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Abstract—There has been a lot of research done towards
both camera and Wi-Fi tracking respectively, both these
techniques have their benefits and drawbacks. By combining
these technologies, it is possible to eliminate their respective
weaknesses, to increase the possibilities of the system as a
whole. This is accomplished by fusing the data from Wi-Fi
and camera before inserting it in a particle filter. This will
result in a more accurate and robust localization system. The
measurement model for Wi-Fi data uses a difference feature
vector for comparing data to the fingerprint. The images taken
from the camera are analysed, and filtered to detect human
shapes. In this paper it is proven that an increased accuracy
can be achieved by fusing the sensor data of both Wi-Fi and
camera.

Keywords-Tracking; Camera; Background subtraction; Wi-Fi;
fingerprint.

I. INTRODUCTION

The need for localization is increasing and so is the range
of related possibilities. The increasing availability of mobile
applications and social networking has increased the request
for context aware applications and services, as well as
the possible technologies and solutions. There are multiple
ways to track people in a building environment. Some are
very accurate like ultra-wide band [1] (UWB), while others
require no additional infrastructure [2, p. 24]. But there
is not one ideal technology covering all needs. There is
always a drawback when using a certain technology [3,
p. 72]. By combining these technologies, we can try to
remove the negative aspects of each individual method and
augment its strengths. This paper proposes an algorithm that
combines Wi-Fi localization and static camera tracking. The
algorithms differ to other solutions, which are presented in
Section II, by fusing the sensor data in the measurement
model before calculating an estimated position based the
individual technologies.

The main goal is by combining Wi-Fi fingerprint based
localization and camera tracking, to increase the accuracy
and reliability of the overall system. A static camera is more
accurate than Wi-Fi localization, but has blind spots, suffers
from occlusion and it is difficult to perform identification.
Wi-Fi localization is generally accurate up to room level [3],
but requires users to carry a Wi-Fi capable device, this

also means that identification is inherent in this form of
localization. That means that Wi-Fi alone cannot locate
anybody who does not want to be tracked, i.e., does not
enable his or her Wi-Fi device.

The purpose of fusing Wi-Fi and video data is to have
a smaller localization error in the rooms where there is a
camera, in contrast to only Wi-Fi, but still offer room level
localization where there are no cameras. This paper will
rather focus on preparing the captured images and fusing that
data with the Wi-Fi data, than on the localization algorithm
and Wi-Fi data. The localization algorithm using Wi-Fi is the
same as described by Weyn [2] and will be further discussed
in Section III-C.

The first aspect of the vision localization is defined as
isolating human figures in the image, modelling those areas
in the image as a Gaussian mixture model [4] on a floor
plan. The fusion of camera and Wi-Fi data will encompass
the way the probabilities of both methods are combined to
get the most accurate yet still robust tracking.

First the methods that are used will be described, fol-
lowed by the results attained by these methods. Finally the
proposed algorithm and possible future work is discussed.

II. STATE OF THE ART

The research that has been done on the subject of indoor
localization using wireless signals is vast as shown by
Torres-Solis et al. [3]. Methods, such as lateration, angu-
lation and proximity, can be used for localization, but they
require the location of the terminals to be known.

Various wireless technologies have been used such as
Radio-frequency based localization [5], using Wi-Fi such as
RADAR [6], OSL [2]. Other technologies include UWB [1],
ultrasound [7] or visual tracking [8]

Oskiper et al. [8] combine camera measurement with
RF ranging measurements using a Kalman filter. Gee et
al. [9] combine camera, GPS and UWB. They both use
accurate UWB ranging measurements which implies the
installation of anchor nodes. Our proposed methods uses the
already available Wi-Fi infrastructure to enable opportunistic
localization.
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Vinyals et al. [10] propose a method to combine Wi-Fi and
audio measurements. Both measurements are done by the
mobile devices which still not solves the security problem
since anyone can inactivate their device. The combination
of Wi-Fi and fixed cameras enables the use of opportunistic
Wi-Fi localization, augmented with cameras placed in the
important areas where intruders should be detected.

