
Compact Traceable Logging

I.S.W.B. Prasetya, Ales Šturala, Arie Middelkoop, Jurriaan Hage, Alexander B. Elyasov
Dept. of Inf. and Comp. Sciences, Utrecht Univ.

Utrecht, the Netherlands
Email: ales.sturala@hotmail.com, {A.Elyasov,S.W.B.Prasetya,J.Hage}@uu.nl, amiddelk@gmail.com

Abstract—Logging is a commonly employed technique to
gather information about the dynamic behaviour of a program.
The resulting logs can be analysed to derive statistics, infer
models, to diagnose failures, and used for testing. Balancing
the cost of logging (in terms of I/O time and disk usage)
and the benefits of increasing logging details is a challenging
task. In this paper, we present a source code transformation
scheme that converts the given program with ordinary logging
to enhance it with tracing information, and at the same time
significantly reduces the size of the generated logs by applying
a form of binary encoding. Decoders are generated to interpret
the logs and establish how the executions that produced them
flowed through relevant decision branches in the program.
This paper describes the transformation for sizeable subset of
sequential Java, including its complicated control structures.
As a proof of concept, we have implemented a prototype.

Keywords-software logging; logging; software tracing; tracing.

I. Introduction

With the rise of complexity of modern applications, it
becomes impossible to fully anticipate their behavior prior
to deployment. Many applications employ logging to provide
diagnostic information about their dynamic behavior. It pro-
vides means to at least diagnose erroneous and unexpected
behavior after the fact [1], [2], [3], and may even allow us to
reconstruct the original execution. Other kinds of informa-
tion can also be learned from logs, e.g., usage statistics,
usage patterns [4], code coverage, profiling information,
potential security breaches [5], and even behavior models
and specifications [6], [7], [8]; the latter also imply that test-
cases can thus be learned from logs as well.

Clearly, the information that can be extracted from logs ul-
timately depends on what is exactly logged. Ideally, given a
program P, we want to generate executable and reproducible
logs. Such a log can be interpreted (executed) to drive an
execution of P, and will at least reproduce the same log.
Being able to re-execute allows common debugging tools
to be employed to diagnose the log. Unfortunately, most
logs are not executable, let alone reproducible. A traceable
log allows us to infer how P’s execution flowed when it
produced the log. It is a weaker property (than executability),
but the inferred information can still be useful for error
diagnosis. However, the amount of information that must
be stored in the logs to make them traceable is substantial,
which ultimately slows down application execution, and

leads to very large files.
Saving can be gained by not logging pieces of text, but

instead encoding them as a (short) binary/bitstring that refers
to the location in the program that produced it. Essentially,
these bitstrings can be considered as indices into an array
of log comments. Our contribution is as follows. We present
a new binary encoding scheme. The basic idea is to choose
this bitstring, such that so that it also encodes a fragment
of control flow, and thus providing tracing information
without costing us (many) additional bits –note that whatever
representation we use, I/O overhead and disk usage can still
be further reduced by post-compressing the resulting logs.
Our approach works by transforming the statements of the
original program, so that they produce the bitstrings that
encode their control flows. The transformation also produces
the corresponding decoders to interpret the produced bit-
strings and reconstruct normal logs, enhanced with tracing
information. The produced bitstring logs are significantly
more compact; in our experiments, they are 2.5 - 40 times
smaller than normal logs, while enhancing the logs (after
decoding) by a factor of 3 - 11. The transformation-based
approach also implies that our logging scheme is transparent
to the programmers: they can in principle write their logging
code as they always do, after which our transformation will
extend them for free.

The problem is however non-trivial. Modern programming
languages support a whole range of control constructs, e.g.,
switches and breaks, which trigger a non-standard execution
flow that is hard to encode faithfully. We also have to deal
with exceptions and external call-backs; they dynamically
disrupt the normal execution flow, and thus disrupt the
encoding. In this paper, we will address some of these
constructs. As a proof of concept, we have built a prototype
implementing the approach in Java. It covers more constructs
than those mentioned here.

This paper is structured as follows. Section II defines
what kind of tracing information we want to add. Section
III explains the basic idea of our transformation-based
approach. Section IV explains the transformation of basic
control structures, such as while, but also switch and break.
Exceptions and external call-backs are handled separately in
Section V. Section VI shows some experiment results of our
prototype. Section VII discusses related work. Section VIII
concludes and mentions future work.

66Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

II. Logging and Traceability

As an example, let us consider the program in Figure 1,
consisting of just a single method, for sending some hello
greetings. For logging, the primitive to use is log(s, v); it
writes the pair (s, v) to the log, where s is a descriptive
string, and v is a value. The string s is static (its value does
not depend on the program’s state), whereas v is a dynamic
value. The variant log(s) can be used if we have no dynamic
value to log.

1 void h e l l o (i n t i) {
2 whi le (i >0) {
3 i f (d e c i d e (i)) {
4 l o g ("Sending...") ;
5 send ("hello world") ; }
6 i f (even (i)) i = i / 2 ;
7 e l s e i −− ;
8 }

9 l o g ("Done,i=" , i) ;
10 }

Figure 1. The method hello.

An example of a log produced by the program is shown
below:

Sending...Sending...Sending...Done,i=0

This log does not really tell us how the execution went
through the program. Obviously, we can extend the logging
to also trace the flow of control. But how can we do this
without excessively increasing the overhead? Furthermore,
we also notice that most characters in the above log actually
belong to static strings. As suggested in Section I, they can
be compacted, but can we combine compaction with tracing?

Let us first define what kind of tracing information we
want to add. Let P be a single threaded target program. To
help us defining our concepts, imagine GP to be P’s total
control flow graph (CFG). If e is an edge in G, m→n denotes
its pair of source and target.

