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Abstract—Test suite reduction is an activity which
reduces test suites while maintaining their coverage
properties. This problem is equivalent to the set cover-
ing problem and therefore NP-complete. Many strate-
gies for solving the problem are known. They are usually
applied to minimizing the number of action calls within
a given test suite for a certain coverage goal. While
some algorithms like branch and bound compute an
exact minimal solution, other algorithms like the greedy
approach compute an approximation for the minimal
set of actions. In this work, we deal with the problem of
efficient test suite reduction in industrial practice. For
this purpose, we introduce the concept of preliminary
test suite reduction. Its aim is to reduce redundancy
in test suites before starting the actual reduction. In
the paper, we further describe experimental results
that give implication on how the proposed technique
can reduce the runtime of test suite reduction in the
industrial practice.

Keywords—MBT; test suite reduction; industrial case
study.

I. INTRODUCTION

Automatically generating tests suites from formal spec-
ifications as advertised by model-based testing (MBT)
is regarded as a potential innovation leap in industrial
software quality assurance. Most MBT approaches are
running in two phases. In the first phase, vast amounts
of test cases are generated for an inserted model until
coverage of model entities is achieved. In the second phase,
a subset of these test cases is selected with the aim to
preserve the targeted coverage and therefore the assumed
fault-uncovering capabilities [1]. This activity is called test
suite reduction.

Fig. 1 represents a test model, that will be used as
a running example in order to illustrate the reduction
techniques. The test model is given in form of a finite state
machine. The states are depicted as circles and the actions
as named arrows. ¢0 is a start state and the state with two
nested circles is an end state. A valid test is a sequence
of actions starting in g0 and ending in the end state. As
the coverage criteria we choose to cover all action names.
Please note that in practice the execution of actions may
be constrained by input and system data and may have
additional side effects on data apart from state changes [2].
How side effects may be handled later on during test case
execution is sketched in Section V-A.

Assuming that a model checking technique (breadth-
first search) is used for the test generation in phase one,
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Fig. 1. Running Example.

the following test suite may be obtained:
[ab, df, aab, aaab, acab, acdf, cde f].

It can be noted that the derived test suite covers all action
names, but it is not the minimal test suite (measured by
the overall number of actions). How this test suite can
be reduced, while preserving action name coverage will be
discussed in the consequent sections.

The problem of test suite reduction is largely discussed
in the literature. There are papers, where the general test
suite reduction activity is described [3], [4]. Further work
on how to apply 0/1-Integer linear programming to the test
suite reduction problem [5] or how to improve the Greedy
heuristics [6], [7], [8] can be found. In [9], [10] there are
approaches using multi-objective optimization functions,
whereas in [11] an approach based on genetic algorithms is
introduced. Some empirical results for test suite reductions
have been reported in [12].

This paper is motivated by the problem of efficient test
suite reduction. We introduce a preliminary test suite re-
duction technique, aiming to reduce the runtime of the test
suite reduction procedure and investigate its applicability
to test suite reduction in the industrial practice of MBT.

First, we provide the industrial context for test suite
reduction (Section II), then we describe the test suite
reduction problem in detail (Section IIT). In this paper,
we consider two existing approaches to the test suite
reduction problem: approximative technique (described on
the example of a greedy algorithm [13]) and the technique
searching for an exact solution (described on the example
of a branch and bound algorithm [14]).

In Section IV, we define the concept of preliminary test
suite reduction. In essence, the goal of applying preliminary
reduction is to make the overall activity of test suite
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reduction more efficient. In Section V we provide a few
experimental results in order to illustrate the proposed
technique and also to discuss its applicability for practical
test suite reduction. Section VI concludes the paper.

II. INDUSTRIAL CONTEXT

In the software industry, model-based test automation
is one of the most promising approaches for increasing the
efficiency of testing. Various commercial vendors emerged
that offer tools and consulting, maintain user groups, and
organize industrial conferences. Although the various com-
peting commercial tools utilize alternative test generation
concepts like model checking, theorem proving, or random
walks, the overall process of producing test suites is similar.
It consists of two phases:

1) Test suite generation - deriving test cases from the
model, usually until test coverage is reached.

2) Test suite reduction - calculating a subset of test cases
that maintains test coverage.

Especially in industrial settings, the second phase is in-
dispensable, because of the significant manual effort associ-
ated with test case concretization [15]. This transformation
from abstract test cases to executable test scripts usually
follows the keyword-driven testing principles. Keyword-
driven testing uses keywords in the test cases, in addition
to data. Each keyword corresponds to a fragment of a test
script (the adapter code), which allows the test execution
tool to translate a sequence of keywords and data values
into executable tests [1].

