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Abstract — Tangible User Interfaces (TUIs) feature physical 

objects that people can manipulate to interact with smart spaces. 

Smart objects used as TUIs can further improve user experience 

by recognizing and coupling natural gestures to commands 

issued to the computing system. Hidden Markov Models (HMM) 

are a typical approach to recognize gestures sampled from 

inertial sensors. In this paper we implement a HMM-based 

continuous gesture recognition algorithm, optimized for low-

power, low-cost microcontrollers without floating point unit. The 

proposed solution is validated on a set of gestures performed with 

the Smart Micrel Cube (SMCube), which embeds a 3-axis 

accelerometer and an 8-bit microcontroller. Through the paper 

we evaluate the implementation issues and describe the solutions 

adopted for gesture segmentation and for the fixed point HMM 

forward algorithm. Furthermore, we explore a multiuser 

scenario where up to 4 people share the same device. Results 

show that the proposed solution performs comparably to the 

standard forward algorithm and can be efficiently used for low 

cost smart objects. 

Keywords — Hidden Markov Models; Tangible Interfaces; 

Smart Objects; Gesture Recognition; Fixed Point. 

I.  INTRODUCTION 

Tangible User Interfaces (TUIs) introduce physical, 
tangible objects that augment the real physical world by 
coupling digital information to everyday objects. The system 
interprets these devices as part of the interaction language. 
TUIs become the representatives of the user navigating in the 
environment and enable the exploitation of digital information 
directly with his/her hands. People, manipulating those devices, 
inspired by their physical affordance, can have a more direct 
access to functions mapped to different objects.  

The effectiveness of a TUI can be enhanced if we use 
sensor augmented devices, which can provide a bridge between 
the physical and the digital world. Such smart objects may be 
able to recognize user gestures and improve human experience 
within interactive spaces. Furthermore, the opportunity to 
execute on-board a gesture recognition algorithm, without the 
need to end data streams from the local sensor to a central base 
station, results in extended battery life, improved system 
scalability and easier handling of mobile TUIs. 

In this work we present an algorithm for segmentation and 
gesture recognition implemented on-board of a smart object, 
the Smart Micrel Cube [4], which embeds an 8 bit 
microcontroller, a digital accelerometer and a Bluetooth 

transceiver. This device can be used as the tangible interface of 
an interactive tabletop setup (like in the TANGerINE Project 
[4]) or as a mobile context-aware interface towards a smart, 
environment [6]. The algorithm detects the beginning and the 
end of motion segments and uses Hidden Markov Models to 
recognize the executed gesture. Unlike our implementation, 
gesture segmentation from a continuous stream of inertial data 
often relies on user collaboration (e.g., pushing a button wile 
executing a gesture [11]) or integrates information from 
various types of sensors (e.g., ultrasonic [19], microphones 
[21]). HMMs have been broadly applied to gesture recognition 
[11], [14], [15] but implementation on low performance 
devices are limited to high resource mobile-devices and 32 bit 
microcontrollers [2]. We focused on a resource constrained 
platform and addressed implementation issues for a 8 bit fixed 
point microcontroller. 

The rest of the paper is organized as follow: Section II 
reports on related works and the sub-sequent Section III 
describes the system and the recognition procedure. Following, 
we characterize our implementation in Section IV; discuss 
experimental analysis and results in Section V and we conclude 
our paper in Section VI. 

 

II. RELATED WORK 

The use of TUIs has been proposed in many scenarios 
where users manipulate digital elements. This have been 
proved to be useful especially in applications for entertainment 
and education [16], exploration of virtual environments [9], 
media content creation and manipulation [10], [18]. The 
entertainment market is rapidly embracing tangible and 
gestural interfaces in several new scenarios, as for game-
console controllers, such as the Wii, or for mobile devices and 
smart phones. 

Smart objects with gesture recognition capabilities can 
enhance the expressiveness of TUIs. The MusicCube, for 
example, is a tangible interface used to play digital music like 
an MP3 player [5]. The cube is able to understand the face 
pointing upward and a set of simple gestures. This ability, 
together with a set of controls and buttons, is used to choose 
the desired playlist and to control music volume.  

