
Utilizing Domain-Specific Modelling for Software Testing

Olli-Pekka Puolitaival, Teemu Kanstrén
VTT Technical Research Centre of Finland

Oulu, Finland
{olli-pekka.puolitaival, teemu.kanstren}@vtt.fi

Veli-Matti Rytky, Asmo Saarela
Elektrobit Wireless

Oulu, Finland
{veli-matti.rytky, asmo.saarela}@elektrobit.com

Abstract—Automated execution of manually defined regression
tests is a very widely used and well-known area. While test
execution can be more easily automated, test case creation and
maintenance are still mainly manual efforts and practically the
biggest cost factors in software testing. We view writing test
cases as basically a programming activity and believe it can
thus benefit from extended application of generic program-
ming tools and techniques. In this paper, we describe our work
in applying domain-specific modelling (DSM) to the domain of
test case creation. DSM is a variability handling method typi-
cally applied in software development. It is widely used and
powerful method best applied when there are several kinds of
variations. DSM is typically tailored to make own optimized
modelling solution inside a company, after which it can be
applied effectively and without requiring specific program-
ming skills. In this paper we describe how we have applied
DSM to describe variability in software behaviour in terms of
test cases, and its application in a case study. The results show
a reduction in the cost of over test automation.

Keywords-domain-specific modellin; test automation

I. INTRODUCTION
Test automation these days is a popular concept with an

extensive body of knowledge and a large set of mature tools
available. The most popular approach in this domain is the
automation of test case execution [1]. Automated execution
of test cases gives a lot of benefits such as faster execution
times, automatic smoke tests after each commit and nightly
regression tests. Test cases are typically written in a form of
programming language, describing input- and output se-
quences, data values, and their expected interactions. These
test cases are then executed using a test automation frame-
work. This activity of test execution has a long history and a
large set of mature testing tools and techniques available.
While test execution can be viewed as highly advanced, the
largest effort in the software testing process is in manual test
case creation and maintenance. As we view test case creation
as closely related to general programming activities, we
believe it is possible to use more advanced techniques and
tools from the domain of software engineering to also en-
hance the test creation activity.

One way to provide more effective support for test crea-
tion and maintenance is to use a higher abstraction level for
describing the test cases. In the software engineering domain
this is commonly addressed through different modelling
techniques. A specific approach for this in the software engi-
neering domain is domain-specific modelling (DSM). In
DSM a specific optimized modelling solution is first tailored
for a chosen domain by the domain expert and then applied
continuously by the domain users [2].

Traditionally, DSM is used to handle variability of prod-
uct lines. In this case, the different products in a product line
are modelled using a common notation and focusing on the
differentiating aspects with the optimized, domain-specific
modelling language. In our view, this translates very effec-
tively to the domain of test automation and specifically that
of test creation.

In software testing, we typically need to exercise the dif-
ferent aspects of system behaviour with different variations.
For example, when we have one boundary value that needs
to be covered, we need at least three test cases to cover that
(below, equal, and above boundary values). Therefore, we
view software testing as a domain with high variability and
large potential to benefit from the different aspects of DSM.
Another related aspect related to this is Model-Based Testing
(MBT) [3] that aims to improve test coverage by automati-
cally generating test sets from a system behavioural model
utilizing several algorithms. In our previous work, we have
described how DSM can be combined to provide added
benefits for MBT [4]. However, although advanced test
generation techniques such as MBT can be powerful, our
experience is that there is still need for manually defined test
cases. In this paper, we present our work on using DSM as
an aid for more effective creation of test cases. We demon-
strate this with the aid of a case study, including the observed
cost-benefits achieved.

The rest of the paper is structured as follows. In Section
II, we describe the background concepts relevant to the work
presented in this paper. In Section III, we describe the case
study system used to illustrate the discussed concepts
through the rest of this paper. In Section IV, we describe our
approach to using DSM to help in test creation. In Section V,
we describe the results of the case study and discuss the
DSM test modelling approach a wider context. Finally, con-
clusions summarize the paper.

II. BACKGROUND CONCEPTS
In this section, we describe the background information

required to understand the concepts described in this paper.

A. Test case automatic execution
With test case automatic execution we refer to a tool

chain in which test cases are described in a form of pro-
gramming language, such as a scripting language, and tests
can be run automatically once they have been specified (as
defined, e.g., in [1]). This tool chain needs to address the
different needs for test components in test automation. This
includes providing test input as stimuli for the system under
test (SUT), test output as a reference of the expected re-
sponse, and a test harness to link the test cases themselves to

115

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

the SUT. A test oracle is a component needed for determin-
ing the correctness of the behaviour of software during (test)
execution [5]. Together these components form what we
term as the test execution environment.

