UBICOMM 2013 : The Seventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Application Driven Environment Representation

André Dietrich, Jorg Kaiser, Sebastian Zug, and Sasanka Potluri
Department of Distributed Systems
Otto-von-Guericke-Universitdt Magdeburg
Universititsplatz 2, 39106 Magdeburg, Germany
Email: {dietrich, kaiser, zug, sasanka}@ivs.cs.uni-magdeburg.de

Abstract—Autonomous systems have to sustain in environ-
ments of growing complexity and under dynamically changing
conditions. In addition, the number and the complexity of the
tasks these systems have to fulfill increases constantly. To cope
with these emerging problems, we present a general concept
of constructing environment models. From these models, we
can derive any kind of information in an application specific
abstraction, which we call views. Furthermore, we describe the
main problem in the generation of views as well as a possible
solution to this.

Keywords—Smart Environments, Environment Model, Robotics

I. INTRODUCTION

One of the main characteristics of smart environments is
the spontaneous use of ambient information, obtained from
remote sensors and servers. These sources of information
(mobile or stationary) can be a part of the infrastructure
of a smart space itself or gathered from other systems that
exploit these location-dependent information and services. The
ultimate goal is to perceive the environment with the best
possible quality, including as many aspects as desired. For
autonomous systems, such as mobile robots or even for the
emerging field of cooperating cars, the benefits of exploiting
environment knowledge and available sensory information are
obvious; reaching from a substantial increase of sensing range
to the integration of more and more detailed aspects into the
environment perception. Literally, it is possible to look around
the corner or to recognize obstacles and to plan to avoid them,
long way before they come into sight of a local sensor.

Perception requires two things: the input from sensors
that provide some basic physical data and a model that
allows to interpret this information correctly. Designers of
such applications have to deal with a couple of problems.
Firstly, the heterogeneity of sensors may require intimate
knowledge of sensor characteristics and complex adaptation
procedures of the application. Secondly, they have to solve
the problem of interpreting data coming from complex mobile
remote directed sensors like Kinects, laser scanners or cameras.
Solving both problems requires a huge amount of specific
context information, as depicted in Figure 1.

On the lowest level, sensor data interpretation needs some
form of knowledge about the sensor type and the physical na-
ture of observed real world entities, which can be provided by
metadata. We therefore had developed expressive description
formats for sensors, to support their spontaneous use [1]. While
these sensor descriptions cover low level sensor interpretation
and fusion, this paper focuses on an application-oriented
abstraction of perception on a higher level. We propose the

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-289-9

raw & abstract sen- interpretation sensor description &
sors & fusion environment model
data } >)< (knowledge]

[information]

\

application

Fig. 1: Relation between sensor data and application specific infor-
mation.

use of environment models as explicit knowledge for putting
remote sensor data into an adequate context. We argue that
cooperative systems, which exploit information from remote
sensors, will need an explicit environment model to cope with
the requirements of mobility. The information, generated with
the help of an environment model and available data, can be
represented in different flavors, such as an occupancy grid map,
a relative position, or a set of objects or entities that fulfill some
certain conditions.

In the related work, an environment model is rarely
understood as a powerful filter and fusion mechanism for
the heterogeneous and distributed sensor system, providing
a well-defined and stable view of the physical surroundings.
Additionally, as a major difference, the presented work does
not consider cooperative functions of different systems based
on an easy and efficient exchange of environment knowledge.
In this paper we strive for a more general approach, which
will support sensor interpretation, serve multiple applications,
and also allows easily to exchange environment information
between different mobile or immobile entities. This will be
crucial for generating large scale and global environment
perception. In contrast to our approach, other solutions are
to a large extent rather application-specific and just tailored
to a single dedicated control task. Furthermore, in most cases
the environment models interpreting information coming from
(local) sensors are intimately integrated into the application.

Before describing our approach and the problems we have
to deal with, we will give detailed overview on related research
areas within the next section and finish with a conclusion and
an outlook on future work.

