
Experiences in Test Automation for Multi-Client System with Social Media Backend

Tuomas Kekkonen, Teemu Kanstrén, Jouni Heikkinen
VTT Technical Research Centre of Finland

Oulu, Finland
{tuomas.kekkonen, teemu.kanstren, jouni.heikkinen}@vtt.fi

Abstract—Effective testing of modern software-intensive sys-
tems requires different forms of test automation. This can be
implemented using different types of techniques, with different
requirements for their application. Each technique has a
different cost associated and can address different types of
needs and provide its own benefits. In this paper, we describe
our experiences in implementing test automation for a multi-
client application with a social media backend. As a first option,
traditional scripting tools were used to test different aspects of
the system. In this case, the test cases were manually defined
using an underlying scripting framework to provide a degree
of automation for test execution and some abstraction for test
description. As a second option, a model-based testing tool
was used to generate test cases that could be executed by a
test harness. In this case, a generic model of the behaviour
was defined at a higher abstraction level and from this large
numbers of test cases were automatically generated, which
were then executed by a scripting framework. We describe
the benefits, costs, and other properties we observed between
the two different approaches in our case.

Keywords-model-based testing; test automation; performance
testing; data validation testing; web service testing.

I. INTRODUCTION

Testing is commonly referred to as one of the most time
consuming parts of the overall development and maintenance
process of a software intensive system. To address this, vari-
ous techniques have been developed to make test automation
more efficient, each with their own costs and benefits. In
this paper, we describe our experiences in implementing
test automation for a multi-client system with a social-
media backend. In implementing this system, two different
approaches were applied to create and execute test cases with
varying degrees of test automation. Both tested the system
through its external interfaces built on top of HTTP requests
with JSON data structures (REST style web services). We
describe our observed costs, benefits, and limitations of each
approach.

The first approach we applied was based on using existing
test automation frameworks to provide a scripting platform
for manually defining test cases and automating test execu-
tion. The tools applied are existing HTTP scripting tools to
manually define test sequences for testing specific properties
of the system. For us, the benefit with this approach is quick
bootstrapping of the test automation process in using off-the-
shelf tools, and the ability to manually define specific test
cases for specific requirements. The cost is in creating large

sets of test cases manually, which quickly becomes labour
intensive and exhaustive. The main person responsible for
this approach was the first author of this paper.

The second approach we applied was based on model-
based testing (MBT). MBT is used to generate test cases
from a model describing the system. This model typically
describes the behaviour of the system in a form of a state-
machine at a suitable abstraction level for generating the
required test cases. The MBT tools provide components
and modelling notations to make the modelling easier, and
algorithms to generate test cases from the models. The test
logic and integration with the test setup are domain specific
and need to be created separately for each tested system.
For us, the benefit with this approach is getting extensive
coverage with automated test generation. The cost is in
creating the models for test generation and integration with
test execution. The main person responsible for this approach
was the third author of this paper.

Guidance and coordination for both of these approaches
was provided by the second author of this paper.

The rest of the paper is structured as follows. Section II
presents the problem domain. Section III presents the manual
test setup and experiences. Section IV presents the MBT
test setup and experiences. Section V discusses the overall
experiences in a broader context. Finally, conclusions end
the paper.

II. BACKGROUND

We consider the system under test (SUT) here as a
form of a web-application, where the different components
communicate over HTTP requests. The service also provides
a native mobile client interface and a social-media web-
browser interface. However, in the testing phases described
in this paper, we were interested mainly in testing the
backend service. This is because the concerns of the project
parties were on the high bandwidth and data processing
requirements set by the data collection and transfer. Thus
the user-interface part is not discussed in detail at this point,
but only for the relevant interface and data processing parts
related to these interfaces.

Often in web application testing the main goal is to get
assurance that the service can handle all the user requests
without problems. Therefore, it can be seen as performance
testing. This requires assessing various properties such as

34Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle



Figure 1. Test Automation Pyramid.

response latency, varying event sequences, event frequency
handling, and error handling(as described e.g., in [1]). To
estimate the capabilities the tester has to have some idea
how many users the service will have and what type of
requests there will be. The variance in effect to the server
between requests can be in processing load, I/O load and
network load. Based on the estimates the service is loaded
with different requests and then maybe bottlenecks are
discovered. Then the development team can optimize those
weaknesses in the service. Usually, some big faults in the
server configuration or server side scripting are discovered
at this phase. In our experience, basic properties such as
database query implementations and even chosen image
formats can cause serious performance issues depending
on choices made in design and development. Besides basic
verification of the basic functionality of the SUT, our goal
was also to verify the performance of the system and identify
any bottlenecks.