III. METHODS

In this section the used methods are described, starting
with an explanation of particle filters. Afterwards the differ-
ent measurements and sensor data are explained.

A. Particle Filter

A particle filter [11] is able to cope with the multi-modal
nature of the problem, since we can alter the measurement
model as desired, depending on the kind of sensor data.
An additional problem which can easily be handled using
a particle filter is the difference in measurement times. The
camera updates multiple times a second while we we only
receive every few seconds a Wi-Fi measurement.

The Bayes’ rule (Equation 1) explains the reasoning
behind a particle filter. To estimate the posterior probability,
starting from x being the location and z being the measure-
ment. Since 1/P (z), the probability of measurement z, is
constant it is replaced with the normalization factor α.

P (xt|zt) = αP (zt|xt)P (xt) (1)

The main components in a particle filter are the motion
model, measurement model and resampling [2], [11]. The
motion model generally consists of rules that govern how
the particles can move, these rules are usually modelled to
reflect the real world.

The measurement model describes how the measurements
from the world are used to assign a weight to particles. The
higher the weight of a particle, the higher the believe of this
state. All particle weights sum to one, so that the collection
of particles can be called a posterior density function.

The resampling step describes how particles are repo-
sitioned between frames. Particles with low weights are
removed, while particles with high weights are duplicated.
This results in a higher particle density in areas with high
probability, since those are the areas that are the most
interesting to monitor.

B. Heterogeneous Measurements

Both measurements are fundamentally different: where
the Wi-Fi measurement compares the signal strength of
the client (a tag, smart phone, netbook, etc.) to a database
of signal strengths, camera tracking involves detecting an
object as it moves through the environment. This means that
Wi-Fi does not have problems with identification, since only
the object that is being tracked can transmit the data relevant
to its localization and by doing so automatically identifies

itself. Identification might be easy for Wi-Fi localization, it
cannot track an object that does not give its Wi-Fi signal
strength.

Camera tracking has much more difficulties to identify
what it is tracking, it is not inherent as with Wi-Fi. However
it is possible to detect all other objects in the view plane,
so that it is possible to track the people who are not being
tracked with Wi-Fi or to increase the accuracy by combining
the two measurements.

C. Wi-Fi Localization

The measurement model of [2] is used. It uses pattern
matching, here the difference feature vector of the received
signal strengths (RSS) from multiple Wi-Fi-access points
from the measurement is compared with the fingerprint
database using a Gaussian kernel method. Penalties are
added if access points are missing from the measurement
data or extra access points are found in the measurement
data. If an access point is visible at the location of the tag but
is not represented in the fingerprint of a certain location, then
we assume that the fit between measurement and fingerprint
is less accurate and vica versa. This is implemented by
adding a penalty to the weight, respective to either the RSS
of the extra signal or the expected RSS value.

Because fingerprint matching relies on a database with
RSS values from the area wherein the tracking will occur, it
is necessary to measure those RSS values at certain intervals
in space. This is a drawback, because it requires some
manual labour, but is preferred to methods like time-of-
flight, because it does not require that the location of access
points and difficult environment specific propagation models
to be known.

D. Camera Localization System

This section will describe the processing of the video
frames before the data is fused together, which is illustrated
by Figure 1. First the foreground segmentation is described,
followed by how human shapes are extracted and finally
mapped to a floor plan.

1) Background Subtraction: Because of the static camera
position, a good point to start detecting people is background
subtraction. In its most basic form, background subtraction
(BGS) takes an image of a room with only background
objects, then it uses the absolute difference between the
background image and the current video frame, this is called
image differencing. After thresholding, this will result in
a mask, which segments the foreground objects from the
background.

However backgrounds are not static. Changes in lighting
and objects being moved, like chairs and tables, can render
the background image outdated and useless. To combat this
it is necessary to update the background image at a specific
learning rate. This results in a trade-off between coping
with fast changing environment factors, such as lighting,
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(a) (b) (c) (d)

Figure 1. The steps of the visual preprocessing. (a) The original image. (b) The foreground mask returned by the background subtraction. (c) Human
filtering applied to the foreground mask.(d) The Gaussian kernel of the blob in image (c) mapped to the floor plan.

and preventing temporarily stationary foreground objects to
be absorbed in the background. One such method is median
background subtraction where the median value of the last
n values is used as background model.

