
Distributed OSGi through Apache CXF and Web Services

Irina Astrova Arne Koschel
Institute of Cybernetics Faculty IV, Department for Computer Science

Tallinn University of Technology University of Applied Sciences and Arts Hannover
Tallinn, Estonia Hannover, Germany
irina@cs.ioc.ee akoschel@acm.org

Abstract—The OSGi Service Platform supports rudimentary
distribution through Universal Plug and Play (UPnP)
specification, which facilitates interaction with UPnP-enabled
consumer devices. The main goal of UPnP is to allow simple
and seamless connection between devices and sharing of those
devices. Although UPnP can be seen as a distributed system,
the range of its use is very limited. Yet the way how OSGi
services interact to each other is constrained to a single Java
Virtual Machine (JVM) where they run. This prevents to
provide OSGi services in a distributed manner. Therefore, the
main goal of this paper is to add distribution capability to
OSGi, without having to change OSGi itself. The contribution
of this paper is twofold: (1) it supplies implementation details
to show how OSGi can be extended with distribution; and (2)
it implements a flight information system to show how this
extension can be applied to business applications.

Keywords—OSGi Service Platform; Web services; Apache
CXF; distribution; flight information system.

 I. INTRODUCTION

The OSGi Service Platform [1] is an emerging successful
Java-based standard for developing component-based
software. As its core, OSGi is about bundles and services.
Bundles provide modularization and encapsulation for
components. A bundle is also a deployable unit, which can
be installed and removed at runtime. Bundles can register
services, which can be looked up in the service registry and
then used by other bundles. OSGi can be deployed on a wide
range of devices from sensor nodes, home appliances,
vehicles to high-end servers.

One of the weaknesses of OSGi (addressed in this paper)
is that it defines how services “talk” to each other from
within a single Java Virtual Machine (JVM). Thus, the way
how the services interact to each other is constrained to an
OSGi container where they run (local communication). In
today’s IT world, distributed systems have been used rapidly
in business applications. Thus, a lack of support of
distribution is a severe hindrance for further use of OSGi in
business applications because it does not allow external
systems to access OSGi services remotely [7]. This holds
true especially for enterprise systems, as nowadays OSGi
grows more and more from its original roots (viz., embedded
systems) into a Java platform for enterprise system. Simple
evidence of this fact is that OSGi’s Embedded Systems
Expert Group was discontinued, while its counterpart –
OSGi's Enterprise Systems Expert Group – is still “alive and
kicking”. Therefore, our main goal was to add distribution

capability to OSGi in order for OSGi to be more applicable
to enterprise systems. Toward this goal, in our previous paper
[13] we proposed an approach, where distribution is enabled
by exposing OSGi services as Web services, which is done
by creating a “middleware” bundle that adapts OSGi services
to become Web services. Figure 1 gives an overview of our
approach.

Figure 1. Architecture of our approach [13]. (System B is an external
system.)

As middleware, we selected Apache CXF [2]. CXF is an
enterprise service bus (ESB) that helps to develop services
using different frontend programming APIs on different
protocols, which in their turn use Web services defined by
WSDL contract with SOAP bindings over HTTP. CXF is
divided into multiple units called endpoints. We selected
CXF for providing OSGi with distribution capability because
being open source, CXF has no license fee. Furthermore,
CXF itself can be represented as a set of bundles.

The rest of the paper is organized as follows. In Section
II we provide an overview of the related work. In Sections III
– VII we supply details on our approach. Given the
background from the previous sections, in Section VIII we
give an example of how to use our approach. In Section IX

19Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

we present the implementation of our approach. In Section X
we make conclusions and outline the future work.