II. RELATED WORK

There is a huge amount of proposals to model the environ-
ment from various areas in mobile robotics. An early overview

109

UBICOMM 2013 : The Seventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

on state-of-the-art world models is given in [2] but as stated by
the authors themselves, most of these models are designed for
specific (robotic) applications only. Examples are “Construc-
tive Solid Geometry” [3], a geometric world model based on
primitive geometrical objects, occupancy grid maps [4], octrees
[4], and many more. Nearly all of these examples for models
are also directly linked to the available sensor equipment and
the respective data formats. In contrast to the pure geometrical
representations, there are also application specific models, like
in [5] that shows an example for trajectory-planning of car
like vehicles, which require an abstract 2D model of the
environment.

Recently there is a shift to more general and complex
environment models, which results from the fact that also the
robotic applications and the environments itself become more
and more complex. Models should serve different purposes like
surveillance, decision making, trajectory planning, obstacle
avoidance, etc. Also, the authors of [6] tackle the problem of
specified and customized world models. They present a system
that incorporates a 3D occupancy grid map, other abstractions
with more than just spatial semantics are not considered (but
it allows to adapt update rates and accuracy to serve different
needs). A more general approach, with more information about
the environment and the objects within, is presented by Hsiao
[7]. It bases on the Open Dynamics Engine (ODE) [8], a high
performance library for simulating rigid body dynamics. Next
to the geometric description of the environment, it also allows
to label included 3D objects with additional information, such
as mass, velocity, color, etc.

The idea that an environment model can be constructed
from multiple sources is presented in [9]. It describes a
vehicle’s road environment conceptually as an (very special-
ized) object-oriented model. It uses a-priori information and
information obtained from on-board sensors or through car2car
communication. This means that, for example, the awareness
of another car in front can be obtained from the local sensor
system or from the communicated position of the front car
itself. It makes no difference for the application, because all
information is taken from the model representation only. This
type of modeling is ideal for situation assessment, because all
required sensor data of the environment is already translated
into a simplified data-structure. This type of modeling is
specialized on road environments, which restricts the type of
entities (vehicles, pedestrians, and traffic signs), their repre-
sentations (2D points), and also the application. Nevertheless,
it shows that the application can be separated from the sensor
interpretation and work only with information derived from a
general model.

We discussed this separation of concerns firstly in [10] and
presented a step by step approach of extracting functionality
from an application that deals with environmental perception
in [11]. Furthermore, we demonstrated the applicability of
our concept in [12], see also our YouTube-channel [13].
Comparable to our approach, which is presented in the next
section, Belkin and Kuwertz discuss their concept for a holistic
environment model in [14] and [15]. It bases also on a scene-
graph, representing the spatial relations between different
geometrical entities/concepts. But in contrast to their solution,
we do not believe that it is desirable in general to build a
global environment model. Instead, every application should

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-289-9

be able to generate its own local environment model for its
own purposes (based on the available data within a smart
environment) and abstract any kind of information from it. We
had developed an architecture, based on a distributed database,
which allows each entity to construct and update its own local
environment model. Furthermore, all required data whether it
is actual sensor data (using our Cassandra_ROS package [16])
or metadata describing sensors, actuators, or other objects of
the environment, can be stored with arbitrary complexity as
required.

Models based on logic predicates can be seen as another
type of environment modeling, which also separates sensor
interpretation and the use of the derived information. In a
first step, all data has to be transformed into logic predicates,
which subsequently can be queried easily according to various
aspects. This approach is mainly used to determine complex
action sequences as well as to describe complex situations
and formally bases on the situation calculus [17]. Examples
are “alGOIl in LOGic” better known as GOLOG [18] with its
specialized dialects, such as Con(current)GOLOG [19], which
includes concurrency and the influence of external events.
KnowRob [20] is also a knowledge processing system already
integrated in the Robot Operating System (ROS) [21]. Logic-
based approaches require huge knowledge bases and are slow
in response, but due to the used concepts of predicates and
rules, queries and situations can be expressed very simple
(mostly in Prolog-syntax).