We view test automation as a form of a pyramid, where
manual testing is at the bottom and MBT at the top. This
is illustrated in Figure 1. In this pyramid, the different
levels of test automation build on top of the lower levels,
and in our experience, it is not possible to implement the
higher levels effectively without first having the lower levels
working. This is similar to, for example, how Blackburn et
al. described evolution of test automation from basic test
execution to scripting based on action words, and finally
model-based testing at the fourth generation [2].

Manual test automation at the lowest level can be just a
user clicking on controls of a graphical user-interface and
observing how they feel it should behave. Test scripts are
typically a form of computer program written to perform
a specific sequence. Keywords are abstractions that are
transformed into test scripts by a test automation framework,
allowing one to create test cases using higher level language
concepts. As MBT generates test cases, optimally it should
be able to generate them in terms of higher level elements
such as keywords to avoid having to put low level details
in to the test model. Keywords are a suitable approach for
this as they are already supported by several test automation
frameworks. An example of such integration can be found,
for example, in [3]. An approach where the MBT tool
can also be guided through embedded keywords, effectively

combining benefits of both approaches can be found in [4].
In terms of a web service such as the one we tested here,

this type of an effort is not directly possible, but rather
scripting tools are required for even the most basic testing,
where the reference for expected behaviour is typically the
natural language specification of the SUT. The ability to
execute test scripts is also a prerequisite for MBT. For
this reason, the MBT part also requires having the same
underlying execution platforms available as the manual
scripting part we described as the first approach applied in
our case study. The MBT approach also requires formalizing
the specification as a suitable behavioural model from the
typical natural language form. For this reason, we can only
expect to have to spend more effort on the MBT approach.
Thus, it is also important to understand the potential benefits
to be able to evaluate where it may be most applicable and
produce realistic gains.

Besides the choice of the level of test automation applied,
other factors also affect the overall cost of the solution.
This includes integration with other tools in the tool chain
such as test management tools, defect tracking, continuous
integration, virtual machines and others (see e.g., [5], [6] for
examples). However, these are common requirements for any
level of test automation and as such we focus here on the
parts specific to test automation itself, where the differences
are greater.

A. Previous Experiences

Test automation has been considered one of the biggest
cost factors in the software development process for a long
time. For example, Persson and Yilmazturk describe estab-
lishing test automation as a high risk and high investment
project in their experience report [7]. They also list 32
pitfalls encountered in taking test automation into use in
practice. These are too numerous to list all here, but some
of the most relevant ones include poor decision making with
regards to what is automated and to what extent, considering
full test automation as a replacement for manual testing, and
the misconception that test automation would always lead
to savings in labour costs. We provide in this paper some
added insights into these pitfalls and information to help
make more informed decisions on what, where, and how to
automate.

A similar experience report is also provided by Berner
et al. [8]. Among other things, their experience shows
misplaced expectations for fast return of investment of test
automation, limited test automation beyond test execution,
wrong abstraction levels for tests. They also note again that it
is also their experience that automated testing cannot replace
manual testing, but should rather be seen to complement
it. Similarly, importance of proper maintenance is also em-
phasized. Again, we provide in our case study information
on our experiences in manual vs. highly automated testing

35Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle



Manual Tester
With limited set of virtual 

devices
MBT Tester with a large 

set of virtual devices

OSMO Tester

Social Media
Platform

Database
Server

Figure 2. Description of the target service and the testing methods.

approaches (from the lower levels of the pyramid to the
higher levels).

Several case studies on using MBT have also been
published. These typically focus on presenting the benefits
achieved, while providing little discussion or comparison
with a manual test automation approach for the same SUT.
Examples of such studies include MBT for the Android
smartphone platform [9], for the healthcare domain [10],
automotive domain [11], information systems [12], and
several others. In this paper, we describe not only the benefits
of MBT as a separate study, but a comparison with manual
testing for the same project. Both testing methods aimed
for the same goal, but ended up using a slightly different
approach.

