
AndroLIFT: A Tool for Android Application Life Cycles

Dominik Franke∗, Tobias Royé†, and Stefan Kowalewski‡

Embedded Software Laboratory
Ahornstraße 55, 52074 Aachen, Germany

{∗franke, †roye, ‡kowalewski}@embedded.rwth-aachen.de

Abstract—The states and state transitions of mobile appli-
cations - often referred to as application life cycle - play a
crucial role in high quality applications. An incorrect life cycle
implementation might lead to unexpected application behavior
and data loss. However, yet there are no tools available for
supporting developers to implement the application life cycle
correctly and to test application life cycle-related properties.
This work presents the integrated tool AndroLIFT, consisting
of two parts, for supporting the correct implementation of
Android application life cycles. One part supports implement-
ing and allows monitoring of application life cycles, even of
multiple applications being in different states. The second
part implements a unit-based testing approach, providing the
possibility to test life cycle-related properties. AndroLIFT is
implemented as an Eclipse plug-in to be integrated with the
Android Developer Tools.

Keywords-application life cycle; unit-based testing; develop-
ment tools; software quality; Android.

I. INTRODUCTION

Application life cycles describe the different process re-
lated states and state transitions of an application. Figure
1 presents the life cycle of an Android 2.2 Activity. An
Activity is an Android application, which has a graphical
user interface (unlike services). An Activity can be in one
of four states:

• It is shut down, if it was not started, yet, or if it has
been destroyed. The Activity holds no data in RAM.

• An Activity is stopped, if it is not visible to the user,
e.g., another Activity currently holds the user focus.

• In the state paused the application might still be visible
to the user, but it does not hold the user focus, e.g., an
incoming call-dialog covers a part of the user interface.

• If an Activity is running, it usually is in foreground
and holds the user focus. We show in [1] that this is
not always the case. On Android, at each moment in
time only one Activity can be in this state.

The two states s1 and s2 are intermediate states, in which
the application never remains for a long period of time.
The transitions are labeled with various method names,
e.g., onCreate() and onStart(). These methods are
callback methods, triggered by the Android system in case of
a state change. But, not all state changes cause the execution
of callback methods. The transitions labeled with kill mark
state changes, in which the application is killed by the

shut down
paused

stopped

onCreate() onStart()

onResume() onPause()

onRestart()

onStop()

onDestroy()

kill

s1

kill

s2

onStart()

running

Figure 1. Android Activity Life Cycle [1]

Android system, without invocation of any callback meth-
ods. Reasons for such killing might be lacking resources
or an application crash. In this cases, the application has no
possibility to react on a state change. But, to react on regular
state changes, the developer can override the corresponding
callback methods.

Due to restricted resources and limited input/output ca-
pabilities, usually, modern mobile platforms, like Android,
iOS and WP 7, have only one active user interface applica-
tion running (plus some background services). This policy
requires a special kind of scheduling (see Fig. 2). Each
time a new GUI-application shall be opened, the currently
running application first has to be stopped. For instance, on
Android the running application first changes its state from
running to paused. Then, the new application changes its
state from shut down to paused and then running. Next,
the other paused application is stopped and remains in this
state. During this application-switch, already multiple life
cycle callback methods are called (see Fig. 2). In each of
the callback methods the application might have to turn
off/on connections, hardware modules (e.g., Bluetooth, Wi-
Fi, GPS, ...) or store data. An incorrect or insufficient
implementation of the application life cycle might lead
to unexpected application behavior and thus to bad user
experience, poor usability and data loss [2], [3]. For instance,
we pretend that application A in Fig. 2 makes use of the
GPS module. It releases the module in onStop(), since
the developer assumes that application A is first stopped,

28Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

Application A

Callback Method

onPause()

onStop()

...

Application B

State State Callback Method

...

...

...

(running)

paused

stopped

onCreate()

onStart()

onResume()

(shut down)

paused

running

...

...

...

...

T
im

e

Figure 2. Scheduling two Applications on Android [4]

before application B is started. But, Fig. 2, which is the
true scheduling on Android 2.2 [4], shows that application
B is running before application A is stopped. If application
B wants to access the GPS module when starting, it will fail,
since application A still uses the module. After application
A releases the module in onStop(), no life cycle callback
methods of application B are called. The GPS module
remains unused and application B does not use it, except
if application B would actively poll for it, which is no life
cycle action.