III. ENVIRONMENT AND VIEWS

It is a challenging task for a system to interpret varying
and heterogeneous sets of networked remote sensors and
also information obtained from other systems. It has to have
the ability to “understand” the environment. On the highest
level all information about the environment is captured in an
environment model. The concept of an environment model can
be described as a simplified co-simulation of the surrounding,
which is continuously updated by local and remote sensors.
It consists of elements and relations that represent all relevant
contexts for perception and control.

Similar to the concept described in [14], [15], a simple
scene graph may be sufficient enough, if only spatial infor-
mation (e. g., distances, geometries, relative positions, etc.) is
required. More sophisticated scenarios like cooperating cars
require next to a geometric representation also data about
masses, friction, velocities and forces. This type of data can be
easily incorporated into the model by extending the prior scene
graph with capabilities of the ODE (equal to the approach of
by Hsiao [7]). The model as we use it for a robotic applications
are even more complex, including dedicated information about
the surroundings, its inhabitants (other robots and sensors),
their capabilities, as well as on different objects and tools.
To incorporate also such kind of information, we apply the
OpenRAVE [22] (Open Robotics Automation Virtual Environ-
ment), an environment for testing, developing, and deploying
real-world robotics applications.

As depicted in Figure 2, the environment model fulfills
three tasks. First of all, sensor data is interpreted and filtered
using its information. Secondly, it stores a history of states
of the environment and the present state that is continuously

110

UBICOMM 2013 : The Seventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

updated by sensor data. Thirdly, the model provides access
to specific aspects of the environment. We call the respective
information, depending on the application requirements, a
“view”. Figure 2 illustrates these relations.

Sensing data Remote Local
aquisition Sensors Sensors
Environment
) model

Interpretation T 7 7
and fusion

View 1 View n

A A
Y

Application
. App 1 App n
interface PP PP

Fig. 2: View generation related to application requirements and based
on a common environment representation.

A view is a well-defined and specialized abstraction of
the external environment, while the environment model is a
general representation and will serve multiple applications.
This separation of concerns will ease the design of the ap-
plication and support adaptation, because all the assumptions
about the environment are made explicit in the description and
can be changed. A specialized representation may be partly
based on a-priori knowledge like a map but it is updated by
the information derived from the sensors to include elements
that are dynamically perceived, for instance, other vehicles and
obstacles. As already mentioned, a 3D geometric environment
model will comprise a coordinate system, geometric elements,
the relations between them and the own position of the
respective entity. If other elements were classified as mobile,
their positions and relations will continuously be updated by
sensor information.

Figure 3 shows the dataflow of a simple robotic scenario.
In this example, a mobile platform operates in the aisle of our
laboratory. It is equipped with a Kinect sensor and has access
to virtual remote sensors that provide the static geometry of
the building. It should be noted that the correct interpretation
of sensor data from the Kinect already needs the environment
model, i.e., the description about the position and the field of
view. If we enrich the geometric model by the description of
motion, we will be able to observe trajectories and use the envi-
ronment model to detect and reason about jams and collisions.
However, for our example we assume two functions, collision
avoidance and short range path planning. Both applications
utilize different aspects of the 3D environment model obtained
from the view generator. The path planning algorithm receives
an occupancy grid map of the vicinity. The collision avoidance
algorithm does not need the sophisticated representation of
the general environment model. The view defines a needed
subset of the environment model, describing this as metadata
to interpret sensor data. The view thus provides just the
information needed by the application functions. A further
important benefit of a view is that it shields the application
from the details of the sensor system. In the example, the

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-289-9

view would provide the unit “distance” independently of what
sensors are used to derive this information. As indicated earlier,
a varying set of sensors can participate in generating a view,
without the need that the application must be aware of this.