We assume that every node in GP has at most one call
to log(..) (else we split the node). Such a node is called
a logging node. An edge leading to such a node is called
a logging edge. GP’s initial nodes are assumed to be non-
logging.

Given an execution of P, its history is an imaginary log
obtained as follows: (1) when the execution passes a logging
edge e that calls log(s, v), we append the tuple (line(e), s, v)
to the history, where line(e) is the line number of e in P; (2)
when the execution passes a non-logging edge f we append
line(f). Histories represent logging enhanced with maximum
tracing information. Because the overhead to actually log
them is usually too large, we will only log partial histories;
but which edges are useful to be included?

A sibling of an edge e = m→n is another edge m→n′ in
GP with the same source, but a different target. A branch
is an edge that has siblings. A path in GP is a sequence σ
of edges, such that σi and σi+1 are two connecting edges in
GP, with the same direction. A full path is a finite path that

starts from an initial node of GP and ends in a terminal node
(or a node marked as an end-node if P is intended to run
forever). An edge e can reach another edge f if there is a
full path with [e, f] as a subsequence. It can avoid f if there
is a full path that passes e, but [e, f] is not a subsequence
of this path. A branch e is an attractor of f if it can reach
f , and it has a sibling d that can avoid f . Conversely, d is a
distractor of f if it can avoid f and it has a sibling that can
reach f . So, an attractor always has at least one distractor
as a sibling, and vice versa.

Let us, at least for now, decide to log this kind of edges:
Definition 1: An edge is log-relevant if it is either: (1)

a logging edge, (2) an attractor of a logging-edge, or (3) a
distractor of a logging-edge. �

So, a log-relevant edge is either itself a logging edge,
or a branch that has been decisive towards reaching or not
reaching a logging edge.

Note that passed attractors and distractors cannot in gen-
eral be inferred back from the normal log (the one without
tracing information). For example:

i f (g) {
i f (h) re turn ;

}

l o g (s)

The two else-branches above are two attractors towards
reaching log(s). When we see s in the log, we cannot from
s itself tell which attractor was taken.

We also want to note that in a language with exceptions
the above definition of log-relevance may become impracti-
cal; we will return to this issue later.

III. Transformation, the Basic Idea

We will first transform P to its so-called tagged version
	P, and deploy the latter. Rather than producing a normal
log, 	P produces a binary trace (or simply trace) which is a
bitstring interspersed by 〈v〉 values. The transformation also
constructs decoders, which are later used to decode/interpret
the produced trace to reconstruct the corresponding normal
log, enhanced with human-readable tracing information. The
latter log is called enhanced log.

To minimize the amount of logged data, in 	P we
suppress the logging of static strings. So, calls to log(s, v)
in P are replaced by log(v) in 	P, and calls to log(s) are
removed. The decoders will later reconstruct them from the
given trace.

Definition 2: A decision node m is a node with outgoing
branches. Such a node is log-decisive if it has an outgoing
branch e that is an attractor of some logging-edge f (which
also implies that e has a distractor as a sibling). �

For example, the guard of the while and the first if in
Figure 1 are log-decisive. The guard of the 2nd if is not.

In 	P we ’tag’ all log-decisive nodes m. Some additional
code is injected in m: (1) to assign a unique bitstring to each
outgoing edge of m, and (2) writes this bitstring to the trace

67Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

when the edge is passed. So, if m only has two branches,
then a single bit is sufficient to distinguish them. In Figure
2 we show the tagged version of the program in Figure 1.

void h e l l o (i n t i) {
whi le (t a g (i >0)) {

i f (t a g (d e c i d e (i))) {

send ("hello world") ;
i f (even (i)) i = i / 2 ; e l s e i −− ;
} ;
l o g (i)
}

Figure 2. The tagged version of hello.

The function tag(e) evaluates the Boolean expression e and
returns the value; but as side effect it also writes the bit 1
to the log if e is true, and else 0. Effectively, this performs
the tagging as meant above.

Notice that the static strings have been removed. Calls to
log(s, v) are converted to log(v) that writes 〈v〉 to the trace.
The execution that previously produced the log shown below
Figure 1 now produces the following trace:

1111110〈0〉

The above string encodes which log-relevant edges were
passed by the execution. The string is given to a decoder to
produce the corresponding enhanced log. The decoder for
hello is shown in Figure 3.

void dec he l lo () {
whi le (pop (3 , 9))

i f (pop (4 , 6))
emi t (5 , "Sending...") ;

emi t (9 , "Done,i=") }

Figure 3. hello’s decoder.

The original control flow of P is reflected by the decoder.
We also include relevant line numbers information into the
decoder. For each log-decisive node v in P (let’s assume it
only has two branches), the corresponding decision node v′

in the decoder calls pop(t, f). This pops the current bit b in
the given trace. This bit tells us which branches of v that P
took. The method pop(t, f) simply returns the same bit, and
this causes the decoder to follow the same branch at v′. The
t and f are line numbers of v’s branches in P; and they will
be printed to the log accordingly by the decoder as tracing
information.

Calls to log(s, v) or log(s) at line k in P are translated to
emit(k, s) in the decoder. When executed, it consumes the
current 〈v〉 in the trace, if there is any; then writes either
(s, v) or just s to the enhanced log, and decorating it by the
line number k.

Other details of P are not carried over to the decoder.
Applying the decoder in Figure 3 to the above example

trace produces the following enhanced log:
[Hello:2][Hello:3][Hello:4]@Sending...
[Hello:2][Hello:3][Hello:4]@Sending...
[Hello:2][Hello:3][Hello:4]@Sending...
[Hello:2][Hello:9]@Done,i=<0>

Once such a log is created, another tool could be written
to actually step through the source code in an IDE, by
following the tracing information.