Generated test suites usually contain a large number of
redundant test cases, that would unnecessarily increase the
concretization effort. For example, the initially generated
test suite given in Section I contains 7 test cases and 23
actions. However, various subsets of the given test suite
exist that are preserving the defined coverage of all action
names. As to be shown in Section III, the optimal solution
only contains 2 test cases and 6 actions.

The most common reasons for redundancy in test suites
are the presence of loops in the test model as well as multi-
ple occurrences of equal action names. The given example
contains both. Further, some test generation approaches
deliberately continue to create test cases despite the fact
that the computed test suite already meets the coverage
criteria. Often, this enables better reduction results, as it
increases the variety of test cases.

In industrial practice, various additional sources of
redundancy may exist that are not connected to the model
structure or test generator. For example, it is often the
case that after initial thorough testing, test suites with
reduced coverage requirements are created to lower the
execution runtime of regression tests. In order to avoid the
effort of test re-generation and especially the potential test
concretization of additional test cases, usually the already
generated and used test suite is reduced again. Also, the
merging of generated test suites with manually designed
or legacy test cases often occurs in practice.
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III. TEST SUITE REDUCTION

As described, for a provided model the obtained test
suite can contain a very large number of test cases. Aim
of the test suite reduction is to select a subset, which
preserves the targeted coverage and therefore the assumed
fault-uncovering capabilities. This activity can be formu-
lated like follows [7]:

Given: A test suite TS, a set of test case require-
ments rq,7s,...,7, that must be satisfied to provide the
desired testing coverage of the program, and subsets of
TS, T1,T5, ..., Ty, one associated with each of the r;’s such
that any one of the test cases tc; belonging to T; can be
used to test r;.

Problem: Find a representative set of test cases from
TS that satisfies all of the r;’s.

The test suite reduction problem can be considered as
a hitting set problem — the problem of finding the hitting
set having minimum cardinality, which is equivalent to the
set cover problem and is known to be NP-complete [16].
The standard way of solving the hitting set problem is a
restatement into a 0/1-Integer linear program. Afterwards,
this can either be exactly solved by using a technique like
branch and bound algorithm or approximately, for example
by applying different variations of Greedy heuristics [17],
[13]. In the following, both approaches are described.

A. Greedy Algorithm

We use a classical implementation of the Greedy algo-
rithm which has already been known for some time. Even
though the Greedy algorithm computes an approximation,
[13] showed that the result cannot become arbitrarily bad.
In fact the upper bound for the performance guarantee
only depends on the number of requirements.

The algorithm iteratively constructs subsets TS; C TS,
which will produce a complete test suite after termination
of the algorithm. Until all requirements are met, the
algorithm does the following: It computes the set of all
test cases, for which the number of additional action calls
is maximal. Then, it picks one of these (t¢) at random.
This test case is afterwards added to TS, = TS; U {tc}
and the requirements are updated appropriately.

The algorithm has a linear time complexity O(]TS|)
with respect to the size of a test suite | TS| to be optimized.

Using a greedy algorithm on the initially generated
test suite of the example given in Section I, the following
reduced test suite can be obtained, containing 3 test cases
and 10 actions:

[acdf, ab, cdef].

B. Branch and Bound Algorithm

In order to find an exact solution to the test reduction
problem, we use the branch and bound variation (Balas-
algorithm) described in [14], which allows one to compute
an optimal result.

The algorithm identifies all possible subsets of TS =
{tc1,...,tc,,t with arrays (ni,...,n.;,). Here n; = 1
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means, that tc; is part of the subset, while n; = 0 means,
that it is not. To check these arrays systematically, they are
organized as a binary tree. At the root node, no decisions
have been made, whereas any node on level ¢ represents a
certain choice of the first ¢ bits. The node (ny,...,n;) is
identified with the test suite {tc; : n; = 1}. During the
so-called pruning, it is checked for each constructed node
if this node can be safely discarded from the tree.

In worst case, the algorithm has an exponential run
time with respect to the size of a test suite |T'S| to be
optimized.

In the case of using a branch and bound algorithm
on the initially generated test suite of the example given
in Section I, the following reduced test suite is obtained,
containing 2 test cases and 6 actions:

[ab, cdef].

IV. PRELIMINARY REDUCTION

As described, test suite reduction is necessary because
initially generated test suites usually contain far more test
cases than necessary to achieve certain coverage goals. On
the other side, also test suite reduction itself may be a
costly operation. As discussed in Section III, the runtime
of test suite reductions can vary from linear to exponential
depending on how exact the solution should be. As test
engineers expect fast feedback from test automation tools,
e.g. in order to not loose their focus, each runtime improve-
ment for test suite reduction retaining the exactness of the
solution can be very valuable from the practical point of
view.