II. RELATED WORK

A number of extensions – e.g., OpenSOA,
Redistributable OSGi (R-OSGi) [6], Distributed OSGi (D-
OSGi), IBM Lotus Expeditor, Eclipse Communication
Framework and Newton Framework – were done to allow
services to “talk” with each other across multiple JVMs. The
goal of all these extensions was to add distribution capability
to OSGi, thus enabling a service running in one “local”
OSGi container to invoke a service running in another,
potentially remote, OSGi container. While meanwhile
distribution has become part of D-OSGi, it lacks features like
asynchronous messaging. This is, however, possible with our
approach by utilizing both the appropriate CXF features and
the extension that we implemented.

There also exists J2ME Web Service Specification [8],
which extends OSGi with Web services functionality. This
specification is widely used in embedded systems.
Embedded systems are losing their original meaning, which
referred to small computational isolated (stand-alone)
systems that give functional support for devices that do not
fit to the definition of a computer [9]. Today we can define
an embedded system as a micro-processed device, thus
programmable, which uses its computing power for a
specific purpose [10]. However, the scope of the
specification includes only how to expose remote services. It
is not specified how external systems can access the services
from embedded systems.

This paper extends our previous paper [13] in the
following ways:

• It supplies more details on our approach (see
Sections III, IV and VI).

• It shows an example of using our approach (see
Section VIII).

• It implements a flight information system to
demonstrate how our approach can be used in
business applications (see Section IX).

III. REGISTERING OSGI SERVICES

Since a CXF bundle and an OSGi bundle exporting Web
services are completely decoupled, we cannot rely on their
installation order. In particular, the CXF bundle can be
installed both before and after the OSGi bundle. Therefore,
there are two cases to consider.

First, when the CXF bundle is installed before the OSGi
bundle, the CXF bundle can register a service listener to get
notified when the OSGi bundle is installed. This listener can
be associated with a filter expression.

Figure 2 shows an example of how to register a service
listener. Here context is an instance of the
BundleContext class; it is provided during the CXF
bundle activation. As can be seen, the
addServiceListener method of the
BundleContext class takes two parameters. The first
parameter is an instance of a class implementing the

ServiceListener interface; this instance will be used
by the CXF bundle as a callback to create an endpoint. The
second parameter is a filter expression, which specifies that
the CXF bundle gets notified about the service registration if
and only if OSGi services have the expose.service
property set to true.

BundleContext context = . . . ;
context.addServiceListener (cxfListener,
”(expose.service=true)”);

Figure 2. Registering a service listener, which listens to Web services.

The service listener can use a ServiceReference
instance to have more information about the OSGi services.
In both situations, the ServiceReference instance can
be used to acquire the necessary service information, e.g., the
name of the service interface used by the service registry and
an instance of the class implementing the specified interface.
Figure 3 shows how to fetch this information.

ServiceReference ref = . . . ;
Class iface = (Class) ref.getProperty(”expose.interface”);
String url = (String) ref.getProperty(”expose.url”);
Object instance = context.getService (ref);

Figure 3. Accessing service properties.

Second, when the CXF bundle is installed after the OSGi
bundle, the CXF bundle can query the service registry for
OSGi services. Figure 4 shows an example of such a query.
As can be seen, the getServiceReferences method of
the BundleContext class takes two parameters. The
second parameter is again the filter expression, whereas the
first parameter specifies the service interface. However, since
the CXF bundle cannot know the service interface in
advance, a value null is passed to the method to specify
that all (registered) OSGi services should be matched against
the filter expression.

ServiceReference[] refs = context.getServiceReferences(
null , ”(expose.service=true)”);

Figure 4. Querying for Web services.

IV. EXPOSING OSGI SERVICES AS WEB SERVICES

As said above, since the CXF bundle can be installed
both after or before the OSGi bundle as well as removed
after a certain time, we have to enforce a loose coupling
between the two bundles but still enable communication
between them. There are three approaches to this:

• Extender model
• Listener model
• Whiteboard pattern (which we follow).

A. Extender Model

In the extender model, the CXF bundle can register a
service using a BundleContext instance to get informed
when new bundles are installed. The CXF bundle can react

20Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

on these events and inspect the content of the new bundles.
The same approach can be used by the OSGi bundle to
inform the CXF bindle about Web services it wants to export.
CXF could define the location of a configuration file. This
file would contain the Web services and the necessary
service properties like a service interface, a port number and
a URL.