Things can however get more complicated. The decoder
above will actually be incorrect if decide(i) also does log-
ging, or if it throws an exception. Further adjustments are
thus still needed. The next section describes the transforma-
tion in more details.

IV. Basic Transformations
More generally, P may have multiple methods. Only log-

relevant methods need to be tagged, and for each such
method a matching decoder should be generated. In the
sequel, we will use the term ’statement’ and ’expression’
interchangeably. For a statement S , 	S denotes its tagged
version, and]S the corresponding decoder.

Recall that we want to tag log-decisive nodes. To decide
which nodes are log-decisive, we do not actually want to
construct GP, since such a graph can be pretty large and is
cumbersome to work with. We prefer to implement the trans-
formation in a syntax directed way. We, therefore, decide
the tagging based on the log-relevance of the corresponding
statement, which is calculated syntactically:

Definition 3: A statement S is log-relevant, denoted by
S∈L, if it contains a call to log(..) or a call to a log-relevant
method. �.

Definition 4: A method m is log-relevant, denoted by
S∈L, if its body contains a call to log(..) or a call to a
another log-relevant method. �

The transformations are described by a set of transforma-
tion rules, which are denoted as the example in (1).

val/var
v

v ε
v is a constant or variable (1)

The rule is named val/var, and specifies how constants
and variables are transformed. The result of the transforma-
tion is a pair, as specified under the line; the left specifies
the resulting tagged version, and the right one specifies the
decoder. So, the rule above says that a constant or variable
v is copied to the tagged program, but is removed (denoted
by ε) from the decoder.

The rule to transform a whole method m is shown in (2).
Only log-relevant m’s need to be transformed. The decoder is
another method named dec m(). It has no formal parameter,
though implicitly it takes a trace as its input.

mdefL
def m(e1...ek) S

def m(e1...ek) 	 S def dec m()]S
m∈L (2)

Some of the rules to transform the body S are shown
in Figure 4. They only deal with standard constructs; more
complex constructs are discussed later.

The rule log causes the logging of the static string s to be
suppressed in the tagged version. The decoder on the other
hand, does emit(l, s), where l is the line number of the call
log(s, v) in the original program.

68Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

log
log(s, v)

log(v) emit(linenr, s)

ifN
if (e) S

if (e) S]e
S<L

ifL
if (e) S

if (tag(e)) 	 S]e ;
if (pop(lt, l f))]S

S∈L

assign
e1 = e2

	e1 = 	e2]e1;]e2
seq

S ; T
	S ;	T]S ;]T

conjN
e1 && e2

	e1 && e2]e1
e2<L

conjL
e1 && e2

	e1 && 	 e2]e1 ;
if (pop(l1, l2))]e2

e2∈L

Figure 4. Transformation rules for standard constructs.

Rules ifL and ifN deal with the if(e) S structure (if-then).
If S is log-relevant, then the then-branch is an attractor
(of a logging node), so we have to tag the corresponding
decision point (ifL). Else both branches of the if-then are
neither an attractor nor distractor, and thus we should not
tag the decision point (ifN). Note that the transformation is
also recursively applied to e, since it may call a log-relevant
method.

The rules for assignment (Assign) and sequential compo-
sition (seq) are straightforward. Unary expressions op e, and
binary expressions e1 rop e2 where rop is an arithmetic or
relational operator do not induce implicit control branching.
Therefore, their rules are similar to assignments. Logical
operators are more involved. The semantics of e1 && e2 in
Java specifies that e2 is not evaluated if e1 turns out to be
false (short-circuiting). This matters for the control-flow, in
particular when e2 is log-relevant. The rules conjN and conjL
deal with this. Other operators with implicit branching, such
as ||, and ?: can be treated analogously.

A. Method call and polymorphism

If a statement S calls a log-relevant method m, its decoder
]S should also call the decoder of m. The rules to handle
method calls are shown in (3) and (4).

callL
call m(e1...ek)

call m(e1... 	 ek)]e1; ...;]ek;
call dec mD()

m∈L (3)

callN
call m(e1...ek)

call m(e1... 	 ek)]e1; ...;]ek
m<L (4)

If the method has a receiver, we treat it as its first
argument (so, we write m(x, y) instead of x.m(y)).

However, to also handle polymorphism, these rules have
to be extended. We will explain this with an example;
consider the following program:

Pe r s on p = g e t P e r s o n () ;
p.work () ;

Suppose Person has K number of subclasses that override
work(). The decoder of the above statement will now have
to figure out which variant of dec work it has to call. The
obvious case is when neither Person’s work() nor its variants
are log-relevant. Then the call p.work() is not log-relevant,
and we can use callN to handle it.

In other cases, the decision cannot in general be made
statically. To handle this, we assign Person’s work() and its
variants a unique variant-number id in the range [0. . .K].
The call p.work() is instrumented such that it checks at the
run time which variant is called, and it writes bits(id) to the
trace, where id the variant number and bits(id) returns its
unsigned bits representation.

For example, suppose only Student overrides Person’s
work(), and at least one of them is log-relevant. The decoder
of the above statement first reads the encoded variant number
and then, it interprets it to call the correct variant:

code = b i t s2num (pop () , pop ()) ;
sw i t ch (code) {

case 0 : P e r so n .dec work () ; break ;
case 1 : S t u d e n t .dec work () ; break ;

B. Jump-over

m() { i f (a) x++ ;
i f (ok) re turn ;
l o g ("not ok") }

Figure 5. A method with a jump-over.

Consider the example in Figure 5. Since the then-parts
of both conditionals are not log-relevant, the rule ifN will
not tag the corresponding decision nodes, resulting in these
tagged version and decoder:

m() { i f (a) x++ ;
i f (ok) re turn ; }

dec m () { emi t (3 , "not ok") ; }

This decoder is however incorrect, because it always
produces “not ok”, whereas the original m may not do so.

