
1

A Pitfall with BPMN Execution

Christian Gutschier, Ralph Hoch, Hermann Kaindl, Roman Popp
Institute of Computer Technology, Vienna University of Technology

Gusshausstrasse 27-29, 1040 Vienna, Austria
{gutschier, hoch, kaindl, popp}@ict.tuwien.ac.at

Abstract—With its release 2.0, the language Business Process
Model and Notation (BPMN) is supposed to be directly executable,
without prior translation to another language such as Business
Process Execution Language (BPEL). In fact, the XML definition
of BPMN 2.0 allows for specifying executable models, by extend-
ing the graphical notation in this respect. However, we found a
pitfall related to the number of parameters of Service Tasks. Even
for very simple models, it is hard to make them fully compliant to
the BPMN 2.0 standard. We propose a solution for circumventing
this problem using wrappers. It leads, however, to dependencies
on specific execution engines. While this problem may seem to be
minor, it has certain wide-reaching consequences. In particular,
it means that BPMN 2.0 cannot be used, in general, as a service
orchestration language like BPEL.

Keywords-BPMN, Service Task, Web Service

I. INTRODUCTION

Business Process Model and Notation (BPMN) is orig-
inally a graphical language for visually defining business
processes. [1] Its latest version 2.0 contains enhancements to
the graphical notation, a metamodel, and XML specifications
for making such models executable, when properly connected
with Web services or Java code. More precisely, not every
BPMN 2.0 is executable, but BPMN 2.0 allows specifying
executable models.

We investigated how such models can actually be specified
graphically with corresponding modeler tools, enhanced by
(partly manually) provided XML specifications. In this course,
we learned how to really execute such models, but we also
found a specific pitfall. In fact, there is an explicit constraint
— the BPMN 2.0 standard does not allow more than one input
set and a single Data Input per Service Task. This restriction
may seem small and unimportant at a first glance, but is has
wide-reaching consequences.

As a running example, we use a very simple business pro-
cess for a small company, including the tasks Create Invoice,
and Send Invoice, of course in the given order. For each of
these tasks we assume implementations as Web services for
execution of this business process. The Invoice consists of two
attributes — an address and an amount.

Using this simple example process, we illustrate the pitfall
indicated above. We also try to remedy this problem with a few
approaches based on wrappers. While they allow specifying
models that are compliant to the BPMN 2.0 standard, their
precise implementations are tool-specific. So, we also discuss
a few execution frameworks in this regard.

The remainder of this paper is organized in the following
manner. First, we present some background material in order to

make this paper self-contained, and discuss related work. Then
we elaborate on model definition and execution with BPMN
2.0, using our running example. The focus is on the pitfall
that we found and our proposals for its remedy. Finally, we
compare a selection of BPMN execution frameworks in this
regard, and conclude.

II. BACKGROUND AND RELATED WORK

BPMN is a graphical specification language, which provides
symbols to model business processes, workflows and business
activities. The first official BPMN version 1.0 was introduced
and presented by OMGTM (Object Management GroupTM) as a
standard in 2006. Subsequent versions (1.1 and 1.2) provided
only changes to model presentation and small corrections.

So, up to version 1.2, the main focus of the developers
of BPMN was on the graphical representation of business
processes. BPMN diagrams should serve the understandability
of business processes for all parties involved. In particular,
they should be understood both by IT and by business experts.
Directly executing such business models was not possible,
however.

The main approach for executing BPMN models up to
version 1.2 was through their mapping to another language
— Web Service Business Process Execution Language (WS-
BPEL or BPEL, in short) [2], a block-oriented language.
This approach has been discussed in [3], and in [4] an
algorithm can be found for automatic translation of Business
Process Diagram BPD (graph-oriented) components to a block-
structured BPEL process. More precisely, three different ap-
proaches are suggested for this transformation. Well-structured
BPD components can be directly mapped to BPEL structured
activities. Non-well-structured but acyclic BPD components
can be mapped to control link-based BPEL code. All remaining
components can be mapped to event-action-rules. Unfortu-
nately, there are some ambiguities in the specification of BPEL.
These are discussed in greater detail in [5].