Test automation in this type of an environment takes the
following process. First the test scripts are written (typically
manually) by a test expert. This includes defining both the
test input and expected output in the given notation for the
test execution environment. These tests are then executed
using the test execution environment and the results are
presented to the user.

B. Modelling for testing purposes
Modelling for testing purposes can be divided in two cat-

egories: modelling test cases, and modelling for test genera-
tion. Modelling for test generation refers to creating models
that are used as a basis for test generation with techniques
such as model-based testing. We have discussed this aspect
before in [4], and in this paper we focus on the test case
modelling aspects.

Test case modelling refers to modelling specific test cas-
es separately in terms of chosen abstraction level. This can
be either textual, graphical or some hybrid notation. In this
paper we discuss this in terms of DSM concepts, which are
in our case graphical or hybrid notations. Some of the most
popular existing graphical notations for test modelling are
UML testing profile [6] and TTCN-3 graphical presentation
format [7]. These and other generic languages can be widely
applied but are not as powerful for the chosen domain as the
DSM based notations. In this paper, we describe a case study
in using test modelling using DSM tools and concepts.

C. Domain-Specific Modelling
DSM is about creating a new modelling language based

on domain concepts and using a (typically) self-made code
generator to transform this to a different form such as textual
source code. These modelling languages are typically easier
and quicker to understand for most of the people because
they describe the intended domain using higher level domain
concepts. These languages can be visual, textual or combina-
tions of both. The modelling language is typically con-
strained to reduce the modelling options to only those rele-
vant to the expected variance in the domain, which also
serves to simplify the modelling process and reduce the
number of errors in generated output. Based on our experi-
ences, the DSM are most useful when there is some kind of
variability in the product.

The idea in addressing variability in the DSM language is
that static part of output (the common part of the target do-
main) is in generator or in the used platform. Thus the mod-
elling can focus only on the varying aspects of the domain,
while the static parts are provided off-the-shelf. Because of
this, the support for the dynamic parts can be highly opti-
mized, simplified and made easier to use. A common appli-
cation domain is with product lines due to variability be-
tween products [8] [9].

 Domain-Specific Modelling work flow is following:
1. Create a modelling language based on your domain

concepts

2. Write a generator which generates your code
3. Create a model using your language
4. Generate the code or document or what you want
Because the code is generated from a model, the debug-

ging can be also made in to the model. Normally the system
sends information from its state and the workbench high-
lighted it to the model. If an error exist it is easy to see in
which part of model it happens. There can also be a need to
display additional debug data into the model, e.g., perfor-
mance metrics.

D. Generating test cases utilizing DSM
As test cases are typically expressed as scripts using a

textual notation, this makes their generation from specific
domain test models a viable approach. We can summarize
that the main benefits of DSM in the context of test automa-
tion are:

 Model is easier to understand because it is expressed
using our domain concepts.

 Modelling is faster because it is optimized for the
domain and constrained to avoid obvious mistakes.

 Models can be expressed visually, providing for eas-
ier to understand test expressions.

 Non-programmer can create test cases.
In this case, DSM can be understood also as a more illus-

trative user interface for test scripts or a test script visualiza-
tion method. The structure of DSM for test case generation is
illustrated in Figure 1.

Figure 1. Domain-specific modelling with automated test execu-

tion

III. MILITARY PHONE AS TESTING TARGET
The case study system described in this paper is using

Elektrobit Tough Voip (ETV) [10] as the SUT. ETV is a
military Voice Over Internet Protocol (VOIP) communica-
tion device. The device has to be very easy to use and resis-
tive because it is made for military purposes. As failures and
bugs in a military system can obviously lead to big problems,
the quality and reliability of these devices are a major con-
cern. ETV is presented in Figure 2.

116

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

Figure 2. EB Tough VOIP

The ETV has point to “point call” and “all call” features.

In a practical deployment setting, all devices have to be con-
nected on the same network and any terminal can connect to
another one just by dialling the number of that terminal. This
is the “point call” feature. The “all call” feature connects a
single device to the all other devices in the network using a
specific dialling pattern.