The problem arises from the rule for transforming se-
quential composition (SEQ): it assumes normal control flow.
That is, any execution of S ; T always executes the T -part.
Under this assumption, no edge in S can become an attractor
or distractor of a logging-edge in T . Consequently, when
transforming S we do not need to care about the log-
relevance of T . However, statements like return, break,
and continue (we call them jump-over statements) break this
assumption. Note that not all jump-overs in S can actually be

69Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

distractors of a logging-edge in T , and calculating which of
them are, introduces some overhead. We will instead redefine
S∈L (Definition 3):

Definition 5: A statement S is directly log-relevant, de-
noted by S∈L0, if it contains a call to log(..), or a call
to a log-relevant method (as in the old definition of ”log-
relevant” statement). �

Definition 6: A statement S is log-relevant, denoted by
S∈L, if either (1) S∈L0, or (2) it is a part of a log-relevant
method and one of these holds:

2a) S contains a return.
2b) S is a part of a directly log-relevant switch and S

contains a break.
2c) S is a part of a directly log-relevant loop and S

contains a break or a continue.
�

With this new definition, the previous example will give
the following tagged version and correct decoder:

m() { i f (a) x++ ;
i f (t a g (ok)) re turn ; }

dec m () { i f (pop (2 , 3) re turn ;
emi t (3 , "not ok") ; }

Consider S ; T in a log-relevant method m. The new
definition of log-relevance presumes that if an edge e in
S is an attractor to a return node in S , it will also be a
distractor of a logging edge in T . This is only true if T has a
logging edge. We have a similar situation in while(g){S ; T }
if S contains a break or continue. This means that if T
actually has no logging edge, we will end up logging some
edges that are actually not log-relevant. But at least we do
not miss one (so, the change above is safe).

Some rules need to be added as well; jump-overs change
the flow of control, so they need to be copied to the decoder.
These are in (5); bc is either break or continue.

brc
bc

bc bc
ret

return e
return 	 e]e; return

(5)

C. Switch statement
An if statement has two branches. So, when tagging it,

one bit suffices to encode the choice between them. A switch
statement may have N branches, with N ≥ 2. This can be
dealt with as follows. We overload the function tag(e) to also
take a bitstring as argument. It returns nothing, and writes the
bitstring to the trace. We tag the k-th branch by tag(bits(k))
where bits(k) is the bitstring (of length n = 2log(N)) that
encodes the number k.

The absence of break in a switch branch requires a special
treatment though. The control flow would implicitly ”fall
through” to the next branch. Consider this example:

sw i t ch (day) {
case 6 : l o g ("sat")
case 7 : l o g ("weekend") ; break ;
d e f a u l t : l o g ("work") ; break ; }

If we just treat switch analogously to if, we would get
the tagged version and decoder shown in Figures 6 and 7.

sw i t ch (day) {
case 6 : t a g (FF) ;
case 7 : t a g (FT) ; break ;
d e f a u l t : t a g (TF) ; break ; }

Figure 6. An incorrectly tagged fall-through switch.

i n t code = b i t s2num (pop () , pop ()) ;
sw i t ch (code) {

case 0 : emi t (2 , "sat") ;
case 1 : emi t (3 , "weekend") ; break ;
case 2 : emi t (4 , "work") ; break ; }

Figure 7. The decoder for a fall-through switch.

The decoder correctly consumes two bits. However, if
day = 6 the tagged version will fall through and incorrectly
produces four bits. The issue can be solved in two ways.
One solution involves remembering the number of times a
switch execution falls through; e.g., x times. The decoder
must then consume n+x∗n bits, and discard the last x∗n
bits. However, this involves quite a bit of bookkeeping. A
much simpler solution, the one that we follow, is to simply
duplicate the switch, in which the first of the duplicates
executes a single call to tag for each case, and the second
implements the original logic (but without the tags). This
results in the tagged version in Figure 8, to be used with the
decoder in Figure 7.

sw i t ch (day) {
case 6 : t a g (FF) ; break ;
case 7 : t a g (FT) ; break ;
d e f a u l t : t a g (TF) ; break ; }

sw i t ch (day) {
case 6 : ;
case 7 : break ;
d e f a u l t : break ; }

Figure 8. Correctly tagged fall-through switch.

D. Loops

Consider first the following straight forward proposal to
transform a while-loop:

while (e) S
while (tag(e)) 	 S]e ;

while (pop(lt, l f))
{]S ;]e }

e∈L ∨
S∈L

We can see it as the loop-version of the ifL rule. The
reader may notice that unlike ifL now we also apply the
transformation when only the guard is log-relevant. This is
correct: the branch that goes into the loop’s body would still
be an attractor of the edge that goes from the body’s end
back to the guard. In contrast, in an if(e) S , the then-branch
cannot be an attractor if S is not log-relevant.

The above rule is however incorrect if the loop contains
a jump-over. Let us consider the example below; suppose
decide∈L.

70Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

whi le (d e c i d e (i)) { l o g ("hi") ; c o n t in u e ; }

The resulting tagged version and decoder:

whi le (t a g (d e c i d e (i))) { c o n t in u e ; }

dec dec ide () ;
whi le (pop ()) {

emi t (1 , "hi") ; c o n t in u e ;
dec dec ide () ;

}

The decoder incorrectly produces the logs from decide
exactly once, whereas the original loop can do this multiple
times. The correct rule is shown in (6).

loopL
while (e) S

while (tag(e))
	S

while (true) {
]e ;
if (pop(lt, l f))

break ;
]S }

e∈L ∨
S∈L (6)

If the loop is not log-relevant, it is removed from the
decoder, as shown in (7).

loopN
while (e) S

while (e) S ε
e<L ∧ S<L (7)

The transformations for do-while and for-loops are a
bit more elaborate, although they follow the same general
idea [9]. Note however, that simply treating do S while(e)
as S ; while(e) S does not work if S contains a jump-over.