There are no tools available, yet, to help developers to
find this certain kind of errors, implement the application
life cycle or test life cycle-related properties of mobile
applications. In this paper, we present AndroLIFT, a tool
which helps developers of mobile applications to analyze,
implement and test application life cycles. AndroLIFT is
implemented for Android applications, but the concepts
behind it can be implemented for other mobile platforms,
too. We chose Android for a first implementation, since it
is currently the most widespread mobile platform. Addition-
ally, Android itself and the developer tools for Android are
available open source. This allows to integrate AndroLIFT
as a plug-in into the available Android Eclipse framework.
Neither iOS nor Windows Phone, two competing mobile
platforms, are available open source. The first functionality
of AndroLIFT we present, supports the implementation of
the application life cycle by allowing to monitor application
life cycles during runtime in a life cycle view. It also eases
the implementation of the life cycle, e.g., overriding the
life cycle callback methods, by connecting a graphical view
of the application life cycle to the source code editor. The
second functionality integrates the life cycle testing approach
from [4] into the Android Eclipse plug-in. It provides a user-
friendly graphical interface to the life cycle testing library,
eases implementation of the test approach, and connects it
directly to the life cycle view.

The paper is structured as follows: Section II presents
details about some Android developer tools, of which An-
droLIFT makes use of. In Section III, the life cycle view is

introduced. This view is extended by the testing functionality
in Section IV. Section V concludes this work.

II. BACKGROUND

This Section introduces the tools on which the AndroLIFT
library and plug-in are based on. First, the Android Logcat
tool, a logging tool for Android devices, as part of the
Android SDK, is presented. Second, a brief description
of the Android Development Tools, for development of
Android applications with Eclipse, is given.

A. Android SDK, ADB and Logcat

The Android Software Development Kit (SDK) is a bundle
of various tools, applications and documentation to develop
software for the Android platform [5]. Since the Android
SDK is a very rich bundle, but we only need few of those
components for this work, we do not explain too much about
the Android SDK itself. Therefore, we refer to the official
Android SDK references.

One of the core components of the Android SDK for ap-
plication development is the Android Debug Bridge (ADB).
ADB is a command line tool, which allows to communicate
between a development machine and an Android device or
emulator. For instance, it provides the possibility to send
data to a device, remotely install and remove applications
and forward ports. It also allows to receive log information
from the device using the Logcat-tool. Android’s Logcat
allows on a development machine to view debug output from
an emulator or connected device. It is the main logging
mechanism on Android. Next to log messages sent by
applications using the android.util.Log-class, it also provides
various system information, as stack traces in case of an
error and kill information, if a process is killed.

Logcat has a structured way of logging. For instance, each
log information can be attached with certain information.
Printing a log information with priority debug looks from
the perspective of the developer as follows:

Log.d("MyTestClass",
"Connection to server failed.");

The corresponding Logcat-output looks like:

D/MyTestClass(1633):
Connection to server failed.

We use this Logcat tool to send information about the life
cycle state of an application to AndroLIFT.

B. Android Development Tools

The Android Development Tools (ADT) is a tool collection
for development of Android applications with the Eclipse
IDE. The ADT Eclipse plug-in extends Eclipse with different
features, like Android projects, building and debugging
Android applications, SDK tools integration, Android XML
editor and integrated Android framework documentation [6].

29Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

Eclipse

Device

SDK

ADB

DDMS

ADT

AndroLIFT Plug-in

Test

Extension

Life

Cycle

View

Figure 3. Integration of AndroLIFT into ADT

It is the common way to develop Android applications with
ADT and Eclipse.

As these tools are available open source, we build our
AndroLIFT plug-in on top of ADT. The advantage is that
Android developers used to Android development with ADT
get an integrated approach in a well-known environment.
The integration of AndroLIFT into Eclipse and ADT is
sketched in Fig. 3. AndroLIFT is fully integrated into the
ADT environment. It consists of two parts, introduced in
Sec. III and IV. ADT uses the Android SDK tools to commu-
nicate with devices. For the following work, especially the
SDK-tools ADB and Dalvik Debug Monitor Server (DDMS)
are important. DDMS allows further debugging services, like
radio state information, screen capture on device and incom-
ing call spoofing [7]. It usually connects to ADB to provide
its full functionality. So, following the architecture in Fig.
3, the AndroLIFT plug-in never communicates directly with
the device, but uses the same communication channels as
ADT does: over ADB and DDMS.

III. LIFE CYCLE VIEW

To find out in which life cycle state an application is,
the developer has to override the corresponding life cycle
callback methods and print the corresponding information.
There exists no other way to get this information on all
mobile platforms like Android and iOS. But, as mentioned
above, the life cycle of a mobile application is an important
component for high quality applications. A graphical repre-
sentation of the life cycle would help to examine the life
cycle, its behavior during state changes and corresponding
callback methods to react on certain events. We present such
a view for the Android platform as part of ADT.

