific applications from various disciplines are
structured as workflows [5]. Informally, a workflow can be seen
as the composition of a set of basic operations that have to be
performed on a given input data set to produce the expected
scientific result. For a long time, the development of complex
middleware with workflow engines [2] [6] [7] has automated
workflow management. For example, the Pegasus Workflow
Management System [2] maps workflows on resources until
a given horizon beyond which it considers pre-scheduling is
inefficient, and allows its users to plug their own scheduling
algorithms if needed. Steep [8] comes along its own way to
schedule workflows, submitting complete process chains to its
remote agents, and supports cyclic workflows graphs. Apache
Airflow [9] is more oriented on accessibility to most users,
hence its focus on the user interface and the use of Python
to describe workflows or interact with the engine. In [10], the
authors summarize the key features of four production-ready
WMSs: Pegasus, Makeflow, Apache Airflow, and Pachyderm.
For this work, we focus on DIET [11] because of its practicality,
and the possibility to extend it with additional modules.

Infrastructure as a Service (IaaS) Clouds raised a lot of
interest recently thanks to an elastic resource allocation and
pay-as-you-go billing model. A Cloud user can adapt the execu-
tion environment to the needs of his application on a virtually
infinite supply of resources. While the elasticity provided by
IaaS Clouds gives way to more dynamic application models,
it also raises new issues from a scheduling point of view. An
execution now corresponds to a certain budget, which imposes
some constraints on the scheduling process. In [12], the au-
thors propose a performance-feedback autoscaler that is budget-
aware: using Apache Airflow, they tackle the same scheduling
problem as in this paper, but they focus on the auto-scaling
problem (allocating and de-allocating resources on the fly).

B. Budget aware static algorithms

Scheduling scientific workflows in cloud is a well-studied
domain [13] [14]. To the best of our knowledge, the closest
papers to the budget-aware algorithms with stochastic execution
times that we designed in [3] and compare in this paper are [15]
and [16], which both propose workflow scheduling algorithms
(Budget Distribution with Trickling – BDT in [15], Critical

28Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 35 / 58

Greedy – CG/CG+ in [16]) under budget constraints, but with
a simplified platform model. As in our previous work [17], we
have extended BDT and CG/CG+ to enable a fair comparison
with our algorithms. More recent scheduling algorithms exist,
but address different aspects of the problem. For example, [18]
aims at simultaneously minimizing the cost and makespan of
workflow executions, but they use a simplified platform model
without Cloud storage. Another study [19] uses a platform
closer to ours, but with a completely different objective, namely
the minimization of data transfers (which should eventually
reduce both makespan and cost too). Finally, the workflows
considered in [20] present an uncertainty in task durations,
but the authors schedule multiple workflows at the same time
instead of optimizing for a single workflow.

III. FRAMEWORK

Scientific workflows are represented with a DAG (Directed
Acyclic Graph) G = (V,E), where V is the set of tasks
to schedule and E is the set of dependencies between tasks.
In this model, a dependency corresponds to a data transfer
between two tasks. Workflows are scheduled on an heteroge-
neous platform representing an IaaS Cloud, with a tarification
depending on the performances of the used machines, on the
amount of data transferred to and out of the Cloud, and on the
amount of time during which each machine has been used (see
Section IV-B for cost instances).

A. DIET workflow engine

DIET is a well established workflow engine [1] [11]. A DIET
platform (Figure 1) consists of a hierarchy of agents [Master
Agents MA and Local Agents LA] scheduling the requests
addressed by a client and sending them to the appropriate
servers, the Servers Deamon (SeD). DIET users, following the
GridRPC paradigm, usually submit individual tasks, but it is
possible to submit a whole workflow.

In this case, the client sends the XML file which describes
its structure to a special agent, called a MADAG, which con-
sequently manages task dependencies and handles ready tasks
submissions to the related MA. The MA dynamically deter-
mines which server will execute a request. A server first looks
for the files needed for the task execution, downloads them if
they are not already on the server, and then executes the request.

B. Extending the MADAG for static scheduling

DIET was able to schedule workflows dynamically. We im-
proved the MADAG to apply a static schedule given by a user.
From the user point of view, the client sends to the MADAG the
usual files needed for the execution of the workflow, plus files
describing the desired schedule:
• The Workflow Description File (WDF): the XML file

describing the workflow as in any DIET execution of
workflow,

• The Desired Schedule File (DSF): a file giving the desired
schedule. Each line gives the machine attributed to a task,
under the formulation <task> <server>. The order of the
tasks gives their priority, the first ones having the highest

priority. The static schedule is also used to write the
code of the target servers, hence this file has to be made
available before launching execution,

• The Mapping File (MF): a file giving the equivalence
between the name of the platform servers and their coun-
terpart from the DSF. Each line gives a machine-server
equivalence, under the formulation <machine> <server>.

DIET will then follow the given schedule.
On a more technical level, it is not possible to specify in the

MADAG which server will receive a given task: the MADAG
leaves the duty of selecting a server to its MA, only sending it
the name of the services ready to be executed. To alleviate this
limitation, we exploit the fact that the MA uses the name of the
service to find which server can run it. In order to let the user
to be able to change the task-server attribution according to the
information gathered by the DIET agents, we choose to have the
servers declare their services twice. The first one is a regular
generic declaration, with a name identical to the one given in
the XML file describing the workflow, and the same for all the
servers able to run it. This allows the MADAG to get the list of
all the servers available to run a given service corresponding to
a task;The second one is specific to the new functionality and
has a name composed of the concatenation between the name
of the service as described in the XML file and the name of the
server. This local name is the one which will be used to send
the request once the server is chosen.

C. Experiment-oriented tools

Given the large number of runs needed by the experiments,
we have developed a couple of tools to automate the creation
of the workflows meant to be executed on Grid’5000. We first
use a home-made simulator [21] to generate the schedules with
the selected algorithms. We then generate the corresponding
DIET workflows needed for our experiments with a home-made
workflow generator, Ogma [21].

Our simulator is based on simDAG [22]. It generates both
the static schedules given to DIET and the simulated results.
Basically, it needs a description of the platform, the file in DAX
format [23] describing the workflow, and the parameters of
the scheduling problem (budget, algorithms, etc.). It creates a
schedule, writes the mapping <task, VM> into a file intended
for Ogma, in the order of their attribution, as determined by
the chosen algorithm. Then, it simulates with simDAG the
execution of the given workflow on the given platform, using
the calculated mapping. Finally, it calculates and writes in a file
the resulting makespan, cost, and various other metrics.

Once the simulations are done and the schedules calculated,
we used Ogma to generate the elements needed for the exper-
iments on Grid’5000. Concretely, Ogma uses the given DAX
file describing the target workflow, along with information on
the focused platform and simulations, and the static schedule, to
write all files: the source files for the servers and the client, the
configuration files needed for every DIET entities, placeholder
files for the workflow, the DSF, the MF and the WDF.

We point out that, as DAX files do not give any details about
the real content of the tasks or the files they describe, Ogma

29Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 36 / 58

	 (a) Architecture 1: Complete schedule from the
Client.

	 (b) Architecture 2: Schedule is handled by the
MADAG

Figure 1: Two different architectures of the DIET workflow engine.

only creates placeholder files and tasks. If a user wants to use
Ogma as a tool to generate the raw structure of the workflow,
they will have to replace these placeholders with the actual code
for the tasks.

IV. BUDGET-AWARE SCHEDULING ALGORITHMS

Details on this section can be found in [3].

A. Workflow model

A workflow is represented with a DAG of stochastic tasks.
Tasks are not preemptive and must be executed on a single pro-
cessor. In our model, we only know an estimation of the number
of instructions for each task. For lack of knowledge about the
origin of time variations, we assume that all the parameters
which determine the number of instructions forming a task are
independent. This resulting number is the weight wi of task Ti
and follows a truncated Normal law with mean wi and standard
deviation σiwi. Finally, to each dependency (Ti, Tj) ∈ E is
associated an amount of data of size size(dTi,Tj).

B. Cloud platform model

There is only one datacenter, used by all processing units.
It is the common crossing point for all the data exchanges
between processing units: these units do not interact directly.

The processing units are Virtual Machines (VMs). They can
be classified in different categories characterized by a set of
parameters fixed by the provider. Some providers offer param-
eters of their own, such as the number of forwarding rules. We
only retain parameters common to the three providers Google,
Amazon and OVH: a VM of category k has nk processors, one
processor being able to process one task at a time; a VM has
also a speed sk corresponding to the number of instructions
that it can process per time unit, a cost per time-unit ch,k and an
initial cost cini,k; all these VMs take an initial, and uncharged,
amount of time tboot to boot before being ready to process
tasks. Already integrated in the schedule computing process,
this starting time is thus not counted in the cost related to the
use of the VM. Without loss of generality (even if the VM is
paid for each used second), categories are sorted according to
hourly costs, so that ch,1 ≤ ch,2 · · · ≤ ch,nk . We expect speeds
to follow the same order, but do not make such an assumption.

Altogether, the platform consists of a set of n VMs of k
possible categories. Some simplifying assumptions make the
model tractable while staying realistic: (i) we assume that the
bandwidth is the same for every VM, in both directions, and
does not change throughout execution; (ii) a VM is able to store
enough data for all the tasks assigned to it: in other words,
a VM will not have any memory/space overflow problem, so
that every increase of the total makespan will be because of
the stochastic aspect of the task weights; (iii) initialization
duration is the same for every VM; (iv) data transfers take place
independently of computations, hence do not have any impact
on processor speeds to execute tasks; (v) a VM executes at most
one task at every time-step, but this task can be parallel and
enroll many computing resources (hence the execution time of
the task strongly depends upon the VM type).

We chose an “on-demand” provisioning system: it is possible
to deploy a new VM during the workflow execution. Hence,
VMs may have different startup times. A VM v is started at
time Hstart,v and does not stop until all the data created by its
last computed task is transferred to the Cloud storage, at time
Hend,v .

C. Scheduling costs and objective

Tasks are mapped to VMs and locally executed in the order
given by the scheduling algorithm, such as those described in
Section IV-D. Given a VM v, a task is launched as soon as (i)
the VM is idle; (ii) all its predecessor tasks have been executed,
and (iii) the output files of those predecessors mapped onto
others VMs have been transferred to v via the Cloud storage.

a) Costs: The cost model is meant to represent generic
features out of the existing offers from Cloud providers
(Google, Amazon, OVH). The total cost of the whole workflow
execution is the sum of the costs due to the use of the VMs and
of the cost due to the use of the Cloud storage CCS . The cost Cv
of the use of a VM v of category kv is calculated as follows:

Cv = (Hend,v −Hstart,v)× ch,kv + cini,kv (1)

There is a startup cost cini,kv in Equation (1), and a term ch,kv
proportional to usage duration Hend,v −Hstart,v.

The cost for the Cloud storage is based on a cost per time-
unit ch,CS , to which we add a transfer cost. This transfer cost is

30Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 37 / 58

computed with the amount of data transferred from the external
world to the Cloud storage (size(din,CS)), and from the Cloud
storage to the outside world (size(dCS,out)). In other words,
din,CS corresponds to data that are input to entry tasks in the
workflow, and dCS,out to data that are output from exit tasks.
Letting Hstart,first be the moment when we book the first VM
andHend,last be the moment when the data of the last processed
task have entirely been sent to the Cloud storage, we define
Husage = Hend,last −Hstart,first as the total platform usage
during the whole execution. We have:

CCS = (size(din,CS) + size(dCS,out))× ctsf

+Husage × ch,CS
(2)

Altogether, the total cost is Cwf =
∑
v∈RVM Cv+CCS , where

RVM is the set of booked VMs during the execution.
b) Objective: Given a budget B and a platform P , the

objective is to minimize total execution time while respecting
the budget.

D. The HEFTBUDG scheduling algorithm

HEFTBUDG (Algorithm 1) is a budget-aware exten-
sion of the Heterogeneous Earliest Finish Time algorithm
(HEFT) [24]. This extension accounts both for task stochas-
ticity and budget constraints, while aiming at makespan mini-
mization. Coping with task stochasticity is achieved by adding
a certain quantity to the average task weight so that the risk
of under-estimating its execution time is reasonably low, while
retaining an accurate value for most executions. We use a con-
servative value for the weight of a task T , namely wT +σTwT .