Only the next and current version (2.0) of BPMN [6], which
was fully developed in 2011, brought important changes and
interesting innovations. The most important innovations in
version 2.0 were that the BPMN models could be stored in
a standardized XML-based format, and the introduction of a
metamodel. Based on that, exchange of BPMN 2.0 models
between tools became possible, and direct execution of BPMN
2.0 models. So, mapping to another language for execution
should no longer be needed according to [7], [8].

7Copyright (c) IARIA, 2014. ISBN: 978-1-61208-333-9

WEB 2014 : The Second International Conference on Building and Exploring Web Based Environments

2

Figure 1: Basic BPMN 2.0 Model of Example Process

In addition, BPMN 2.0 allows the use of external specifica-
tions in a model via an import mechanism. Data structures that
follow the XML standard can be used as reference structures.
This is important for an automatic execution of business
processes modeled in BPMN 2.0, since it enables the user
to reference existing service implementations through a Web
Service Description Language (WSDL) [9] file. The Service
Task newly introduced in BPMN 2.0 specifies how WSDL
references can be made and is thus the basis for automatic
service execution.

The specification of WSDL allows interoperability between
client applications and Web Services. To call operations of
a Web Service, Simple Object Access Protocol (SOAP) [10]
messages are exchanged between the participating actors.
These messages are standardized as well and build a bridge
between applications of different programming languages.

However, since the development in the Web Service area
is so rapid and different requirements for Web Services can
emerge, there are some varieties that the standard specifications
of WSDL and SOAP permit. For example the structure of a
WSDL file can be different depending on the SOAP binding
style used. There are two different styles that are commonly
used: RPC and document. The difference is how the messages
that are passed between two actors are constructed. The RPC
style is closely related to a normal method call in a program-
ming language and involves a tighter coupling between WSDL
and source code. The document style uses the possibilities of
XML schema specifications to specify parameters and thus
involves a looser coupling between services and source code.
Furthermore, there are different ways to encode the messages,
namely literal and encoded. All these differences influence
the structure of the WSDL file as well as the format of the
messages to be exchanged (SOAP). From all these possible
combinations, only the document literal wrapped and RPC lit-
eral style are WS-I compliant (Web Service – Interoperability,
an approach to further harmonize Web Service specifications).
Since this is not the main focus of this paper, we refer the
reader to [11], [12] for more detailed descriptions.

Since client applications require a Web service stub that
handles the connection to the service implementation, these
stubs have to be generated or created according to the WSDL
specification of the Web service. There are several frameworks
available that allow automatic generation of a client stub from a
WSDL specification during runtime. These stubs are then used

to create service calls and hide the marshalling of objects and
messages that are exchanged between client and server. A call
to a Web service then acts like a local call of a procedure.

Pillat et al. [13] discuss an extension of BPMN to help
the user during the Software Development Process through
the already available extensibility class defined in the BPMN
2.0 standard. However, the main problem addressed in our
approach is not considered there.

III. BPMN 2.0 MODEL DEFINITION AND EXECUTION

First, let us specify the simple process from our running
example in BPMN 2.0, as shown in Figure 1. Based on it,
we elaborate on its execution (based on Web services), which
interestingly requires a change in the model. For addressing
a pitfall involved that we found, we propose solutions using
wrappers for parameter handling, in order to be compliant with
the BPMN 2.0 standard.

A. Specification of BPMN 2.0 Process Models
The process of our running example has two tasks involved,

one for the creation of an Invoice entity for two given at-
tributes/inputs (an Amount of money and a recipient Address),
and another one for sending out the created Invoice. These
are simply modeled in Figure 1 as BPMN Tasks, which are
connected with a line showing the control flow through the
arrow head. The symbols for the data are connected with
the Task symbols through dotted lines with arrow heads,
visualizing data associations.

However, the model in Figure 1 does not specify any details
on the implementation of the Tasks. Since BPMN 2.0 strives
for combining views for business as well as technical users,
an automatic execution of such a business process should be
possible, but for this purpose the model needs to be made more
specific. In particular, the general Tasks have to be replaced
with Service Tasks, a specialization dedicated to execution
of services. Since the BPMN 2.0 standard defines operating
with Web services based on a WSDL description, we assume
that both Service Tasks are implemented using common Web
service technology.