B. Our Testing Domain

The SUT here is a multi-user service with mobile phone
clients and a backend server. A diagram of the environment
is presented in Figure 2. The backend server also hosts web
applications for social media purposes. The mobile client
is a standalone application that collects information about
the user behaviour and provides a view for the user to this
information on the mobile device. The user can also activate
a social media component, in which case the data is uploaded
to the backend server once a day. When activated, the
backend server processes the data and provides a summary
of information through a social media application.

Data collected by the mobile phone application consists
of logged events with timestamps and usage information
of different applications on the phone. The data is XML
formatted, but also contains comma separated data fields
within.

The backend service receives the data sent by the mobile
clients and stores it in temporary data storage. After a certain
time, it is batch processed to a more detailed form. It is
then stored in the final location to be used by the social
media application. The triggering of the batch process causes
high spikes in the service load. Due to the heterogeneous
user set, the social media also causes high load in the form
of complex database queries with varying parameters based
on different user configurations and their associated social
network graph.

The desired capacity of the service was calculated to be
around 100 000 data uploads per day and the same amount
of social media content requests per day. The registration
message, which is only sent once per user, is not included in
the estimates. Numbers were calculated from the estimated
user count of 1 million from which one tenth were expected
to enable data upload to the backend server, and little less
were expected to also use the social media application. The
service was expected to have users globally so the load is
distributed evenly around the day. Little higher service load
was expected to occur in the European daytime as the biggest
set of users were expected to be from Europe. Size of the
data was estimated to be 4 KB for every data upload. These
numbers were safe estimates to leave some room for error.
This would simply calculate into 400 megabytes of data each
day and roughly 1 upload per second.

The estimates are hard to make for such a service with
different users and mobile phone capabilities. Also, the
popularity of the social media application varies between
countries and its usage is hard to estimate. Therefore, the
distribution of request types sets the problem for estimating
the capabilities of the service and therefore the testing of the
service. As it is a web service it faces the same problems
as any other service with multiple users. An estimate has
to be made as to what kind of requests can be expected in
what ratio and in what sequence. If the more data intensive
requests are more common, then the required capabilities of
the service are different than in a situation when it mostly
faces computing load and only little bandwidth load.

To create test scenarios to test this type of service, a tester
needs to write complicated test scripts. For example, a tester
could write scripts that create requests to the server and
have the script repeat these requests any number of times.
This script could also include a mechanism to observe if the
system responded properly and if the data gets processed
into final storage properly. Checking the data from the
storage requires a secondary access point to the database.
Last step would be to make sure everything gets done
properly no matter what the sequence of actions is.

The input in testing was chosen to contain the most
sensitive and data intensive requests types. We will call them
request1 and request2. Request1 contained user registration
information with many details about the user and the mobile
device. Request2 contained certain logged information col-
lected during a day from the phone. This data was naturally
linked to the previously created user.

III. MANUAL TESTING

During the main development phase of the system, the
manual test approach was the one first applied to create a
limited set of required test scenarios. Here, by manual, we
mean simple scripting based testing. It was seen as a means
to quickly achieve the needed coverage for the most critical
requirements.

36Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle



Apache Bench[13], Siege[14], Grinder[15] and Curl[16]
were used as tools for the testing in this phase. The goal
was to verify the core functionality of the service, and to
see how many requests it can serve in a certain time.

A. Process

1) Create desired requests: Using Curl, a simple HTTP
request program, the tester first created a request and verified
that it gets appropriate response. Variables in the request
were static.

2) Implement the request into test program: When the
request type is clear and the parameters are correct, this
request can be implemented as a test case for Apache Bench,
Siege or Grinder. Both were used in this test and they
provided similar features for this type of simple testing.
Apache Bench cannot be used as versatilely as Grinder.
Grinder provides the possibility to define test case with
multiple requests which is useful in this scenario. Apache
Bench was only used to test performance with one type of
request.