IV. THE PROBLEM OF ARBITRARY VIEWS

As shortly described in Section II, our previous work is
based on developing an infrastructure for distributed environ-
ment modeling. According to the required view complexity,
different models can be applied. All information about the
surrounding are obtained from the environment model. But
currently we have to apply specialized functions and filters to
create views, specialized in terms of the type of environment
model. Values such as the distance between two objects, their
velocities, colors, or their relative positions can be easily
extracted from the environment, while the generation of an
occupancy grid map might be more difficult. And the definition
of functions can vary according to the applied scene graph,
physics simulation, etc.

It is easy to see that this solution is less satisfactory because
complex queries or the definition of situations (based on the
scene graph) have to be defined within the program code.
Although, we started out with the undertaking of reducing
source code complexity. Furthermore, calling such functions
from the program code does not simplify the programmation
and it does not meet the requirements of a dynamic access and
changing demands. Queries and situations are hard coded and
we have to parameterize our code to include dynamics. As also
stated in [14], it is essential to have some kind of symbolic
representation of the environment to solve these problems.
Currently there is no system or solution, which can convert
geometric models into logic-based and vice versa.

If we interpret environment models as an implicit and dy-
namically changing knowledge base, it should also be possible
to query it in the same way as we query databases. In contrast
to logic-based systems, we do not want to query the envi-
ronment with predicates and rules, instead we want to query
it with simple SELECT-queries, similar to ordinary SQL. In
fact, querying with SQL or with Prolog is quite the same, since
SQL is already an implementation of the Relational Calculus
(form of Predicate Logic). While SQL is primarily intended
to derive facts and relations (as we want to use it), Prolog is
primarily a rules and inference engine. The result of an SQL-
query, as we intend it, can be a single distance between two
objects, a list of object having a special property, a specialized
map of the surrounding, containing only objects bigger than a
certain value, or a simplified model of the environment model
itself. Everything can be put into SELECT statement using the
WHERE clause to define additional conditions. Furthermore,
it allows also to define situations, which occur, if the SELECT
query returns a non-empty result. Therefore, we are currently
developing a new kind of programming semantics/language
that should allow to mix SELECT statements, running on our
environment models and normal programming languages.

V. CONCLUSION AND FUTURE WORK

As stated in [2], an environment model is the key compo-
nent of any intelligent system, which must be able to describe
and represent the environment as well as incorporated entities

111

UBICOMM 2013 : The Seventh International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Static environment knowledge

Environment model

Sensor data

Application specific views

> Path planning

Collision

avoidance

Virtual & raw sensor data aquisition

Interpretation, Fusion and view generation

Application

Fig. 3: Composing an environment representation from static & dynamic data and generate of application specific views from it.

in an adequate structure and complexity. We presented our
general approach of building environment models and the
concept of deducing views from it. To be able to cope with the
complexity and diversity of application specific requirements,
we will have to develop also new programming concepts and
paradigms. Or at least combine well known concepts in a new
ways, which we will do by applying SQL on environment
models.

ACKNOWLEDGMENT

This work is funded and supported by the German Ministry
of Education and research within the project ViERforES-II
(grant no. 01IM10002B) and by the EU FP7-ICT program
under the contract number 288195 “Kernel-based ARchitecture
for safetY-critical cONtrol” (KARYON).

REFERENCES

[11 S. Zug, M. Schulze, A. Dietrich, and J. Kaiser, “Programming abstrac-
tions and middleware for building control systems as networks of smart
sensors and actuators,” in Proceedings of Emerging Technologies in
Factory Automation (ETFA ’10), Bilbao, Spain, 9 2010.

[2] E. Angelopoulou, T.-H. Hong, and A. Y. Wu, “World model representa-
tions for mobile robots,” in Proc. of the Intelligent Vehicles Symposium.
IEEE, 1992, pp. 293-297.

