
Continuous Gesture Recognition for Resource

Constrained Smart Objects

Bojan Milosevic, Elisabetta Farella, Luca Benini

DEIS - Dipartimento di Elettronica, Informatica e Sistemistica

Università di Bologna

Bologna, Italy

{bojan.milosevic, elisabetta.farella, luca.benini}@unibo.it

Abstract — Tangible User Interfaces (TUIs) feature physical

objects that people can manipulate to interact with smart spaces.

Smart objects used as TUIs can further improve user experience

by recognizing and coupling natural gestures to commands

issued to the computing system. Hidden Markov Models (HMM)

are a typical approach to recognize gestures sampled from

inertial sensors. In this paper we implement a HMM-based

continuous gesture recognition algorithm, optimized for low-

power, low-cost microcontrollers without floating point unit. The

proposed solution is validated on a set of gestures performed with

the Smart Micrel Cube (SMCube), which embeds a 3-axis

accelerometer and an 8-bit microcontroller. Through the paper

we evaluate the implementation issues and describe the solutions

adopted for gesture segmentation and for the fixed point HMM

forward algorithm. Furthermore, we explore a multiuser

scenario where up to 4 people share the same device. Results

show that the proposed solution performs comparably to the

standard forward algorithm and can be efficiently used for low

cost smart objects.

Keywords — Hidden Markov Models; Tangible Interfaces;

Smart Objects; Gesture Recognition; Fixed Point.

I. INTRODUCTION

Tangible User Interfaces (TUIs) introduce physical,
tangible objects that augment the real physical world by
coupling digital information to everyday objects. The system
interprets these devices as part of the interaction language.
TUIs become the representatives of the user navigating in the
environment and enable the exploitation of digital information
directly with his/her hands. People, manipulating those devices,
inspired by their physical affordance, can have a more direct
access to functions mapped to different objects.

The effectiveness of a TUI can be enhanced if we use
sensor augmented devices, which can provide a bridge between
the physical and the digital world. Such smart objects may be
able to recognize user gestures and improve human experience
within interactive spaces. Furthermore, the opportunity to
execute on-board a gesture recognition algorithm, without the
need to end data streams from the local sensor to a central base
station, results in extended battery life, improved system
scalability and easier handling of mobile TUIs.

In this work we present an algorithm for segmentation and
gesture recognition implemented on-board of a smart object,
the Smart Micrel Cube [4], which embeds an 8 bit
microcontroller, a digital accelerometer and a Bluetooth

transceiver. This device can be used as the tangible interface of
an interactive tabletop setup (like in the TANGerINE Project
[4]) or as a mobile context-aware interface towards a smart,
environment [6]. The algorithm detects the beginning and the
end of motion segments and uses Hidden Markov Models to
recognize the executed gesture. Unlike our implementation,
gesture segmentation from a continuous stream of inertial data
often relies on user collaboration (e.g., pushing a button wile
executing a gesture [11]) or integrates information from
various types of sensors (e.g., ultrasonic [19], microphones
[21]). HMMs have been broadly applied to gesture recognition
[11], [14], [15] but implementation on low performance
devices are limited to high resource mobile-devices and 32 bit
microcontrollers [2]. We focused on a resource constrained
platform and addressed implementation issues for a 8 bit fixed
point microcontroller.

The rest of the paper is organized as follow: Section II
reports on related works and the sub-sequent Section III
describes the system and the recognition procedure. Following,
we characterize our implementation in Section IV; discuss
experimental analysis and results in Section V and we conclude
our paper in Section VI.

II. RELATED WORK

The use of TUIs has been proposed in many scenarios
where users manipulate digital elements. This have been
proved to be useful especially in applications for entertainment
and education [16], exploration of virtual environments [9],
media content creation and manipulation [10], [18]. The
entertainment market is rapidly embracing tangible and
gestural interfaces in several new scenarios, as for game-
console controllers, such as the Wii, or for mobile devices and
smart phones.