Figure 5 shows an example of such a configuration file.
The CXF bundle would check if the OSGi bundle contains
this file and then use the file during the configuration.

<service
name=”ExampleService”
interface=”com.example.ExampleService”
class=”com.example.ExampleServiceImpl”/>
<soap/>
<http port=”8080” cont ext=”/exampleService” />
</service>

Figure 5. Configuration file.

B. Listener Model

In the listener model, the CXF bundle itself can register a
service that provides the necessary functionality for
exporting Web services. For example, this service could have
a method exportService; the service information like a
service interface, a port number and a URL would be passed
to that method. The OSGi bundle would fetch the CXF
service from the service registry and call the method with the
corresponding parameters.

C. Whiteboard Pattern

With the Whiteboard pattern [3], the OSGi bundle can
register itself Web services. In addition to the service
registration, the OSGi bundle can provide additional service
properties (e.g., expose.interface, expose.port
and expose.url), which contain the necessary
configuration information. The CXF bundle can use the
service registry to fetch the Web services.

D. Evaluation of Approaches

The extender model requires that all configuration
information to be specified in a configuration file. It is
therefore necessary that all this information is available when
the OSGi bundle is created. The OSGi bundle is not able to
provide additional information or change existing one during
the deployment. Moreover, all (exported) Web services have
to be listed in the configuration file. Thus, bundles are not
able to inform the CXF bundle about new services after the
deployment. Therefore, we rejected this approach.

The Whiteboard pattern has been originally developed as
an alternative to the listener model. Both can be used for the
configuration of the OSGi and CXF bundles. Both ensure
that the bundles are completely decoupled from a specific
CXF API. No dependencies on CXF classes or packages
exist and the bundles do not need to be linked at compile
time. However, the extender model analyzes the content of
the bundles and uses the bundle events to enable export of
new services, whereas the Whiteboard pattern uses the OSGi

Service Layer to enable communication between the
bundles.

Moreover, due to the dynamic nature of OSGi (i.e., due
to the fact that bundles can be removed at runtime), bundles
cannot assume the continuous existence of the CXF service.
Rather, they need to monitor the service registry in order to
check for the CXF service.

When using the Whiteboard pattern, the configuration
information is embedded into the service properties. The
OSGi bundle can change these properties at runtime. That is,
the OSGi bundle can change the configuration at
deployment time and afterwards when needed. If the OSGi
bundle wants to stop some service from being exported, it
can just remove that service from the service registry and
thereby inform the CXF bundle. The OSGi bundle is
therefore able to control the export at runtime. Furthermore,
the service properties can be used as filters when the service
registry gets browsed by the CXF bundle for exported
services. For example, the CXF bundle could query for all
OSGi services that need to be exported with SOAP or at a
specified port. This querying is, however, not possible when
the configuration information is embedded into a
configuration file as it is done in the listener model.
Therefore, we also rejected the listener model and selected
the Whiteboard pattern instead.

V. CONFIGURING WEB SERVICES

As said above, we decided to use the Whiteboard pattern
for extending OSGi with distribution capability. When using
this pattern, the configuration mechanism relies on
embedding the necessary configuration information into the
service properties while registering a Web service. Since we
did not want to change the code, we decided to provide the
configuration information during the service registration.
There are three approaches to this:

• Java properties
• Declarative services Specification
• Spring-OSGi (which we follow).

A. Java Properties

Figure 6 shows an example of how to register a Web
service using Java properties and associate the Web service
with the service properties during this registration. The CXF
bundle will listen to OSGi services that have a property
expose.service=true . The service properties are
stored in java.util.Dictionary, which is then passed
as a parameter during the service registration.

ExampleService service = new ExampleServiceImpl();
Dictionary dict = new Hashtable();
dict.put (“expose.service”, true) ;
dict.put (“expose.interface”, ExampleService.class);
dict.put (“expose.url”, “http://localhost:8080/exampleService”);

Figure 6. Registering a Web service using Java properties [13].