Algorithm 1 HEFTBUDG.
1: function HEFTBUDG(wf,Bcalc,P)
2: s← calcMeanSpeed(P)
3: bw ← getBw(P)
4: budgPTsk ← divBudget(wf,Bcalc, s, bw)
5: LISTT ← getTasksSortedByRanks(wf, s, bw , lat)
6: pot , newPot← 0
7: for each T of LISTT do
8: host ← getBestHost(T, budgPTsk[T],P, newPot)
9: pot ← newPot

10: sched[T]← host
11: schedule(T, host)
12: update(UsedVM)
13: end for
14: return LISTT, sched
15: end function

In the beginning HEFTBUDG calls divBudget() (Algo-
rithm 2): given the workflow wf , we first get the maximum
of total work (getMaxTotalWork(wf)) and the total amount
of data transfers (getMaxTotalTransfData (wf)) required to
execute the workflow, and we reserve a fraction of the budget
to cover the cost of the Cloud storage and VM initialization;
then we divide what remains, Bcalc, into the workflow tasks.
To estimate the fraction of budget to be reserved, assuming that
Bini denotes the initial budget:
• For the cost of the Cloud storage, we need to estimate

the duration Husage = Hend,last − Hstart,first of

the whole execution (see Equation (2)). To this purpose,
we consider an execution on a single VM of the first
(cheapest) category, compute the total duration Wmax =∑
T∈wf (wT + σT) and let

Husage =
Wmax

s1
+

size(din,CS) + size(dCS,out)
bw

(3)

Altogether, we pay the cost of input/output data several
times: with factor ctsf for the outside world, with factor
ch,CS for the usage of the Cloud storage (Equation (3)),
and with factor ch,1 during the transfer of data to and
from the unique VM. However, there is no communication
internal to the workflow, since we use a single VM.

• For the initialization of the VMs, we assume a different
VM of the first category per task, hence we budget the
amount n× cini,1.

Combining these two choices is conservative: on the one hand,
we consider a sequential execution, but account only for input
and output data with the external world, eliminating all internal
transfers during the execution; on the other hand, we reserve
as many VMs as tasks, ready to pay the price for parallelism,
at the risk of spending time and money due to data transfers
during the execution. Altogether, we reserve the corresponding
amount of budget and are left with Bcalc for the tasks.

This reduced budget Bcalc is shared among tasks in a propor-
tional way: we estimate how much time tcalc,T is required to
execute each task T , transfer times included, and allocate the
corresponding part of the budget in proportion to the whole for
execution of the entire workflow tcalc,wf :

budgPTsk[T] =
tcalc,T
tcalc,wf

× Bcalc (4)

In Equation (4), we use tcalc,T = wT+σT
s +

size(dpred,T)
bw , where

size(dpred,T) =
∑

(T ′,T)∈E

size(dT ′,T) (5)

is the volume of input data of T from all its predecessors.
Similarly, we use tcalc,wf = Wmax

s + dmax
bw , where dmax =∑

(Ti,Tj)∈E size(dTi,Tj) is the total volume of data within the
workflow. Computed weights (wT + σT and Wmax) are di-
vided by the mean speed s of VM categories, while data sizes
(size(dpred,T) and dmax) are divided by the bandwidth bw
between VMs and the Cloud storage. Again, it is conservative to
assume that all data will be transferred, because some of them
will be stored in-place inside VMs, so there is here another
source of over-estimation of the cost. On the contrary, using the
average speed s in the estimation of the computing time may
lead to an under-estimation of the cost when cheaper/slower
VMs are selected.

This subdivided budget is then used to choose the best VM
to host each ready task by calling getTaskssortedbyranks(): the
best host for a task T will be the one providing the best Earliest
Finish Time (EFT) for T , among those respecting the amount
of budget BT allocated to T (considering all already used VMs
plus one fresh VM of each category).

31Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 38 / 58

Algorithm 2 Dividing the budget onto tasks.
1: function DIVBUDGET(wf,Bcalc, s, bw)
2: Wmax ← getMaxTotalWork(wf)
3: dmax ← getMaxTotalTransfData (wf)
4: for each T of wf do

5: budgPTsk[T]← Bcalc ×
wT+σTwT

s
+
size(dpred,T)

bw
Wmax
s

+ dmax
bw

6: end for
7: return budgPTsk
8: end function

HEFTBUDG reclaims any unused fraction of the budget
consumed when assigning former tasks: this is the role of the
variable pot, which records any leftover budget in previous
assignments. For some tasks, getBestHost() do not return the
host with the smallest EFT, but instead the host with the
smallest EFT among those that respect the allotted budget. The
complexity of HEFTBUDG is O((n + e)p), where n is the
number of tasks, e is the number of dependence edges, and p
the number of enrolled VMs. This complexity is the same as
for the baseline versions, except that p is not fixed a priori. In
the worst case, p = O(max(n, k)) because for each task we try
all used VMs, whose count is possibly O(n), and k new ones,
one per category.

E. Other scheduling algorithms

[3] details several budget-aware scheduling algorithms:
• MINMINBUDG, a budget-aware extension of

MINMIN [25], [26], the exact counterpart of HEFTBUDG.
• HEFTBUDG+ and HEFTBUDG+INV, aiming at exploit-

ing the opportunity to re-schedule some tasks onto faster
VMs, thereby spending any budget leftover by the first
allocation, at a price of higher complexity. These refined
variants differ by the order in which tasks are considered,
and recompute the schedule after processing each task.

• HEFTBUDGMULT, a trade-off version that reallocates the
leftover budget in a single pass: it finds makespans slightly
larger than those computed with HEFTBUDG+, but with
a time complexity close to HEFTBUDG.

Two competitors to the new budget-aware algorithms de-
scribed above have also been simulated in [3], for the sake
of comparison. These are Budget Distribution with Trickling
(BDT [15]) and Critical Greedy (CG [16]). Both BDT and CG
schedule deterministic workflows, and CG does not take into
account communication costs. In [16], CG also comes with a
refined version CG+. BDT and CG/CG+ have been extended
to fit the model, so as to enforce fair comparisons.

V. EXPERIMENTAL FRAMEWORK

We use the new DIET functionalities to execute the schedul-
ing algorithms (Section IV) on Grid’5000, a French national
testbed supported by a scientific interest group hosted by Inria
and including CNRS, RENATER and several Universities as
well as other organizations [4]. For each workflow execution,
we used 31 homogeneous nodes from the grisou cluster
in Nancy (Intel Xeon E5-2630 v3 CPU 2.4 GHz ×8 cores).

The three different types of VMs (see Table I) needed for the
experiments have been emulated: a VM two times slower than
another one executes twice as many computations. We also run
the corresponding experiments with our simulator.

TABLE I: PARAMETERS OF THE PLATFORM.

VM parameters
Categories k = 3
Setup cost cini,=$0.00056
Category 1 Speed s1 = 3.2 Gflops
(Slow) Cost ch,1 = $0.118 per hour
Category 2 Speed s2 = 6.4 Gflops
(Medium) Cost ch,2 = $0.236 per hour
Category 3 Speed s3 = 9.6 Gflops
(Fast) Cost ch,3 = $0.354 per hour

Cloud storage
Cost per month ch,CS = $0.022 per GB
Data transfer cost ctsf = $0.055 per GB

Bandwidth
bw 1GBps

We used three types of workflows: MONTAGE, LIGO and
CYBERSHAKE, generated with [27]. Given the large makespan
of these workflows (e.g., 33 hours for one CYBERSHAKE of
60 tasks scheduled with CG/CG+ [3]), we only ran small
instances with 30 tasks.

A. Simulations

We used the simulator described in Section III-C to obtain
both the static schedules to be evaluated on Grid’5000 and the
simulated results, with characteristics of the platform (band-
width: 1Gb/s, performances of the VMs used as slowest type:
3.2Gf) experimentally measured on grisou.

B. Grid’5000 experiments

One needs to enforce that tasks have similar durations in the
simulations and in the experiments. In the workflow description
file, the amount of work of a task is given in seconds, when
the amount of data transferred between two tasks is given in
bytes. Thus for Ogma, a task consists of three phases: a phase
during which the input files are read, a phase during which an
amount of double floating-point additions is calculated based
on the task duration given in the DAX file and the information
provided about the used platform, and a phase during which the
output files are written.

SimDAG uses a fixed (but arbitrary) number to calculate a
number of flops based on the task duration in seconds given by
the DAX file. This arbitrary number did not correspond to the
VMs enrolled on Grid’5000. To preserve a similar ratio between
the time used to move data tdata,T and the time used to execute
a task tcalc_only,T in the real setup and in the simulation, we
modified the number of operations for each service according
to the observed characteristics of the platform.

In the simulator, the amount of time tcalc_only,T used to
execute the task T , composed of wT operations, on a reference
host of speed shost,simu operations per second, and without
counting data transfers, is equal to tcalc_only,T = wT

shost,simu
.

The amount of time tdata,T to transfer all the data needed to
execute T , for a total size of size(dpred,T), with a bandwidth

32Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 39 / 58

bwsimu is equal to tdata,T =
size(dpred,T)

bwsimu
. Hence the ratio to

preserve is rsimu = wT
size(dpred,T)

× bwsimu
shost,simu

.
Similarly, in the Grid’5000 execution, the ratio for a band-

width bwg5000 and a reference host speed shost,g5000, with the
same amount of transferred data size(dpred,T) and a task T
composed of wT,g5000 operations is rg5000 =

wT,g5000
size(dpred,T)

×
bwg5000
shost,g5000

. Finally, we calculated the number of operations
needed to execute the task T on a reference host of Grid’5000
as wT,g5000 = wT,simu × shost,g5000

shost,simu
× bwsimu

bwg5000
. We used this

number of operations to generate workflow tasks of appropriate
duration.

In the case of LIGO and CYBERSHAKE, instead of running an
equally long workflow as described in the DAX files, we chose
to generate one with the same shape (same tasks, dependencies
between tasks, proportion between data transfers and amount
of work for tasks), but whose malespan is made shorter, with
the application of a fixed coefficient to decrease the time of
execution of the workflows. As seen in Section VI, this has
close to no impact on the performance of the algorithms.

As per the execution itself with DIET, we used one VM to
run the client task, the MA, the MADAG agent and omniNames
(the naming service on which DIET relies to operate communi-
cation between its components), and one VM per server.

C. Experimental campaign

We have generated schedules: (i) for three workflow
types: CYBERSHAKE, LIGO and MONTAGE; and (ii) for
ten scheduling algorithms: MINMINBUDG, HEFTBUDG,
HEFTBUDGMULT, HEFTBUDG+, HEFTBUDG+INV, BDT,
MINMIN, CG, CG+ and HEFT. We have selected a range of
budget values which have an actual impact on the makespan.
For some of these budget values, a few algorithms are failing to
produce valid schedules. Here we define a valid schedule as a
schedule which successfully enforces the budget constraint.

We have executed, on Grid’5000 and on the simulator, 30
experiments per combination (budget × algorithm × work-
flow), and collected the makespan and cost of each execution.
The costs are calculated as in [3], with prices adapted to the
performances of the used VMs. The raw data, their treatment,
and the whole experimentation setup, are available in [21].

VI. RESULTS

We first focus on the observation of makespan results from
real life experiments compared to their simulation. Even results
that spend more than the allocated budget are considered (in
other words, these results are produced by non-valid schedules).
Then we assess the accuracy of experimental costs conducted
with the MONTAGE workflow, with a comparison between real
life experiments and their simulation, and in this case we restrict
to results under the given budget.

The experiments have been carried so that the generated
workflows are equivalent to their simulated counterpart, with
a fixed factor as only difference. For the sake of comparison,
and to highlight how similar the obtained results are between
the simulation and the execution on Grid’5000, we scale them
in the figures: MONTAGE makespans are 4.6 times lower

than their simulation, LIGO ones are 49.06 times lower, and
CYBERSHAKE ones 6.9 times lower.

In Figure 2, we report the makespans obtained for each
type of workflow as a function of the available budget. The
first column represents the results obtained with the simulator.
The second column represents the results obtained from the
runs with DIET on Grid’5000. In most cases, the hierarchy
of algorithms in the DIET executions is the same as the one
in simulation. CG and CG+ obtain the highest makespans,
and HEFT, BDT and MINMIN the lowest ones. Among the
budget-aware algorithms, MINMINBUDG gets most of the
time the highest makespans, but is inferior to the ones ob-
tained with CG+. HEFTBUDG obtains the second highest
ones. HEFTBUDG+ and HEFTBUDG+INV find the schedules
with the lowest makespans. HEFTBUDGMULT schedules have
makespans between HEFTBUDG and HEFTBUDG+ ones.

While the results of simulation and real execution are very
similar for MONTAGE and LIGO, there are some differences
for CYBERSHAKE. We guessed that these differences are due
to file transfers, and we reran the simulations with an infinite
bandwidth, but this had no impact. Still, overall, there is a pretty
good correspondence between simulations and actual runs.

Next, we focus on MONTAGE workflows, and in Figure 3,
we report the costs and the percentage of valid solutions found
for MONTAGE executions. In Figures 3a and 3b, we see the cost
of the execution of MONTAGE workflows, both for simulations
and real executions, and they match almost perfectly. With
low budgets, two algorithms achieve very expensive schedules:
BDT and HEFT. They are followed by MINMIN. All the other
budget-aware algorithms, spend twice less budget to make a
schedule. In addition, the higher the budget, the more optimiza-
tion opportunities for budget-aware algorithms. For the highest
budgets used for our experiments, we make the following
observations: (i) HEFTBUDG+ achieves the most expensive
schedules, even higher than the ones from HEFT and BDT
(but recall from Figure 2 that HEFTBUDG+ needed a lower
initial budget than HEFT and BDT to find valid makespans);
(ii) HEFTBUDG, HEFTBUDGMULT and HEFTBUDG+INV
have a cost similar to HEFT (but achieve lower makespans);
(iii) Similarly, MINMINBUDG and MINMIN schedules have
similar costs (and lower makespans for MINMINBUDG); and
(iv) The cheapest schedules come from CG and CG/CG+ (but
this is at the cost of a far larger makespan).