Smart objects with gesture recognition capabilities can
enhance the expressiveness of TUIs. The MusicCube, for
example, is a tangible interface used to play digital music like
an MP3 player [5]. The cube is able to understand the face
pointing upward and a set of simple gestures. This ability,
together with a set of controls and buttons, is used to choose
the desired playlist and to control music volume.

Gestures executed with natural hand and arm movements
are variable in their spatial and temporal execution, requiring
classifiers suited for temporal pattern recognition. Typical
approaches include Dynamic Time Warping (DTW) [13],

391

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

Neural Networks [3], and Hidden Markov Models (HMMs).
HMMs are often used in activity recognition since they tend to
perform well with a wide range of sensor modalities and with
temporal variations in gesture duration. They are also used
successfully in other problem domains, such as speech
recognition, for which they were initially developed [17].
Several variants of HMMs have been proposed to recognize
inertial gestures: in [11] 5-state ergodic discrete HMMs are
evaluated with the Viterbi algorithm to classify gestures
performed with a handheld sensor device in several tasks
(interaction with a TV, a presentation or a CAD environment).
The work of Mantyla et al. [15] uses 7-states Left-to-Right
models and the forward algorithm to classify actions performed
with a mobile phone equipped with an accelerometer. Both
implementations have similar performance and rely on a PC to
execute all computations. In our work we are using low-power
hardware without a floating point unit, so we implemented a
fixed-point variant of the forward algorithm, presented in a
previous work [22].

Using HMMs to classify gestures from a continuous stream
of data brings another issue to solve: the recognition procedure
needs to discriminate actually executed gestures from all the
other arbitrary movements. Hoffman et al. [8] use a sensorized
glove to recognize hand gestures: to segment the data stream
they compute the velocity profile of the sampled accelerations
and apply a threshold to identify the motion segments. In [7] a
Gaussian model of the stationary state is used with a sliding
window approach to find pauses in movements, which identify
the beginning and the end of a gesture. Amft et al. [1]
presented an algorithm to recognize arm activity during meal
intake, with accelerometers placed on the arm and the wrist of
the user. To segment gestures they use the Sliding Window and
Bottom-up (SWAB) algorithm [12] and the angle of the lower
arm as the segmentation feature. While those works have
focused to develop recognition solutions, none of them deals
with computation or memory limited devices. We found a
similar solution implemented on a wristwatch device, using a
32 bit ARM microcontroller [2], but there are no works
targeting low-cost, low-power 8 bit microcontrollers, such is
the Atmel ATmega168 used in this work.

III. SYSTEM OVERVIEW

The smart object used in this work is a cube shaped artifact,
the Smart Micrel Cube (SMCube) illustrated in Fig. 1. It
embeds a low-cost, low-power 8-bit microcontroller (Atmel
ATmega168), a Bluegiga WT12 Bluetooth transceiver, which
supports Serial Port Profile (SPP) and a MEMS tri-axial
accelerometer (STM LIS3LV02DQ) with a programmable full
scale of 2g or 6g and digital output. The cube is powered
through a 1000 mA/h, 4.2 V Li-ion battery. With this battery
the cube reaches up to 10 hours of autonomy during normal
operation.

The processing flow is illustrated in Fig. 2. Accelerations
on the three axes are sampled at a rate of 31.75 Hz within the
range of ±2g. The accelerometer represents the sampled data
with a 16 bit integer value, and reaches a resolution of 1 mg.

In the pre-processing stage, sampled data are filtered with
an averaging filter to eliminate high frequency noise. This filter
computes the average value of the last 4 samples: this window

Figure 1. Smart Micrel Cube: on the top left the inner surface of the master

face, with all the main components and on the top right the inner surface of

the other faces

Figure 2. System processing blocks

length was chosen to use simple shift operations instead of
divisions. An offset filter removes the stationary gravity
acceleration, measured during a calibration phase which consist
in sampling data when the device is placed still on a table.

The next two stages implement a motion detection
algorithm, used for segmentation. For this purpose two features
are used: delta, which consists in the difference between the
actual sample and the mean of the last 4 samples, and the
variance. A Finite State Machine (FSM) uses these features to
find out if the device is in one of the 4 possible states: still on a
table, still in user’s hand, in movement, shaken. We asked
users to hold still in a hand the device right before and after
executing a gesture. In this way we segment as gestures only
motion segments which start and end with this particular
condition and have a limited duration.