The difference in the graphical notation is minor (as illus-
trated in Figure 3) but the implication of this substitution in the
XML notation is rather important. There are several attributes

8Copyright (c) IARIA, 2014. ISBN: 978-1-61208-333-9

WEB 2014 : The Second International Conference on Building and Exploring Web Based Environments

3

Figure 2: Adapted BPMN 2.0 Model of Example Process with Service Tasks

involved with calling Web services. Among other things, there
are an Input Output Specification and associated Data Input
and Data Output Association. This Input Output Specification
defines the parameters for the Web service and may contain
an additional mapping to local variables that are used in the
BPMN process. The actual reference to the Web service is
provided through an additional attribute of the Service Task,
where an operation reference operationRef can be specified.
This specification relates to a WSDL operation and is thus
directly related to the Web service. Data structures can be
imported from WSDL specifications and reused in BPMN.
Together, these specifications allow for an automatic execution
of Service Tasks that reference an existing WSDL specification.

Figure 3: Substitute (General) Task with Service Task

Replacing the Tasks from Figure 1 with Service Tasks leads
to an adapted model shown in Figure 2. This model is anal-
ogous to the one of the basic process shown in Figure 1, but
it represents a business process with embedded service calls.
These service specifications are not shown in the graphical
representation of the process model, but only in the XML
representation that the graphical notation is based on, as
explained above.

So far, everything looks plausible and the process model
more or less straight-forward. However, simply replacing the
Tasks from Figure 1 with Service Tasks actually leads to a
model that is not compliant with the BPMN 2.0 standard.
This very standard imposes an additional constraint on Service
Tasks, i.e., it does not allow more than one input set and a
single Data Input per Service Task. Even this simple process
model, however, has two input parameters for the Service Task
implementing the creation of an Invoice.

The definition of the Service Task can be found in the official
standard, where the following quote describes this only-one-
parameter constraint in detail:

”The Service Task inherits the attributes and model as-
sociations of Activity (see Table 10.3). In addition the

following constraints are introduced when the Service Task
references an Operation: The Service Task has exactly one
inputSet and at most one outputSet. It has a single Data
Input with an ItemDefinition equivalent to the one defined
by the Message referenced by the inMessageRef attribute
of the associated Operation. If the Operation defines output
Messages, the Service Task has a single Data Output that
has an ItemDefinition equivalent to the one defined by the
Message referenced by the outMessageRef attribute of the
associated Operation.” [14, p. 158]

This constraint might be a reaction to Web Service specifica-
tions where the SOAP message only consists of one body part.
However, the Service Task itself should not be involved with
the actual encoding and message passing of a Web Service
and should only deal with the parameters themselves. If the
Service Task is supposed to receive an already fully constructed
message object with all parameters embedded, it would make
it difficult for somebody without technical background to
understand how this service is invoked. Furthermore, the spec-
ification above does not only hinder invoking Web Services but
also simple procedure calls in a programming language, which
BPMN 2.0 is capable of. Since the encoding of parameters to
message objects (in case of WSDL/SOAP) is not at the same
level of abstraction as input parameters of methods/operations,
this should not be mixed up. So, the definition of parameters
of a Service Task should not involve any information about the
actual encoding or how they are transported. This should be
part of the Service Task and its specification (which BPMN
already handles through an import statement and additional
attributes).

In this paper, we simply refer to parameters that are passed
to a method. For example, in the process shown in Figure 1
the Task Create Invoice has two input parameters Amount and
Address that could be passed directly to a method implementa-
tion (for example: public Invoice createInvoice(String amount,
String address)). The actual implementation is hidden from the
BPMN 2.0 diagram and thus should also have no influence on
the parameters themselves.

B. Using a Wrapper for Parameter Handling
The question is, if and how this problem with standard

compliance caused by this constraint can be resolved. Our idea

9Copyright (c) IARIA, 2014. ISBN: 978-1-61208-333-9

WEB 2014 : The Second International Conference on Building and Exploring Web Based Environments

4

Figure 4: Modified BPMN 2.0 Model of Example Process with Additional Wrapper

was to use a wrapper for parameter handling.
There are several possibilities to accomplish this, all of

which involve changes to the BPMN process as well. One
possible solution is to change the WSDL specification of the
Web service so that only one parameter is passed as input.
This would make the service itself compatible with the BPMN
Service Task specification, but would still require additional
mapping techniques in the BPMN process to combine all
inputs into one single input. Furthermore, it puts an uncommon
constraint on the development of Web services, and only
a small subset of available services can be integrated into
business processes modeled in BPMN 2.0.