[31 A. A. G. Requicha and R. B. Tilove, “Mathematical foundations of
constructive solid geometry: General topology of closed regular sets,”
Production Automation Project, Univ. Rochester, Tech. Rep., 1978.

[4] S. Thrun, “Learning occupancy grid maps with forward sensor models,”
Autonomous robots, vol. 15, no. 2, pp. 111-127, 2003.

[5] T. Fraichard, “Smooth trajectory planning for a car in a structured
world,” in Proc. of the International Conference Robotics and Automa-
tion. 1EEE, 1991, pp. 318-323.

[6] R. K. Harle and A. Hopper, “Dynamic world models from ray-tracing,”
in Proc. of the 2. Annual Conference on Pervasive Computing and
Communications (PerCom). 1EEE, 2004, pp. 55-64.

[71 K. Hsiao, N. Mavridis, and D. Roy, “Coupling perception and simu-
lation: Steps towards conversational robotics,” in Proc. to the Interna-
tional Conference on Intelligent Robots and Systems (IROS), vol. 1.
IEEE/RSJ, 2003, pp. 928-933.

[8] R. Smith, “Open Dynamics Engine project website,” http://www.ode.
org, [(online), as at: 29.03.2011].

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-289-9

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

A. Furda and L. Vlacic, “An object-oriented design of a world model
for autonomous city vehicles,” in Proc. of the Intelligent Vehicles
Symposium (IV). 1EEE, 2010.

A. Dietrich, S. Zug, and J. Kaiser, “Model based Decoupling of
Perception and Processing,” in ERCIM/EWICS/Cyberphysical Systems
Workshop, Resilient Systems, Robotics, Systems-of-Systems Challenges
in Design, Validation & Verification and Certification, Naples, Italy, 9
2011.

——, “Towards Artificial Perception,” in SAFECOMP 2012 Workshops,
F. Ortmeier and P. Daniel, Eds. Springer-Verlag Berlin, 2012, pp. 466—
476.

——, “Geometric Environment Modeling System,” in IFAC Conference
on Manufacturing Modelling, Management and Control, Saint Peters-
burg, 6 2013, pp. 1445-1450.

A. Dietrich, “Youtube-channel: Ivs magdeburg,” http://www.youtube.
com/ivsmagdeburg, [(online), as at: 29.09.2013].

A. Belkin, A. Kuwertz, Y. Fischer, and J. Beyerer, “World modeling
for autonomous systems,” Innovative Information Systems Modelling
Techniques, vol. 1, pp. 135-158, 2012.

A. Kuwertz, “Towards adaptive open-world modeling,” Vision and
Fusion Laboratory, Institute for Anthropomatics, Karlsruhe Institute of
Technology (KIT), Tech. Rep., 2012.

A. Dietrich and S. Zug, “Cassandra_ros project website,” http://www.
ros.org/wiki/cassandra_ros, [(online), as at: 29.09.2013].

J. McCarthy, “Situations, Actions, and Causal Laws,” Stanford Univer-
sity Artificial Intelligence Project, Tech. Rep., 1963.

H. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. Scherl, “Golog:
A logic programming language for dynamic domains,” The Journal of
Logic Programming, vol. 19, no. 1-3, pp. 59-83, 1994.

G. De Giacomo, Y. Lespérance, and H. Levesque, “Congolog, a
concurrent programming language based on the situation calculus,”
Artificial Intelligence, vol. 121, no. 1, pp. 109-169, 2000.

M. Tenorth and M. Beetz, “Knowrob — knowledge processing for
autonomous personal robots,” in Proc. of the International Conference
on Intelligent Robots and Systems (IROS). I1EEE, 2009, pp. 4261-4266.
M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “Ros: an open-source robot operating system,”
in ICRA Workshop on Open Source Software, vol. 3, no. 3.2, 2009.
R. Diankov, “Automated construction of robotic manipulation pro-

grams,” Ph.D. dissertation, Carnegie Mellon University, Robotics In-
stitute, 8 2010.

112