Gestures executed with natural hand and arm movements 
are variable in their spatial and temporal execution, requiring 
classifiers suited for temporal pattern recognition. Typical 
approaches include Dynamic Time Warping (DTW) [13], 
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Neural Networks [3], and Hidden Markov Models (HMMs). 
HMMs are often used in activity recognition since they tend to 
perform well with a wide range of sensor modalities and with 
temporal variations in gesture duration. They are also used 
successfully in other problem domains, such as speech 
recognition, for which they were initially developed [17]. 
Several variants of HMMs have been proposed to recognize 
inertial gestures: in [11] 5-state ergodic discrete HMMs are 
evaluated with the Viterbi algorithm to classify gestures 
performed with a handheld sensor device in several tasks 
(interaction with a TV, a presentation or a CAD environment).  
The work of  Mantyla et al. [15] uses 7-states Left-to-Right 
models and the forward algorithm to classify actions performed 
with a mobile phone equipped with an accelerometer. Both 
implementations have similar performance and rely on a PC to 
execute all computations. In our work we are using low-power 
hardware without a floating point unit, so we implemented a 
fixed-point variant of the forward algorithm, presented in a 
previous work [22]. 

Using HMMs to classify gestures from a continuous stream 
of data brings another issue to solve: the recognition procedure 
needs to discriminate actually executed gestures from all the 
other arbitrary movements. Hoffman et al. [8] use a sensorized 
glove to recognize hand gestures: to segment the data stream 
they compute the velocity profile of the sampled accelerations 
and apply a threshold to identify the motion segments. In [7] a 
Gaussian model of the stationary state is used with a sliding 
window approach to find pauses in movements, which identify 
the beginning and the end of a gesture. Amft et al. [1] 
presented an algorithm to recognize arm activity during meal 
intake, with accelerometers placed on the arm and the wrist of 
the user. To segment gestures they use the Sliding Window and 
Bottom-up (SWAB) algorithm [12] and the angle of the lower 
arm as the segmentation feature. While those works have 
focused to develop recognition solutions, none of them deals 
with computation or memory limited devices. We found a 
similar solution implemented on a wristwatch device, using a 
32 bit ARM microcontroller [2], but there are no works 
targeting low-cost, low-power 8 bit microcontrollers, such is 
the Atmel ATmega168 used in this work. 

 

III. SYSTEM OVERVIEW 

The smart object used in this work is a cube shaped artifact, 
the Smart Micrel Cube (SMCube) illustrated in Fig. 1. It 
embeds a low-cost, low-power 8-bit microcontroller (Atmel 
ATmega168), a Bluegiga WT12 Bluetooth transceiver, which 
supports Serial Port Profile (SPP) and a MEMS tri-axial 
accelerometer (STM LIS3LV02DQ) with a programmable full 
scale of 2g or 6g and digital output. The cube is powered 
through a 1000 mA/h, 4.2 V Li-ion battery. With this battery 
the cube reaches up to 10 hours of autonomy during normal 
operation.  

The processing flow is illustrated in Fig. 2. Accelerations 
on the three axes are sampled at a rate of 31.75 Hz within the 
range of ±2g. The accelerometer represents the sampled data 
with a 16 bit integer value, and reaches a resolution of 1 mg. 

In the pre-processing stage, sampled data are filtered with 
an averaging filter to eliminate high frequency noise. This filter 
computes the average value of the last 4 samples: this window 

 

Figure 1.  Smart Micrel Cube: on the top left the inner surface of the master 

face, with all the main components and on the top right the inner surface of 

the other faces 

 

Figure 2.  System processing blocks 

length was chosen to use simple shift operations instead of 
divisions. An offset filter removes the stationary gravity 
acceleration, measured during a calibration phase which consist 
in sampling data when the device is placed still on a table. 