Figure 4 shows a modified process model for our running
example, which uses a wrapper so that the Service Task does
not directly have more than one input. In our example, a Script
Task is used as the wrapper, because a Script Task can have, in
contrast to a Service Task, more than one input set and more
than one Data Input. The wrapper Script Task is added before
the Service Task, and it receives all the inputs which the Service
Task needs for its operation. The function of the Script Task is
to prepare the inputs for the Service Task in such a way that
they are combined into a single input. In this case, all inputs are
combined into one map. Viewed from a higher level, however,
this modified model is not really appropriate any more for a
business expert, since preparing input for another Task is not
really a business-relevant Task per se.

Figure 5 shows the XML representation of the Script Task
used as a wrapper for the Service Task Create Invoice. Since
both Script Task and Service Task are derived from the more
general Task specification in the BPMN 2.0 metamodel, their
syntax is similar. Both have an Input Output Specification
and associated Data Input and Data Output Association. This
Input Output Specification defines the parameters of the Script
Task which are combined in a map variable. In contrast to a
Service Task, a Script Task is designed for execution of simple
tasks that are usually implemented in a scripting language.
Therefore, it has an attribute scriptFormat instead of the
attribute operationRef. This attribute specifies the language in
which the code is written and which the process engine has to
interpret and execute.

In this example, the language groovy is used as the script
language. Furthermore, the Script Task has another important
attribute called Script, in which the script itself is implemented.

This is the main part of the Script Task and is used during
execution. Figure 5 shows that in this attribute first an object
of type “InvoiceParameterList” is created and stored in a
variable “ParameterList”. The object “InvoiceParameterList”
has two operations — one to add parameters and one to delete
parameters. The behavior is similar to a Java HashMap, and
is required to operate with WSDL specifications, since there
simple or well-defined parameter types are allowed only. The
two inputs of the Script Task are then added to the created
object via the “addParameter” operation. In a last step, the
object is set as the process variable that corresponds to the
Data Output of the Script Task.

The approach described in Figure 5 shows how a complex
object of type InvoiceParameterList is created and other pa-
rameters, which have been specified as the input of the Script
Task PrepareParameters, are attached to it. After all parameters
have been added in the “script” section, the resulting variable
is set in the execution engine. Note, that the name of this
resulting variable is set according to the output specification
in the dataOutputAssociation. Thus the input and output of
the Script Task can be specified according to the script in the
“script” section, and the input/output behavior of the Script
Task is fully specified. Since the script directly operates in
the execution engine, it would also be possible to set other
variables. Some frameworks automatically define an additional
output specification for them.

However, this approach has a drawback. It requires the Web
service to only take a single parameter, where all other pa-
rameters are embedded in one single object. A better solution
would be to call the Web service directly from a Script Task
or maybe an attached Java class. The idea is to hide the call
to the Web service in a Script Task and thus avoid the unusual
constraint with just one parameter. Figure 6 gives an example
for the graphical notation for such a wrapper. As it shows, there
is no indication for a Web service call given, which makes
it harder to understand. Another major advantage is that this
process model fits better the modeled process of our running
example. A business expert can still see the essential tasks
in this model and not an extra one irrelevant for the process.
The specializations of Task to Script Task and to Service Task,
respectively, are only visualized as small icons and should not
be irritating to the business expert.

Another approach would be to use Java implementations

10Copyright (c) IARIA, 2014. ISBN: 978-1-61208-333-9

WEB 2014 : The Second International Conference on Building and Exploring Web Based Environments

5

Figure 5: XML Representation of a Script Task Used as a Wrapper

as a back-end for Script Tasks and to employ them to call
the Web services. Since Java classes are executed in the same
runtime environment, they can access all available properties
and values during the execution. In this case, the definition
of the Data Input and Data Output could technically be
omitted (which makes the overview of the business process
difficult, of course). The BPMN 2.0 standard does not provide
a clear specification on how other implementations can be
attached to a Script Task or Service Task, but simply states
that other implementations can be included. This means that
the technical implementation of calling back-end Java classes
is permitted, though not entirely specified. Using this method
has the advantage that during execution there is full control
on all variables and definitions but that the graphical notation
does not fully represent the business process.