Each acceleration vector of a gesture, {ax, ay, az} is
converted to equivalent spherical coordinates {φ, θ, r}, as
represented in Fig. 3. From those vectors, magnitude
information r is discarded and the angles φ and θ are used to
identify the direction of the movement performed, represented

392

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

Figure 3. Spherical coordinates

Figure 4. Codebook vectors for direction quatization.

as a point on a unitary sphere. In order to cluster this data for
the discrete HMMs, a quantization algorithm is applied, with k
vectors or codes in the codebook. In this case, codebook
vectors are uniformly distributed points on the unitary sphere,
as illustrated in Fig. 4. Since k must be determined empirically
we decided to conduct tests to find a codebook size delivering a
satisfying trade-off between results and algorithm complexity.

The last block of the processing chain is the HMM
classifier. During the training phase we collected several
gestures to build and validate models for each gesture. The
training was implemented on a PC with Matlab and the
HMMtoolbox, which uses the well-known Baum-Welch
algorithm. We chose to use discrete HMMs, with 7-state Left-
to-Right models for all gestures, according to the results of a
preliminary exploration. For the on-line recognition a modified
fixed-point version of the forward algorithm was implemented
in both Matlab and C on the AVR platform.

IV. IMPLEMENTATION

The goal of this work is to implement the whole gesture
recognition algorithm on board of the SMCube. The main tasks
performed are the segmentation of gestures from a continuous
data stream and the HMM-based gesture recognition.

A. Segmentation

The segmentation algorithm was implemented ad-hoc, and
even if it was developed and optimized in this particular setup,
it can be used in similar scenarios.

It is not possible to recognize gestures with only one
accelerometer, if they are part of a larger continuous
movement. To overcome this problem we added a limitation in
gesture execution: users must hold still the device for few
instants before and after a gesture. In this way, it is
fundamental for the algorithm to identify when the device is
still in user’s hand and when a movement starts and ends. To
evaluate the state of the device we compute the variance of the

filtered signal and use a FSM. The variance uses sliding
windows of 4 samples; it is calculated for each axis and then
summed to have a total information of the intensity of the
movement.

When the cube is placed still on a surface, the variance
values observed are near zero. If a user holds the device in a
hand, we measure a low and uniform variance, always within a
limited interval. Since movements bring to higher values, it is
possible to classify those conditions with empirically
determined threshold values, combined with a few sample
delays to avoid spurious transitions.

In this way, we segment every movement that is
encapsulated between two states when the device is still in
user’s hand. Since all the used gestures have limited duration,
we added a condition on the minimum and maximum time for
the movements to be segmented as gestures. This helps to
avoid many unwanted movements being identified as gestures.

Despite those conditions, this algorithm still identifies a lot
of random movements as gestures, leading to many false
positive results from the classifier, as shown later in Section V.
To improve the performance and the usability of the device, we
introduced a new operation mode, called Assisted
Segmentation. In this mode the user performs a shake gesture
to enable and disable the segmentation and recognition of all
the other gestures. The shake gesture is recognized using the
segmentation FSM and has a high accuracy: during our tests
we obtained a correct classification ratio of 100% within 80
executions of the gesture and only one false positive.

By default, gesture recognition is disabled, and the user can
move the device in any way (e.g. walking with the device or
using the device as a pointer on an interactive table). When
needed, the user performs a shake to “wake up” the smart
object, activating the recognition algorithm and then executes
the wanted gestures to interact with the system. During this
time the user can pay attention to the movements performed, to
avoid the recognition of random movements as gestures.
Another shake disables the interaction capabilities of the
device, and the user can move it freely.

This user-assisted segmentation technique increased the
overall performance of the device, reducing drastically the
number of false positive recognitions.

B. HMM Gesture Recognition

The main feature used for gesture recognition is the
direction of the movement, represented by the direction of the
acceleration vector, sampled at each frame. This information is
obtained converting the 3D acceleration vector {ax, ay, az} in
spherical coordinates, and using only the two angles {φ, θ}.