Figure 4 shows a screenshot of the AndroLIFT life cycle
view of an Android Activity. The life cycle is taken from
a reverse engineering approach [1], which is shown in Fig.
1. The intermediate states are left out (see Fig. 1), since
for the developer it is only important what the resulting
callback sequence on the corresponding transition path is,
e.g., onCreate() is followed by onStart(). As a first
step the developer has to specify on the left side of the
life cycle view, which Activity of which package shall be
monitored. Therefore the Activity can be executed on the

Android emulator or a USB-connected real device. Then
the current state of this Activity is marked by a dashed line.
For instance, the Activity in Fig. 4 is currently in the state
shut down. Next to the different states of the Activity, all
available callback methods and kill-transitions are displayed
as labels of the state transitions. If the monitored Activity
changes its state, e.g., from shut down over paused to
running, the corresponding path and states in the view are
animated. To make the state changes comprehensible and
traceable for the developers, the animations do not run in
real-time, but slightly delayed. First, the transition labeled
onCreate(), onStart() would be marked, followed
by the state paused, transition labeled onResume() and
finally state running, each marked for 500ms. Additionally,
each call of a callback method is logged in the life cycle
callback history view, presented on the left side in Fig. 4.
It prints the name of the Activitiy (important in case of
multiple running Activities), name of the callback method
executed in that Activity and a timestamp of the call, to
understand the order of the callback methods. With such a
view on the application life cycle, the developer easily can
find out the different state changes as a consequence of a
certain event, e.g., incoming call or SMS.

If the developer knows and sees how his application
behaves during runtime regarding its life cycle and which
callback methods are called, he can easily implement a
correct life cycle behavior. To ease the implementation of
the life cycle, we added another feature to the life cycle
view. By right-clicking a callback method, a menu pops
up, with which the developer immediately can jump to the
corresponding callback method in the source code editor.
An example is given in Fig. 5, where the developer is
about to modify the life cycle callback method onStart().
Additionally, if the corresponding callback method is not
overridden, yet, AndroLIFT automatically overrides the call-
back method and places the cursor to the correct position in
the source code editor. The developer immediately can start
implementing the life cycle behavior.

Since the Android system itself, as all other modern
mobile platforms, do not give any information about the
current state, the application under test has to do so. It has
to report the state of its life cycle to the life cycle view, each
time the state changes. This information is needed by the life
cycle view to trace the life cycle during runtime. This can be
done in two different ways. One way is to extend an Activity
class, called DebugActivity, which AndroLIFT provides.
This class has already all code, which is needed by the
life cycle view, encapsulated. This includes the initialization
of the connection between the AndroLIFT plug-in and the
application under test. It also automatically forwards state
information to AndroLIFT via Logcat. If the developer does
not want to use the DebugActivity, the code has to be placed
manually in the corresponding applications, which is no big
effort, either. For the onPause()-method the injected code

30Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

Figure 4. The Life Cycle View allows to monitor the Life Cycle nearly in Real-time

looks as follows:

Log.d(this.getClass.getName(),
"onPause() called.");

The corresponding callback to the super class is mandatory
in callback methods on Android and for AndroLIFT certain
information containing the names of the package, Activity
and life cycle callback method have to be printed to the
Logcat tool. This has to be done for each life cycle callback
method. This information is fetched by the life cycle view
and processed accordingly. For instance, by knowing, which
life cycle callback method was recently called, AndroLIFT
knows the current state of the application.

IV. LIFE CYCLE TESTING

In a previous work [4], we present an approach to test life
cycle-related properties on mobile platforms. This unit-based
testing approach sees one Activity as a unit, regarding its life
cycle. Life cycle state changes on modern mobile platforms
are usually only triggered by the underlying system, not
directly by the application itself or by another application
[8]. For instance, if an application requests to be paused,
the underlying system decides if and when to pause the
application. In this sense a mobile application is separated
regarding its life cycle, and thus in this sense a unit. This is
not unit-testing in the original sense, where smallest testable
part is separated and tested [9]. On Android, we see one
Activity as a unit. We trigger the environment, e.g., making

an incoming call to the Android system, and observe the
reactions of the Activity regarding its life cycle.