Figures 3c and 3d show the percentage of valid schedules
found by each algorithm, from simulations (left) and real-life
experiments (right). Only HEFTBUDG+INV differs on the two
lowest budgets without a 100% valid schedules in real-life. We
know from [3] that this algorithm refines its schedule, leaving
only a small leftover budget, which explains the difference. On
each graph, we see that for the lowest budget, BDT, HEFT
and MINMIN give no valid schedule, and for the second lowest
budget, BDT and HEFT still do not. All the other algorithms
give 100% valid solutions.

33Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 40 / 58

●●●●● ●●●●● ●●● ●●● ●●● ●●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

●● ●● ●● ●● ●● ●●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

●● ● ●● ● ● ●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

● ● ● ● ● ●
●●

●

● ● ●

100

200

300

400

0.02 0.03 0.04 0.05
Initial Budget

M
ak

es
pa

n
(s

ec
.) Algorithm

●

●

BDT
CG
CG+
HEFT
HEFTBudg
HEFTBudg+
HEFTBudg+Inv
HEFTBudgMult
Min−Min
Min−MinBudg

(a) MONTAGE, simulation

● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●

● ● ●

●

●
●● ● ● ● ● ●● ● ● ● ● ●

● ● ●

●

●
●

100

200

300

400

0.02 0.03 0.04 0.05
Initial Budget

M
ak

es
pa

n
(s

ec
.) Algorithm

●

●

BDT
CG
CG+
HEFT
HEFTBudg
HEFTBudg+
HEFTBudg+Inv
HEFTBudgMult
Min−Min
Min−MinBudg

(b) MONTAGE, Grid’5000

● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

0

2500

5000

7500

10000

0.30 0.35 0.40 0.45
Initial Budget

M
ak

es
pa

n
(s

ec
.) Algorithm

●

●

BDT
CG
CG+
HEFT
HEFTBudg
HEFTBudg+
HEFTBudg+Inv
HEFTBudgMult
Min−Min
Min−MinBudg

(c) LIGO, simulation

● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

0

2500

5000

7500

10000

0.30 0.35 0.40 0.45
Initial Budget

M
ak

es
pa

n
(s

ec
.) Algorithm

●

●

BDT
CG
CG+
HEFT
HEFTBudg
HEFTBudg+
HEFTBudg+Inv
HEFTBudgMult
Min−Min
Min−MinBudg

(d) LIGO, Grid’5000

● ● ● ● ●●
● ●

●

●

●

●

● ● ● ● ●●
● ●

●

●

●

●

● ● ● ● ●● ●

●

●

●

●

●

● ● ● ● ●
● ● ●

●

●

●

●

●
● ● ● ● ●● ●

●

●

●

●

●

●
● ● ● ● ●

● ● ●

●

●

●

●

● ● ● ● ●●
● ●

●

●

●

●

●
● ● ● ● ●● ●

●

●

●

●

●

● ● ● ● ●● ●●

●

●

●

●

● ● ● ● ●
● ● ●

●

●

●

●

● ● ● ● ●
● ● ●

●

●

●

●

● ● ● ● ●
● ● ●

●

●

●

●

● ● ● ● ●●
● ●

●

●

●

●

● ● ● ● ●● ●●

●

●

●

●

● ● ● ● ●●

●

● ●

●

●

●

● ● ● ● ●●
● ●

●

●

●

●

● ● ● ● ●● ●●

●

●

●

●

● ● ● ● ●
● ● ●

●

●

●

●

● ● ● ● ●
● ● ●

●

●

●

●

● ● ● ● ●
● ● ●

●

●

●

●

● ● ● ● ●●
● ●

●

●

●

●

● ● ● ● ●● ●●

●

●

●

●

●
● ● ● ● ●● ●

●

●

●

●

●

● ● ● ● ●
● ● ●

●

●

●

●

● ● ● ● ●●
● ●

●

●

●

●

● ● ● ● ●
● ● ●

●

●

●

●

● ● ● ● ●● ●●

●

●

●

●

● ● ● ● ●●
● ●

●

●

●

●

● ● ● ● ●● ●

●

●

●

●

●

● ● ● ● ●● ●●

●

●

●

●

500

1000

0.05 0.10 0.15 0.20
Initial Budget

M
ak

es
pa

n
(s

ec
.) Algorithm

●

●

BDT
CG
CG+
HEFT
HEFTBudg
HEFTBudg+
HEFTBudg+Inv
HEFTBudgMult
Min−Min
Min−MinBudg

(e) CYBERSHAKE, simulation

● ● ● ● ●

●

●

●

●
● ● ●● ● ● ● ●

●

●

●

●
● ● ●● ● ● ● ●

●

●

●

●
● ● ●● ● ● ● ●

●

●

●

●
● ● ●

●
● ● ● ● ●

●

●

●
● ● ●

●
● ● ● ● ●

●

●

●

●
● ● ●● ● ● ● ●

●

●

●

●
● ● ●

●
● ● ● ● ●

●

●

●

●
● ● ●● ● ● ● ●

●

●

●

●
● ● ●● ● ● ● ●

●

●

●

●
● ● ●● ● ● ● ●

●

●

●

●
● ● ●● ● ● ● ●

●

●

●

●
● ● ●● ● ● ● ●

●

●

●

●
● ● ●● ● ● ● ●

●

●

●

●
● ● ●● ● ● ● ●

●

●

●

●
● ● ●● ● ● ● ●

●

●

●

●
● ● ●● ● ● ● ●

●

●

●

●
● ● ●● ● ● ● ●

●

●

●

●
● ● ●● ● ● ● ●

●

●

●
● ● ●● ● ● ● ●

●

●

●

●
● ● ●● ● ● ● ●

●

●

●

●
● ● ●● ● ● ● ●

●

●

●
● ● ●

●
● ● ● ● ●

●

●

●

●
● ● ●● ● ● ● ●

●

●

●

●
● ● ●● ● ● ● ●

●

●

●

●
● ● ●● ● ● ● ●

●

●

●

●
● ● ●● ● ● ● ●

●

●

●

●
● ● ●● ● ● ● ●

●

●

●

●
● ● ●● ● ● ● ●

●

●

●

●
● ● ●● ● ● ● ●

●

●

●

●
● ● ●

600

800

1000

1200

0.05 0.10 0.15 0.20
Initial Budget

M
ak

es
pa

n
(s

ec
.) Algorithm

●

●

BDT
CG
CG+
HEFT
HEFTBudg
HEFTBudg+
HEFTBudg+Inv
HEFTBudgMult
Min−Min
Min−MinBudg

(f) CYBERSHAKE, Grid’5000

Figure 2: Makespans for Montage, Cybershake and Ligo workflows of 30 tasks, execution on simulation vs. GRID’5000.

VII. CONCLUSION

In this paper, we have introduced a new scheduling function-
ality for DIET, and provided the user with a set of tools to
implement, and experiment with, static scheduling algorithms
for workflows. We then used this new functionality to compare
the executions of ten static algorithms for scientific applications
from the Pegasus benchmark, using both a simulator and the
testbed Grid’5000. Both types of experiments gave similar
results, validating the results obtained during the simulations
executed in [5] and DIET improvements.

Further work will be devoted to better understand the be-
havior of budget-aware algorithms on larger and more diverse
workflows, using the insights gained from both the similarities
and differences found in simulations and actual executions.

REFERENCES

[1] E. Caron and F. Desprez, “DIET: A scalable toolbox to build network
enabled servers on the grid,” International Journal of High Performance
Computing Applications, vol. 20, no. 3, pp. 335–352, 2006.

[2] E. Deelman et al., “Pegasus: a workflow management system for science
automation,” Future Generation Computer Systems, vol. 46, pp. 17–35,
2015, funding Acknowledgements: NSF ACI SDCI 0722019, NSF ACI
SI2-SSI 1148515 and NSF OCI-1053575.

[3] Y. Caniou, E. Caron, A. Kong Win Chang, and Y. Robert, “Budget-aware
scheduling algorithms for scientific workflows with stochastic task
weights on infrastructure as a service cloud platforms,” Concurrency
and Computation: Practice and Experience, vol. 33, no. 17, p.
e6065, 2021, [retrieved: August, 2021]. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6065

[4] F. Cappello et al., “Grid’5000: A large scale, reconfigurable, controlable
and monitorable grid platform,” in Proc. 6th IEEE/ACM Int. Workshop on
Grid Computing (Grid’2005). IEEE Computer Society Press, 2005, see
https://www.grid5000.fr/w/Grid5000:Home.

34Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 41 / 58

●●●●● ●●●●● ●●● ●●● ●●● ●●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

●● ●● ●● ●● ●● ●●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

●● ● ●● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

● ● ● ● ● ●

●

●

●

● ● ●

0.015

0.020

0.025

0.030

0.02 0.03 0.04 0.05
Initial Budget

C
os

t (
$)

Algorithm
●

●

BDT
CG
CG+
HEFT
HEFTBudg
HEFTBudg+
HEFTBudg+Inv
HEFTBudgMult
Min−Min
Min−MinBudg

(a) MONTAGE, simulation

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●

● ● ●

●

●

●

● ● ● ● ● ●● ● ● ● ● ●

● ● ●

●

●

●

0.01

0.02

0.03

0.02 0.03 0.04 0.05
Initial Budget

C
os

t (
$)

Algorithm
●

●

BDT
CG
CG+
HEFT
HEFTBudg
HEFTBudg+
HEFTBudg+Inv
HEFTBudgMult
Min−Min
Min−MinBudg

(b) MONTAGE, Grid’5000

0

25

50

75

100

0.018 0.025 0.032 0.039 0.046 0.053
Initial Budget

%
 v

al
id

 s
ch

ed
ul

es

Algorithm

BDT

CG

CG+

HEFT

HEFTBudg

HEFTBudg+

HEFTBudg+Inv

HEFTBudgMult

Min−Min

Min−MinBudg

(c) MONTAGE, percentage of valid solutions, simula-
tion

0

25

50

75

100

0.018 0.025 0.032 0.039 0.046 0.053
Initial Budget

%
 v

al
id

 s
ch

ed
ul

es

Algorithm

BDT

CG

CG+

HEFT

HEFTBudg

HEFTBudg+

HEFTBudg+Inv

HEFTBudgMult

Min−Min

Min−MinBudg

(d) MONTAGE, percentage of valid solutions,
Grid’5000

Figure 3: Costs for Montage workflows of 30 tasks, execution on grid’5000 vs. simulation, and percentage of valid solutions.

[5] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and K. Vahi,
“Characterization of scientific workflows,” in SC’08 Workshop: The 3rd
Workshop on Workflows in Support of Large-scale Science (WORKS08)
web site. Austin, TX: ACM/IEEE, Nov. 2008.

[6] E. Caron, F. Desprez, T. Glatard, M. Ketan, J. Montagnat, and
D. Reimert, “Workflow-based comparison of two distributed computing
infrastructures,” in Workflows in Support of Large-Scale Science
(WORKS10), In Conjunction with Supercomputing 10 (SC’10). New
Orleans: IEEE, November 14 2010, hal-00677820, [retrieved: August,
2021]. [Online]. Available: https://hal.inria.fr/hal-00677820

[7] P. Couvares, T. Kosar, A. Roy, J. Weber, and K. Wenger, “Workflow Man-
agement in Condor,” in Workflows for e-Science, I. Taylor, E. Deelman,
D. Gannon, and M. Shields, Eds. Springer, 2007, pp. 357–375.

[8] M. Krämer, “Capability-based scheduling of scientific workflows in
the cloud,” in DATA, S. Hammoudi, C. Quix, and J. Bernardino, Eds.
SciTePress, 2020, pp. 43–54.

[9] M. Beauchemin. (2014) Apache airflow project. [retrieved: August,
2021]. [Online]. Available: https://airflow.apache.org/

[10] R. Mitchell et al., “Exploration of workflow management systems emerg-
ing features from users perspectives,” in 2019 IEEE International Con-
ference on Big Data (Big Data), 2019, pp. 4537–4544.

[11] E. Caron, “Contribution to the management of large scale platforms:
the DIET experience,” HDR (Habilitation ‘a Diriger les Recherches),
École Normale Supérieure de Lyon, Oct.6 2010, hal number tel-
00629060, [retrieved: August, 2021]. [Online]. Available: https://hal.
inria.fr/tel-00629060

[12] A. Ilyushkin, A. Bauer, A. V. Papadopoulos, E. Deelman, and A. Iosup,
“Performance-feedback autoscaling with budget constraints for cloud-
based workloads of workflows,” CoRR, vol. abs/1905.10270, 2019,
[retrieved: August, 2021]. [Online]. Available: http://arxiv.org/abs/1905.
10270

[13] C. Lin and S. Lu, “Scheduling scientific workflows elastically for cloud
computing,” in Cloud Computing (CLOUD), 2011 IEEE International
Conference on. IEEE, 2011, pp. 746–747.