Our viewpoint in testing these devices is that of a high-
level abstract black-box viewpoint. From this perspective,
the complexity is not in the functional on one particular
device, as a single device does not contain highly complex
external behaviour. The main complexity is in having many
devices connected to the network, calling each other within
very tight time limits and in varying sequences. While com-
pletely manual test execution is possible, without automation
it is hard to address fast time limits or to create test cases for
time border values. Therefore, the system also has a TTCN-3
based testing environment for executing automated test cases
against the devices.

Besides fully manual test execution, also test creation and
maintenance even with an automated test execution envi-
ronment has its own issues. As noted before, there is a re-
quirement to test various connection- and call-sequences as
well as various time limits within these sequences. With the
traditional TTCN-3 test scripting and environment, the main-
taining of the test suite was found to require a large effort
and to require a large amount of TTCN-3 expertise which
was found expensive and limited in availability. To address
these issues, we created a DSM based solution where the test
cases can be expressed in domain concepts without having to
work with detailed internals of the TTCN-3 notation.

IV. A MODELLING LANGUAGE FOR TEST CASE
GENERATION

In creating a domain-specific modelling language for
ETV testing, we used the main domain concepts as a basis.
These are the devices themselves, the call types, their order-
ing and time constraints. The created language is composed
of the basic test automation elements of test suite, test case,
and test setup. The test suite model is a collection of test
cases, the test case model describes test case structure for a
single test case, and test setup describes the setup of the

device under testing. The overall test model architecture is
illustrated in Figure 3.

Figure 3. Test model architecture

We used MetaEdit+ [11] as a language workbench for

creating our DSM language, and TTCN-3 as the test script-
ing language. The effort in creating the overall test automa-
tion environment was shared with two engineers. The first
engineer developed the modelling language (modelling lan-
guage developer) and the associated TTCN-3 script genera-
tor, and the second one manually developed TTCN-3 based
test scripts and the overall test case execution process (test
case developer).

At the beginning, the test case developer gave a test
script sample and initial requirements of modelling language
to the modelling language developer. The modelling lan-
guage developer used these as a basis for creating the first
DSM language version. This and the associated test script
generator were then evaluated by the test case developer,
who made change requests based on the results. Based on
this feedback, the modelling language developer made fixes
to the language and generator. After one week of iterations,
the language and test execution environment was ready for
testing in a real test environment.

In the following subsections we describe each of the
model elements and an additional test run visualizer compo-
nent used to show the actual executing test cases.

A. Test suite model
The test suite model is a collection of test cases. Test cas-

es are represented as objects in the model and the colour of
these objects tells their enabled status. A green object is
enabled and red ones are disabled. Figure 4 shows an example
of a test suite model, where two of the test cases are enabled
and one is disabled.

Figure 4. Test suite graph

117

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

The test case objects in this model contain sub-models
that can be opened to further explore the test case represent-
ed by that model. The test case name is presented as the sub
model name in the visual presentation shown in Figure 4.
This example has three test cases, one for “point call”, one
for “all call”, and one for testing both. The both test graph is
presented in the following section.

B. Test case model
A test case model is used for representing individual test

cases for the EVP system. This model consists of six differ-
ent types of objects and two types of connection lines. These
components are the following:

 Start object represents the test case starting point.
 End object represents the end of test case.
 Call object represents a test step where a device calls

to another device or devices including oracle disa-
bling option if time limits are too tight for oracle be-
tween the call and next call.

 End calls object represent a test step where a single
device ends the call.

 Device object represents a device including device
name and phone number.

 Test setup object is a link to the test setup graph.
 Connection lines are arrows in to the model repre-

senting test case order, calling device and destination
device.

Figure 5. Test case graph

Figure 5 shows an example test case using this notation.
It describes the following scenario:

1. Device1 makes a call to Device3
2. After 2 seconds Device 1 ends the call
3. After 1 second Device7 calls to all devices
4. After 5 seconds Device7 ends the call

C. Test setup model
A test setup model represents devices in the current test

network. In practice, the test setup changes a lot and we do
not wish to change all the test cases in case the setup needs
to be changed. Instead, we wanted an option that allows us to
change the test setup and immediately re-run the existing test
cases with a different set of devices and their configurations.
In our modeling language, the test setup model is used to
represent this type of information and to allow the
modification of the different test setups independently of the
individual test cases.

In the tests, the test setup model is mainly used for
automatic device initialization. The test oracles in the AllCall
test steps also use the test setup model because they needs to
verify the status of all devices that are connected to the
network. Figure 6 shows an example of a test setup model in
our case study.