B. Declarative Services Specification

The intention of Declarative Services Specification
(DSS) [11] is to ease the use of the OSGi Service Layer.

21Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

Figure 7 shows a code example of how to register a Web
service using DSS.

<?xml version=“1.0” encoding=”UTF−8”?>
<component name=“ExampleService”>
<implementation
class=“com.example.ExampleServiceImpl”/>
<property name=“expose.service”>true</property>
<property name=“expose.interface”>
com.example.ExampleService
</property>
<property name=“expose.url”>
http://localhost:8080/exampleService
</property>
<service>
<provide interface=“com.example.ExampleService”/>
</service>
<component>

Figure 7. Registering a Web service using Declarative services
Specification [13].

C. Spring-OSGi

This approach is similar to DSS. The key difference is
that Spring-OSGi [12] itself defines a service registry like
OSGi does. This registry is managed by BeanFactory. In
particular, OSGi services can be searched and registered by
BeanFactory; BeanFactory also makes services
applicable to dependency injection. Figure 8 shows a code
example of how to register a Web service using Spring-
OSGi. Here exampleService is a normal Spring bean
that will act as the instance of the service. An XML element
<osgi:service> publishes this service in the service
registry by referencing it and embeds additional information
like the necessary configuration for CXF into the service.

<?xml version=“1.0” encoding=“UTF−8”?>
<bean id=“exampleService”
class=“com.example.ExampleServiceImpl”/>
<osgi:service ref=“exampleService”>
<osgi:interfaces>
<value>com.example.ExampleService</value>
</osgi:interfaces>
<osgi:service−properties>
<prop key=“expose.service”>true</prop>
<prop key=“expose.interface”>
com.example.ExampleService
</prop>
<prop key=“expose.url”>
http://localhost:8080/exampleService
</prop>
</osgi:service−properties>
</osgi:service>

Figure 8. Registering a Web service using Spring-OSGi [13].

D. Evaluation of Approaches

The use of Java properties is the simplest approach; it
embeds the configuration information directly into Java
classes. Another advantage of this approach is that it allows
for full control over the service properties and thus, it can be

used if, e. g., some values need to be calculated at runtime.
However, because of the dynamic nature of bundles, the sate
of the services have to be tracked all the time. Therefore, we
rejected this approach.

Instead of “hard-coding” the necessary logic for the
service registration and then the tracking of the service state,
DSS allows us to define this declaratively. Bundles that want
to publish or use Web services define their intention in a
configuration file that is then processed by DSS. However,
DSS can be viewed as a hybrid approach that combines the
Whiteboard pattern with the extender model. Since the
configuration get supplied through the extender model, DSS
inherits all the drawbacks of the extender model. Therefore,
we also rejected this approach and selected Spring-OSGi
instead.

VI. ANALYZING SERVICE INTERFACES

The information required by CXF is necessary to export a
Web service registered in the service registry. This
information is either specified as the service properties
during the service registration or deduced from the service
interface. The frontend that should be used by CXF (either
JAX-WS or simple) can be determined by checking if the
service interface is annotated. For example, when using the
JAX-WS frontend, the service interface is annotated with
WebService. Figure 9 shows an example of how to
determine if this annotation is present.

Annotation [] as = iface.getAnnotations ();
for (Annotation a : as)
{

if (a.annotationType().equals(WebService.class))
 { // use JAX−WS frontend
}

}

Figure 9. Using annotations.

In addition, CXF supports the use of different data
binding frameworks. As with the frontend, the data binding
used by CXF (either JAXB or Aegis) can be determined by
checking if the classes passed as method parameters are
annotated.