[14] S. Smanchat and K. Viriyapant, “Taxonomies of workflow scheduling
problem and techniques in the cloud,” Future Generation Computer
Systems, vol. 52, pp. 1–12, 2015.

[15] V. Arabnejad, K. Bubendorfer, and B. Ng, “Budget distribution strategies
for scientific workflow scheduling in commercial clouds,” in IEEE 12th
Int. Conf. on e-Science (e-Science), Oct 2016, pp. 137–146.

[16] C. Q. Wu, X. Lin, D. Yu, W. Xu, and L. Li, “End-to-end delay minimiza-
tion for scientific workflows in clouds under budget constraint,” IEEE
Transactions on Cloud Computing, vol. 3, no. 2, pp. 169–181, April 2015.

[17] T. Risset and Y. Robert, “Synthesis of processor arrays for the algebraic
path problem,” Parallel Processing Letters, vol. 1, no. 1, pp. 19–28, Sep.
1991.

[18] X. Zhou, G. Zhang, J. Sun, J. Zhou, T. Wei, and S. Hu, “Minimizing cost
and makespan for workflow scheduling in cloud using fuzzy dominance
sort based heft,” Future Generation Computer Systems, vol. 93, pp. 278 –
289, 2019.

[19] S. Makhlouf and B. Yagoubi, “Data-aware scheduling strategy for scien-
tific workflow applications in iaas cloud computing,” Int. J. Interactive
Multimedia and Artificial Intelligence, vol. InPress, p. 1, 01 2018.

[20] J. Liu et al., “Online multi-workflow scheduling under uncertain task
execution time in iaas clouds,” IEEE Trans. Cloud Computing, pp. 1–1,
2019.

[21] A. Kong Win Chang. https://graal.ens-lyon.fr/~achang/Research/. [re-
trieved: August, 2021].

[22] SimDag, “Programming environment for DAG applications,” http:
//simgrid.gforge.inria.fr/simgrid/3.13/doc/group__SD__API.html, 2017,
[retrieved: 2017].

[23] Pegasus Team, https://pegasus.isi.edu/documentation/development/
schemas.html, [retrieved:2021].

[24] H. Topcuoglu, S. Hariri, and M. Y. Wu, “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” IEEE Trans.
Parallel Distributed Systems, vol. 13, no. 3, pp. 260–274, 2002.

[25] T. Braun et al., “A comparison of eleven static heuristics for mapping
a class of independent tasks onto heterogeneous distributed computing
systems,” Journal of Parallel and Distributed Computing, vol. 61, no. 6,
pp. 810–837, 2001.

[26] P. Ezzatti, M. Pedemonte, and A. Martín, “An efficient implementation of
the min-min heuristic,” Comput. Oper. Res., vol. 40, no. 11, 2013.

[27] Pegasus Team, “Code for the Pegasus generator,” https://github.com/
pegasus-isi/WorkflowGenerator, 2020, [retrieved: August, 2021].

35Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 42 / 58

Synapse
Facilitating Large-Scale Data Management in Research Contexts

Daniel Andresen
Dept. of Computer Science

Kansas State University
Manhattan KS, USA
e-mail: dan@ksu.edu

Gerrick Teague
Software Development Dept.

Able Ant Design, Inc.
Manhattan KS, USA

e-mail: gerrick@ableant.com

Abstract— Research data management is becoming
increasingly complex as the amount of data, metadata and code
increases. Often, researchers must obtain multidisciplinary
skills to acquire, transfer, share, and compute large datasets.
In this paper, we present the results of an investigation into
providing a familiar web-based experience for researchers to
manage their data and code, leveraging popular, well-funded
tools and services. We show how researchers can save time and
avoid mistakes, and we provide a detailed discussion of our
system architecture and implementation, and summarize the
new capabilities, and time savings which can be achieved.

Keywords- Globus; Dataverse; oid; metadata; research.

I. INTRODUCTION
 Data management and processing increasingly consumes a
modern researcher's time. Common tasks may include
storing and sharing the data, generating metadata, developing
codes to process the data, interfacing with High Performance
Computing (HPC) clusters to process the data, access
control, publishing and making the project discoverable to
other researchers. Researchers often need to obtain
significant knowledge outside of their domain in order to
manage the data, often including command line interfaces,
data transfer tools, and repositories, while other necessary
tools, like data backup, and access control often go
unutilized due to the hassle.
 There currently exist tools to handle specific portions of
the modern researcher’s workflow in a generalized sense.
For example, there are cloud data backup services, and data
sharing tools such as Dropbox, but these services are not
designed for a research context, so features, such as
compliance with the Health Insurance Portability and
Accountability Act (HIPAA), and fine-grained access control
may be lacking. A further problem is the necessity to learn
these different systems.
 Technology is catching up to address the problems
outlined above. Open OnDemand [2] provides a friendly
graphical user interface when dealing with HPC clusters, but
lacks robust data transfer. Harvard’s Dataverse project [7] is
an attempt to house, publish, and corroborate research, but
lacks big data support. Ideally, there is a solution that
handles most of the data flow for a research project to
minimize the amount of out-of-wheelhouse technology a
researcher must learn, but still be general purpose enough to
provide benefit to multiple labs.

 In this paper, we present Synapse, an open-source, web-
based application. Synapse leverages both industry standards
and emerging tools to provide a familiar, intuitive interface
for researchers to handle common tasks. It greatly lowers the
barrier of entry into many solutions including data transfer,
HPC computing, data backup and housing, access controls,
auto-metadata extraction, and research discovery [9].
 Synapse achieves the above objectives by integrating three
key technologies: 1) Dataverse handles the storage,
providence, access control, and discoverability of research
projects. 2) Globus [4] provides secure transfer of large
amounts of data between given endpoints. 3) Open
OnDemand provides a graphical user interface for processing
researcher data on high performance computing clusters. We
summarize our contributions as follows:

• We present current technologies that attempt to
tackle this problem.

• We present the design, implementation and
evaluation of a Synapse installation.

• We detail a modular metadata extraction system
that can be extended to a particular lab’s needs.

• We detail further work that can improve the
system.

 The rest of this paper first discusses related work in
Section 2, and then describes our implementation in Section
3. Section 4 describes how we evaluated our system and the
results. Section 5 presents our conclusions and describes
future work.

II. RELATED WORK
 Because the problem domain touches so many different
areas, including data transfer, backup, storage, computing,
discoverability, providence, and permissions, as well as the
potentially significant resources required to implement such
systems for data-large research projects, we find many
excellent projects that handle a subset of the problem
domain. The pace of improvement is very brisk in this space;
technologies at the time of this writing may have overcome
limitations reviewed here. Lastly, our search passed over
many excellent products in favor of ease of integration, and
market penetration. Our labs’ requirements are specific:
Storing and preservation of research data, Integration with
our local HPC cluster, as well as auto metadata extraction
from files. As such, we could not find a software solution
that checked off all our requirements, but we found several
excellent general-use solutions that came very close. Our

36Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 43 / 58

planning naturally went to discovering how to best integrate
these projects into our solution.
 The Center for Open Science produces the Open Science
Framework (OSF) - an open-source web application that
assists in research collaboration, document storage and
archive, as well as registration of research projects. The
application is very intuitive and supports a wide range of
data sharing/transfer/storage technologies including
Dropbox, and Google Drive. It handles persistent Uniform
Resource Locators (URLs) for citing and sharing, access
controls, version sharing, as well as publishing reports. In
fact, in our research, OSF was a final candidate to
incorporate into our system, since it fit most of our
requirements. The OSF approach is to be the hub of data
linked offsite in pre-existing storage shares, such as
Dropbox, or Simple Storage Service (S3). Data can be hosted
directly by OSF, but file sizes are limited to 5 gigabytes
(GB). Overall, this system is very intuitive and flexible.
Unfortunately, OSF is not currently designed to handle big
data (neither very large data files, nor thousands of smaller
files). Finally, market penetration seems low enough, with
funding scarce enough, to warrant caution adopting this
technology long term [6].
 Dataverse is a project allowing users to store, discover,
share, and analyze data. It is maintained by the Institute for
Quantitative Social Science (IQSS) at Harvard University
[3]. Dataverse strengths include wide adoption by academic
research institutions, a vibrant community, rich
documentation, constant funding, a robust permissions
system, and a modest development pace. Its main weakness
was its lack of big data support. But in recent months, it has
made large strides to compensate. Dataverse’s User Interface
(UI) is a bit dated and slow, and the support for downloading
many files is troublesome, but an active user base and
development team can overcome these issues. Fig. 1 gives an
example of the Dataverse UI. The structure of a Dataverse
installation consists of a root Dataverse, which is a container
of any combination of sub-Dataverses and datasets, the latter
of which can only contain files and metadata. Due to its
“batteries included” approach as well as its open and large
community, we decided to leverage Dataverse for most of
our needs, utilizing other software and connective code to
flesh out our solution [7].

GitHub is a popular cloud-based version control
repository. It extends Git, the de facto version control system
for software code, which provides providence, collaboration,
versioning, and powerful merging workflows to manage
data. GitHub uses Git as its core, but also provides a
powerful web-based UI to hide - yet complement - many of
Git's powerful features. Being a web-first technology, it
allows code to be discoverable by search engines, as well as
providing gateway functionality with authentication and
permissions. It also provides a highly programmable
infrastructure to send and receive data. In a lot of ways,
GitHub provides most everything needed for researchers to
utilize. Unfortunately, due to technical limitations neither Git
nor GitHub can handle files of any size. GitHub recommends
repositories to be less than 1 GB, with a hard file size limit of
no more than 100 megabytes (MB) per file [1].

Figure 1. View of data inside a Dataverse data set.

Soon after the proof-of-concept for Synapse was
developed, Scholars Portal based in Toronto Canada,
showcased a Globus integration with their large Dataverse
installation. They have at least 55 Canadian institutions
utilizing their research Dataverse installation. They have
received a grant in part to solve the large data problem,
utilizing Globus's transfer capabilities. Their initial attempt
leveraged the Dataverse and Globus UI’s to allow the data to
be imported. Due to the size of their installation, they opted
for a S3 storage implementation. After a major design
iteration, they have arrived at a solution similar to Synapse,
but more general purpose. The Scholars Portal tool looks to
fulfill all the requirements set forth for Synapse with the
exceptions of HPC integration, and auto metadata extraction
[5].

III. SYNAPSE DESIGN
 In this section, we present the Synapse architecture in a
high-level view to demonstrate how the major pieces work
together as a system. Fig. 2 illustrates a broad overview of
the system. Synapse is composed of four major components:
Dataverse [7], which is the data storage, discovery and
access control system, Globus, the data transfer system [8],

37Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 44 / 58

Figure 2. Principal elements of the Synapse system.

Open OnDemand, a graphical user interface for high
performance computing clusters [2], and the Synapse web
application, which provides metadata extraction and glues
these pieces together with a web-based user interface.
 We will describe the two main use cases of the Synapse
website, importing data into Dataverse with metadata and
exporting data out of Dataverse to be used in a HPC cluster.
Importing data into Dataverse can be described in a sequence
of steps involving 4 systems: a researcher’s computer, the
Synapse web server (herein referred to simply as ‘Synapse’),
the Dataverse server, and Globus. Before the flow starts, a
user must have a Dataverse account, a Globus account, and a
valid Globus endpoint located on the researcher’s computer
with access to the source files to be transferred. The Globus
endpoint could be either the free Globus Connect Personal
service to be used on workstations, or a paid Globus Connect
server. First, we will go over the of each use case, then
explain in more detail interesting steps.
 The first use case is importing data into Dataverse. Fig. 3
depicts the process. Step 1 involves the user navigating to the
Synapse website. If the user’s Globus credentials have
expired, a Globus login is required using Open Authorization
(OAuth), redirecting the user to the Globus authentication
webpage. After a successful login, the user is redirected back
to the Synapse page. The user can then select any endpoints
they have access to, in this case the endpoint linked to the
source files. The user may then drag-and-drop the files onto
the panel in the webpage, and Synapse will query the
selected Globus endpoint with the limited file information
the drag and drop operation gives us to get the absolute path
of the files to be uploaded which Globus will then use. Once
one or more paths are found, they are displayed to the user

for confirmation. The user then selects which dataset in
Dataverse to put the files into, what lab they belong to, as
well providing any additional metadata to describe what is
being uploaded. Once finished, the user will submit the job
to be processed.
 Step 2 is fully automated by Synapse and performs the
following tasks sequentially:

1. Store a manifest file detailing the transfer job,
source, destination, metadata, etc.

2. Extract metadata found in the filenames or data
files themselves.

3. Prepare a custom Globus endpoint on the
Dataverse instance as the destination. With access controls
specific to the Globus user logged in.

4. Tell Globus to initiate a transfer of the data,
capturing the task id so we can query the Globus system for
progress updates. At this point, the task is handed off to
Globus. Globus will eventually transfer the files to the
destination if possible or fail.

Figure 3. Synapse operation flow when importing into Dataverse.

38Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 45 / 58

 Step 3 consists of a script running on the Dataverse
installation that also has access to the Globus destination
endpoint. This script will monitor the destination endpoint
for new directories that represent the jobs mentioned in Step
2. When a new directory is found, the script will retrieve the
manifest file described in Step 2 and add it to a processing
list. Then the script will iterate over the processing list and
query Globus to see if the files are still being transferred.
Synapse is then updated with the new status, to inform the
user. If the Globus transfer has successfully completed the
job, then the files are imported into the specified Dataverse
dataset using the Dataverse Application Programming
Interface (API), given the user’s Dataverse API key, which
details that user’s access permissions. During the importing
of files into Dataverse, the Synapse web server is called to
post updates to the user. Once the importing finishes, the
user will be notified. Fig. 5 displays the main Synapse page
that provides the UI for the import process. The “Globus
Source” field indicates where Synapse should pull the data
from, the “Your Lab” field handles the automatic metadata
extraction. The “Upload to Dataset” lets the user select a
Dataverse dataset from a list of datasets the user has access
to. The “Description” and “Keyword” fields allow extra
metadata to be set for all files uploaded.
 One point of interest is the fact that we rely on the
operating system hosting both the Dataverse installation and
the Globus endpoint to temporarily store the file, and then
import it into Dataverse. Since the Dataverse importing
process can take a considerable amount of time, docking the
file on the same portable operating system interface (POSIX)
file system allows for some optimizations, such as the ability
to import a dummy file with the same metadata as a very
large file then update the dummy file pointer to point to the
actual large file. Negating both the lengthy importing process
of a large file but also negating the necessity of copying the
data from one location to another. Using POSIX has a
significant disadvantage as well: Dataverse's future seems to
be moving toward a simple storage system architecture
(commonly referred to as S3). With S3 a different
methodology must be used leveraging recent Dataverse
updates.
 Another subsystem worth discussing is the automatic
metadata extraction. We have found that labs can have quite
consistent internal conventions categorizing data produced
from experiments, but data categorization may not be
consistent between labs of a department. We decided upon a
flexible plug-in approach to extract metadata from the data.
A user can write a plug-in for a lab that inherits from a
metadata class that extracts the data specific for that lab, or a
set of experiments conforming to the format the plug-in can
parse. Synapse will auto-detect the plug-in and display it
amongst the list of metadata extractors available in the data
import page of the Synapse system. All files will be exposed
to the selected metadata extractor, which will decide if the
file is a match for this extractor. If so, it will extract the data
and will associate the extracted data with the file, then store
the information in the manifest file described in step 2. After
transfer, the script outlined in Step 3 will apply the metadata
to a file’s tags and description in Dataverse during import.

The tag and description fields of Dataverse are searchable,
allowing for quick data discovery.
 Metadata parsed the way mentioned above and imported
using the Synapse system auto-applies the metadata specific
to that file for each file. Fig. 4 depicts a comparison of the
Synapse metadata extraction vs a standard Dataverse upload.
The top file is imported into Dataverse using the Dataverse
interface, the bottom entry contains auto-populated metadata
imported utilizing Synapse. The extra data is file specific;
there is a proportional time savings based on the number of
files to import into Dataverse utilizing Synapse vs the
standard import method; the latter method needing to
manually input the metadata per file after import. Both the
batch-specific metadata, as well as the file-specific metadata
can be searched upon using the Dataverse search tool as well
as the data harvesting / sharing engine, if enabled.

Figure 4. Dataverse data with and without metadata.

Figure 5. Synapse data import page.

39Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 46 / 58

 The second use case of Synapse use is to move data from
Dataverse into a HPC cluster for processing. This starts at
the Dataverse site. If a user has access to the data, they may
select the desired file(s) and select “Explore”, then “Send to
Beocat”. This makes a call to Synapse. Synapse ensures the
user is logged into Globus, grabs the Globus destination ID
of the HPC cluster endpoint, and pulls the selected data out
of Dataverse via the API, and submits the job to Globus to
transfer to the HPC cluster’s endpoint. Note that it will
transfer to the logged in user’s Globus HPC cluster endpoint.
The Dataverse data plugin system was utilized to enable
stored files to be forwarded to Synapse for transfer. In order
to transfer files back to Dataverse from the HPC cluster, then
one can use Synapse and just select the HPC cluster endpoint
for transferring back to Dataverse, for another import.
 The final component of the Synapse system is Open
OnDemand maintained by the Ohio Supercomputer Center
(OSC), which is an open-source software suite that allows
visual access to supercomputing resources via a web
browser. It has three main features: 1) Scheduling HPC jobs
with a graphical interface. 2) use a Virtual Network
Computing (VNC) desktop on the HPC cluster, and 3) run
specific applications such as Jupyter, and MATLAB directly
on the HPC cluster. OSC’s approach is like Synapse’s, using
a web browser in a familiar way to interface with disparate
technologies to minimize the learning curve. Fig. 6 shows an
example of RStudio running on the Beocat HPC cluster at
Kansas State University.
 Open OnDemand includes a visual file manager, like a
researcher’s personal computer file systems to manipulate
files. OSC has found that using this file manager is sufficient
for managing approximately nine gigabytes of data; for
anything greater Globus is recommended [2]. Once a file is
moved from Dataverse to the HPC cluster, then Open
OnDemand can be utilized for processing.

Figure 6. Open OnDemand running RStudio on a HPC cluster.

IV. EVALUATION
In this section we evaluate the time Synapse takes to

complete various data importing jobs into Dataverse. We
will compare this against the upload feature found in
Dataverse itself. There are three machines that we will use
for evaluation: 1) The client machine where the data is
originally stored. 2) The server hosting the Synapse web
server, and 3) The Dataverse installation server. For all tests
described below, the client machine (1 in Fig. 7) is a
MacBook Pro i9-9980HK CPU running Windows 10 20H2,
with 32GB random access memory (RAM), and a 1 terabyte
(TB) solid state drive (SSD). The Synapse web server (2 in
Fig. 7) is also a MacBook Pro i9-9980HK CPU, 32 GB
RAM, 1TB SSD running Ubuntu 20.04.1 under a virtual
machine. Finally, the Dataverse server (3 in Fig. 7) is also a
virtual machine running CentOS 7.7.1908 quad core with
32GB of Ram running on a local HPC cluster. The Dataverse
version we tested with was 4.18.1. This setup is depicted in
Fig. 7.

All tests were conducted using the same dataset. This
dataset consisted of a series of random generated files, with
random data to allow minimal compression which Hypertext
Transfer Protocol (HTTP) and Globus might employ for
transit. There are 5 datasets used:

• 1 Kilobyte (KB) files
• 10 KB files
• 100 KB files
• 1 MB Files
• 10 MB Files
In each set, we recorded imports using one, 10, 100, and

1000 files. The smallest test transferred 1KB of data (1 file *
1KB File size), while the largest test imported 10GB of data
(1000 10MB files).

In each run, we record 5 data points:
• Total import time
• Time to process metadata
• Time to transfer data via Globus
• Time to import data to Dataverse after the Globus

 transfer
• The amount of time it takes to import data without

metadata via the Dataverse website.
We group the data by the 5 data points, with plots for

each file size tested.

Figure 7. Components of the evaluation system.

40Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 47 / 58

First, we look at the overall time it takes to import data

into Dataverse utilizing Synapse. As we can see from Fig. 8,
it is only until we get to 10MB files do we see much of an
increase in processing time from smaller file sizes. This
suggests the overhead of the various processes in the
Synapse system is taking up the lion’s share of the compute
time, and it is only when our files sizes get substantial, do we
see bandwidth limiting factors come into play. To examine
this further, Fig. 9 charts the amount of ‘lost time’ not
accounted for by the major steps the Synapse system takes in
importing a file described by our 5 data points. This non-
account for time includes user interaction after a user drops
files to be processed but before they press the submit button,
polling time waiting for the service running on the Dataverse
server looking for new jobs, network latency between
communication between the various machines, etc. We can
see this ‘lost time’ appears to be influenced by the number of
files to be processed but is a much greater percentage of the
overall time for small number of files, rather than file sizes,
bearing out the reasoning of overhead time. Now, we will
break out the individual components of the import.

Fig. 10 describes the time took to process the metadata in
milliseconds. Note that the file size had virtually no effect on
the metadata processing and was solely dependent upon the
number of files to process. This is due to the metadata
extracted was all contained in the file name, rather than the
file contents. While Synapse’s metadata system is flexible
enough to handle even file contents, if the extractors use the
file names, the system could conceivably handle millions of
files.

Figure 8. Total length of time to import data into Dataverse via

Synapse.

Figure 9. Time not accounted for by data points.

Figure 10. Milliseconds took to process metadata.

Fig. 11 plots the time it takes for the data, once described

to Globus, to be transferred to the Dataverse endpoint. Not
surprisingly, it is dependent upon total bytes to be
transferred. File transfer systems have a per-file overhead,
but in Globus this appears to be small.

Fig. 12 shows the time it takes to import the file into
Dataverse once it arrives on the Dataverse machine via
Globus. As opposed to Globus, it appears the main
differentiating factor is the per-file overhead. Even for small
file sizes, it takes quite a while to process many files.
Interestingly, it is not a linear progression. With a given file
size the import time is not proportional to the number of files
processed but appears to be exponential. For example,
importing 100 1KB files took 163.45 seconds, but 1,000
1KB files took 4885.52 seconds, a 29.9x increase rather than
expected 10x. As the graph shows, this holds true regardless
of the file size. This phenomenon may be due to design
deficiencies in the Dataverse import API process, or due to
the Synapse importing residing on the Dataverse machine.

41Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 48 / 58

This importing process after the files have already been
transferred to the Dataverse machine is where the greatest
amount of efficiency gains can be realized and will likely be
a focus of any future work. This will be elaborated in Section
V.

Dataverse has a webpage where one can drag and drop
files to be imported into a dataset much like Synapse, but
without the metadata, and large file support. For comparison,
Fig. 13 depicts the time it took to import via the Dataverse
webpage. Fig. 14 adds an arbitrary 5 seconds per file to
emulate metadata input customized per file. As Fig. 14
illustrates, if metadata is not a requirement, and one has a
good connection to the Dataverse server, and they are
dealing with a relatively small number of smaller files, the
Dataverse website upload tool can yield significant time
savings in the import process.

Figure 11. Globus transfer time.

Figure 12. Seconds to import into Dataverse after data is transferred.

Figure 13. Time to import data using Dataverse website.

Figure 14. Dataverse website entry with metadata time allowance.

One of the clear advantages of Synapse is the ability to
automate repetitive metadata entry over multiple files.
Another advantage is the ability to frontload all the effort in
saving the data to the repository, so the user can walk away
after data entry, since error recovery is built into the data
transfer process. Even if the import process takes days or
weeks, the user does not need to watch the import or wait for
it to finish to then describe the data after import.

V. FUTURE WORK
There are many features that can be implemented to

make Synapse a more valuable tool. The most beneficial
upgrade would be moving away from a traditional POSIX
storage system into a modern S3 compatible storage system.
S3 adoption among the Dataverse installations around the
world is growing and will likely be the de-facto method of
data storage within Dataverse. The Institute for Quantitative
Social Science (IQSS), which develops and maintains the

42Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 49 / 58

Dataverse project recognizes this fact and is in talks with key
institutions such as Scholars' Portal, to facilitate both a more
robust S3 storage implementation, as well as tighter Globus
integration. We should be able to leverage such advances to
improve the performance of the Synapse system.

There can also be further optimization of importing
speeds with newer versions of Dataverse, which allows for
optimization of the import process. Currently Dataverse
inspects and processes each file to - among other things -
determine the file contents and produce a preview of the
data. This is computationally expensive, and for large files,
prohibits importing at all. Third party workarounds have
obviated this pre-processing. The IQSS team has recognized
this need, and is planning on facilitating this trend, possibly
leveraging parallel importing.

Dataverse also supports a rich method of metadata
harvesting and sharing utilizing the Open Archives Initiative
Protocol for Metadata Harvesting (OAI-PMH) which
provides interoperability between data repositories to
increase discoverability of research. Additionally, we can
vastly decrease the amount of time to import very large files
by creating a small dummy file representing the actual file
and import that data in with the metadata associated with the
dummy file. After importing, we can find the POSIX storage
path in the Dataverse database, and then do a POSIX 'move'
command, moving the original file that landed on the
Dataverse server via Globus, overwriting the destination of
the dummy file that Dataverse imported. Finally, we need to
update the database for the new file size. This method would
prevent copying the data, which is input/output (IO)
intensive for very large files and would also minimize the
amount of processing Dataverse does to files being imported.
 The version of Dataverse we tested provided limited API
support for moving arbitrary files out of Dataverse. Either a
single file could be moved, or the entire dataset. In the
future, with collaboration with Dataverse, we could provide
additional features to pull arbitrary files out of Dataverse.
For example, the results of a file search could be selected and
sent via Synapse to a HPC endpoint.
 The Open OnDemand portion residing on KSU’s local
HPC cluster has been used in a production environment, with
positive feedback. Synapse as a whole needs to be evaluated
by research groups. Since many of the main goals have been
achieved, moving the project into an Agile methodology to
close the feedback loop now would be appropriate [10].