E. Loop compaction

The above tagging scheme for loops is still problematical.
Consider this example:

i =0 ;
whi le (i <n)

i f (i ==999) l o g ("special") ; i ++ ;
}

Recall that we have required to also log distractors of log-
relevant node (Def. 1). For the above loop, this means that
every iteration always logs at least one bit, despite the fact
that most, if not all, of its iterations will not actually produce
any call to log(...). This can spam a very long bitstring, to
eventually produce at most one static string in the enhanced
log. To avoid this, we choose to discard the trace produced
by an iteration if it does not actually pass any logging node.
This is done by the following loop compaction algorithm.

There is a global stack Lstack. Elements of this stacks are
pairs (i, z) where i is a so-called loop-ID, and z is a buffer
where we can temporarily save a trace-fragment.

1) Every log-relevant loop H is instrumented such that
when the loop is entered, a unique loop-ID lid is
created. The id is created fresh every time the loop
is entered, to distinguish between different invocations
of the loop.

2) Whenever the guard g of H is evaluated, and it
evaluates to true (so, a new iteration is about to start),
a new buffer z is created, and the pair (lid, z) is pushed
into Lstack. We maintain the following invariant:

The traces buffered in Lstack never pass a log-
ging node.

So, when the execution of H cycles back to its guard,
we can remove (lid, z) and all pairs above it from
Lstack.

3) tag(e) will write to the buffer at the top of Lstack,
unless this stack is empty. Then it will write the bit
directly into the trace file.

4) a call to log(v) breaks the above invariant. So, we
dump all buffers in Lstack (from bottom to top) to
the trace file. And then clear the whole stack. From
this point on tag and log will write directly to the trace
file, until an iteration push a new (lid, z) into Lstack.

5) Because a loop may terminate through a jump-over,
there may be some residual bits left in Lstack. The
next logging node will cause these residual bits to be
dumped into the trace file.

Using this scheme, the previous loop will produce a trace
where it appears as if the loop immediately does the 999-th
iteration, and then it exits.

F. Recursion

Recursions can cause a similar bits-spamming problem
as loops. The above loop compaction algorithm exploits the
property that every iteration of a loop returns to the loop’s
guard. On the other hand, a recursive function that calls itself
multiple times (such as the example below) does not have a
natural analogous of the ’loop-guard’ concept. So, the above
compaction scheme cannot be re-applied for recursions.

What we do is to wrap each recursive call with a dummy
single iteration, e.g:

f i b (n) {
i f (n==0) { re turn 0 ; }
i f (n==1) { re turn 1 ; }
i f (n>=10) { l o g ("This may be too big") ; }
i n t a , b ;
i n t i =0 ; whi le (i <1) { a = f i b (n−2) ; i ++ ; }

i =0 ; whi le (i <1) { b = f i b (n−1) ; i ++ ; }
re turn a+b ;

}

This has the effect that if a recursive call to f ib does
not pass a logging node, it will not produce any tracing
information either. Else, the execution from the first call to
f ib up to the logging node will be traced.

V. Exceptions

In most programming languages, many types of expres-
sions can potentially throw an exception. In terms of con-
trol flow, such an expression introduces implicit branching,
with one implicit normal branch that corresponds to the
instruction’s normal execution, and one or more implicit

71Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

exceptional branches that correspond to jumps to exception
handlers. A typical program contains a lot of such implicit
edges. Consider for example:

x++ ; a . x = x ; . . . ; l o g ("here") ;

The two assignments before log can throw an exception.
The corresponding implicit exceptional branches are dis-
tractors of the log(..) statement, the assignments themselves
become attractors. According to Definition 1, we have to log
them as well. This would mean that a normal execution (one
that does not throw any exception) that leads to a log(..)
statement would generate additional tracing information
belonging to all implicit distractors it passes; and there are
many of them. This is too verbose! When an execution
throws an exception, we are indeed usually interested in
the corresponding tracing information. But when it does not
throw any exception, we are much less interested in knowing
which exceptions and which handlers it thus by-passed.

So, implicit normal branches are not going to be logged.
We would want to log log-relevant implicit exceptional
branches; but this is problematical for a different reason. To
log these edges would mean that we have to instrument all
subexpressions in P that can potentially throw an exception.
The overhead would be unacceptable. To make it practical,
we decide to only log the destination nodes; thus, the excep-
tion handlers. Thus, our logs can reveal which exceptions
have been thrown, but not the specific subexpression that
threw them.

l o g ("Preparing") ;
t r y {

p r e p a r e () ;
t r y { x = r e c e i v e () ; l o g ("Received") ; }
ca tch (ExcA a) { l o g ("Ouch") ; }
ca tch (ExcB b) { x=−1 ; }

}

ca tch (E x c e p t i o n e) { }
l o g ("Done") ;

Figure 9. A try-catch statement.

Consider the example in Figure 9; assume that prepare
and receive are not log-relevant. An exception handler h is
logged if there is a log-relevant implicit exceptional edge e
that goes to it (this can only be the case if e is a distractor or
attractor of another log-relevant edge). This is the case for
all handlers above. In general, in try t catch h1 catch h2...,
if t or one of the hk is log-relevant, then all handlers in the
construct will be either an attractor or distractor, and thus
have to be logged.

Now, consider first the following proposal of a tagged
version of the statement in Figure 9; logE(e) is used to log
a thrown exception:

t r y {

p r e p a r e () ;
t r y { x = r e c e i v e () }
ca tch (ExcA a) { logE (a) ; }
ca tch (ExcB b) { logE (b) ; x=−1 ; }

}

catch (E x c e p t i o n e) { logE (e) ; }

Suppose the execution throws an ExcA. Indeed, this will
be logged. The idea is to extend the decoder so that upon
reading the logged exception it will replay it, and thus
duplicate the original flow of control. However, just from
the logged exception the decoder will not be able to infer
whether the exception was thrown before the second try or
in the second try, which is important to decide to which
handler the control should flow.