VII. ACCESSING WEB SERVICES WITH CLIENT FROM EXTERNAL
SYSTEMS

CXF is divided into multiple units called endpoints. The
communication over a network often takes place in a
heterogeneous environment where some endpoints may
share the same set of technologies whereas others may use a
different set. When using CXF, the class libraries to use
different technologies are located at different machines.
Therefore, when services want to change the used
technologies, only the libraries on the corresponding
machines have to be updated. Other services are not affected.

To create an endpoint, CXF can fetch the configuration
information from the service properties or deduce it from the
service interface. Figure 10 shows how this information can
be passed to CXF. The ServerFactoryBean class is

22Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

used to configure an endpoint. The service interface, the
URL and the service instance are passed to a
ServerFactoryBean instance. The getFactory
method of the ServerFactoryBean class returns either a
JaxWsServerFactoryBean or
ServerFactoryBean instance depending on the frontend
(either JAX-WS or simple). Similarly, the
getDataBinding method returns either a
JAXBDataBinding or AegisDatabinding instance
depending on the data binding (either JAXB or Aegis).

ServerFactoryBean factory = getFactory(frontend);
factory.setServiceClass ((Class) iface);
factory.setAddress (url);
factory.getServiceFactory(). setDataBinding(
getDataBinding(databinding));
factory.setServiceBean (instance);
Server server = factory.create ();

Figure 10. Passing configuration information.

After fetching all necessary configuration information
(i.e., a service interface, a port number and a URL), CXF
becomes responsible for creating an endpoint based on this
information using a method create of a class Sever. The
endpoint is published at the specified URL and can be
accessed using SOAP [4].

In addition to exposing OSGi services to external
systems, these systems require to access endpoints. There are
two approaches to accessing OSGi services remotely:

• Creating a remote API
• Creating a proxy (which we follow).

A. Creating Remote API

To enable bundles to access (remote) endpoints, CXF
could offer a special API that encapsulates the necessary
logic. A service that is to be used by the bundles would then
be registered in the service registry. Figure 11 shows a code
example of how to create a remote API.

RemoteEndpoint re=new RemoteEndpoint();
re.setAddress(url);
re.setDataBinding(getDataBinding(databinding));
Object result=re.callMethod(“methodname”, “parameter”);

Figure 11. Creating a remote API [13].

B. Creating Proxies

CXF provides a class ClientProxyFactoryBean to
create a proxy [5]. This proxy will implement the service
interface. Thus, it can be casted to a variable declared as an
instance of the service interface. The proxy forwards method
calls to the (remote) endpoint, waits for the result, and passes
the result to the caller. This way we have both an elegant and
a flexible way to access Web services remotely.

Figure 12 shows a code example of how to create a
proxy. The information about the service interface, the URL
and the data binding are passed to this proxy.

ClientProxyFactoryBean factory=new
ClientProxyFactoryBean();
factory.setServiceClass(iface);
factory.setAddress(url);
factory.getServiceFactory().setDataBinding(getDataBinding(d
atabinding));
Object proxy = factory.create();
Dictionary props = . . .;
context.registerService(serviceClass.getName(), proxy,
props);

Figure 12. Creating a proxy [13].

After the proxy has been created, it gets registered in the
service registry. During this registration, additional service
properties can be attached to the proxy. These properties can
be used as a filter expression when bundles are querying the
service registry for specific services. Figure 13 shows an
example of a query that returns all services that represent
endpoints located on a server www.company.com.

ServiceReference[] refs = context.getServiceReferences(null,
”(&(service.is_remote=true)
(service.host=www.company.com))”);

Figure 13. Querying for specific services.

C. Evaluation of Approaches

Creating a remote API is simple. However, this approach
introduces several drawbacks. After the bundle has been
removed, all the information specified in the service
interface is lost. This interface defines which methods are
available and which parameters the methods require. Hence,
the service interface represents the contract between a server
and a client. By embedding the method name and parameters
into a method call, we have to ensure that the specified
values conform to the service interface. Moreover, depending
on the used frontend, the service interface may specify
additional semantics. For example, some methods may use
asynchronous call semantics and require the registration of a
callback method. However, the remote API would have to be
aware of all these possibilities. Therefore, we rejected this
approach and selected to create a proxy instead.