VI. CONCLUSION
 We have presented Synapse, a web-based tool to enable
researchers to store, manage, process and publish data and
results using familiar technologies. We have evaluated
Synapse with various datasets and shown its usefulness in
Metadata extraction, and resilience to network faults. If
metadata description is required on a per-file basis, Synapse

can greatly decrease the import time into a Dataverse
repository.
 The main limitation observed is the relative slowness of
the import process, compared to the native Dataverse
method. The second sizable limitation is our current
approach utilizing an antiquated POSIX file system. Despite
these issues, Synapse allows for researchers to manage
automated metadata extraction, data storage, transfer,
computing and publication all wrapped in a familiar web
browser experience so researchers can focus on the research.

ACKNOWLEDGEMENTS
 This work was supported by the Cognitive and
Neurobiological Approaches to Plasticity (CNAP) Center of
Biomedical Research Excellence (COBRE) of the National
Institutes of Health under grant number P20GM113109. The
content is solely the responsibility of the authors and does
not necessarily represent the official views of the National
Institutes of Health.

REFERENCES

[1] GitHub Development Platform Size Limitations. Available
from: https://docs.github.com/en/github/managing-large-
files/working-with-large-files/what-is-my-disk-quota#file-
and-repository-size-limitations 2021.8.30

[2] D. Hudak, D. Johnson, A. Chalker, J. Nicklas, E. Franz, T.
Dockendorf, and B. McMichael, “Open OnDemand: A web-
based client portal for HPC centers.” Journal of Open Source
Software, 3(25), 622, 2018.
https://doi.org/10.21105/joss.00622

[3] Institute for Quantitative Social Science (IQSS), available
from: https://www.iq.harvard.edu/ 2021.8.31

[4] I. Foster, "Globus Online: Accelerating and Democratizing
Science through Cloud-Based Services," Internet Computing,
IEEE , vol. 15, no. 3, pp. 70,73, May-June 2011

[5] Scholars Portal Dataverse, available from:
https://learn.scholarsportal.info/all-guides/dataverse/
2021.8.30

[6] Center for Open Science’s Open Science Foundation,
available from: https://osf.io, 2021.8.30

[7] Harvard’s Dataverse, available from: https://dataverse.org
2021.8.30

[8] B. Allen, J. Bresnahan, L. Childers, I. Foster, G.
Kandaswamy, R. Kettimuthu, J. Kordas, M. Link, S. Martin,
K. Pickett, S. Tuecke, "Software as a service for data
scientists," Communications of the ACM, vol. 55, no. 2, pp.
81,88, February 2012 doi:10.1145/2076450.2076468

[9] Synapse open-source code, available from:
 https://github.com/cnap-cobre/synapse-globus 2021.8.31
[10] A. Srivastava, S. Bhardwaj and S. Saraswat, "SCRUM model

for agile methodology," Proceedings of the 2017
International Conference on Computing, Communication and
Automation (ICCCA), pp. 864-869, 2017.
doi: 10.1109/CCAA.2017.8229928

43Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 50 / 58

Pattern Dependent Optimized Mowing of Football
Fields with an Autonomous Robot

Tahir Majeed
Department of Informatics

Lucerne University of Applied Sciences and Arts
Lucerne, Switzerland

email: tahir.majeed@hslu.ch

Ramón Christen
Department of Informatics

Lucerne University of Applied Sciences and Arts
Lucerne, Switzerland

email: ramon.christen@hslu.ch

Michael Handschuh
Department of Informatics

Lucerne University of Applied Sciences and Arts
Lucerne, Switzerland

email: michael.handschuh@hslu.ch

René Meier
Department of Informatics

Lucerne University of Applied Sciences and Arts
Lucerne, Switzerland

email: rene.meier@hslu.ch

Abstract—This paper addresses the football field mowing
problem using an autonomous mowing robot. To reduce the cost
of maintaining and preparing the football field for a professional
match, the football field is mowed using an autonomous robot.
Football fields are typically mowed according to a pattern;
therefore, the mowing path of the robot must be optimized
with respect to time while obeying the constraint that mowing
should result in a predefined pattern. In addition to finding the
optimized path for the autonomous robot, a planning software
has also been developed that creates and provides the data
required by the optimizer. This data contains information on
the pattern, the dependencies between individual lanes and the
time required to mow a lane and to transition between lanes.
The mathematical model to find the optimal mowing path was
developed using Integer Programming. The proposed model is
computationally efficient, mows the required pattern, fulfills the
dependency constraints between the lanes and optimizes the path
of the robot so that the football field is mowed in the least possible
time.

Index Terms—mowing robot, path optimization, discrete opti-
mization, integer programming.

I. INTRODUCTION

Football is a famous sport which is played and liked
by billions over the world. Many people like to watch a
match in a stadium while others prefer watching it from the
comfort of their home and in front of their television screens.
Before professional matches can take place, a lot of planning
and resources are required to properly prepare the football
field. Fédération Internationale de Football Association (FIFA)
defines a set of standards [1] that every ground must meet.
Among other requirements, FIFA standards specify: the max-
imum length of the grass on the football field; an area of at
least 3 m around the playing field must be obstacle free for the
safety of the players; the minimum and the maximum allowed
width of the playing field; rules relating to the luminosity of
the football field; and that every part of the field should be lit.
All these rules can be found in the FIFA manual [1].

Figure 1: Football field with mowed pattern.

A pattern is mowed in the football field [2] as shown
in Figure 1 to make the field aesthetically pleasing [3] for
the audience sitting in the stadium or watching on television
screens. Mowing the pattern is not a requirement of the FIFA
standards, however, the standards do define the maximum
height of the grass on the field. It is the responsibility of the
ground manager to prepare the football field before the start
of a match. On the orders of the ground manager, the grass
is mowed and during the mowing simultaneously a pattern is
mowed in the field. This practice is traditionally followed in
all stadiums around the world. Mowing the pattern does not
require any special or additional equipment. The pattern can
be easily mowed by folding the grass one way or another,
which in turn depends on the direction of the mowing vehicle
(either top to bottom or bottom to top).

To comply with the FIFA defined regulations and guidelines
requires the employment of a large human workforce. This
increases the cost of maintaining the ground significantly.
A human driven combustion engine grass mowing vehicle

44Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 51 / 58

weighs [4] around 530 kg to 835 kg. This weight can destroy
the grass; therefore, it is desirable that the weight of the vehicle
be reduced. When the mowing vehicle is driven by a human,
the additional weight of the human makes this even worse.
This can be remedied by utilizing an automatic mowing robot.
This results in avoiding the additional weight of the human
driver and the combustion engine.

An autonomous mowing robot has been proposed to reduce
the cost of maintaining the football field according to FIFA
rules and regulations while simultaneously reducing the weight
of the vehicle. The idea is to upload the pre-optimized path in
the vehicle’s on-board memory, which allows the autonomous
mower to mow the field in the minimum time. This paper
presents a novel approach for calculating the optimal mowing
path for the autonomous mowing vehicle using integer pro-
gramming. The contribution of this paper is the creation of an
integer programming model for searching the optimal mowing
path with respect to mowing time and additionally fulfilling
dependency constraints.

The mowing problem is casted as discrete optimization
problem, where the football field is to be mowed according to
the given pattern in the minimum amount of time. Optimizing
the mowing path of the football field is similar to a ”Trav-
eling Salesman Problem (TSP)” [5] and a ”Lawn mowing &
milling” problem [6]. TSP has been one of the classical and
extensively studied problems in discrete optimization. In a TSP
problem, a number of cities have to be visited by a salesman
starting from a specific city and returning to the starting city
covering minimum distance [7]. Many different approaches
have been proposed for solving TSP which includes meta-
heuristic approaches, for example, genetic algorithms [8],
evolutionary algorithms [9][10], tabu search [11], simulated
annealing [12][13], ant colony optimization [14] and integer
programming [15][16]. Bektas [5] has given an overview of
different integer programming formulations for TSP.

In a lawn mowing & milling problem, a given region must
be mowed using a specified mowing blade shape. The region
must be mowed with respect to some defined minimization
criteria [6]. Generally, the turn cost is minimized [17] which
implies that the region should be mowed in minimum number
of 90◦ turns. This kind of problem arises in various domains
of our daily life, such as spray painting, geographic surveys,
engravings, and drones sweeping regions [6][18]. The lawn
mowing and milling problems is in general NP-hard [19].
Arkin et al. [6] has proposed a solution for the lawn mowing
problem by dividing the mowing region into a set of connected
polygons and then using geometric TSP approach to find
the feasible solution. Arkin et al. [17] proposes to use the
geometric TSP approach together with minimizing the turn
cost to find feasible solution. Fekete et al. [18] extends upon
the work of Arkin et al. [6][17] to computes a minimum-
turn cycle cover for a given region using integer programming
based approximate solution.

The problem addressed in this paper is based on earlier
work of the authors on a different problem [16]. The domain
of the problems addressed in this paper is completely different

from the one addressed in [16]. A major contribution of this
paper is in formulating a lawn mowing milling problem into
a dependency based workflow problem. The requirement to
mow a pattern allowed to use the dependency based integer
programming formulation of [16]. Furthermore, the natural
constraints between the lanes had been transformed into a de-
pendency based constraints. This allowed to use the structure
and formulation of the dependency based workflows. The basic
structure of the problem addressed in this paper is TSP with
dependencies that should be obeyed, however, there are no
multiple TSP as solved by Majeed et al. [16]. The problem
addressed in this paper is also related to the general mowing
problem with additional constraints and dependencies. Instead
of minimizing the turn cost as normally used in the mowing
problem, the objective function minimized in this paper is the
total mowing time as given by 1. A similar strategy to the one
proposed in this paper has been suggested by Arkin et al. [6]
but the rectangular lane structure arises naturally from within
the problem itself due to the pattern that should be mowed in
the field.

The requirement to optimize the mowing time generates
from the autonomous robot manufacturing industry. Further-
more, from the mathematical perspective, it is also important
that the mowing time is optimized. If the model optimizes
the number of turns then there is no constraint that restricts
the mower taking a lane 10- or 20-lanes away instead of
taking a lane which is 2-lanes away. The turn cost will be
the same for both if either a faraway lane or a lane closer was
chosen. The mowing time will be vastly different for the both
aforementioned cases. As there are equal number of top- and
bottom-entering lanes or at maximum can differ by one lane,
minimizing the turn cost is not relevant. As the autonomous
mowing robot will generally be battery powered, therefore, it
is also relevant that the mowing time is optimized.

The paper is organized as follows: Section II provides
details of the mowing planning software that generates and
provides the input data for the optimization model. Section III
provides the details on the mathematical formulation and
the optimization model. The settings and the results of our
evaluation are presented in Section IV and, finally, Section V
provides conclusion and the possibilities on extending the
model to solve a larger class of optimization problems.

II. FOOTBALL FIELD PLANNING SOFTWARE

Optimizing a mowing track requires the knowledge of
the relevant environment. Captured in a manner accessible
for optimization algorithms, a model representing the area
containing information about the surface of the ground, the
dimension of the football field, as well as additional navigation
areas or obstacles is required. The planning software models
the football field and identifies the location and size of the
obstacles that must be avoided by the autonomous mowing
robot. It further captures information on the mowing lanes, the
pattern to be mowed in the football field, the time required to
mow a lane and the time required to transition between the
lanes.

45Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 52 / 58

Figure 2: The figure shows a football field pattern with an
equal number of top and bottom-entering lanes.

With regard to the calculation of a mowing track containing
coordinates for the navigation in a second order space, the
model is mapped in a two dimensional vector space containing
multiple polygons assigned to one of the distinguished naviga-
tion and mowing areas, respectively: pitch (mowing area with
pattern restriction), as can be seen in Figure 1 created using
the developed software. As input for the model serve the real
measured distances and properties of surfaces and objects.

The variation of patterns for the football field ranges from
simple lanes in vertical or horizontal orientation to a mixture
of vertical and horizontal lanes to complex graphics and logos.
However, since our mowers are equipped with spindle blades,
our work focuses on patterns based on combinations of straight
lanes because of the mower’s limited radial mowing ability.
The football field will be sub-divided into mowing lanes whose
width must not exceed the width of the mower cutting blade.
The mowing lanes serves as the smallest unit that must be
mowed and the order of the lanes mowed is to be determined
by the optimizer. The football field setting and pattern to be
mowed are captured by the developed software. The software
then computes the mowing lanes. The width of the mowing
spindle is 0.85 m, to ensure that the grass at the edge of
the mowing spindle is properly cut, the mowing lanes are
overlapping with a width of 10 cm. Using this information, the
software divides the football field into a series of mowing lanes
and saves the information on which lanes can be entered from
the top and which should be entered from the bottom to get the
desired pattern. The direction of the mowing is important, that
is, either top-to-bottom or bottom-to-top because this produces
the light and the dark shades in the grass. The direction of the
mowing makes the grass fall one way or the other, which
results in grass exhibiting the light or the dark shade.