To determine the right moment to replay the exception,
we will do progress counting. A global variable τ : int is
introduced for this purpose. The method logE(e) will now
additionally log the value of τ; so in principle, now the
decoder has the information to decide when it is the right
moment to replay an exception.

The method tick() will be used to increase τ by one.
We only need to tick when P passes points that matter for
logging:

1) To distinguish if a logged exception is thrown before
or inside a (log-relevant) try-catch structure, we tick
just before we enter the structure.

2) To distinguish if a logged exception is thrown inside or
after a try/catch/finally-section of a (log-relevant) try-
catch structure, we tick when we reach the section’s
end.

3) For a similar reason, tag/pop, and log/emit implicitly
call tick().

This results in the tagged version in shown Figure 10.

t i c k () ;
t r y {

p r e p a r e () ;
t i c k () ;
t r y { x = r e c e i v e () ; t i c k () ; }
catch (ExcA a) { logE (a) ; t i c k () ; }
catch (ExcB b) { logE (b) ; x=−1; t i c k () ; }
t i c k () ; }

ca tch (E x c e p t i o n e) { logE (e) ; t i c k () ; }

Figure 10. Correctly tagged try-catch statement.

t i c k () { check () ; t a u++ ; }

Figure 11. Decoder’s tick() also checks exception maturity

The counting of the progress should also be reflected in
the decoder. That is, whenever the tagged version calls tick(),
a tick() should be added at the corresponding place in the
decoder. Furthermore, pop and emit implicitly calls tick() to
match the same calls in tag and log. The decoder’s version
of tick() is slightly different, as shown in Figure 11. Before
it increases its progress counter (τ), it checks whether the
current item in the trace is a pair (e, t), representing an
exception thrown at time t. If t is equal to the the current
value of τ, we say that the exception e has matured. The
decoder should then consume (e, t) from the trace and replay

72Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

e by throwing it. Else, (e, t) is not consumed an the decoder
simply proceeds to its next statement.

The resulting decoder is shown in Figure 12.

emi t (1 , "Preparing") ;
t i c k () ;
t r y {

t i c k () ;
t r y { emi t (4 , "Received") ; t i c k () ; }
ca tch (ExcA a) { emi t (5 , "Ouch") ; t i c k () ; }
ca tch (ExcB b) { t i c k () ; }
t i c k () ; }

emi t (9 , "Done") ;
ca tch (E x c e p t i o n e) { t i c k () ; }

Figure 12. Correct decoder for the try-catch statement.

The full transformation rule is shown in (8). It is for the
case when the try-block is log-relevant. Else it will not be
transformed.

trycatch
try S catch(e) T finally U

tick();
try { 	S ; tick() }
catch(e) {

logE(e) ;
	T ; tick() }

finally { 	U ; tick() }

tick() ;
try {
]S ; tick() }

catch(e) {
]T ; tick() }

finally {
]U ; tick() }

S∈L ∨
T∈L ∨
U∈L

(8)

Additional handlers are transformed in the same way.
However, when only the finally-part is log-relevant, we do
not actually need to log the handlers (to add logE there).

We also have to deal with uncaught exceptions. Such an
exception will escape all handlers in the program (and then
causes the program to crash). Such an exception is almost
always log-relevant, so we need to log it as well, so that the
decoder knows when to stop its current execution. To do so
the body of the top-level entry point method (e.g., main)
need to be wrapped by a fake catch-clause that catches any
exception and rethrows it; the transformed version will then
add the needed call to logE.

A. Untraced Call-backs

Most programs use standard libraries and other external
libraries. When P calls an external method, this method
may in turn call back to some method m in P. The latter
may perform logging. During decoding, we have to ensure
that dec m is called. Normally, this is the responsibility of
m’s caller’s decoder, ensuring that the original execution is
faithfully imitated. The problem is that external libraries can
not be assumed to have been exposed to our transformation;
therefore, it has no decoder and thus, nobody will call
dec m. We call such a call back (to m) an untraced call.

It turns out that the solution we had to deal with excep-
tions (Section V) can be reused. Let us suppose it is possible
to intercept untraced calls to m at the runtime. When such
a call comes, we treat it as if an Untracedm exception has
occurred, and log it (along with the current value of the

progress counter). The name of the called method (m) is
encoded in the name of the exception. The decoder will
then be able to infer when this happened, and furthermore,
it knows where to jump to proceed.

To be able to intercept untraced calls, we rename all log-
relevant methods with fresh names; e.g., m(x) to mz. In the
target application, all calls to m are accordingly modified to
calls to mz. Then we re-introduce the method m(x) with the
same signature, defined as in Figure 13.

m(x) {
logE (new U n t r a c e d m ()) ;
mz (x) ; / / c a l l t h e o r i g i n a l m

}

Figure 13. Wrapper to intercept untraced calls to m.

External methods that call to the original m will still call
it with its old name, and thus will call the new m above. So,
there we can code the logic of the interception, as shown
above.

VI. Proof of Concept

As a proof of concept we built a prototype implementing
the transformation discussed before. All Java control struc-
tures, except labelled break and continue, are handled We
use Eclipse Java Development Tools (JDT) that allows Java
source code to be analyzed and transformed at the abstract
syntax tree (AST) level.