The next two stages implement a motion detection 
algorithm, used for segmentation. For this purpose two features 
are used: delta, which consists in the difference between the 
actual sample and the mean of the last 4 samples, and the 
variance. A Finite State Machine (FSM) uses these features to 
find out if the device is in one of the 4 possible states: still on a 
table, still in user’s hand, in movement, shaken. We asked 
users to hold still in a hand the device right before and after 
executing a gesture. In this way we segment as gestures only 
motion segments which start and end with this particular 
condition and have a limited duration. 

Each acceleration vector of a gesture, {ax, ay, az} is 
converted to equivalent spherical coordinates {φ, θ, r}, as 
represented in Fig. 3. From those vectors, magnitude 
information r is discarded and the angles φ and θ are used to 
identify the direction of the movement performed, represented 
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Figure 3.  Spherical coordinates 

 
Figure 4.  Codebook vectors for direction quatization. 

as a point on a unitary sphere. In order to cluster this data for 
the discrete HMMs, a quantization algorithm is applied, with k 
vectors or codes in the codebook. In this case, codebook 
vectors are uniformly distributed points on the unitary sphere, 
as illustrated in Fig. 4. Since k must be determined empirically 
we decided to conduct tests to find a codebook size delivering a 
satisfying trade-off between results and algorithm complexity. 

The last block of the processing chain is the HMM 
classifier. During the training phase we collected several 
gestures to build and validate models for each gesture. The 
training was implemented on a PC with Matlab and the 
HMMtoolbox, which uses the well-known Baum-Welch 
algorithm. We chose to use discrete HMMs, with 7-state Left-
to-Right models for all gestures, according to the results of a 
preliminary exploration. For the on-line recognition a modified 
fixed-point version of the forward algorithm was implemented 
in both Matlab and C on the AVR platform.  

 

IV. IMPLEMENTATION 

The goal of this work is to implement the whole gesture 
recognition algorithm on board of the SMCube. The main tasks 
performed are the segmentation of gestures from a continuous 
data stream and the HMM-based gesture recognition.   

A. Segmentation 

The segmentation algorithm was implemented ad-hoc, and 
even if it was developed and optimized in this particular setup, 
it can be used in similar scenarios.  

It is not possible to recognize gestures with only one 
accelerometer, if they are part of a larger continuous 
movement. To overcome this problem we added a limitation in 
gesture execution: users must hold still the device for few 
instants before and after a gesture. In this way, it is 
fundamental for the algorithm to identify when the device is 
still in user’s hand and when a movement starts and ends. To 
evaluate the state of the device we compute the variance of the 

filtered signal and use a FSM. The variance uses sliding 
windows of 4 samples; it is calculated for each axis and then 
summed to have a total information of the intensity of the 
movement.  

When the cube is placed still on a surface, the variance 
values observed are near zero. If a user holds the device in a 
hand, we measure a low and uniform variance, always within a 
limited interval. Since movements bring to higher values, it is 
possible to classify those conditions with empirically 
determined threshold values, combined with a few sample 
delays to avoid spurious transitions. 

In this way, we segment every movement that is 
encapsulated between two states when the device is still in 
user’s hand. Since all the used gestures have limited duration, 
we added a condition on the minimum and maximum time for 
the movements to be segmented as gestures. This helps to 
avoid many unwanted movements being identified as gestures. 

Despite those conditions, this algorithm still identifies a lot 
of random movements as gestures, leading to many false 
positive results from the classifier, as shown later in Section V. 
To improve the performance and the usability of the device, we 
introduced a new operation mode, called Assisted 
Segmentation. In this mode the user performs a shake gesture 
to enable and disable the segmentation and recognition of all 
the other gestures. The shake gesture is recognized using the 
segmentation FSM and has a high accuracy: during our tests 
we obtained a correct classification ratio of 100% within 80 
executions of the gesture and only one false positive. 