To specify the expected behavior of an application we
use assertions. An assertion can be derived from a part of
the specification of the application, e.g., if the user receives
an incoming call while writing an e-mail, do not loose the
already composed e-mail text. On Android, if the user is
writing an e-mail, the corresponding application must be in
the state running (see Fig. 1). We know from [1] that an in-
coming call causes an Android Activity to be paused. Thus,
following our testing approach, in onPause() assertions
need to be defined, which store the current content of the
affected text fields (subject, main text, etc.) and a reference
to the text fields. The object reference is needed to be able to
check those text fields after resuming the application. After
the call, the application resumes again, which means that
the callback method onResume() is invoked (see Fig. 1).
So the previously defined assertions have to be checked in
onResume(). The stored text is compared to the current
text in the affected text fields and the test results are printed
to the user. For more detailed information on testing life
cycles of mobile applications, we refer to [4].

We implemented this approach for Android as a library,
called AndroLIFT runtime assertion library. The package
structure of this library is sketched in Fig. 6. Due to
reasons of clarity, not all classes are displayed in this figure.
The LCAssertions-class is the main class of the library. It
handles, stores and checks all assertions. The Util-package

31Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

Figure 5. The Life Cycle View assists in implementing Life Cycle
Behavior

AndroLIFT

Util

Assertions

Data

AssertionData

AssertionRadioGroup

AssertionStringInTextView

AssertionContentProvider

AssertionUriAuthority

Connection

AssertionConnection

AssertionAddress

AssertionAvailability

AssertionPort

Hardware

AssertionHardware

AssertionBluetooth

AssertionDisplay

AssertionGPS

AssertionMicrophone

AssertionSpeaker

AssertionWifi

… …

…
…

…
…

LCAssertions

Figure 6. Package Overview of the AndroLIFT Runtime Assertion Library

holds different utilities, like database schemas for storing
assertions. The Assertions-package contains various types of
assertions:

Data Assertions: All assertions regarding data persis-
tence, e.g., content of text fields, choice of radio buttons
and list selection.
Connection Assertions: Assertions for checking if
some kind of connection, e.g., IP/TCP or Bluetooth,
is still available and active.
Hardware Assertions: Assertions about the status of
hardware components, e.g., checking if GPS or Blue-
tooth is on.

The developer uses the different types of assertions to
specify requirements to life cycle-related properties of his
application and passes them to LCAssertions. This core class
of the library manages the definitions and checks of the
assertions depending on the current application state. By
knowing the current state, AndroLIFT is able to check all
assertions in the corresponding states. Since mobile appli-
cations might be killed, e.g., due to lacking resources, the
library is also able to store assertions persistently. Therefore
it uses the storage possibilities of the application under
test, like the database on Android. With this concept, the
developer can also check requirements like:

The application might not loose the content of an
e-mail, even if it is killed by the system due to low
battery.

The corresponding assertions are then stored in the database,

which is a persistent storage. After the corresponding test
case is executed, e.g., low battery is simulated with the An-
droid emulator, and the application is returned, the assertions
can be restored from the database and checked.

The following code presents an example usage of the
AndroLIFT library:

@Override
public void onPause(){
super.onPause();
Assertion a = Factory.
createDataAssertion(STRING_IN_VIEW,
textView1);

androLift.assertThat(ON_RESTART, a);
androLift.onPause();

}

With the help of an assertions-factory, the developer defines
an assertion a about a string value in a text view object
textView1. The library fetches the current text from the
text view and stores it automatically. Further, the developer
specifies that a shall be checked in the callback method
onRestart(). The last line in this example tells Andro-
LIFT that onPause() is called, so the state changes to
paused. Due to the restricted possibilities to get information
about the current application state on Android, AndroLIFT
needs to get this information from the application under
test. So just like with the life cycle view (see Sec. III), the
application under test needs to make a call to AndroLIFT
in each life cycle callback method. Regarding the example
above, for the callback method onPause() it is the line
androLift.onPause().

On top of this life cycle testing API, we developed a
graphical user interface, which we integrated as an extension
to the life cycle view plug-in. In this case there are various
advantages of a graphical user interface over a library: The
library itself was not integrated into the well-known ADT.
Since the life cycle view is integrated into these tools, the
testing extension is. The usability of the testing library is
enhanced by this integrated solution. Further it is easier
to learn and more intuitive to use than on code-level with
corresponding code-level documentation.