An approach that differs from the image differencing in
the way that it does not use a single image as background
model, is Mixture of Gaussians, which is displayed in Fig-
ure 1(b). Here a pixel in the background model is represented
by Gaussian kernels at a certain color vector, in this case the
RGB color value. Because a pixel can consist of multiple
Gaussians, this method can accurately model regions where
the background image changes over time between a couple
of color vectors, such as a tree branch moving in the wind.
a pixel from the current frame is compared to that pixel
in the background model, which is a certain amount of
Gaussian kernels. If it lies within a certain threshold of a
Gaussian it is classified as background. If the pixel that is
being compared falls outside all Gaussians it is classified as
foreground model and the background model is updated [4].

The resulting image is called a foreground mask, it is
basically a binary map of pixels, which are deemed to be of
a foreground object. This mask will consist of all objects that
are not stationary. This also includes things like chairs that
have recently been moved. Since the goal is to track human
beings we try to eliminate these false positives. Generally
a person will appear as a tall blob in the foreground mask,
thus by focusing on these shapes we can reduce the impact
of objects like moved furniture. Figure 1(b) shows the result
from a mixture of Gaussians BGS.

2) Human filtering: A person in three dimensional space
will occupy a cuboid, when projected onto a two dimen-
sional plane, like an image, that person will occupy a
rectangle in the image. The image is filtered by a box-
filter with the width and height of the rectangle a person
would occupy in the image. The difference is that the filter
is not centred around its origin point. The origin point is
located at the bottom of the structure element, this focuses
the most intensity at the bottom of the blob as described by
Van Hese [12]. This causes that only blobs, which could be
people return a high response, effectively filtering out noise.

An added constraint is that the pixel value at the origin
point of the structuring element, has to be higher than a
certain threshold. This is done to prevent the filter from
returning high values below the detected blob. As a person
gets closer to the camera, the region he occupies will get
larger as well. This is taken into account by defining two
sizes of filter, one at the furthest region in the image and
one size for the nearest region, for the rest of the image the
size is interpolated between the large en the small size.

The size scaling described in the previous paragraph is
preferred above scale space implementation. Scale space
estimates the probability of the depth value of a certain
object [13], but this consumes a lot of processing power.
It scans the entire image multiple times with progressively
scaled detection unit, thus creating a three dimensional rep-
resentation of a two dimensional image. This is superfluous
since the orientation of the floor is known, then we can
estimate the possible depth of a person based on its location
in the image.

At this stage the foreground mask will consist solely of
the lowest region of tall blobs, which we assume are the feet
of people in the room. This region will be used to map the
location in the camera image to a location on a map of the
room using only one camera. The transformation from the
camera to the floor plan would cast ‘shadows’, bright areas
on a map as a result of the projection onto the floor plan.

3) Gaussian modelling: To further prevent this projection
effect, and reduce the consumed bandwidth, the filtered
foreground mask is described using Gaussian kernels. The
kernels that are used are circular 2D Gaussian functions. To
model a binary image with Gaussian functions, we make
some assumptions and cut corners. For instance, a binary
image is not desired when using a particle filter, a more
beneficial shape is in fact a Gaussian curve.

With that in mind it is justified to inaccurately model
the binary image with Gaussian functions. Secondly, by
choosing circular Gaussian functions we can further reduce
the ‘shadow’ effect created by projecting the image. By
modelling the foreground mask before it is fitted to the
floor plan, we can maintain the circular nature of the
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(a) (b) (c) (d) (e)

Figure 2. The results of Gaussian modelling. (a) A test image with white blobs with increasing size. (b) The resulting image from the human filtering.
notice that the blob in the center is about the same size as the blob on the left, despite their difference in size in the original image. (c) Initial state of
Gauss modelling algorithm. (d) The third iteration of the algorithm. (e) The eighth and in this case final iteration

blobs. The image is modelled by Gaussian curves with
coordinates x and y and a σ parameters, only its coordinates
are completely transformed while the standard deviation is
scaled accordingly, resulting in circular Gaussian functions
on the floor plan as seen in Figures 1 (d), which is what is
desired.