By default, gesture recognition is disabled, and the user can 
move the device in any way (e.g. walking with the device or 
using the device as a pointer on an interactive table). When 
needed, the user performs a shake to “wake up” the smart 
object, activating the recognition algorithm and then executes 
the wanted gestures to interact with the system. During this 
time the user can pay attention to the movements performed, to 
avoid the recognition of random movements as gestures. 
Another shake disables the interaction capabilities of the 
device, and the user can move it freely. 

This user-assisted segmentation technique increased the 
overall performance of the device, reducing drastically the 
number of false positive recognitions. 

B. HMM Gesture Recognition 

The main feature used for gesture recognition is the 
direction of the movement, represented by the direction of the 
acceleration vector, sampled at each frame. This information is 
obtained converting the 3D acceleration vector {ax, ay, az} in 
spherical coordinates, and using only the two angles {φ, θ}. 

To efficiently compute the two angles of the acceleration 
vector we implemented an algorithm based on the CORDIC 
algorithm [20]. Using the notation in Fig. 3, this algorithm first 
estimates the phase θ and the magnitude r’ of the complex 
number (ax + iay), then again estimates the angle φ, using r’ and 
az. All computations are done with integer values, giving us a 
resolution of 1 degree and a maximum error of 2 degrees, 
which is acceptable since we are dealing with human motions 
and don’t need higher accuracy.  

Discrete HMMs are less computationally demanding than 
those operating on continuous observations, so they are the best 
choice in our case, since we are focusing on a limited resource 
implementation. As input to the discrete models we need to use 

393

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-100-7



a discrete feature symbol to represent the directional 
information. The two angles calculated, that identify the 
arbitrary 3D orientation of a unitary vector, are quantized to the 
nearest vector of the codebook by a simple minimum distance 
classifier. In this way, the stream of two angles is converted in 
a stream of codebook indices, which is a suitable input to 
discrete HMMs. The number of vectors in the codebook was 
empirically determined and a codebook with k = 26 vectors 
uniformly distributed on the spherical surface resulted to be the 
best trade-off between quantization accuracy and processing 
complexity. 

The off-line HMM training phase builds a model for each 
of the gestures to recognize, using sample instances of the 
gestures. We used the Baum-Welch algorithm, and initialized 
the training models with several random probability 
distributions. Among the resulting HMMs, those with the 
lowest training error were chosen.  

To improve the model behavior, when dealing with input 
gestures that are slightly different from those used during 
training, we modified the symbol observation probability 
distribution (i.e. the observation matrix B in the discrete case). 
A model with a uniform observation matrix B0 recognizes 
every gesture with a same low probability. We interpolated the 
trained models with the uniform one, by weighting the 
observation matrixes with a factor ε as given by the equation  

 εε 

The optimal ε factor was empirically obtained and lies in 
the range [0.7 – 0.9]. 

The on-line recognition algorithm evaluates the executed 
gesture with all of the trained models, and selects the model 
with the highest probability. For this purpose we used a fixed 
point version of the forward algorithm, as introduced in [22]. 
This implementation deals with the lack of a division unit in 
the low power microcontroller embedded in the device, and 
proposes a different scaling procedure that uses shifts and a 
logarithmic representation of the probabilities. Our previous 
work compared the performance of this implementation against 
a standard floating point algorithm. The results showed that a 
16 bit fixed point algorithm has the best trade-off between 
classification rate and computational complexity. 

 

V. ANALYSIS AND RESULTS 

A. Experimental Setup 

For the validation of our algorithm we used a set of 7 
gestures, illustrated in Fig. 5. All gestures are formed by 
natural movements, start and end with the user holding the 
cube in the same position and are executed on the vertical plane 
in front of the user, holding the device every time in the same 
orientation. 

We collected gestures executed by four people, all male 
students with an age of 26 years. To build and validate the 
HMMs each user executed 80 instances of every gesture, 
during different days. Those gestures were continuously 
executed, with a few seconds of interval between two 
consecutive instances, and segmented with our algorithm.  

 
Figure 5.  Gestures used for algorithm validation. The dots indicate the start 

and end position. 