To efficiently compute the two angles of the acceleration
vector we implemented an algorithm based on the CORDIC
algorithm [20]. Using the notation in Fig. 3, this algorithm first
estimates the phase θ and the magnitude r’ of the complex
number (ax + iay), then again estimates the angle φ, using r’ and
az. All computations are done with integer values, giving us a
resolution of 1 degree and a maximum error of 2 degrees,
which is acceptable since we are dealing with human motions
and don’t need higher accuracy.

Discrete HMMs are less computationally demanding than
those operating on continuous observations, so they are the best
choice in our case, since we are focusing on a limited resource
implementation. As input to the discrete models we need to use

393

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

a discrete feature symbol to represent the directional
information. The two angles calculated, that identify the
arbitrary 3D orientation of a unitary vector, are quantized to the
nearest vector of the codebook by a simple minimum distance
classifier. In this way, the stream of two angles is converted in
a stream of codebook indices, which is a suitable input to
discrete HMMs. The number of vectors in the codebook was
empirically determined and a codebook with k = 26 vectors
uniformly distributed on the spherical surface resulted to be the
best trade-off between quantization accuracy and processing
complexity.

The off-line HMM training phase builds a model for each
of the gestures to recognize, using sample instances of the
gestures. We used the Baum-Welch algorithm, and initialized
the training models with several random probability
distributions. Among the resulting HMMs, those with the
lowest training error were chosen.

To improve the model behavior, when dealing with input
gestures that are slightly different from those used during
training, we modified the symbol observation probability
distribution (i.e. the observation matrix B in the discrete case).
A model with a uniform observation matrix B0 recognizes
every gesture with a same low probability. We interpolated the
trained models with the uniform one, by weighting the
observation matrixes with a factor ε as given by the equation

 εε 

The optimal ε factor was empirically obtained and lies in
the range [0.7 – 0.9].

The on-line recognition algorithm evaluates the executed
gesture with all of the trained models, and selects the model
with the highest probability. For this purpose we used a fixed
point version of the forward algorithm, as introduced in [22].
This implementation deals with the lack of a division unit in
the low power microcontroller embedded in the device, and
proposes a different scaling procedure that uses shifts and a
logarithmic representation of the probabilities. Our previous
work compared the performance of this implementation against
a standard floating point algorithm. The results showed that a
16 bit fixed point algorithm has the best trade-off between
classification rate and computational complexity.

V. ANALYSIS AND RESULTS

A. Experimental Setup

For the validation of our algorithm we used a set of 7
gestures, illustrated in Fig. 5. All gestures are formed by
natural movements, start and end with the user holding the
cube in the same position and are executed on the vertical plane
in front of the user, holding the device every time in the same
orientation.

We collected gestures executed by four people, all male
students with an age of 26 years. To build and validate the
HMMs each user executed 80 instances of every gesture,
during different days. Those gestures were continuously
executed, with a few seconds of interval between two
consecutive instances, and segmented with our algorithm.

Figure 5. Gestures used for algorithm validation. The dots indicate the start

and end position.

Gestures from three users were used for both modeling and
validation, while gestures from the fourth user were used only
to test the models. From each user we also collected several
continuous streams, containing gestures and random
movements, to simulate an actual usage of the device and test
the overall recognition algorithm. The whole dataset was
collected with the SMCube and sent via Bluetooth to a PC. No
feedback from the device or the PC was given to the users
during the execution of the gestures.

To easily test the performance, the algorithm was
implemented in Matlab, taking care to simulate the
computational constrains of the 8 bit microcontroller and using
only integer computations with controlled variable size.

B. Test and Simulations

In the first place we used the collected dataset to train a set
of HMMs for each user, using the floating point notation with
double precision. Each model have been trained using 15
reference instances, 15 loops for the Baum-Welch training
algorithm, and 10 initial random models. The floating point
models were then converted in fixed point, represented only by
16 bit integers. Each user’s models were validated with his/her
own gestures, not used in the training phase, and with gestures
from other users.