So far we assumed that the program P only has a single
top-level entry point, e.g., its main method. This does
not work for logging, e.g., a GUI application. Such an
application is event driven: when a user interacts with it,
e.g., by clicking on a button, it generates an ’event’, and
the corresponding event handler is executed. Each handler
acts thus as a top-level entry point. In our implementation,
it is possible to annotate multiple methods as top-level. A
’full execution’ means an execution of a top-level method
m, from its start to its end. Each full execution generates a
separate trace file, e.g., named log m timestamp.txt. From
such a name we can infer back to which decoder the file
must be given. The trace is actually split into two log files:
a blog m.txt file containing the pure bitstring part of the
trace, and a evlog m.txt file containing dynamic values and
thrown exceptions. This allows the bitstring to be stored
more compactly.

To validate that our approach works, we try it on a number
of examples, listed in Table I. LOCS is the total lines of code
(comments and white lines are not counted). TrT test suite is
a set of classes consisting of various logged statements that
we use to test our implementation. Reversi is a small a GUI-
based program implementing a game of the same name. This
program has multiple top-level entry points. Nanoxml is an
open source small XML parser. Barred is an open source
file archiver. Except for the Trt test suite, these programs
do not actually do any logging. We artificially add logging

73Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

statements, by converting most comments to calls to log(s)
or log(s, v).

Table I Some Statistics

#class #methods LOCS
TrT test suite 33 59 629
Reversi 4 30 473
Nanoxml 25 285 3321
Barred 21 45 2075

We then run the examples on several sample inputs and
compare the resulting logs and the logs that we would get if
we do not apply our transformation. The results are shown
in the table below.

Table II Results

org (KB) tr enh DVR CR ER
TrT test suite 3.3 1.3 24.1 0.27 0.39 7.3
Reversi 29.6 7,5 87.6 0.09 0.16 3.0
Nanoxml 268 101 3054 0.18 0.38 11.4
Barred 29.2 1.4 111 0 0.05 3.8

Above, tr and ehc express the size, in KB, of the trace
file and enhanced log. It is calculated by counting the
number of characters; every character is counted as two
bytes. The org is the size of the original logging fragments
in ehc. CR = tr/org is the obtained compaction ratio, and
ER = enh/org is an indication of the enhancement factor.
So, the compaction factor of 0.38 for Nanoxml means that
our generated trace is 0.38× smaller than what we would
get from normal logging, whereas its enhancement factor
of 11.4 means that after decoding we enrich the normal log
with tracing information, roughly by 11.4×. The above way
to calculate ER is indeed debatable. One may point out that
we should instead compare the amount of raw information
the logs carry. But this is also not very useful: the trace
file can be thought as a minimal representation the raw
information that the corresponding enhanced log embodies;
but not even a tool can read a trace file without decoding
it first. Enhanced logs produced by our implementation are
intended to readable by human and parsable by tools. So
they do contain some verbosity, but we did try to minimize
it (e.g., we did not blow them up to HTML); so, comparing
them to the size of the original logs seems reasonable. DVR
is the ratio of the amount of logged dynamic values in the
normal log. The above results indicate that higher DVR will
decrease the compaction ratio, which is to be expected since,
unlike static strings, dynamic values have to actually be
logged.

We expected that the run time overhead would be less
compared to normal logging, because we would have to do
less I/O. However, in our experiments this does not turn out
to be the case, as shown in the table below for the Nanoxml
and Barred examples. #calls is the total number of calls to
the log function, and OV is the resulting total time overhead
in ms; ovc is the average overhead per number of call, and
ovs is the average overhead per KB of logged data in the
original log. These numbers indeed suggest that the overhead

is quite small, but ideally those numbers should be negative.
We believe that the implementation can still be improved by
choosing more clever data structures in our implementation.

Table III Time overhead

#calls OV (ms) ovc ovs
Nanoxml 5335 320 0.06 1.19
Barred 660 277 0.42 9.55

With respect to the conclusions suggested by the above
results, the following are the threats to their validity.

1) Logging statements were artificially added; as said, by
converting comments to calls to log. This resulted in
quite intensive logging. A program with real logging
may log with different intensity. In particular, when
a program logs less frequently, it can be expected to
also have more attractors/distractors between logging
nodes. This affects CR negatively, but improves ER.
DVR also matters; higher DVR affects CR negatively,
without improving ER.

2) The amount of logging investigated was at most in
the order of hundreds of KBs. In particular, we did
not investigate large scale logging (e.g., in the order
of GBs).

VII. RelatedWork

Most work in logging has been focused on providing
logging infrastructure for various software technologies.
Many modern programming languages already come with
logging libraries. These provide functions we can use to
log messages. They often have a notion of ’logging level’
to control the verbosity of the generated logs. There are
also alternative libraries such as the Log4x family [10]
that provide, e.g., improved APIs or improved performance.
Apache Commons Logging offers a set of common logging
APIs so that the implementation of the logger can be
decoupled and replaced easily. Some SDKs, such as the
Google Web Toolkit (GWT) for developing web applications
may also come with its own logging library, specialized to
the kinds of applications that they target. Most logs, e.g.,
web servers logs or OS logs, are semi structured [11], where
for example types of events and their time stamps can be
distinguished, but further information about them are often
described in free style strings. Obviously, the more refined
the structure is, the more viable they are for analysis. Some
debuggers produce deeply structured logs [12]. FITTEST
testing framework comes with PHP and Flash loggers that
produce deeply structured logs [13], which are used to feed
its model and oracle inference tools [8], [14].

Logging statements can be manually added into a pro-
gram, or automatically inserted through program transforma-
tion. For example, this can be done by specifying the logging
as a separate ’aspect’, which is then weaved into the target
program using an AOP tool like AspectJ [15], or using a
special log instrumentation tool such as ABCi for Flash [16].

74Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

Or, we can use a generic program transformation tool such
as Stratego [17]. Our approach can be seen as adding another
layer of transformation. Our implementation is ad hoc, using
JDT. In retrospect, using a tool like Stratego might have been
a better choice, as it allows the transformation to be specified
and composed more abstractly.