3) Scripting: Apache Bench runs a single HTTP request
with defined amount of threads for defined amount of times.
To run repeatedly with different parameters in repeats and
concurrence the tester has to implement a small shell script
to make this process easier for repetition purposes too. The
same applies for Siege and they are both strictly command
line operated.

4) Execute the tests: Executing here means letting the
test script repeat the test with desired configuration. In
Siege and apache bench the testing can be configured by
changing the amount of simultaneous requests and interval
in requests. The goal was to reach a certain performance
in terms of requests per second with any reasonable count
of simultaneous requests. In practice, we targeted 50 to 200
simultaneous requests. Simultaneous users or requests here
mean executing the HTTP requests as fast as possible with
parallel threads. The same number of simultaneous users in a
web page consumes fewer resources than this because users
do not repeat their requests that fast.

5) Observe performance: Documenting and analysing the
results is the final part of testing. Server performance was
analysed with one type of request at first. This way, some
sorts of estimates of the performance were determined and
some rough limitations could be set. In reality, other vari-
ables and requests can have great impact on performance.

B. Weaknesses

During the initial testing phase many weaknesses were
noticed in the manual testing process. The test scripts were
not able to produce variance in the test data. This was
partially solved by creating random variables in the test data.
However, it still did not produce suitable data when certain
type of data was needed in different scenarios. When the test
script is not designed from the beginning to be functional

enough with variables and randomness, its configurability is
weak.

IV. MODEL-BASED TESTING SETUP

MBT is often used to help testers increase test coverage.
This can be achieved by varying the test sequences or
variables in test steps through the usage of the model. In
our test environment we have used the OSMO Tester MBT
tool described in [17].

MBT and test automation in general are processes that
require time for setting up and implementing. Their ad-
vantage is usually observed in a longer running software
development project.

In our case, we used only MBT with the goal of fully
integrating all the required external testing tools into the
MBT tool. This way, the test generator could directly gen-
erate and execute test steps against the SUT. This way, the
test engineer does not need to set up complex execution en-
vironments for different tests, but can run them at once. The
tools used were Grinder, OSMO and JDBC SQL connector.
To integrate this environment the solution was to import
OSMO as a library to Grinder Jython based environment
and use the test generator from there. Similarly it was also
possible to use JDBC connector for the database connection.

A. Process

1) Grinder: The first phase of building the MBT setup
was setting up Grinder with the requests and response
verification. The main goal was to see how Grinder works
and how it could be integrated with OSMO to perform the
testing against SUT. Here, the input data, along with user and
request count configuration, was specified inside Grinder.

2) Grinder and OSMO: In the second part of the process,
the OSMO was brought into the setup. The possible requests
and responses were included in the OSMO system test
model. This model was used in Grinder Jython script which
then produced input data for the Grinder HTTP requests.
This way, the requests had increased coverage while still
being able to verify the responses.

3) Grinder, OSMO and SQL: The last part of the MBT
setup was bringing the database element into testing. Natu-
rally to verify the server operation the database processors
correct operation had to be confirmed. Bringing this into the
test automation really improved the testing process in our
case. In manual testing, verification was limited to checking
one or few requests ending up correctly into the database
after processing. In the MBT setup, the effect of every
request was checked against the database.

B. Weaknesses

As mentioned many times in reports about model-based
testing, the launching and covering the requirements takes
lot of time in the beginning. For us, also the matter of
learning the environrment delayed the process of imple-
menting model-based testing. A decision about where to

37Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle



implement the model had to made. We decided to create
a Java class including the model which was then brought
to the Jython based environment of Grinder. This setting
up phase also lead us to broaden the requirements that we
would cover with the setup. It felt the limited set of testing
requirements set by the project was not worth implementing
as a model-based setup. Therefore, we went on to implement
a more advanced performance testing setup which included
the validation of performance in malicious and exceptional
situations.

V. DISCUSSION

The manual testing in the project was done by a test
automation expert who had a long history with the project
and its previous iteration. He also had experience with web
applications and the tools used for manual testing prior
to the manual test effort. He was able to get going and
implement the first test cases in a matter of hours. Further
test cases were implemented over time and were similarly
low effort. However, they were limited to testing only the
core features with as few test scripts as possible. The manual
testing reached higher coverage in terms of covering all the
features of the service. Despite this it lacked in covering
those requests with different types of parameters.