Figure 6. Test setup graph

D. Test execution visualization
Showing the execution of test cases is always important

for understanding the execution and debugging the results.
Initially, our test execution process illustration was just a lot
of text running quickly in the command line shell on the test
execution platform, which in our case was called Elektrobit
Test Tool Platform. This was not a very human friendly form
of feedback.

To provide a better support for visualization of test exe-
cution, we created visualizations of the DSM test models,
showing at all times the current object of the testing as high-
lighted. This visualization was made using application pro-
gramming interface (API) of the MetaEdit+ DSM tool,
which allows connecting external elements to the model
code using the commonly supported SOAP [12] protocol.
Practically, the test environment would send SOAP messag-
es to the MetaEdit++ tool, where the specific test DSM lan-
guage and model received these messages and as a result
highlighted the matching elements in the model. For us, this
illustrated the possibility to easily and effectively use the test
models as tools for following test execution, reporting the
test results and debugging possible errors in a human friend-
ly way.

118

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

E. Test generation
Test generation is made by MetaEdit+ providing MERL

language. MERL is a small programming language and it is
decided for code generation providing effective way to go
through the model and print the output.

Before starting any generation, the generator checks the
most typical errors and reports if some exist. The checks are
self-made and based on our experiences. First, the generator
makes initializations based on test setup model. Then the
generator starts from start state object and goes through the
model following the arrows and printing object specific code
and finally ends to the end state object.

F. Test model execution
In addition to support the test creation (modelling) pro-

cess, we also aimed to automate the test case execution itself.
Initially, test cases were created and executed manually. In
the first phases of our DSM application, we proceeded to
generate the test cases for the execution environment from
the models which only required manual linking of the gener-
ated test cases to the test environment. From this, we further
linked the whole test environment into the modelling envi-
ronment, allowing one to run all tests directly from a single
interface and not requiring any direct low-level interaction
with the TTCN-3 notation or test environment itself.

 Finally, only pressing a single button in the test case or
test suite model view is needed. After the test execution, the
results are presented. The test execution consists of follow-
ing steps:

1. User presses test-button in the model.
2. MetaEdit+ generates test cases using the domain-

specific test code generator.
3. OpenTTCN tool compiles the test cases.
4. The test platform executes the test cases.
5. During the test case execution, the test platform

sends execution information to the MetaEdit+ tool
that visualizes the execution in the model.

6. After a test ends, the OpenTTCN provides a test re-
port with highlighted issues that were observed
while test execution.

7. Tests engineer check the report, fix from test model
and generator or report system bugs to the develop-
ers and starts over the testing process.

V. RESULTS AND DISCUSSION
Our initial goal in creation of our DSM based test case

modelling approach was to enable test case creation for users
without requiring specific detailed knowledge of the test
environment or the used TTCN-3 notation. However, in
practice as experienced in our case study, the test expert still
defined most of the test models. This is a person who had
also previously been involved in test script creation and
manual test case creation for the SUT using the TTCN-3
notation. Thus the test expert already was familiar with the
underlying notations and had expertise on the expected SUT
behaviour.

However, despite this background we found our results
very encouraging. Our experiences are based on about twen-

ty models in real environment and those models are more
complex and having some more features than case study
models. The test engineer estimated the modelling using our
new DSM approach as being at least ten times faster than
manual test script writing. The set-up time for creating the
modelling notation and the test script generator for this nota-
tion was about one week. We used one more week for add-
ing more advanced features and for making our system ma-
ture. It took about one week to make changes for the under-
lying TTCN-3 code to make it easier to generate and to fix
bugs we found in it. However, this work was found to im-
prove the overall test system and was not just useful only for
our DSM approach. Since our DSM approach needed to
evolve to adapt to the actual needs, we added several features
to the language. The average time for integrating a new fea-
ture was about 30 minutes. In addition, we extended the
language to cover other variations of EB Tough VoIP, which
took about 3 days. These results were available as we rec-
orded the time we took in the different steps and the compa-
ny in the case study had also made effort to record this in-
formation for their previous approaches.

In our case study, we found that the test case develop-
ment speed is not the only benefit. The developers and other
interest groups assessed the DSM based test case creation
and visualization approach as easier to understand. As the
test case is graphical, it is easy to see what it does. During
the test execution, the progresses are visualized. This saves
time in analysing test cases.