Both techniques, calling the Web service directly from a
Script Task or a reference Java class, require to make manual
Web service calls. This means that there needs to be an
implementation available for the client part of the service call.
This is in contrast to the normal Service Task where most

frameworks support automatic generation of the required client
stub from the referenced WSDL file. Since most frameworks
already provide such a generation, their implementation can
be reused. However, the call to create the client stub has to be
provided manually. In addition, it is possible to use external
frameworks to generate all necessary classes on the client side.

In addition, the BPMN 2.0 standard provides another pos-
sibility for mapping DataObjects, the Assignment construct in
the DataInputAssociation. This construct allows mapping one
ItemDefinition to another one and thus enables BPMN users
to specify how locally defined DataObjects can be transferred
to (parts of) input parameters. This is similar to what we
accomplish with the ScriptTask but has the disadvantage that
only short expressions can be used and that still the input
parameter of a ServiceTask has to be defined as a more
complex structure that embeds the local objects into one
single object. Additionally, this approach requires the process
designer to know of the existence and state of local DataObject
definitions and thus the transparency of the process is obscured.
Using active tool support, this approach has already been

11Copyright (c) IARIA, 2014. ISBN: 978-1-61208-333-9

WEB 2014 : The Second International Conference on Building and Exploring Web Based Environments

6

Figure 6: Modified BPMN 2.0 Model of Example Process with Script Task instead of Service Task

implemented in the BonitaSoft BPM framework [15], where
custom connectors including custom types can be specified and
automatically generated for further use (for more details see
below in Section IV).

Since all these possible solutions rely on active tool support,
it is necessary to state that the BPMN 2.0 standard does not
allow for a compliant solution to this only-one-parameter prob-
lem it poses, so that solutions are tool-specific. We built and
tested the discussed approaches primarily using the Activiti
framework [16], and other frameworks may require different
code elements (especially for the Script Task). However, the
general idea behind the wrappers should work for all available
frameworks. In addition, the frameworks provide the means to
call the Web services and thus it might be necessary, depending
on the framework, to provide client stub implementations or
the shared objects in the same class path.

IV. BPMN EXECUTION FRAMEWORKS

Since there are differences between BPMN execution frame-
works, let us briefly compare a few of them, with a focus on
the problem dealt with in this paper. Our running example
was tested in the open source tools BonitaSoft BPM [15],
Activiti [16], jBPM [17] and Camunda [18]. All four tools are
based on the Java programming language and provide their
own framework implementation of the BPMN 2.0 standard.
While Activiti, jBPM and BonitaSoft BPM can integrate a
Web service via the Service Task specification, Camunda can
currently only integrate and use Java classes as reference
structures in Service Tasks. However, as mentioned above,
a Web service call can be accomplished through manual
implementation in a Java class.

In Activiti, the stub classes for the Web service are auto-
matically generated, while in jBPM it is necessary to manually
create the stub classes for the Web service upfront. Our
comparison of Service Task implementations in Activiti and
jBPM revealed that there are several differences between them.
For example, these frameworks handle the Data Input and
Data Output specification of the Service Task differently.
Furthermore, jBPM defines a specific name for the Input
Output Specification of the Service Task, which must be “Pa-
rameter” for the Data Input, and “Result” for the Data Output.
Otherwise the Input Output Specification, although correct
according to the BPMN 2.0 standard, cannot be processed.

Activiti allows the specification to use any identification name
[16], [19].

Another difference regarding Service Tasks is that jBPM has
implemented and enforces the only-one-parameter constraint
of the BPMN 2.0 standard, while in Activiti is it possible to
pass multiple parameters (which is not standard compliant).
Also storing local variables is handled differently. While
jBPM uses Property structures (which themselves reference
an ItemDefinition) to store local variables, Activiti stores the
local variables directly through an ItemDefinition [17].