In Fig. 6 we present classification results in function of the
interpolation factor ε. The circled points refer to the case when
models trained by one user are validated with his own gestures;
the triangular points when the models trained on a user are
validated on the other user’s gestures, and the squared points
indicate when a global model is used on all users.

The classification performance is measured with the
Correct Classification Ratio (CCR), defined as the ratio
between the number of correctly classified instances and the
total number of instances.

Figure 6. Average CCR for various ε values: the first line is in a single user

scenario, the second is for the multi-user scenario and the third is for the
global model

394

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

The results show how the classifier performs well in a
single user scenario with recognition rates up to 99.7%. The
algorithm has some limitations in a multi-user scenario, when
recognizing gestures from a user with models trained by
another user. We found that interpolating the trained models
with a uniform one gave some advantages, and the best case is
with an interpolation factor ε = 0.8. Table I shows the
classification rates for the various users in this case; Tab. II
shows the classification matrix in the best case and Tab. III in
the worst case.

To overcome the limitations in the multi-user scenario, we
put together all the gesture instances, regardless to the user who
executed them, and build a global model for each gesture.
These models were trained using 15 randomly chosen gestures
and validated on 200 gestures from four users. The results of
this case are presented in Fig. 6 with the squared points, where
we can observe how in this case we have a performance
comparable to the single user scenario, despite we are
classifying gestures from all the users. We can also notice that
the fixed point implementation has performances comparable
to the floating point one, and our algorithm is suitable for low-
performance smart objects. Table IV shows the correct
classification matrix for the best case, with ε = 0.6.

With this global model we evaluated the overall algorithm
performance, using the collected continuous streams of data
which contain gestures and random movements. In this way we

TABLE I. CLASSIFICATION RATES IN MULTI-USER SCENARIO

Training Set
Validation Set

User 1 User 2 User 3

User 1 99% 66.7% 85.9%

User 2 94% 92.8% 85.5%

User 3 93.3% 71.9% 99.7%

TABLE II. CCR BEST CASE: USER 3 USES HIS OWN MODEL

Performed

gestures

Classified as

Up Right Down Left Circle Square X

Up 62 0 0 0 0 3 0

Right 0 65 0 0 0 0 0

Down 0 0 65 0 0 0 0

Left 0 0 0 65 0 0 0

Circle 0 0 0 0 65 0 0

Square 0 0 0 0 0 65 0

X 0 0 0 0 0 0 65

TABLE III. CCR WORST CASE: USER 2 USES MODEL TRAINED BY USER 3

Performed

gestures

Classified as

Up Right Down Left Circle Square X

Up 33 0 0 0 1 28 3

Right 0 25 0 30 6 1 3

Down 12 1 43 1 0 7 1

Left 0 3 0 60 1 1 0

Circle 0 0 0 5 42 15 3

Square 0 0 0 0 13 50 2

X 3 0 15 3 2 3 39

TABLE IV. CCR FOR THE GLOBAL MODEL

Performed

gestures

Classified as

Up Right Down Left Circle Square X

Up 194 0 3 0 2 1 0

Right 0 187 1 11 0 1 0

Down 1 0 199 0 0 0 0

Left 0 1 0 199 0 0 0

Circle 0 0 0 4 177 19 0

Square 0 0 0 0 13 187 0

X 3 0 12 0 1 2 182

TABLE V. GLOBAL MODEL CONTINUOUS RECOGNITION PERFORMANCES

Auto

Segmentation

Assisted

Segmentation

Executed Gestures 83 78

Correctly Classified 71 62

Insertions 45 2

Deletions 6 5

could test the segmentation and recognition algorithms
together. Table V presents the results of this analysis. The
automatic segmentation algorithm has good performance in
recognition executed gestures, but gives also a lot of false
positive results, identified by the insertions. The performance
depends on what the user is doing and how the device is
moved: long and continuous movements are easily rejected, but
short movements, similar to gestures, trigger the recognition
algorithm leading to a false positive. Deletions indicate how
many times the algorithm misses a gesture, and this happens
only if the gesture is executed too quickly or too slowly.
Minimum and maximum duration times are derived from the
collected dataset, and deletions may happen only in extremely
short or long gestures.