With the graphical test extension, the user can create
an assertion by right-clicking the corresponding life cycle
callback method, in which the assertion shall be checked.
With only few clicks the user is able to create the same
assertion as given in the code above. First, he has to decide,
which type of assertion he wants to define. Second, he needs
to specify, where the object, e.g., a text view, is defined,
since on Android user interface objects can be defined in
Java as well as in XML. Finally, the developer needs to
define the method, in which the assertions shall be defined.
It will be checked in the method he right-clicked before.
Figure 7 shows the output-view of the AndroLIFT test-
extension. On the left side the developer can choose, which

32Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

Figure 7. Output of the AndroLIFT Plug-in

test results from which Activity he wants to see. If his
application contains multiple Activities, they are listed on
the left side. After clicking on one of the listed Activities,
the corresponding test results are printed in the table. The
developer can see the type of the assertion, the attached
value as well as the result. If the assertion passed, the result
field is filled green. If an assertion did not pass, the result
field is printed red. If the assertion has not yet been checked,
e.g., since only the defining but not yet the checking callback
method has been executed, the result field prints yellow. This
way of reading test results is far more user friendly and less
error prone than checking test results in a log file, as with
the pure AndroLIFT runtime assertion library.

V. CONCLUSION

Application life cycles play an important role in the
area of mobile applications. An incorrect or insufficient
implementation of the life cycle might cause unexpected
behavior of the application, leading to bad usability and even
data loss. Until now, there are no tools available to analyze
and test application life cycles.

In this paper, we presented AndroLIFT, a tool which
helps the developer to monitor the life cycle, assists him
in implementing it and testing life cycle-related properties.
AndroLIFT is written as an extension to the ADT, the
common way of developing Android applications with the
Eclipse IDE. With the life cycle view the developer can
observe and analyze the life cycle of his Android application.
Developers easily learn about the behavior of the application
life cycle to certain triggers, like an incoming call, and
with which callback methods one can react appropriately.
Further, with right-clicking the corresponding life cycle
callback methods in the life cycle view he can quickly
implement assisted the life cycle of his application. With the
test extension of the AndroLIFT plug-in the developer has
a user-friendly way to use the AndroLIFT testing library.
From within the life cycle view he can create life cycle
assertions, using the corresponding GUI. During and after
test execution, e.g., simulation of an incoming call, the test
extension of the life cycle view presents the results in a
well-readable way, aligned to the well-known JUnit-testing
tools.

By helping to learn and understand the life cycle of
Android applications quicker and better, developers get a

good feeling for the behavior of the life cycle to certain
events. They can immediately see, with which life cycle
callback methods they can react appropriately to certain
life cycle triggers. With the test extension the developer
can specify test cases by creating assertions in an intuitive
and user-friendly way. The tool handles automatically all
source code injections (except a few), which are necessary
for working with the AndroLIFT runtime assertion library.
Additionally, the life cycle test results are presented in a
human readable and comprehensible way.

ACKNOWLEDGMENT

This work was supported by the UMIC Research Centre,
RWTH Aachen University, Germany.

REFERENCES

[1] D. Franke, C. Elsemann, and S. Weise, Carsten Kowalewski,
“Reverse engineering of mobile application lifecycles,” in 18th
Working Conference on Reverse Engineering (WCRE). IEEE
Computer Society, 2011, pp. 283 – 292.

[2] D. Franke, S. Kowalewski, and C. Weise, “A mobile software
quality model,” in 12th International Conference on Quality
Software (QSIC). IEEE Computer Society, 2012, pp. 1 – 4.

[3] D. Franke and C. Weise, “Providing a software quality frame-
work for testing of mobile applications,” in 4th International
Conference on Software Testing Verification and Validation
(ICST), Berlin, Germany. IEEE Computer Society, 2011, pp.
431–434.

[4] D. Franke, S. Kowalewski, C. Weise, and N. Prakobkosol,
“Testing conformance of lifecycle-dependent properties of mo-
bile applications,” in 5th International Conference on Software
Testing, Verification and Validation (ICST). IEEE Computer
Society, 2012, pp. 241 – 250.

[5] S. Komatineni and D. MacLean, Pro Android 4. Apress, 2012,
vol. 1.

[6] R. Meier, Professional Android 2 Application Development.
John Wiley & Sons, 2010, vol. 2.

[7] E. Burnette, Unlocking Android: A Developer’s Guide. Man-
ning Publications, 2009, vol. 2.

[8] D. Franke, C. Elsemann, and S. Kowalewski, “Reverse engi-
neering and testing service life cycles of mobile platforms,”
in 2nd DEXA Workshop on Information Systems for Situation
Awareness and Situation Management (ISSASiM). IEEE
Computer Society, 2012, pp. 16 – 20.

[9] A. Hunt and D. Thomas, Pragmatic Unit Testing in Java with
JUnit. The Pragmatic Programmers, 2003, vol. 1.

33Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