BonitaSoft BPM handles Data Input and Data Output
through the standard BPMN Input Output Specification. In
contrast to the other tools investigated, BonitaSoft BPM uses a
so-called connector implementation that allows the integration
of external services. There are several predefined connectors
for different purposes available (e.g., for Web Services and
SOAP), but there is also the option to develop custom connec-
tors for external services. These connectors are implemented
in the Java programming language and can be exchanged
between different processes defined in BonitaSoft BPM. This
tool is compliant with the standard definition of BPMN 2.0
in this regard and, like jBPM, implements the only-one-
parameter constraint on Service Tasks. However, to resolve
the resulting restriction, a new custom type for each connector
is introduced, where all parameters are encapsulated in one
ItemDefinition that follows the custom type structure. This
approach has the advantage that the constraint is not violated
since only one input parameter is used, but if there is more
than one parameter to be used in a Service Task (and thus in a
connector) a mapping has to be specified. The idea is that local
DataObjects from the process are mapped to parts of the input
parameter for the Service Task using the BPMN 2.0 construct
Assignment in the DataInputAssociation. Using expressions it
is possible to access defined DataObjects and to map them to
the corresponding parts in the custom type of the connector.
This approach does not violate the constraint of BPMN 2.0
but has the disadvantage that it is not interchangeable with
other execution engines since it heavily relies on the definition
of custom types and connectors. Using the BonitaSoft BPM
framework, the necessary specifications and external XSD
definitions can be generated automatically and are interpreted
during runtime. These additional pieces of information are
not specified within the BPMN standard, however, and the

12Copyright (c) IARIA, 2014. ISBN: 978-1-61208-333-9

WEB 2014 : The Second International Conference on Building and Exploring Web Based Environments

7

tool has no option to express them graphically in the process
diagram [15].

Since the Script Task is the main implementation vehicle for
our wrappers, it is important how these scripts are processed.
While most frameworks support only one script language, mul-
tiple languages are possible. Activiti, Camunda and BonitaSoft
BPM, for example, use groovy, while jBPM specifies Java as
script language. Both languages have similar syntax. However,
it is important to note that there are minor differences in how
variables are accessed and stored during runtime.

These differences make it hard to exchange BPMN business
processes between these tools since all of them have their own
small deviations from the BPMN 2.0 standard.

V. CONCLUSION

In this paper, we show with a simple business process
example a pitfall during the execution of BPMN 2.0 business
process models. The reason is an unusual constraint on the
number of Service Tasks in the official language standard.
In general, already given Web services take more than one
parameter, and also for newly defined ones it would be very
strange to limit them to taking one (or none). So, making use
of existing Web services for executing BPMN 2.0 models is
limited, and defining new ones with this constraint leads to
strange interfaces. In fact, even process models and their data
definitions suffer from this constraint, since their specification
may not match the modeled processes well. Viewed from the
perspective of Web services, this constraint prevents BPMN
2.0 from being used as an orchestration language.

Note, that all this is relevant only when caring about
compliance to the official BPMN 2.0 standard. In fact, there
are several BPMN execution frameworks available, and not
all of them enforce this constraint imposed by the standard.
However, what is such a standard good for, when only non-
compliant models make sense in practice?

So, we studied potential standard-compliant solutions to
this problem. They are based on the idea that some wrapper
masks the passing of parameters to Web services or completely
hides the call to the Web service. We present in this paper
a few possibilities to accomplish this, first by utilizing Script
Tasks to combine parameters into one complex object. Another
solution could be to directly call Web services from Script
Tasks or attached Java classes. However, since most of the
frameworks have minor differences on how data is handled, all
these solutions need to be adapted to a given framework. In
effect, this means that a major intended advantage of standard
compliance is not achieved, easy exchange of models between
tools.

However, the question remains why this constraint has
been introduced for Service Tasks. Since the InputOutputSpec-
ification for general Tasks allows multiple Input Sets, this
constraint is not necessary and restricts the usage of services
in BPMN orchestration. A simple solution could be to just
omit this constraint and leave the implementation of the BPMN
standard open for multiple inputs. Additional information on
the actual implementation (for Web Services this could involve
the SOAP style or similar) could be provided by extending
the interface definition with additional attributes. The mapping
between Web Service parameters and local parameters could

be established through the DataInputAssociation, which is
specified in the BPMN 2.0 standard.