A method for finding Gaussian distributions in data is
Expectation Maximization algorithm. Here a number of
Gaussian distributions are mapped to the data. The drawback
of this is that the number of separate clusters has to be
known, this is not feasible in this set-up. Thus a separate
algorithm is devised as shown in Algorithm 1. The proposed
algorithm starts from a binary image, where for every white
pixel a Gaussian kernel is added to an array of Gaussian
kernels. That Gaussian kernel has the same coordinates as
the pixel in the image and a default standard deviation. Then
every kernel in that list is compared against every other
kernel. If two kernels are not c-separated the kernels are
combined, meaning their location is averaged and standard
deviation is convoluted according to Equation 2. This is
done until no new combinations are made. This method is
illustrated in Figure 2.

σ =
√
σ2
1 + σ2

2 (2)

This algorithm gives Gaussian functions located at places
with a high probability of having a person there. The formula
of a two dimensional circular Gaussian curve is as shown
in Equation 3, with σ = σx = σy . The normalizing constant

1√
2πσ2

is there to insure that the integral of the curve is one,
it causes the intensity of the peak to decline as the standard
deviation gets larger. Large blobs in the image make for large
standard deviations in the gauss kernel that represents it, but
the larger the blob, the larger the probability of a person
being there. Therefore we can disregard the normalizing
constant, knowing that the particle filter normalizes itself
after measurement.

f(x, y) =
1

2πσ2
e−

1
2 [(

x−µx
σ )2+(

y−µy
σ )2] (3)

Algorithm 1 Mapping Gauss. Curves to blobs in an Image
for all pixelvalues ≥ threshold do
GaussList← newgaussKernel {pixelcoord, default
σ}

end for

unstable = true
while unstable do

for all gaussKernelsinGaussList do
for all OthergaussKernel inGaussList do
Distance = ‖gaussKernel −
OthergaussKernel‖
Totalσ = gausskernel.σ +
Othergausskernel.σ
if distance ≤ Totalσ then
Combine(gaussKernel, OthergaussKernel)

end if
end for

end for
if noCombinationsoccured then
unstable = false

end if
end while

IV. FUSION

Combining the data from Wi-Fi and video is an important
step, here it is attempted to increase the amount of valuable
information. While other research first computes the location
from the each sensor type separately and then fuses the
locations, this proposal fuses the sensor data and then uses
all available data for estimating the position [2].

The fusion process is shown in Figure 3. Data measured
by the sensors are sent to a data aggregator, this compo-
nent stores the incoming sensor data. The data aggregator
selects which measurement models to use, a Wi-Fi or image
measurement model or both. The sensor data is then sent
to a fusion engine where the particle filter algorithm is
controlled. For instance in the event of both measurement
models being used, the fusion engine will ensure that the
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correct measurement model is used for the corresponding
sensor data. The fusion engine will send the renewed loca-
tion to a GUI (graphical user interface) on the clients device.

Wi-Fi Sensor Data

Image Sensor Data

Data Aggregator

Fusion Engine
Measurement

Models

Particle Filter

Location

Figure 3. The fusion process flow.

The benefit of fusing these two measurements is that a Wi-
Fi measurement only refers to the client while the camera
image has data that refers to all persons in its view. A camera
provides a sub-meter accurate location but Wi-Fi only has
a zone estimation [3]. However the camera has blind spots,
is not located in every room, and because of the adaptive
background subtraction a stationary person will eventually
be absorbed in the background. Therefore it is critical to
determine what the state of the sensors are.