In our experience, the development of DSM based test
script generation is like normal system development. The
DSM method is different but it is just one technology to
learn. The DSM modelling workbenches (such as
MetaEdit+) are just one form of a programming environ-
ment. As these are created specifically to support building
this type of modelling notations and environments, the work
amount for use has been in the amount of weeks instead of
months or years.

The main challenges for applying DSM for test creation
are in creating a good modelling language. This requires
good understanding of both the application domain and the
test automation domain. In this case the modelling language
creator and maintainer needs to have quite a wide under-
standing of the system to create a suitable and powerful test
modelling environment. However, this is offset by the re-
duced need in the test modelling phase where less detailed
knowledge of the low-level operations is needed.

Our development style for the case study described in
this paper was close to consulting. An external research
entity was helping an industrial partner build a DSM test
modelling approach and apply it. Thus the people creating
the test modelling language and writing the test scripting
environment were different. This approach is perhaps not as
effective as when entity person is creating both the model-
ling language and the test scripting environment. However,
our experience is that the result is better because of discus-
sion with different entities. In case of a single company this
can also be different people from different entities inside the
company. During the development people from both entities
were describing the solutions to each other and getting feed-

119

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

back on their part. This helped avoid overly complex struc-
tures and modelling approaches, as the other entity had to
use the results of the other entity in both cases and immedi-
ately objected if they found the result too complex for easy
adoption.

While results might be different in a different type of an
environment and when applied by people with different
backgrounds, we believe our result can encourage other
people to try our DSM based test modelling and creation
approach.

VI. CONCLUSION
In this paper, we described how DSM languages can be

used to support the manual test case modelling and creation
process, which we observed as one of the most expensive
parts in software testing. Using a practical case study, we
illustrated the approach in practice. In our experience, the
results have been encouraging. The setup effort to create the
required modelling languages and environment using exist-
ing DSM tools was a couple of weeks and provided more
than ten times faster test case creation speed in comparison
to previous experience in the case study environment. Thus
we can conclude that our modelling approach takes more
investment in the beginning but quickly becomes more effec-
tive as more test cases need to added and existing ones need
to be maintained.

In the future research we need to try this approach in sev-
eral cases in different domains and get more experiences in
its application. We are also using model based testing with
DSM test models for reaching even more enhanced test au-
tomation.

VII. REFERENCES

[1] Dustin Elfriede, Rashka Jeff, and Paul John, “Automated
Software Testing,” Massachusetts: Addison Wesley
Longman, 1999.

[2] Kelly Steven and Tolvanen Juha-Pekka, “Domain-Specific
Modeling,” New Jersey: John Wiley & Sons, 2008.

[3] M. Utting and B. Legeard, “Practical Model-Based Testing:
A Tools Approach,” Morgan Kaufmann, 2007.

[4] O-P. Puolitaival and T. Kanstrén, "Towards Flexible and
Efficient Model-Based Testing, Utilizing Domain-Specific
Modelling," in 10th Workshop on Domain Specific
Modelling, 2010.

[5] Debra J. Richardson, Stephanie Leif Aha, and T. Owen
O'Malley, "Specification-Based Test Oracles for Reactive
Systems," in Proc. of the 14th Internation Conference on
Software Engineering, Melbourne, Australia, 1992, pp. 105-
118.

[6] OMG. UML Testing Profile. [Online]. http://utp.omg.org/
15.7.2011

[7] ETSI. TTCN-3 Graphical presentation Format. [Online].
http://www.ttcn-3.org/StandardSuite.htm 15.7.2011

[8] Mika Karaila, Domain-specific Template-based Visual
Language and Tools for Automation Industry. Tampere:
Tampere University of Technology, 2010.

[9] Kärnä Juha, Tolvanen Juha-Pekka, and Kelly Steven,
"Evaluating the Use of Domain-Specific Modeling in
Practice," in 9th OOPSLA Workshop on Domain-Specific
Modeling (DSM 2009), Orlando, 2009.

[10] Elektrobit wireless. EB Tough Voip. [Online].
http://www.elektrobit.com/what_we_deliver/wireless_soluti
ons/device/products/eb_tough_voip 15.7.2011

[11] Metacase. MetaEdit+ Modeler- Support Your Modeling
Language. [Online]. http://www.metacase.com/mep/
15.7.2011

[12] W3C. (2007, April) SOAP Version 1.2. [Online].
http://www.w3.org/TR/soap12-part1/ 15.7.2011

120

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