REFERENCES

[1] OMG, Business Process Model and Notation (BPMN), Object
Management Group Std., accessed: 2014-01-31. [Online]. Available:
http://www.omg.org/spec/BPMN/

[2] OASIS. OASIS Web Services Business Process Execution Language
(WSBPEL) TC. [Online]. Available: https://www.oasis-open.org/
committees/tc home.php?wg abbrev=wsbpel [retrieved: January, 2014]

[3] C. Ouyang, M. Dumas, A. H. M. Ter Hofstede, and W. M. P. Van der
Aalst, “From BPMN Process Models to BPEL Web Services,” in Web
Services, 2006. ICWS ’06. International Conference on, 2006, pp. 285–
292.

[4] C. Ouyang, M. Dumas, W. M. P. V. D. Aalst, A. H. M. T.
Hofstede, and J. Mendling, “From business process models to process-
oriented software systems,” ACM Trans. Softw. Eng. Methodol.,
vol. 19, no. 1, Aug. 2009, pp. 2:1–2:37. [Online]. Available:
http://doi.acm.org/10.1145/1555392.1555395

[5] T. Hallwyl, F. Henglein, and T. Hildebrandt, “A standard-driven
implementation of WS-BPEL 2.0,” in Proceedings of the 2010
ACM Symposium on Applied Computing (SAC ’10). New
York, NY, USA: ACM, 2010, pp. 2472–2476. [Online]. Available:
http://doi.acm.org/10.1145/1774088.1774599

[6] O. M. Group. Business Process Model and Notation (BPMN)
Version 2.0. [Online]. Available: http://www.omg.org/spec/BPMN/2.0/
[retrieved: 01, 2014]

[7] T. Allweyer, BPMN 2.0 - Introduction to the Standard for Business
Process Modeling, 2nd ed. Books on Demand GmbH, Norderstedt,
2010.

[8] M. Chinosi and A. Trombetta, “BPMN: An introduction to the
standard,” Computer Standards & Interfaces, vol. 34, no. 1, 2012, pp.
124 – 134. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0920548911000766

[9] World Wide Web Consortium (W3C). Web Services Description
Language (WSDL) 1.1. [Online]. Available: http://www.w3.org/TR/
wsdl [retrieved: January, 2014]

[10] World Wide Web Consortium (W3C). Simple Object Access Protocol
(SOAP). [Online]. Available: http://www.w3.org/TR/soap/ [retrieved:
February, 2014]

[11] M. Crasso, J. Rodriguez, A. Zunino, and M. Campo, “Revising WSDL
documents: Why and how,” Internet Computing, IEEE, vol. 14, no. 5,
Sept 2010, pp. 48–56.

[12] C. Mateos, M. Crasso, A. Zunino, and J. Coscia, “Revising WSDL
documents: Why and how, part 2,” Internet Computing, IEEE, vol. 17,
no. 5, Sept 2013, pp. 46–53.

[13] R. Pillat, T. Oliveira, and F. Fonseca, “Introducing software process
tailoring to BPMN: BPMNt,” in Software and System Process (ICSSP),
2012 International Conference on, 2012, pp. 58–62.

[14] OMG, Business Process Model and Notation (BPMN), Version 2.0,
Object Management Group Std., Rev. 2.0, January 2011, accessed:
2014-01-31. [Online]. Available: http://www.omg.org/spec/BPMN/2.0

[15] Bonitasoft. Bonitasoft. [Online]. Available: http://www.bonitasoft.com/
[retrieved: February, 2014]

[16] Activiti. Activiti BPM Platform. [Online]. Available: http://www.
activiti.org/ [retrieved: February, 2014]

[17] JBoss Community team. Jboss community jBPM. [Online]. Available:
https://www.jboss.org/jbpm [retrieved: February, 2014]

[18] Camunda. Camunda BPM platform. [Online]. Available: http:
//www.camunda.com/ [retrieved: February, 2014]

[19] T. Rademakers, Activiti in Action: Executable business processes in
BPMN 2.0, 1st ed. Shelter Island, NY: Manning Publications, 2012.
[Online]. Available: http://www.worldcat.org/search?qt=worldcat org
all&q=1617290122

13Copyright (c) IARIA, 2014. ISBN: 978-1-61208-333-9

WEB 2014 : The Second International Conference on Building and Exploring Web Based Environments