VIII. EXAMPLE

To demonstrate our approach, let us consider
SimpleService.

Figure 14 shows an example of the service interface.
SimpleService will be accessed by a client through the
service interface, which is by definition separate from the
service implementation. This separation enables changing
the service implementation without changing other services.

package com.xyz.simple;
public interface SimpleService {

public String getName();
}

Figure 14. SimpleService interface.

23Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

Figure 15 shows an example of the service
implementation.

package com.xyz.simple;
public class SimpleServiceImpl implements SimpleService {

public String getName() {
return "My Name is SimpleService";

}
}

Figure 15. SimpleService implementation.

Figure 16 shows an example of an OSGi bundle, which
exposes SimpleService as a Web service using the Java
properties approach (see Section V).

package com.xyz.simple;
import org.osgi.framework.BundleActivator;
public class SimpleBundleActivator implements
BundleActivator {

public void start(BundleContext context) throws Exception
{

System.out.println("Starting SimpleBundle");
SimpleService service = new SimpleServiceImpl();
java.util.Properties props = new Properties();
props.put("expose.service", true);
props.put("expose.interface", SimpleService.class);
props.put("expose.url",

”http://localhost:8080/simpleservice");
context.registerService(
SimpleService.class.getName(), service, props);

}
public void stop(BundleContext context) throws Exception

{
System.out.println("Stopping SimpleBundle");

}
}

Figure 16. OSGi bundle.

Figure 17 shows an example of the client (i.e., a CXF
bundle, which accesses SimpleService). The client
listens to SimpleService at the endpoint URI:
“http://localhost:8080/simpleservice”.

public class SimpleBundleActivator implements
BundleActivator {
 public void start(BundleContext context) throws Exception {
 CxfOsgiUtils.proxyRemoteEndpoint(context,
 SimpleService.class,
"http://localhost:8080/simpleservice");
 ServiceReference ref = context.getServiceReference(
 SimpleService.class.getName());
 SimpleService service =
 (SimpleService) context.getService(ref);
 }
}

Figure 17. CXF bundle.

IX. FLIGHT INFORMATION SYSTEM

To prove the feasibility of our approach, we implemented
a flight information system (FIS) using our approach. The
purpose of the FIS is to inform passengers waiting at the
airport about flight changes made by airlines. Figure 18 gives
an overview of the FIS.

Figure 18. Architecture of flight information system.

The FIS consists of the following components:
• Management system
• Airline interface
• Flight list display system
• Mobile client.
The airline interface lets airlines to change information

about scheduled flights. For example, an airline can change
the aircraft type to a smaller one if the currently scheduled
plane cannot be filled or the airline can change the departure
time if the currently scheduled plane is delayed due to
weather conditions. All these changes are broadcasted to the
flight list display system and the mobile client by the
management system. Figure 19 shows GUI of the airline
interface.

Figure 19. GUI of airline interface.

The flight list display system sends updated flight
information (including current departure time, gate, aircraft
type and flight status: on-time, delayed or cancelled) to flight
list displays, which are spread over the airport. Figure 20
shows GUI of the flight list display system.

24Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

Figure 20. GUI of flight list display system.

In addition, the mobile client lets passengers receive
updated flight information from the comfort of their mobile
phones. Figure 21 shows GUI of the mobile client.

Figure 21. GUI of mobile client.

As can be seen, the central component of the FIS is the
management system. This component dispatches flight
changes it receives from the airline interface to all interested
parties – i.e., the flight list display system and the mobile
client. The management system was implemented as a Java
Business Integration (JBI) application. All other components
around the management system – i.e., the airline interface,
the fight list display system and the mobile client – were
implemented as OSGi bundles. Therefore, the FIS is served
as an example of how OSGi containers can communicate
with an external (non-OSGi) system in a distributed manner.