Wi-Fi can be used as a stand-alone measurement and
will locate a person up to room level, but since this vision
system’s measurement has no concept of identification it
is ill advised to use it as measurement on its own, else
there would be no way to determine that the correct person
has been located. Additionally, seeing the nature of the
transmitted data from a camera server, there is either data
or there is not, it is possible to decide which variation of
measurement model to use. In the case where only Wi-Fi
data is received, obviously only the measurement model for
Wi-Fi is used.

When both Wi-Fi and camera data are available, then the
two measurements are combined with a naive Bayesian with
a confidence measure, as in Equation 4. After this occurrence
the same Wi-Fi measurement is repeated when newer camera
data is available. Initially, the confidence measure α for the
Wi-Fi measurement is one, i.e., very confident since the
measurement has just been taken. As the Wi-Fi data be-
comes older the confidence in that measurement decreases,
so that eventually when α is zero, the entire probability,
P (Wi-Fi|Loc) is reduced to 1, and effectively removed
from the equation. Similarly, the confidence measure β is
determined by the amount and distribution of kernels, where
β will be closer to one when there are fewer kernels and
these are bunched close together, indicating only one person
in the room, and closer to zero when there are a lot of kernels
that are spread over a larger area, at the point where the
information received from the camera is no longer useful

and can in fact be harmful to the localization.

P (loc|wifi, cam) = α∗P (wifi|loc)α∗P (Cam|loc)β (4)

V. RESULT

The processing time that it takes for the incoming image
to be transformed to the mixture of Gaussians is about
50 milliseconds for an image the size of 640x480 pixels.
Taking into account the fact that this only updates at 4 Hz,
it leaves the processor with enough time to perform other
tasks. The localization engine has an average processing
time of 150 milliseconds, this performance number does not
change depending on the type of localization that is done,
i.e., there is no difference between Wi-Fi, camera or the
combination.

The estimated location is compared to the ground truth,
and differences in measurement models as to compare the
performance of Wi-Fi alone, camera alone and the both
combined. The resulting 2 dimensional error is represented
as a cumulative distribution function shown in Figure 4. This
allows for fast analysis of both the accuracy and precision.

The test itself consisted of one person being tracked in
a test environment, shown in Figure 1. The environment
consisted of the field of view of a static camera located at
the ceiling of the test area, about 3 meters high. The test
environment itself is a unmodified lab area with tables and
chairs creating occlusion. There are Wi-Fi fingerprints in
the test area, but not at every location, because the layout
of the tables was different when the fingerprints were taken.
The test person walks around at a steady pace, sometimes
stopping and changing direction.

The conditions that were tested included a person with
a Wi-Fi client moving around in the test area alone with
no interference, this situation is represented by Figure 4(a).
Other conditions include a stationary Wi-Fi client while a
person walks around an important test since the background
subtraction algorithm will not detect someone who has
been stationary for a while. Also a cluttered scene where
one Wi-Fi client and several others walk in the test area,
this can cause problems because the camera sensor data
has no identification this can be slightly countered by the
confidence measure. The cumulative distribution function of
these other situations is shown in Figure 4(b), and displaying
a slight increase in accuracy to Wi-Fi.

VI. CONCLUSION

The results indicate that by combining Wi-Fi and camera
sensor data, the accuracy can be increased. This is caused
by the combination Wi-Fi having only room level accuracy
and camera having no concept of identity.

There is also the added benefit of being able to update the
clients location faster, than using Wi-Fi alone. This can be
vital when trying to guide a person through a building, if the
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(a)

(b)

Figure 4. (a) The cumulative distribution function of the user walking
around the test area without interference.(b) all other situations combined

location displayed is several seconds old than it is difficult
for that person to orientate him- or herself.

Furthermore because of a fairly accurate measurement
from the camera, it is possible to update a Wi-Fi fingerprint
if the location provided by the camera is certain enough.
Furthermore it is also a possibility to auto-calibrate the
camera, meaning that it is possible to place the camera in
a specific room by measuring the probabilities of multiple
hypotheses of camera locations.

It would also be possible to have a feedback to the camera
server on the identity of a kernel, were every kernel has a
hypothesis on the identity that it represents [14].
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