The MBT testing in the project was done by a test
automation expert who had his background in a different
domain, was unfamiliar with the SUT, and with the tools
used to implement model-based testing for the SUT. Learn-
ing the tools and the expected behaviour of the SUT took
several months of effort to build the different iterations of
the MBT solution described in Section IV. Each iteration
took about one man-month of effort in this case. The MBT
implementation of the testing covered the request types in
the web service that are most resource intensive. The main
goal was to provide more variance in the performance testing
which was the main concern in deploying of the service.

A. Method evaluation

Evaluating the difference between processes is difficult
in a case such as this when the two in comparison have
different components to start up with. The person performing
the manual testing had different background than the person
building the model-based testing. Therefore, the efficiency
and performance of the processes are hard to evaluate, but
we concentrate on the performance and usability of the test
environments which came out as a result.

1) Setting up: As stated earlier the difference in setting
up these two types of test environments is noticeable. Model-
based testing takes more time in early stages, but saves
time in longer run. This is often shown in research about
model-based testing[18]. This effect was clearly visible,
especially in the great effort of setting up the model-based
environment in contrast to ease of making the manual tests
run accordingly.

2) Repeatability: Repeating the created set of requests
was not an issue in manual testing. When a set of tests and
scripts were done, repeating those and changing the user
and request count was easy. In this sense manual testing can
easily execute the test cases as a form of regression testing.
This is important, especially when something is changed
in the SUT and there is need to test the performance for
possible improvements. MBT can cause issues here if care
is not taken to make the generated tests repeatable. If the
test cases are regenerated from a changed model or from
the same model with different parameters, the test contents
can change and the results are not consistent. Because of this
care has to be taken to document which model configuration
or which set of generated tests was used for which reported
performance.

3) Modification: At one point in manual testing there was
a certain set of requests that repeated in many test cases,
but in a different sequence. When a new request type was
added it had to be added to every test case, which was very
laborious. Making this type of change in the MBT setup
does not require this type of effort. The tester only needs to
add the request type into the model and generate new tests
with varying sequences and payloads.

4) Sequence direction: In manual testing, the tester has
to create the sequence by hand and this repeats through the
whole test run. This is true if Siege is used to define the
test case requests. In the MBT approach we used sequence
direction for example by defining that request1 has to repeat
n times before any request2 type requests are generated.
Support for rules like these makes it easy to produce guided
variance in test generation.

5) Request type distribution: This part was the most
difficult for manual testing with the tools we used. Siege
was the tool that was able to take the requests as a list and
therefore with some added manual effort it was possible to
modify the ratio of request1 and request2. Still this was not
that flexible. OSMO provides the possibility to simply give
a weight to each step in the test case and this way the ratio
of each request can be defined to a great accuracy in a long
test case. Different variant combinations can also be easily
generated to any numbers automatically with OSMO Tester.

6) Payload configuration: The biggest advantage of MBT
in this scenario was the ease of modifying the content of
the requests. This was illustrated earlier in Figure 2. It was
possible to make each request have different type of input
data and to include some faulty data. Even though this might
not be essential in performance testing, it is important to
know whether certain type of data causes performance issues
or lockups.

VI. CONCLUSION

We have described here a set of experiences in implement-
ing both manual and model-based performance testing for a
single project. The results show how manual testing was an

38Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle



effective way to bootstrap the testing process and produce
focused test cases for the system under test. With good
knowledge of a large set of suitable tools for the domain,
it is also possible to create a good initial test suite with
reasonable effort.

However, maintenance of large test suites quickly be-
comes laborous, and addressing extensive variation in testing
manually is too expensive. This is where MBT can help.
MBT can have a significant initial investment required, but
can result in much easier means to evolve a test suite and
to address large scale variation requirements. Familiarity
with the tools, techniques and the domain can also work
to significantly reduce the initial investment required.

In the end, we can say that for us the best process would
be to start with manual testing and when the system under
test and the test environment are stable enough bring in
model-based testing. At this point, MBT can also be applied
to address some of the needs for manual testing using
specific configuration properties of OSMO Tester such as
those described in [4].