To improve the device usability we proposed the assisted
segmentation algorithm, which lets the user disable the
recognition of gestures when not needed. Recognition rates for
this algorithm are the same of the automatic one, since it uses
the same HMMs, but in this case we have almost no insertions.

C. Processing Perfomance Results

All the tasks needed for the gesture recognition algorithm
were implemented on a PC in Matlab and on the ATmega168
microcontroller in C, using the AVR-GCC compiler and a 8
MHz clock. The Table VI presents the computational costs
needed to perform the main operations at each frame. The
Matlab implementation uses only fixed point operations on 16
bit integers, to simulate the embedded version and can be
easily ported on other microcontrollers.

Each gesture model requires 3 matrices of 16 bit variables
and with the implementation choices (7-state models with a 26
vector codebook) we need 462 Bytes to store each model. The
microcontroller used has only 1 Kbyte of RAM, so we stored
the models in the 16 KB of FLASH memory, used as program
space. The entire application uses up to 12480 bytes of
FLASH and 360 bytes of RAM memory.

We found a similar fixed-point implementation of HMMs
in [2], which uses a 32-bit ARM7 microcontroller running at

395

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

65MHz. They recognize only 3 gestures and have recognition
rates comparable to ours, but a shorter execution time (2.7 ms).

TABLE VI. COMPUTATIONAL COSTS

ATmega168

(ms)

PC-Matlab

(ms)

Preprocessing 0.03 0.37

Segmentation 0.20 0.40

Feature extraction 0.17 0.19

HMM (1 gesture) 0.73 0.83

HMM (7 gestures) 5.00 5.91

Total 6.13 7.70

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented an on-line segmentation and
gesture recognition algorithm, implemented on a low-cost,
low-power 8 bit microcontroller.

The automatic segmentation algorithm effectively finds
executed gestures, but introduces also false positives. To
address this issues, we introduced an Assisted Segmentation
mode, which disables the gesture spotting algorithm when not
needed, through the execution of a shake gesture.

We optimized a fixed point implementation of the HMM
algorithm, which can be implemented on such low-
performance microcontrollers, maintaining the same results as
in a floating point case. The recognition algorithm can be used
in a multi-user scenario, employing a global model trained with
gestures from various users. It can be improved if the device is
used only by one user, training the algorithm with only his/her
own gestures.

In a future work we will explore the best ways to provide a
feedback to the user, to see if the user can be trained to adapt
his behavior and gestures in order to maximize the
performance of the device.

VII. ACKNOWLEDGEMENT

Part of this work has been supported by SOFIA project
funded under the European Artemis programme SP3 Smart
environments and scalable digital service (Grant agreement:
100017) (www.sofia-project.eu).

REFERENCES

[1] O. Amft, H. Junker, and G. Troster, “Detection of eating and drinking
arm gestures using inertial body-worn sensors”, in Proceedings of the
9th IEEE international Symposium on Wearable Computer (ISWC),
pp.160-163, 2005.

[2] R. Amstutz, O. Amft, B. French, A. Smailagic, D. Siewiorek, and G.
Troster, “Performance Analysis of an HMM-Based Gesture Recognition
Using a Wristwatch Device”, In Proceedings of the 2009 international
Conference on Computational Science and Engineering – Vol. 02,
pp.303-309, 2009.

[3] G. Bailador, D. Roggen, G. Tröster, and G. Trivino, “Real time gesture
recognition using continuous time recurrent neural networks”, in 2nd
Int. Conf. on Body Area Networks (BodyNets), Article n°15, 2007.

[4] S.Baraldi, L.Benini, O.Cafini, A.Del Bimbo, E.Farella, L.Landucci,
A.Pieracci, and N.Torpei, "Introducing TANGerINE: A Tangible

Interactive Natural Environment”, in proceedings of ACM MultiMedia
2007, pp.831-834, 2007

[5] M. Bruns Alonso, and V. Keyson, “MusicCube: a physical experience
with digital music”, Personal Ubiquitous Comput., Vol.10, Issue 2-3,
pp.163-165, 2006.