In this section, we would like to introduce the concept
of preliminary removing redundancy in an initial test suite
in order to reduce the runtime of the actual reduction
procedure. The proposed preliminary reduction is applied
before the actual optimization procedure starts. We define
prelimiary redundancy as follows.

Definition: Given a test suite TS, we say that the test
case tc is redundant if there exists another test case t¢’ with
[tc/| < [tc| and for each requirement r; it holds r;(tc) =
r;(tc).

Following algorithm can be used in order to delete the
redundant test cases from the test suite before starting the
actual test suite reduction.

Algorithm: Our preliminary reduction procedure com-
pares the test cases from TS with each other and deletes

all redundant test cases. This results in a time complexity
of O(|TSJ?).

Applying the above definition to the example from
Section I, a given test case is redundant if another test
case with equal or less actions exists that covers at least
the same action names. For instance, the test aaab is
redundant because |ab| < |aaab| while both cover the same
set of action names. The test suite obtained after applying
the preliminary reduction to the example consequently is

[ab, df, acab, acdf, cde f].
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As mentioned before, the greedy algorithm has a linear
run time complexity, whereas the branch and bound algo-
rithm has an exponential run time complexity with respect
to the size of a test suite |TS| to be optimized. Based
on this information, the decision should be to always use
preliminary reduction when constructing an exact minimal
set of test cases and to never use it when constructing an
approximative solution. However, in practice there are two
factors, which can influence this decision:

e  The typical regions of the test suite sizes and the
grades of the run time complexity curves in these
regions for each reduction algorithm.

e  The typical rate of redundancy in the considered
test suites.

Combining this two factors can lead to the situations
where either it would not be reasonable to use preliminary
reduction at all (also when constructing an exact minimal
set of test cases) or where it would be reasonable to use it
even when constructing an approximative solution to the
test suite reduction problem.

After being able to construct examples for all these
situations, we decided to check the applicability of pre-
liminary optimization for both exact and approximative
approaches to the test suite reduction problem in the
industrial practice. The purpose is to derive a practically
applicable guidance on the basis of the experiments with
typical test suites from the industrial context.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results illus-
trating the applicability of preliminary reduction technique
for optimizing the test suite reduction procedure. We start
with a description of the industrial testing setup: how test
models are constructed and how the tests are generated.
Then, we provide the experimental results and discuss
the usability of preliminary reduction in the industrial
practice. Finally, possible threats to validity are described.

A. Test Setup

The testing approach we consider in this paper lever-
ages a keyword-driven testing framework, as described
in [18]. A model editor is implemented on top of the frame-
work in order to facilitate an automated test generation.
Test models are represented by transition state machines
enhanced with data flow and global data.

As an input for the experiments, we have collected a
number of test models, which were designed on the basis
of industrial case studies. These test models were created
for system testing. In practice, system testing is based on
high-level usage scenarios and business requirements that
have been defined by business analysts or customers. Ul-
based testing is most appropriate to carry out the tests, as
the system should be validated as a whole and only using
access points that are available to the prospect user.

Keyword-based testing for UI is mostly done by uti-
lizing capture/replay functionality, which is provided by
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standard test automation tools. These tools are monitor-
ing user interactions on the interface that can reproduce
the execution of the recorded sequence of events. These
captured scripts commonly allow data flexibility by ex-
changing the concrete values (used during capturing) with
variables that can be initialized independently.

Further, the recorded scripts can be combined in so-
called scenarios. A scenario is a sequence of recorded
scripts working on a predefined set of data. Global vari-
ables are used in scenarios to organize the data flow. Their
function is to store output values of a captured script and
make it available as input for another. In Fig. 2 an example
of the described data flow is given. The value of the local
output variable A.out of Script A is written to the global
variable X and later mapped to the local input variable
B.in of Script B.

| Global Data  Varizble X :
R S :
Scenario
Script A : Script B
A.out  B.in

Fig. 2. Data flow in a scenario.

In order to allow a calculation of an exact minimal
test suite and further to get realistic statements for the
context of our work, most of the chosen samples are
small- or intermediate-sized (I-IX). We also included one
interesting border case example (NA), which is too large
to be optimized with algorithms of the branch and bound

type.

All computations were performed on an AMD Opteron
(tm) Quad Core with 2.60 GHz and 32 Gigabytes of RAM.

B. Selected Results

In Table I and Table II, we present selected results
of our experiments demonstrating the applicability of the
preliminary reduction for an approximative and an ex-
act construction of the reduced test suite. In Table I,
we compare approximating greedy algorithm with and
without preliminary reduction and in Table II we do the
comparison for the branch and bound algorithm. The
tables have the following columns: number of an example
(Example), size of a test suite to be optimized (|TS|),
size of a test suite obtained after preliminary reduction
(ITS|(PR)) , and the run time for the each algorithm with
and without preliminary reduction (Time(PR) / Time).
The time is measured in seconds.