It should be observed that the pattern mowed in the field
is an opposite reflection (not mirroring) across the center
line of the football field, therefore, the total number of top-
entering lanes is equal to the total number of bottom-entering
lanes. This is an important observation which is used in
the construction of the optimization model. The optimization

model works for an equal number of top- and bottom-entering
lanes. The optimization model can also optimize a model
with a maximum difference of one lane between the top-
and bottom-entering lanes with a minor restriction that can be
handled in the planning software as will be explained below.

The modeled environment and the applied pattern in the
software results in two matrices called transition matrix E and
lane dependency matrix D containing the input information
for the optimization. The details of the two matrices are
illustrated using the basic example shown in Figure 2, where
vertical mowing lanes are considered. The mowing lanes are
the smallest unit that can be mowed by a mower and the task
of the optimizer is to decide the order in which the mowing
lanes are to be mowed. The direction of the arrows defines the
mowing direction. The mower is only allowed to enter a lane
in the direction of the arrow.

For the purpose of the mathematical modeling each mowing
lane is defined by two end points, Top-Point (TP) and Bottom-
Point (BP) so named as they appear in the figure because
of vertical mowing lanes. To get the desired pattern, some
mowing lanes can only be entered from the top (shown in
Figure 2 by down pointing arrows in lanes 1, 2 and 3) while
other mowing lanes can only be entered from the bottom
(shown in Figure 2 by up pointing arrows in lanes 10, 11 and
12). The pattern is correctly mowed in the field if the mower
moves from point 1 to point 7 with blade down. This will fold
the grass in the correct direction while the opposite pattern can
be correctly mowed in lane if the mower moves from point 10
to point 4. The same applies to the remaining mowing lanes.
There are two additional special points called Start-Point S
and Terminal-Point T . S is denoted by numerical index 0
while T is denoted by numerical index given by the equation
T = 2N + 1. In the example under consideration N = 6,
therefore, T = 13 as can be seen in Figure 2. Generally, the
notations S and T are used instead of their numerical index
in this paper. The TP of each lane are numbered from 1 to
N , while the BP of each lane are numbered from N + 1 to
2N . For the example under consideration the TP are numbered
from 1 to 6 while the BP are numbered from 7 to 12 as shown
in Figure 2. Let n be the total number of points in the model
where n = 2N + 2.

A transition cost matrix E, E ∈ Rn×n defines all possible
transitions from a top and bottom point of a mowing lane to
all other points as shown in Table I. The matrix E is the cost
matrix for the transition of the mower between different lane
points. The time required to move from one point to another
point is used as the cost. The travel time between two points
depend on the velocity, turn angle and acceleration. Matrix
E matrix can be divided into four sections as can be seen in
Table I. Each section of the E defines a different possibility.

In the example shown in Figure 2 and Table I, suppose that
the grounds manager chose the first lane to be the starting
point of the mowing. This is reflected by eS,1 = 1 in Table I.
This tells the optimizer that the transition from S to lane-1
costs 1 unit while the rest of the entries in row S are all ∞
cost. All other transitions from S to any other lane have an

46Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 53 / 58

Table I: MATRIX E, COST MATRIX PROVIDING MOWER TRANSITION TIME (MILLI-SECONDS) BETWEEN LANES.

S 1 2 3 4 5 6 7 8 9 10 11 12 T

S ∞ 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 ∞ ∞ 166 333 499 642 784 1000 ∞ ∞ ∞ ∞ ∞ ∞
2 ∞ 166 ∞ 166 333 475 618 ∞ 1000 ∞ ∞ ∞ ∞ ∞
3 ∞ 333 166 ∞ 166 309 451 ∞ ∞ 1000 ∞ ∞ ∞ ∞
4 ∞ 499 333 166 ∞ 142 284 ∞ ∞ ∞ 500 ∞ ∞ 1
5 ∞ 642 475 309 142 ∞ 142 ∞ ∞ ∞ ∞ 500 ∞ 1
6 ∞ 784 618 451 284 142 ∞ ∞ ∞ ∞ ∞ ∞ 500 1
7 ∞ 500 ∞ ∞ ∞ ∞ ∞ ∞ 166 333 499 642 784 1
8 ∞ ∞ 500 ∞ ∞ ∞ ∞ 166 ∞ 166 333 475 618 1
9 ∞ ∞ ∞ 500 ∞ ∞ ∞ 333 166 ∞ 166 309 451 1
10 ∞ ∞ ∞ ∞ 1000 ∞ ∞ 499 333 166 ∞ 142 284 ∞
11 ∞ ∞ ∞ ∞ ∞ 1000 ∞ 642 475 309 142 ∞ 142 ∞
12 ∞ ∞ ∞ ∞ ∞ ∞ 1000 784 618 451 284 142 ∞ ∞
T ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Figure 3: The figure shows an odd number of lanes with an
unequal number of top entering lanes and bottom entering
lanes. This example shows four top entering lanes and three
bottom entering lanes.

infinite cost. The transition cost defined by ei,j is read as the
cost of the mower’s transition from point-i to point-j. Defining
an infinite cost for something has the effect of defining a hard
constraint and disallowing such transitions. In the example
under consideration the mower is allowed to move only from
S to lane-1. This is not a restriction of the model. The model
itself allows any of the lanes to be chosen or the optimizer can
select any one of the lanes if the infinite cost is replaced by 1
for row S. The cost used in matrix E reflects the real-world
domain knowledge extracted from the domain expert.

From the perspective of the optimization model any of the
lanes can be chosen to be the starting lane in cases where
the top entering lanes are equal to the bottom entering lanes.
However, in cases where the top and bottom entering lanes
differ by 1, that is, either there are 4 top entering lanes and
3 bottom entering lanes (see Figure 3) or 3 top entering lanes
and 4 bottom entering lanes (see Figure 4), in such cases the
model defines the starting point to be on the side with more
lanes as shown in the corresponding figures. If there are 4 top
entering lanes and 3 bottom entering lanes, the starting point
S must be located on top which has one more lane than the
other side. Similarly, if there are 4 bottom entering lanes and 3

Figure 4: The figure shows an odd number of lanes with an
unequal number of top entering lanes and bottom entering
lanes. This example shows three top entering lanes and four
bottom entering lanes.

top entering lanes then the starting point S must be located at
the bottom. Our model has no need to be able to handle lane
difference of 2 or more lanes and hence, we omit a discussion
of such a requirement.

Once the mower has left S, it is forbidden to go back to
S, therefore, the column S is filled with ∞ cost. It is also
forbidden to go back to the point itself, that is, it makes no
sense physically to allow the mower to go from point 1 to point
1 itself, therefore, all the self-points are tagged with ∞ cost
on the diagonal. Once the mower reaches T , it is not allowed
to move to any other point, therefore, row T is assigned ∞
cost.

If a mower is at point 1, there are two possibilities to
transition. The first possibility is that the mower can either
transition to another top-point (which could be any of the
points 2, 3, 4, 5, and 6) since point 1 itself is a top-point and
the second possibility is that it can transition to the bottom-
point of its lane which in this case is point 7. The transition
time to another top-point can be computed reliably using the
mower speed and acceleration equations. The transition time
from 1 to 7 can also be reliably computed using the same set
of equations. It should be noted that transition time from point

47Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 54 / 58

1 to point 7 is mowing the lane in the direction of the pattern.
Transitioning from top-point 1 to any other bottom-point other
than 7 (|t±N |) is disallowed by the model with infinite cost in
row 1 of the Table I. Transitioning from a top point to a bottom
point is depicted in the top-right section of the Table I. The
same is repeated for top-points 2, 3, 4, 5 and 6 which fills the
top left section of the Table I. As the mower is moving from
point 1 to point 7 in the direction of the pattern, therefore, it
will be moving with its blade down. When the blade is down
the grass is mowed and simultaneously the pattern is mowed
in the grass. When the blade is down the speed of the mower
reduces by half compared to moving with blade up. This can
be seen in the table with the cost e1,7 = 1000 compared to
e4,10 = 500.

From top-point 4 the mower can transition to top points 1,
2, 3, 5, 6 or it can move in the direction of the bottom-point
10 with mowing blade up. The direction of the mowing for
the lane 4-10 is from point 10 to point 4 (as suggested by
the arrow from 10 to 4 in Figure 2), therefore, if the mower
moves from point 4 to point 10 the mower is moving in the
opposite direction of the desired pattern. If the mowing blade
is up, a mower can move through a lane without disturbing the
underlying pattern. When the mower moves in the direction
opposite to the pattern then it does so by having the mowing
blade up, which will leave the pattern unchanged on the ground
and allows the mower to move at twice the speed.

Transitions between the bottom points 7, 8, 9, 10, 11 and
12 fills up the bottom right section of the Table I while the
transition from the bottom point to a top point fills up the
bottom left section of the Table I. This is how the whole
cost matrix E is constructed. The mowing terminates when
the mower reaches the terminal point T . The mower will
only move to the terminal point when all the lanes have been
mowed as shown below when the constraints are presented.
The terminal point can only be reached from bottom-points
7, 8, 9 and top-points 4, 5, 6. This is shown in the E matrix
by assigning 1 to the specific entries of column T, while all
other entries have been assigned ∞ cost. Allowing the mower
to move from a specific set of points to terminal points has
been derived from domain knowledge.

The dependency matrix D contains the dependency infor-
mation between end points of the mowing lanes. A Boolean
value serves the information if a start or an end point depends
on another, which means that the mower must pass a point
before or after the other. As the dependency information is
given at the mowing line end point level, it also contains the
information about the mowing direction for the desired pattern.

The optimizer returns a sequence of line start and end points
defining a track in an abstract manner. This information needs
to be added to the autonomous mowing robot so that it can
follow the optimized path. For navigation and for a proper
execution of the mowing task by the autonomous mower,
the optimized track information needs to be enriched with
application related information. The abstract track information
(in the form of track end points) is transformed into a series
of track points by a software developed by the authors. These

track points are 0.04 m apart and are enriched by additional
information that maps every track point to the two-dimensional
mowing area in the field and adds orientation, speed, and
blade information to each track point. The distance from an
end point of a track segment to the next is between zero
and the preset distance. There are some adjustments that need
to be made while computing the track points because of the
obstacles that are outside the playing field and 3 m obstacle
free area around the playing field. The obstacles are initially
not considered while computing the optimized mowing path.
However, it is not difficult to add the obstacle information to
the optimized model. Currently, the time to transition from
one lane to another lane is assumed to be obstacle free. This
obstacle free transition time is added to the cost matrix E.
Replacing the obstacle free transition time with the one that
considers the obstacle will enrich the model that considers the
obstacles as well.

III. THE INTEGER PROGRAMMING MODEL

Our football field mowing problem consists of a set of lanes
J = {j11,7, j22,8, . . . , jNu,vu := {1 . . . N}}; v := u +N with N
lanes. Each lane has two end-points given by the subscripts
ju,v . Let D be a binary 2D matrix of mowing lanes which
represents the dependencies between the lanes. If a mowing
lane ju,v which is a bottom entering lane must be mowed
before ju′ ,v′ which is a top entering lane. As ju,v is a bottom
entering lane then point v must be mowed before u and
similarly if ju′ ,v′ is a top entering lane then u

′
must be mowed

before v
′
. The set of dependencies that must be encoded are

u ⊥⊥ v, v
′ ⊥⊥ u

′
, v

′ ⊥⊥ v and u
′ ⊥⊥ u. The symbol a ⊥⊥ b is

read as a depends on b. The encoded dependencies are read
as; u ⊥⊥ v states that u must be mowed before v, v

′ ⊥⊥ u
′

states that v
′

must be mowed before u
′
, v

′ ⊥⊥ v states that v
′

must be mowed before v and u
′ ⊥⊥ u states that u

′
must be

mowed before u.
The dependencies listed in the last paragraph are encoded in

the dependency matrix given by Table II and its corresponding
Figure 2. Figure 2, shows that lane j33,9 is a top entering lane
while the lane j44,10 is bottom entering lane. The information
of which lanes are top entering lanes and which lanes are
bottom entering lane is also encoded in the dependency matrix
D. In D, the entry D (4, 10) = 1 which specifies that 4 ⊥⊥ 10
which basically states that the 10 must be mowed before 4
thus lane j44,10 is a bottom entering lane. Similarly, the entry
D (9, 3) = 1 which specifies that 9 ⊥⊥ 3, therefore, 3 must
be mowed before 9 thus lane j33,9 is a top entering lane. To
encode the dependency between the opposite direction lanes
D (10, 9) = 1 which means 10 ⊥⊥ 9, therefore, 9 must be
mowed before 10 and D (4, 3) = 1 which means 4 ⊥⊥ 3, that
is, 3 must be mowed before 4. All these dependencies ensure
that lane j33,9 is mowed before lane j44,10. The zero entries
in D specifies independence relationship between the lane
points. The optimizer is free to choose in which order these
lane points are mowed. The underlying dependency graph is a
directed acyclic graph which ensures that there are no circular
dependencies. These direct dependencies between the lanes are

48Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 55 / 58

Table II: MATRIX D

S 1 2 3 4 5 6 7 8 9 10 11 12 T

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 0 0 1 0 0 0 0 0 0 1 0 0 0
5 1 0 0 0 0 0 0 0 0 0 0 1 0 0
6 1 0 0 0 0 0 0 0 0 0 0 0 1 0
7 1 1 0 0 0 0 0 0 0 0 0 0 0 0
8 1 0 1 0 0 0 0 0 0 0 0 0 0 0
9 1 0 0 1 0 0 0 0 0 0 0 0 0 0

10 1 0 0 0 0 0 0 0 0 1 0 0 0 0
11 1 0 0 0 0 0 0 0 0 0 0 0 0 0
12 1 0 0 0 0 0 0 0 0 0 0 0 0 0
T 1 1 1 1 1 1 1 1 1 1 1 1 1 0

generally found between the mowing lanes where the pattern
changes from light to dark or dark to light. The input data
D & E matrices for the optimizer are obtained from the plan-
ning software as explained in Section II. Let dij ∈ d be the set
of binary decision variables dij = {0, 1} ∀i, j = 0, . . . , n−1.
dij is 1 if the mower takes the route from i to j and 0 if it
does not take this route.