[6] A. Cayci, J. B. Gomes, A. Zanda, E. Menasalvas and S. Eibe, "Situation-
Aware Data Mining Service for Ubiquitous Environments", Third
International Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies (UBICOMM), pp.135-140, 2009.

[7] G. S. Chambers, S. Venkatesh, G. A. West, and H. H. Bui,
“Segmentation of Intentional Human Gestures for Sports Video
Annotation”, in Proceedings of the 10th international Multimedia
Modelling Conference, pp.124-130, 2004.

[8] F. G. Hofmann, P. Heyer, and G. Hommel, “Velocity Profile Based
Recognition of Dynamic Gestures with Discrete Hidden Markov
Models”. in Proceedings of the international Gesture Workshop on
Gesture and Sign Language in Human-Computer Interaction, pp.81-95,
1997.

[9] C.-R. Huang, C.-S. Chen, and P.-C. Chung, “Tangible photorealistic
virtual museum”, IEEE Comput. Graph. Appl., Vol.25(1), pp. 15-17,
2005.

[10] S. Jordà, M. Kaltenbrunner, G. Geiger, and M. Alonso, “The
reacTable: a tangible tabletop musical instrument and collaborative
workbench”, in Proceedings of the International Conference on
Computer Graphics and Interactive Techniques, Article n°91, 2006.

[11] J. Kela, P. Korpipää, J. Mäntyjärvi, S. Kallio, G. Savino, L. Jozzo, and
D. Marca, “Accelerometer-based gesture control for a design
environment”. Personal Ubiquitous Comput., Vol.10 (5), pp. 285-299,
2006.

[12] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm for
segmenting time series”, in Proceedings of hte 2001 IEEE International
Conference on Data Mining, pp.289-296, 2001.

[13] L. Kim, H. Cho, S. H. Park, and M. Han, “A tangible user interface with
multimodal feedback”, in Proceedings of the 12th international
conference on Human-computer interaction, pp. 94-103, 2007.

[14] C. Lee and Y. Xu, "Online, Interactive Learning of Gestures for
Human/Robot Interfaces", 1996 IEEE International Conference on
Robotics and Automation, pp. 2982-2987, 1996.

[15] V.-M. Mantyla, J. Mantyjarvi, T. Seppanen, and E. Tuulari, “Hand
gesture recognition of a mobile device user”, IEEE International
Conference on MultiMedia and Expo, Vol: 1 (c), pp. 281-284, 2000.

[16] C. O'Malley and D. Stanton Fraser, “Literature Review in Learning with
Tangible Technologies”, Technical report, url:
http://www.telearn.org/open-archive/browse?resource=298_v1, last
access on 25/05/2010.

[17] L. R. Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition”, in Proceedings of the IEEE,
Vol.77(2), pp.267-296, 1989.

[18] B. Schiettecatte and J. Vanderdonckt, “AudioCubes: a distributed cube
tangible interface based on interaction range for sound design”, in
Proceedings of the 2nd international Conference on Tangible and
Embedded interaction (TEI), pp.3-10, 2008.

[19] T. Stiefmeier, G. Ogris, H. Junker, P. Lukowicz, and G. Tröster,
“Combining Motion Sensors and Ultrasonic Hands Tracking for
Continuous Activity Recognition in a Maintenance Scenario”, 10th
IEEE International Symposium on Wearable Computers (ISWC), pp.
97-104, 2006.

[20] J. Volder, "The CORDIC computing technique", IRE Trans. Electron.
Comput., pp. 257-261, 1959.

[21] J. A. Ward, P. Lukowicz, G. Troster, and T. E. Starner, “Activity
Recognition of Assembly Tasks Using Body-Worn Microphones and
Accelerometers”. IEEE Trans. Pattern Anal. Mach. Intell. Vol.28, pp.
1553-1567, 2006.

[22] P. Zappi, B. Milosevic, E. Farella and L. Benini, “Hidden Markov Model
based gesture recognition on low-cost, low-power Tangible User
Interfaces”, Entertainment Computing, Volume 1 (2), 75-84, 2009.

396

UBICOMM 2010 : The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-100-7