VIII. Conclusion & FutureWork

We have presented a new log encoding scheme. The
approach works by transforming the source code of the
target program, to make its control flow statements to log
bitstrings encoding their flows of control. The produced
logs are significantly more compact than traditional logging,
while at the same time, when decoded they enhances the
resulting normal logs with substantial tracing information.
To reconstruct the logs, decoders are needed; they are
produced by the same transformation above.

A prototype implementing the approach has been built and
tested on some real life programs. The results show 0.05 -
0.4 compaction ratio (2.5 - 20 times more compact), and 3
- 11 enhancement factor.

Future work. We want to investigate if the tracing in-
formation can be further enhanced, e.g., by logging runtime
types of relevant objects. In theory, if such information is
enumerable, the enumeration allows them to be compactly
encoded, and thus the logging overhead is minimum.

We want to investigate if the logging scheme can be
extended to multi-threaded programs. We believe that our
scheme can be straightforwardly tweaked such that each
thread writes to its own trace file (which is also good
to maintain concurrency). However, when interpreting the
resulting logs, we still want to infer what the temporal
relations are between entries in the logs of different threads
(e.g., does this entry e1 from the thread T1 occurs before e2
from T2?). Time stamping every bit in the trace is obvious
not acceptable. However, we can log the time whenever T1
manages to obtain a lock c, and when it releases it again.
Because two threads cannot at the same time obtain the same
lock, this will at least allow us to infer the happen-before
relation between the threads.

We want to investigate if the logging scheme can be made
more flexible by being able to dynamically turn on and
off its tracing mode. Currently, it always produces tracing
information, whether we want it or not. One situation where
it would be useful to turn off tracing is when a loop/recursion
spam too much tracing bits, despite the compaction scheme
that we have applied. Turning tracing off is actually quite
easy. However, the decoders relies on the tracing information
to be able to correctly do their work. So, when a fragment
of the trace is suppressed, the decoders have to be made
smarter so that they can fill in the missing fragment on their
own, so that they at least are able to continue decoding the
rest of the trace.

Acknowledgment. This work is funded by the EU
FITTEST project No. 257574.

References

[1] J. H. Andrews, “Testing using log file analysis: tools, meth-
ods, and issues,” in Procd. 13th IEEE Int. Conf. on Automated
Software Engineering, 1998, pp. 157–166.

[2] J. H. Andrews and Y. Zhang, “Broad-spectrum studies of
log file analysis,” in Procd. 22nd Int. Conf. on Software
Engineering, 2000, pp. 105–114.

[3] H. Barringer, A. Groce, K. Havelund, and M. Smith, “Formal
analysis of log files,” AIAA Journal of Aerospace Computing,
Information and Communications, 2010, pp. 365–390.

[4] S. Pachidi, “Software operation data mining: techniques to
analyse how software operates in the field,” Master’s thesis,
Dept. Inf. & Comp. Sciences, Utrecht Univ., 2011, IKU-
3317153.

[5] K. Kowalski and M. Beheshti, “Improving Security Through
Analysis of Log Files Intersections,” I. J. Network Security,
vol. 7, no. 1, 2008, pp. 24–30.

[6] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic genera-
tion of software behavioral models,” in Procd. of the 30th int.
conf. on Software engineering. ACM, 2008, pp. 501–510.

[7] D. Tu, R. Chen, Z. Du, and Y. Liu, “A Method of Log
File Analysis for Test Oracle,” in Scalable Computing and
Communications; Eighth International Conference on Embed-
ded Computing, 2009. SCALCOM-EMBEDDEDCOM’09.
International Conference on. IEEE, 2009, pp. 351–354.

[8] L. Mariani, A. Marchetto, C. D. Nguyen, P. Tonella, and
A. I. Baars, “Revolution: Automatic evolution of mined
specifications,” in ISSRE, 2012, pp. 241–250.

[9] A. Sturala, “Record-based Logging,” Master’s thesis, Dept.
Inf. & Comp. Sciences, Utrecht Univ., 2011, ICA-3324192.

[10] C. Gulcu, “Log4j delivers control over logging,” Java World,
2000.

[11] A. Schuster, “Introducing the Microsoft Vista event log file
format,” digital investigation, vol. 4, 2007, pp. 65–72.

[12] M. Auguston, “A Program Behavior Model Based on Event
Grammar and its Application for Debugging Automation,” in
AADEBUG, 2nd Int. Workshop on Automated and Algorith-
mic Debugging, 1995, pp. 277–291.

[13] I. S. W. B. Prasetya, A. Elyasov, A. Middelkoop, and J. Hage,
“FITTEST log format (version 1.1),” Dept. of Inf. and Comp.
Sciences, Utrecht Univ., Tech. Rep. UU-CS-2012-014, 2012.

[14] I. S. W. B. Prasetya, J. Hage, and A. Elyasov, “Using sub-
cases to improve log-based oracles inference,” Dept. of Inf.
and Comp. Sciences, Utrecht University, Tech. Rep. UU-CS-
2012-012, 2012.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold, “An Overview of AspectJ,” in ECOOP’01,
2001, pp. 327–353.

75Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

[16] A. Middelkoop, A. Elyasov, and I. S. W. B. Prasetya, “Func-
tional instrumentation of ActionScriptPrograms with ASIL,”
in Implementation and Application of Functional Languages,
ser. LNCS, vol. 7257, 2011, pp. 1–16.

[17] E. Visser, “Stratego: A language for program transforma-
tion based on rewriting strategies,” in Rewriting Techniques
and Applications, 12th International Conference, RTA 2001,
Utrecht, The Netherlands, May 22-24, 2001, Proceedings, ser.
LNCS, vol. 2051, 2001, pp. 357–362.

76Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