Gestures from three users were used for both modeling and 
validation, while gestures from the fourth user were used only 
to test the models. From each user we also collected several 
continuous streams, containing gestures and random 
movements, to simulate an actual usage of the device and test 
the overall recognition algorithm. The whole dataset was 
collected with the SMCube and sent via Bluetooth to a PC. No 
feedback from the device or the PC was given to the users 
during the execution of the gestures. 

To easily test the performance, the algorithm was 
implemented in Matlab, taking care to simulate the 
computational constrains of the 8 bit microcontroller and using 
only integer computations with controlled variable size. 

B. Test and Simulations 

In the first place we used the collected dataset to train a set 
of HMMs for each user, using the floating point notation with 
double precision. Each model have been trained using 15 
reference instances, 15 loops for the Baum-Welch training 
algorithm, and 10 initial random models. The floating point 
models were then converted in fixed point, represented only by 
16 bit integers. Each user’s models were validated with his/her 
own gestures, not used in the training phase, and with gestures 
from other users. 

In Fig. 6 we present classification results in function of the 
interpolation factor ε. The circled points refer to the case when 
models trained by one user are validated with his own gestures; 
the triangular points when the models trained on a user are 
validated on the other user’s gestures, and  the squared points 
indicate when a global model is used on all users.  

The classification performance is measured with the 
Correct Classification Ratio (CCR), defined as the ratio 
between the  number of correctly classified instances and the 
total number of instances. 

 

 
Figure 6.  Average CCR for various ε values: the first line is in a single user 

scenario, the second is for the multi-user scenario and the third is for the 
global model 
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The results show how the classifier performs well in a 
single user scenario with recognition rates up to 99.7%. The 
algorithm has some limitations in a multi-user scenario, when 
recognizing gestures from a user with models trained by 
another user. We found that interpolating the trained models 
with a uniform one gave some advantages, and the best case is 
with an interpolation factor ε = 0.8. Table I shows the 
classification rates for the various users in this case; Tab. II 
shows the classification matrix in the best case and Tab. III in 
the worst case. 

To overcome the limitations in the multi-user scenario, we 
put together all the gesture instances, regardless to the user who 
executed them, and build a global model for each gesture. 
These models were trained using 15 randomly chosen gestures 
and validated on 200 gestures from four users. The results of 
this case are presented in Fig. 6 with the squared points, where 
we can observe how in this case we have a performance 
comparable to the single user scenario, despite we are 
classifying gestures from all the users. We can also notice that 
the fixed point implementation has performances comparable 
to the floating point one, and our algorithm is suitable for low-
performance smart objects. Table IV shows the correct 
classification matrix for the best case, with ε = 0.6. 

With this global model we evaluated the overall algorithm 
performance, using the collected continuous streams of data 
which contain gestures and random movements. In this way we 