Objective: min Obj =

n−1∑
i=0

n−1∑
j=0

dij ∗ eij . (1)

The following assumptions are made: the transition time
between lanes is known and fix; all the dependencies between
the lanes are known before the start of the optimization. To
make the integer programming formulation easier, dummy
nodes S and T are added which serve as the start and the end
of the mowing route (see Figure 2). If a route dij is written as
dSj then this denotes a route from start point S to any point
j and a route diT denotes a route form any point i to terminal
point T . All lanes must be visited, and they should be visited
only exactly once.

To create the optimized mowing path, a mathematical model
must be constructed with an objective function that defines a
cost in terms of some measure (for example, time, money,
distance etc.), which is minimized to obtain the optimal
solution. The objective function Obj given by 1 can be defined
for minimizing the travel time dij ∗ eij which in turn is
equivalent to minimizing mowing time of the football field.
In the formulation presented, the mower is not allowed to go
back in the lane. In addition to optimizing the mowing time,
the model also considers the dependencies of the pattern and if
there are lanes that must be mowed before other lanes. Figure 1
shows an example of a mowed pattern in a field. The pattern
lanes are generally 5m in width. They are further broken down
into mowing lanes by the planning software which results in
a pattern similar to the one shown in Figure 5.

n−1∑
j=1

dSj = 1 (2)

n−1∑
i=0

diT = 1 (3)

The first constraint given by 2 states that the mower should
move from the start point to the first lane to be mowed.
This equation shows that the mower is allowed to move
from starting-point S to any of the mowing lane points.
Corresponding 2, the mower should move to the Terminal-
Point T at the end when all the lanes have been mowed
as given by 3. The next set of constraints deal with either
mowing the lane and then transitioning to another lane or
transition from another lane and then mowing the lane. Two
sets of equations are presented for each of the top-points (see
equations 4 & 5) and then for the bottom-points (see equations
6 & 7).

dj+N,j −
(

N∑
i=1

dj,i

)
= 0 ∀j = 1 . . . N (4)(

N∑
i=0

di,j

)
− dj,j+N = 0 ∀j = 1 . . . N (5)

dj−N,j −

 n−1∑
i=N+1

dj,i

 = 0 ∀j = N + 1 . . . 2N (6)

dS,j +

 2N∑
i=N+1

di,j

− dj,j−N = 0 ∀j = N + 1 . . . 2N (7)

The next set of constraint are sub-tour elimination con-
straints [5]. The sub-tour constraints given by 8 are the same
as suggested by Miller et al. [15].

ui−1 − uj−1 + (n− 1)× di,j < n− 2 (8)

The dependency constraints given by the dependency matrix
D are added to ensure that the mower mows the left lane
before the right lane. This information is encoded in the
dependency matrix D given by Table II which is added in
the optimization model in the form of dependency constraints
given by 9. Equation 9 ensures that the lanes are mowed
in an order that satisfies the dependency matrix D. This
constraint is called precedence constraint and is used in job-
shop scheduling optimization community [16][20][21]. To
decrease the search space and find an optimal solution as
early as possible some heuristics were employed. The classical
TSP assumes that the salesman can visit any site in any
order. However, for the given problem the ∞ cost is assigned

49Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 56 / 58

(see Table I) to unreasonable and unrealistic possibilities and
possibilities that are disallowed due to model constraints. The
corresponding decision variable di,j to the ∞ cost are set to
0 during variable creation.

uj−1 − ui−1 < 0 (9)

(a) 96-mowing lane filed.

(b) Optimized pattern.

Figure 5: Optimization result.

IV. RESULTS

Gurobi 8.0 [22] was used as the optimizer to find the
optimal solution for the presented model. Java 8 was used
as the programming language and it was tested on an Intel(R)
Core(TM) i7-5600U CPU 4-Core 2.60 GHz and 8GB RAM
running Windows 10 Enterprise 64-bit. The model was tested
on different datasets created using our planning software. The
results are presented in Table III. Table III shows the number
of lanes (Lanes), solution optimality (Status), objective value
(Obj), the gap between the upper and lower bound (Gap), and
the run time (Time) of the solver until the optimal solution
was found. The solver was able to prove the optimality of the
found solution within seconds which shows that the model
is computationally efficient. For common cases where the
football field is 120 m in length and 60 m in width with
a mower blade width of 0.85 m there were 160 lanes, and
the model was able to optimize the path of mowing the field
within seconds. If, however, the size of the model increases,
for example, if the width of the mowing blade is reduced to
0.4 m then the number of lanes doubles and the computational
time increases.

Table III: RESULT WITH DIFFERENT NUMBER OF
LANES.

Lanes Status Obj Gap(%) Time(sec)
16 Optimal 41474 0.0 00.13
40 Optimal 231185 0.0 00.49
68 Optimal 539995 0.0 01.22
96 Optimal 2113341 0.0 00.43
146 Optimal 5166207 0.0 15.43
192 Optimal 6761169 0.0 30.56

V. CONCLUSION AND FUTURE WORK

An optimization model for optimizing the path of an au-
tonomous football field mowing robot has been presented in
this paper. Our model enables such a robot to mow a pattern
in a football field to make it aesthetically pleasing for the
audience in the stadium and watching on television screens
while reducing maintenance cost. The autonomous mowing
robot follows the optimized path to create the desired pattern
and mow the grass in minimal time.

Mowing the pattern increases the complexity of the problem
and makes it different from lawn mowing robots where the
purpose is to just mow the grass minimizing some cost
function, such as minimizing the number of turns. The input
data (E & D matrices) for the optimization model is created
by our football field planning software. Mowing the field
according to a pattern is what makes the problem challenging
as the robot can only enter either from the top or bottom
for each lane. This makes the transition between the lanes
important as the mower is allowed to go over the lanes exactly
once. An integer programming model has been presented that
optimizes the path of the mowing robot with respect to time
and the given pattern. The results of our evaluation show that
the proposed model is efficient as it can compute an optimal
solution within a few seconds.

The presented model can optimize models where the top
entering lanes and bottom entering lanes differ by one. The
proposed model assumes that there are no circular dependen-
cies. In future work we aim to relax the restriction on the
model and cover situations where the difference between the
top and bottom entering lanes is more than one.

ACKNOWLEDGMENT

The authors would like to thank Innosuisse – The Swiss
Innovation Agency for funding this work in part.

REFERENCES

[1] FIFA, “Football Stadiums Technical Recommendations
and Requirements,” tech. rep., FIFA, 2011. Avail-
able at https://digitalhub.fifa.com/m/6c66fa18f65c0a78/
original/rcrtvaelvfae84czze1w-pdf.pdf retrieved: Septem-
ber, 2021.

[2] “Warum hat der Rasen Streifen? (English: Why does the
lawn have stripes?).” Online. Available at https://www.
dfb.de/news/detail/warum-hat-der-rasen-streifen-70569/
retrieved: September, 2021.

[3] F. Tietjen, “So erhält der Stadionrasen sein
Muster. (English: This is how the stadium turf

50Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

 57 / 58

gets its pattern.).” Online, 2015. Available at
https://www.netzathleten.de/lifestyle/sports-inside/
item/5737-so-=rhaelt-der-stadionrasen-sein-muster
retrieved: September, 2021.

[4] “Commercial ZTrak Zero-Turn Mower.” Online, 2019.
Available at https://www.deere.com/assets/publications/
index.html?id=917cd17c#6 retrieved: September, 2021.

[5] T. Bektas, “The Multiple Traveling Salesman Problem:
An Overview of Formulations and Solution Procedures,”
Omega, vol. 34, no. 3, pp. 209–219, 2006.

[6] E. M. Arkin, S. P. Fekete, and J. S. Mitchell, “Ap-
proximation Algorithms for Lawn Mowing and Milling,”
Computational Geometry, vol. 17, no. 1, pp. 25–50,
2000.

[7] I. Kara and T. Derya, “Formulations for Minimizing Tour
Duration of the Traveling Salesman Problem with Time
Windows,” in Procedia Economics and Finance, vol. 26,
pp. 1026–1034, 2015.

[8] S. Akter, N. Nahar, M. ShahadatHossain, and K. Anders-
son, “A new crossover technique to improve genetic algo-
rithm and its application to TSP,” in 2019 International
Conference on Electrical, Computer and Communication
Engineering (ECCE), pp. 1–6, February 2019.

[9] Y.-F. Liao, D.-H. Yau, and C.-L. Chen, “Evolutionary
algorithm to traveling salesman problems,” Computers
& Mathematics with Applications, vol. 64, pp. 788–797,
September 2012.

[10] X. Wang and G. Xu, “Hybrid differential evolution
algorithm for traveling salesman problem,” Procedia En-
gineering, vol. 15, pp. 2716–2720, 2011.

[11] V. Karamcheti and M. Malek, “A TSP engine for per-
forming tabu search,” in Proceedings of the International
Conference on Application Specific Array Processors,
pp. 309–321, IEEE Comput. Soc. Press, 1991.

[12] Y. Liu, S. Xiong, and H. Liu, “Hybrid simulated an-
nealing algorithm based on adaptive cooling schedule for
TSP,” in Proceedings of the first ACM/SIGEVO Summit
on Genetic and Evolutionary Computation - GEC '09,
pp. 895–898, 2009.

[13] X. Geng, Z. Chen, W. Yang, D. Shi, and K. Zhao, “Solv-
ing the traveling salesman problem based on an adaptive
simulated annealing algorithm with greedy search,” Ap-
plied Soft Computing, vol. 11, pp. 3680–3689, June 2011.

[14] A. Shetty, A. Shetty, K. S. Puthusseri, and R. Shankara-
mani, “An Improved Ant Colony optimization Algo-
rithm: Minion Ant(MAnt) and its Application on TSP,”
in 2018 IEEE Symposium Series on Computational In-
telligence (SSCI), pp. 1219–1225, November 2018.

[15] C. E. Miller, A. W. Tucker, and R. A. Zemlin, “Integer
Programming Formulation of Traveling Salesman Prob-
lems,” Journal of the ACM, vol. 7, no. 4, pp. 326–329,
1960.

[16] T. Majeed, M. Handschuh, and R. Meier, “Automatic
Scheduling of Dependency-Based Workflows,” in Dis-
tributed Computing and Artificial Intelligence, 14th Inter-
national Conference, pp. 309–317, Springer International

Publishing, June 2017.
[17] E. M. Arkin, M. A. Bender, E. D. Demaine, S. P. Fekete,

J. S. B. Mitchell, and S. Sethia, “Optimal Covering Tours
with Turn Costs,” SIAM Journal on Computing, vol. 35,
pp. 531–566, January 2005.

[18] S. P. Fekete and D. Krupke, “Covering Tours and Cycle
Covers with Turn Costs: Hardness and Approximation,”
in Lecture Notes in Computer Science, pp. 224–236,
Springer International Publishing, 2019.

[19] E. M. Arkin, S. P. Fekete, and J. S. B. Mitchell, “The
Lawnmower Problem,” in Proceedings of the 5th Cana-
dian Conference on Computational Geometry, Waterloo,
Ontario, Canada, August 1993, pp. 461–466, University
of Waterloo, 1993.

[20] J.-S. Chen and J.-S. Yan, “Model Formulations for the
Machine Scheduling Problem with Limited Waiting Time
Constraints,” Journal of Information & Optimization Sci-
ences, vol. 27, no. 1, pp. 225–240, 2006.

[21] D. P. Ronconi and E. G. Birgin, “Mixed-integer pro-
gramming models for flowshop scheduling problems
minimizing the total earliness and tardiness,” in Just-in-
Time Systems, pp. 91–105, Springer New York, October
2011.

[22] I. Gurobi Optimization, “Gurobi Optimizer Reference
Manual,” 2017. Available at https://www.gurobi.com/
documentation/9.1/refman/index.html retrieved: Septem-
ber, 2021.

51Copyright (c) IARIA, 2021. ISBN: 978-1-61208-887-7

ADVCOMP 2021 : The Fifteenth International Conference on Advanced Engineering Computing and Applications in Sciences

Powered by TCPDF (www.tcpdf.org)

 58 / 58

http://www.tcpdf.org