X. CONCLUSION AND FUTURE WORK

We have proposed an approach to extending OSGi with
distribution. Our approach does not require making changes
to OSGi. Rather, it encourages using the concept of bundles.

OSGi was originally targeted towards embedded systems.
Therefore, the main benefit of adding distribution capability
to OSGi is to make OSGi more applicable to enterprise
systems, which usually require remote communication.

We have added distribution capability to OSGi using
CXF. CXF enables external systems to invoke (registered)
OSGi services. Bundles can define which of the services can
be accessed by external systems. CXF is used to create

(remote) endpoints and helps to utilize different technologies
when needed. Our approach ensures a loose coupling
between CXF and OSGi bundles. OSGi services do not need
to be aware of the distribution or how they are exposed to
external systems. The only needed interface is the OSGi
Service Layer. Furthermore, bundles can access (remote)
endpoints. This access is fully transparent to the bundles. A
proxy delegates to the endpoints and gets registered in the
service registry in order to be used by the bundles. In
addition, we have used our approach to implement the flight
information system.

In the future, we are going to make performance
evaluation of our approach.

ACKNOWLEDGMENT

Irina Astrova’s work was supported by the Estonian
Centre of Excellence in Computer Science (EXCS) funded
mainly by the European Regional Development Fund
(ERDF). Irina Astrova’s work was also supported by the
Estonian Ministry of Education and Research target-financed
research theme no. 0140007s12.

REFERENCES

[1] OSGi – The Dynamic Module System for Java, http://www.osgi.org,
last access: September 21, 2012.

[2] Apache Software Foundation: CXF pages, http://cxf.apache.org, last
access: September 21, 2012.

[3] Kriens, P., Hargrave, B.J.: Whiteboard pattern,
http://www.osgi.org/documents/osgi_technology/whiteboard.pdf, last
access: September 21, 2012.

[4] World Wide Web Consortium. SOAP Version 1.2.
http://www.w3.org/TR/soap12, last access: September 21, 2012.

[5] Gamma et al., Design Patterns, Addison-Wesley, 1995.

[6] Swiss Federal Institute of Technology (ETH) Zurich: R-OSGi pages,
http://r-osgi.sourceforge.net, last access: September 21, 2012.

[7] Astrova, I., Koschel, A., Roelofsen, R., Kalja, A.: Evaluation of the
Applicability of the OSGi Service Platform to Future In-Vehicle
Embedded Systems. In Proceedings of the 2nd International
Conferences on Advanced Service Computing (SERVICE
COMPUTATION), IARIA, pp. 202–207, 2010.

[8] Sun Microsystems. J2ME Web Service Specification.
http://jcp.org/en/jsr/ detail?id=172, last access: September 21, 2012.

[9] Janecek, J.: Efficient soap processing in embedded systems. In
Proceedings of the 11th IEEE International Conference on the
Engineering of Computer-Based Systems (ECBS), pp. 128–135,
2004.

[10] Wolf, W.: Computer as Components: principles of embedded
computing system design. Morgan Kaufmann, 2001.

[11] Cervantes, H., Hall, R.: Automating Service Dependency
Management in a Service-Oriented Component Model,
http://www.osgi.org/wiki/uploads/Links/AutoServDependencyMgmt_
byHall_Cervantes.pdf, last access: September 21, 2012.

[12] Interface21 Inc: Spring-OSGi, http://www.springframework.org/osgi,
last access: September 21, 2012.

[13] Roelofsen, R., Bosschaert, D., Ahlers, V., Koschel, A., Astrova, I.:
Think large, act small: An approach to Web Services for embedded
systems based on the OSGi framework. In Proceedings of the 1st

International Conference (IESS), pp. 239–253, 2010.

25Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

	A. Extender Model
	B. Listener Model
	C. Whiteboard Pattern
	D. Evaluation of Approaches
	A. Java Properties
	B. Declarative Services Specification
	C. Spring-OSGi
	D. Evaluation of Approaches
	A. Creating Remote API
	B. Creating Proxies
	C. Evaluation of Approaches