TABLE I.  CLASSIFICATION RATES IN MULTI-USER SCENARIO 

Training Set 
Validation Set 

User 1 User 2 User 3 

User 1 99% 66.7% 85.9% 

User 2 94% 92.8% 85.5% 

User 3 93.3% 71.9% 99.7% 

TABLE II.  CCR BEST CASE: USER 3 USES HIS OWN MODEL 

Performed 

gestures 

Classified as 

Up Right Down Left Circle Square X 

Up 62 0 0 0 0 3 0 

Right 0 65 0 0 0 0 0 

Down 0 0 65 0 0 0 0 

Left 0 0 0 65 0 0 0 

Circle 0 0 0 0 65 0 0 

Square 0 0 0 0 0 65 0 

X 0 0 0 0 0 0 65 

TABLE III.  CCR WORST CASE: USER 2 USES MODEL TRAINED BY USER 3 

Performed 

gestures 

Classified as 

Up Right Down Left Circle Square X 

Up 33 0 0 0 1 28 3 

Right 0 25 0 30 6 1 3 

Down 12 1 43 1 0 7 1 

Left 0 3 0 60 1 1 0 

Circle 0 0 0 5 42 15 3 

Square 0 0 0 0 13 50 2 

X 3 0 15 3 2 3 39 

TABLE IV.  CCR FOR THE GLOBAL MODEL 

Performed 

gestures 

Classified as 

Up Right Down Left Circle Square X 

Up 194 0 3 0 2 1 0 

Right 0 187 1 11 0 1 0 

Down 1 0 199 0 0 0 0 

Left 0 1 0 199 0 0 0 

Circle 0 0 0 4 177 19 0 

Square 0 0 0 0 13 187 0 

X 3 0 12 0 1 2 182 

TABLE V.  GLOBAL MODEL CONTINUOUS RECOGNITION PERFORMANCES 

 
Auto 

Segmentation 

Assisted 

Segmentation 

Executed Gestures 83 78 

Correctly Classified 71 62 

Insertions 45 2 

Deletions 6 5 

 
could test the segmentation and recognition algorithms 
together. Table V presents the results of this analysis. The 
automatic segmentation algorithm has good performance in 
recognition executed gestures, but gives also a lot of false 
positive results, identified by the insertions. The performance 
depends on what the user is doing and how the device is 
moved: long and continuous movements are easily rejected, but 
short movements, similar to gestures, trigger the recognition 
algorithm leading to a false positive. Deletions indicate how 
many times the algorithm misses a gesture, and this happens 
only if the gesture is executed too quickly or too slowly. 
Minimum and maximum duration times are derived from the 
collected dataset, and deletions may happen only in extremely 
short or long gestures. 

To improve the device usability we proposed the assisted 
segmentation algorithm, which lets the user disable the 
recognition of gestures when not needed. Recognition rates for 
this algorithm are the same of the automatic one, since it uses 
the same HMMs, but in this case we have almost no insertions. 

C. Processing Perfomance Results 

All the tasks needed for the gesture recognition algorithm 
were implemented on a PC in Matlab and on the ATmega168 
microcontroller in C, using the AVR-GCC compiler and a 8 
MHz clock. The Table VI presents the computational costs 
needed to perform the main operations at each frame. The 
Matlab implementation uses only fixed point operations on 16 
bit  integers, to simulate the embedded version and can be 
easily ported on other microcontrollers. 

Each gesture model requires 3 matrices of 16 bit variables 
and with the implementation choices (7-state models with a 26 
vector codebook) we need 462 Bytes to store each model. The 
microcontroller used has only 1 Kbyte of RAM, so we stored 
the models in the 16 KB of FLASH memory, used as program 
space. The entire application uses up to 12480 bytes of  
FLASH and 360 bytes of RAM memory. 

We found a similar fixed-point implementation of HMMs 
in [2], which uses a 32-bit ARM7 microcontroller running at 
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65MHz. They recognize only 3 gestures and have recognition 
rates comparable to ours, but a shorter execution time (2.7 ms). 

TABLE VI.  COMPUTATIONAL COSTS 

 
ATmega168 

(ms) 

PC-Matlab 

(ms) 

Preprocessing 0.03 0.37 

Segmentation 0.20 0.40 

Feature extraction 0.17 0.19 

HMM (1 gesture) 0.73 0.83 

HMM (7 gestures) 5.00 5.91 

Total 6.13 7.70 

 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper we presented an on-line segmentation and 
gesture recognition algorithm, implemented on a low-cost, 
low-power 8 bit microcontroller. 

The automatic segmentation algorithm effectively finds 
executed gestures, but introduces also false positives.  To 
address this issues, we introduced an Assisted Segmentation 
mode, which disables the gesture spotting algorithm when not 
needed, through the execution of a shake gesture. 

We optimized a fixed point implementation of the HMM 
algorithm, which can be implemented on such low-
performance microcontrollers, maintaining the same results as 
in a floating point case. The recognition algorithm can be used 
in a multi-user scenario, employing a global model trained with 
gestures from various users. It can be improved if the device is 
used only by one user, training the algorithm with only his/her 
own gestures. 

In a future work we will explore the best ways to provide a 
feedback to the user, to see if the user can be trained to adapt 
his behavior and gestures in order to maximize the 
performance of the device. 
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