C. Discussion

As it can be seen in Table I and Table II, the pre-
liminary reduction does not improve the approximative
greedy algorithm, except for one border case (NA), where
the optimal test suite (containing 3 test cases) is already
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TABLE 1. GREEDY ALGORITHM WITH AND WITHOUT
PRELIMINARY REDUCTION.
Example | |TS| |TS|(PR) Time | Time(PR)
1 15 14 0,06 0,08
11 32 32 0,07 0.12
111 41 41 0.08 0.14
IV 45 24 0,09 0,16
Y 120 120 0,10 1,05
VI 132 111 0,62 2,12
VII 289 203 1,36 7,63
VIII 512 336 3,67 20,13
IX 625 402 4,83 44, 37
NA 3160 3 32,13 3,57
TABLE II. BRANCH AND BOUND ALGORITHM WITH AND
WITHOUT PRELIMINARY REDUCTION.
Example | [TS] |TS|(PR) Time Time(PR)
1 15 14 0,06 0,07
11 32 32 3,66 3,67
111 41 41 9,05 9,06
vV 45 24 0,13 0,11
Y 120 120 77,49 77,50
VI 132 111 268,78 155,14
VII 289 203 511,02 403,71
VIII 512 336 1353,37 810,81
X 625 402 1733,16 886,95
NA 3160 3 - 3,59

obtained from 3160 test cases after the preliminary re-
duction. In contrast, branch and bound algorithms, which
have exponential complexity, perform already better for
the size of the fourth example (IV) if using the preliminary
reduction.

This means that in the industrial practice the most
challenging test suites are located in the size region, where
there is enough redundancy to make preliminary reduction
an efficient technique.

In order to better understand the presented results, we
also provide scatter diagrams representing the ratios for
speedup or slowdown in the run time for the examples I-IX
(Fig. 3). For each diagram on the x-axis, there are numbers
of tests in the test suites and on the y-axis there are the
corresponding ratios between run times with and without
preliminary reduction (Time(PR)/Time ). The thick hor-
izontal lines define the areas where Time(PR)/Time = 1,
i.e., the preliminary reduction brings neither advantages
nor disadvantages from the run time perspective. The skew
lines (trend lines) represent the correlations between the
test suite size and the runtime ratio described above.

From the presented diagrams, it can be seen that in the
case of approximative test suite reduction it is not only
unsuitable to use preliminary reduction, but the drawback
is increasing with the growing size of test suites. Otherwise,
for the branch and bound algorithm the trend line shows
that the value of using preliminary reduction grows with
the growing size of test suites.

It can be seen that it is not always reasonable to apply
it for small test suites, but the larger the test suites get
the more beneficial it is to apply the preliminary reduction
technique. From the practical point of view, the test suites
of medium or large size are crucial with respect to run
time, whereas for small test suites the possible slowdown
is usually not critical.
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Fig. 3. Relative runtime diagrams.

Therefore, as a bottom line we deducted the following
from the experiments:

For the industrial practice, it is recommended to use the
preliminary reduction each time a (near) optimal solution
for the test suite reduction problem is computed.

D. Threats to Validity

We realize that a number of experiments in the area
of Ul-based MBT cannot serve as a proof of applicability
for the whole industrial area of MBT. However, we believe
that the presented results can be generalized to the prac-
tical testing of high-level usage scenarios, where Ul-based
testing is the most commonly used approach.

VI. CONCLUSION

In this paper, we introduced the concept of prelim-
inary test suite reduction and studied how eliminating
redundant test cases can accelerate the test suite reduction
algorithms.

We further described the industrial context of MBT
and provided a collection of common reasons for the exis-
tence of the redundancy in test suites. The applicability of
preliminary test suite reduction for the industrial practice
of MBT is shown, based on a number of experiments from
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Ul-based testing, which is a common way of testing the
high-level scenarios.

We applied the preliminary optimization technique to
two classical solutions of the test suite reduction problem,
namely the branch and bound algorithm, which computes
an exact solution in exponential time, and the greedy
heuristic, which yields the best approximation possible
in polynomial time. In the paper, we presented selected
experimental results, which have shown that the approach
pays off for branch and bound algorithms, but is rather
inefficient for greedy algorithms.

From our industrial experience in MBT, we know that
redundancy in the test suite is a common issue which
affects test efficiency on various levels. Therefore, it can
be an important aspect in practice to apply preliminary
optimization in case a (near) optimal solution for the test
suite reduction problem should be computed.
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