We continue to apply MBT to new projects with similar
and different properties, collect the experiences and improve
our understanding of how the different types of testing may
benefit the testing process in different contexts. We wish
to have a case to properly apply and analyze both manual
and model-based approach. In this case the model-based
approach was added later then whe possibility appeared.
This way, the starting points and motives of the testing were
not exactly same. With a dedicated case we could provide
a better comparison of the types with metrics and cost
analysis. In the beginning of each process the testing had
same goal. However when model-based testing advanced,
its purpose was altered a little to cover slightly different
objective.

REFERENCES

[1] A. Shahrokni and R. Feldt, “Robustest : Towards a framework
for automated testing of robustness in software,” in 3rd
International Conference on Advances in System Testing and
Validation Lifecycle (VALID 2011), 2011, pp. 78–83.

[2] M. Blackburn, R. Busser, and A. Nauman, “Why model-based
test automation is different and what you should know to get
started,” in International Conference on Practical Software
Quality and Testing, 2004, pp. 212–232.

[3] T. Pajunen, T. Takala, and M. Katara, “Model-based testing
with a general purpose keyword-driven test automation frame-
work,” in 4th IEEE International Conference on Software
Testing, Verification and Validation Workshops, 2011, pp.
242–251.

[4] T. Kanstén and O.-P. Puolitaival, “Using built-in domain-
specific modeling support to guide model-based test genera-
tion,” in 7th Workshop on Model-Based Testing (MBT 2011),
2012.

[5] B. Peischl, R. Ramler, T. Ziebermayr, S. Mohacsi, and
C. Preschern, “Requirements and solutions for tool integration
in software test automation,” in 3rd International Conference
on Advances in System Testing and Validation Lifecycle
(VALID 2011), 2011, pp. 71–77.

[6] V. Safronau and V. Turlo, “Dealing with challenges of au-
tomating test execution architecture proposal for automated
testing control system based on integration of testing tools,” in
3rd International Conference on Advances in System Testing
and Validation Lifecycle (VALID 2011), 2011, pp. 14–20.

[7] C. Persson and N. Yilmazturk, “Establishment of automated
regression testing at abb: Industrial experience report on
avoiding the pitfalls.,” in 19th International Conference on
Automated Software Engineering (ASE’04), 2004, pp. 112–
121.

[8] S. Berner, R. Weber, and R. Keller, “Observations and lessons
learned from automated testing,” in 27th International Confer-
ence on Software Engineering (ICSE’05), 2005, pp. 571–579.

[9] T. Takala, M. Katara, and J. Harty, “Experiences of system-
level model-based gui testing of an android application,”
in 4th IEEE International Conference on Software Testing,
Verification and Validation (ICST 2011), 2011, pp. 377–386.

[10] M. Vieira, X. Song, G. Matos, S. Storck, R. Tanikella,
and B. Hasling, “Applying model-based testing to health-
care products: Preliminary experiences,” in 30th International
Conference on Software Engineering, (ICSE 2008), 2008, pp.
392–401.

[11] E. Bringman and A. Krmer, “Model-based testing of automo-
tive systems,” in 3rd International Conference on Software
Testing, Verification, and Validation (ICST 2008), 2008, pp.
485–493.

[12] P. Santos-Neto, R. Resende, and C. Pádua, “An evaluation
of a model-based testing method for method for information
systems,” in ACM Symposium on Applied Computing, 2008,
pp. 770–776.

[13] “Apache bench, the apache software foundation,” http://httpd.
apache.org/docs/2.0/programs/ab.html, 2012, [retrieved: June-
2012].

[14] “Siege load tester home page,” http://www.joedog.org/
siege-home/, 2012, [retrieved: June-2012].

[15] “The grinder, a java load testing framework,” http://grinder.
sourceforge.net/, 2012, [retrieved: June-2012].

[16] “cURL command line tool,” http://curl.haxx.se, 2012, [re-
trieved: June-2012].

[17] T. Kanstén, O.-P. Puolitaival, and J. Perälä, “Modularization
in model-based testing,” in 3rd International Conference on
Advances in System Testing and Validation Lifecycle (VALID
2011), 2011, pp. 6–13.

[18] M. Utting and B. Legeard, Practical model-based testing: a
tools approach. Morgan Kaufmann, 2007.

39Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle


