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Abstract—The Internet-of-Things will require ubiquitous infor-
mation sharing between connected things on a global scale, which
existing systems do not offer. Most current efforts focus on so-
lutions for information dissemination, which induce single points
of failure and introduce unnecessary communication delays. To
this end we propose the SensibleThings platform, which is a
fully distributed open source architecture for Internet-of-Things
based applications. This article describes the major problems that
Internet-of-Things platforms must address, our technical solution
to these problems, and an evaluation thereof. We also present the
current progress and a series of demonstrators, which show the
wide range of applications enabled by the platform. Finally, we
present how the platform will be used in our future research and
potential spin off companies.
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I. INTRODUCTION

This journal article is an extension of [1] and [2], where [1]
is a best paper awarded publication at the 2014 International
Conference on Digital Telecommunications (ICDT).

Today we can observe a large interest in applications
that can utilize information from sensors attached to different
things in order to provide more personalized, automatized,
or even intelligent behavior. These are commonly referred to
as Machine-to-Machine (M2M) applications [3] or Internet-
of-Things (IoT) applications [4]. The IoT can be seen as a
natural evolution of computer networking and communicating
devices, from simple direct communication between comput-
ers, via globally connected computers, to small devices such
as smartphones that are ubiquitously connected to the Internet.
Together these form a worldwide network of interconnected
everyday objects. Through the IoT, applications will display
context-aware behavior [5] and even be able to have social
interactions between themselves [6]. These applications may
address a variety of areas, such as environmental monitoring
(pollution, earth quake, flooding, forest fire), energy con-
servation (optimization), security (traffic, fire, surveillance),
safety (health care, elderly care), and enhancement of social
interactions. Furthermore, the IoT is surprisingly close to Mark
Weiser’s predictions made in 1991 on the computers of the 21st
century [7].

There is also an interesting relationship between the IoT
and big data [8], since all of the connected things will produce
and consume large amounts of data. Current estimations are

in the order of 50 billion connected devices year 2020 [9].
Thus, IoT applications will probably have a big impact on
how we interact with people, things, and the entire world in the
future. But in order to enable a widespread proliferation of IoT
services there should be a common platform for dissemination
of sensor and actuator information on a global scale. This
is however a very difficult goal to achieve, because there is
a large number of practical difficulties that must be solved.
Therefore, the purpose of this article is to explore how to
enable ubiquitous information sharing on a global scale for
the IoT, using highly scalable fully distributed solutions. We
present a realized solution called the SensibleThings platform,
which is verified through a series of demonstrator applications
and performance measurements.

The remainder of this article is outlined in the following
way: Section II presents a list of requirements to evaluate po-
tential platforms. Section III surveys current IoT architectures.
Section IV presents our approach to address the requirements.
Section V describes the SensibleThings platform which is
our implementation of the approach. Section VI presents the
verification of the platform and measurement results. Section
VII discusses future IoT services. Finally, Section VIII presents
the conclusion and future research.

II. PLATFORM REQUIREMENTS

To aid in evaluating IoT platforms, a list of application
requirements has been constructed. This list is derived from
previous and related work, for example, [2], [4], [10].

IoT applications spread very diverse areas, but common
among many of them is the focus on many small devices
on a global scale, low response times, reliable operation, and
interoperability to support different hardware and features de-
pending on the scenario. Therefore, we state that the majority
of applications on the IoT will require the following from an
underlying platform:

1)  Capability of signaling between end points with low
latency, without any unnecessary relaying of infor-
mation.

2)  Reliably handle transient nodes joining and leaving
with high churn rates. Also avoiding choke points
with significantly higher utilization than the rest of
the system.
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3)  Ability to run on devices with limited computational
and data-storage capacity.

4)  Be extensive and adaptive to conform with a wide
range of applications, devices, and future scenarios
with currently unforeseen demands.

5)  Easy to adopt and free to use in commercial products
without restrictions in terms of software licenses and
fees.

Some requirements have been left out of scope in this article
because we focus on the open sharing of information where
problems regarding security and privacy can be addressed at
a later stage. In order to evaluate if a platform achieves our
requirements we have also determined the following concrete
and measurable metrics.

A. Evaluating Requirement 1

The first requirement on low response times cannot be mea-
sured using only the raw response times between the source
and sink because they highly depend on the infrastructure in
between. Since all IoT platforms are based on the Internet, all
communication is inherently made using a best effort system.
This makes it impossible to compare the raw response times
from two different platforms. Hence, we evaluate the response
time based on the ratio between the retrieval time compared
to an ideal communication case. The ratio is calculated in (1),
where Rigtency is the average ratio between the retrieval time
tretrieve and the ideal round trip time ¢"** for each device i
of the total devices N. Where t"¢!"¢v¢ is the measured time
to sends a sensor value from source to sink and " is the

measured ideal round trip time, in this case ping.
1 N trjetm’eue
2
> M
i=1 1

Rlatency = N

B. Evaluating Requirement 2

The second requirement on reliability and scalability can be
measured by the communication load on all ingoing devices.
To calculate this we need to find the function f,,4(N) in (2),
of how the number of messages m handled per device per
minute ¢ changes as the number of devices N increase in the
system. However, for most platforms the average number of
messages per node and minute will logarithmically increase
and converge to a constant.

1 N
Favg(N) = 5 D @
=1

The standard deviation of the amount of messages per
device is also interesting for the scalability metric, since it
can indicate central points of failure. The standard deviation
as a function of the total number of devices N can be seen
in (3). A constant or decreasing standard deviation function
indicates an even system, where the new devices handle an
even share of the workload, whereas an increasing standard
deviation means that there is an uneven workload among the
devices.

1 N

fstde'u(N) = N Z(mz - favg(N))2 (3)
i=1
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C. Evaluating Requirement 3

The third requirement on resource efficiency can be mea-
sured in different aspects, such as energy consumption, pro-
cessing time requirements, storage space requirements, and
network load. The resource efficiency is difficult to calculate
for a whole system, because it highly depends on the hardware
present on the devices. Therefore, we define the resource
efficiency as the maximal value U in the set of all resource
utilizations w for different available resources j when the
platform is running. See (4) and (5). The resource utilization
for each resource is calculated by the amount of a resource
used by the platform w,s.q divided by the available amount of
the resource ug,,44. If any resource utilization on any device in
the system is close to 100%, the resources have been saturated
and the system is no more resource efficient.

u = Uysed (4)

Uguail

U = max({u1,us2, ..., u;}) (5)

D. Evaluating Requirement 4 and 5

The fourth and fifth requirement cannot be measured, only
qualitatively evaluated. To be future proof the platform must
have the ability to add new features without costly updating
all ingoing devices individually. To study the cost, one has
investigated the terms of usage for the platform to evaluate
the type of costs that are related to the platform. These costs
can be either traditional fees or resources such as bandwidth
and computational power.

III. RELATED WORK

There currently exist a vast amount of platforms which
claim to enable an IoT, far more than can be listed in this
paper. There are also standardization efforts being made by
standardization bodies such as the Internet Engineering Task
Force (IETF), the European Telecommunications Standards
Institute (ETSI), and the Institute of Electrical and Electronics
Engineers (IEEE). In general, most of these are focused
on problems such as enabling Internet Protocol (IP) over
radio communication and connecting different hardware to
the Internet. Therefore, the standardization efforts are much
less extensive in the layers closer to the application, which
is what this article focuses on. As an example, the IETF are
discussing standardization from the physical and Media Access
Control (MAC) layer, covering the Internet Protocol Version
6 (IPv6) adaptation layer, the routing layer, and finally an
application protocol [11]. The application protocol that they
propose is, however, the Constrained Application Protocol
(CoAP) which only provides simple transfer of sensor and
actuator information directly between two known IP addresses.
Meanwhile, the IEEE IoT standard P2413 [12] is still in its
early stages, since their first working group meeting was in
July 2014. Hence, no real results have so far been presented
other than that the plan is to utilize existing technologies for
the lower layer communication and that they are investigating
which application level protocols to use in their standard.

In addition to the standardization efforts, there are multiple
forums and alliances made of industry and academia partici-
pants to both promote the idea of an IoT and to establish
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Figure 1. Overview of typical centralized architectures

some form of praxis and consensus. These include for example
the AllSeen Alliance [13], European Research Cluster on the
Internet of Things [14], HyperCat [15], Internet of Things
— Architecture [16], the Internet of Things Council [17],
the Internet of Things Europe [18], The Internet of Things
Initiative [19], the IoT Forum [20], IP for Smart Objects
Alliance [21], oneM2M [22], and Open interconnect [23].

Additionally, there are research [24] that investigates the
possibilities and challenges for using software defined net-
working (SDN) [25] as an IoT platform, where [24] concludes
that SDN will provide a unified method of managing network
resources globally. In [26] the authors implements a vertical
SDN controller that is used in conjunction with advanced
network calculus- and genetic algorithm-techniques in order
to improve data throughput, end-to-end delay and end-to-end
Jitter.

The many platforms found in related work can generally
be categorized into three groups, centralized (or cloud dis-
tributed), semi-distributed, and fully distributed systems.

A. Centralized Systems

Most of the systems being released today focus on dis-
tributing the data on some form of cloud-based IoT architec-
ture. The cloud is a concept that rise in popularity, but it is in
many cases simply a new word for traditional web services.
Very few commercial cloud-based systems explain how the
distribution and synchronization is actually done inside their
architecture, which type of virtualization they use, how many
servers they have, etc. Either way, cloud-based systems can be
considered as centralized systems since they always relay the
sensor and actuator information through a centralized point, in
this case a cloud (be it one or many connected servers). See
Figure 1 for an overview of a centralized system. The main
problems with these solutions are that they have difficulties
achieving requirement 1 on direct communication between end
devices, requirement 2 on no central points of failure, and
requirement 5 on an open and free to use system, because
they are based on large scale servers. Typical examples of
these centralized or cloud-based architectures include: Sic-
sthSense [27], ThingSpeak [28], Sen.Se [29], Nimbits [30],
ThingSquare [31], EVRYTHNG [32], Paraimpu [33], Xively
[34], XOBXOB [35], Thingworx [36], One Platform [37],
Carriots [38], OpenlOT [39], SAP Internet-of-Things [40], and
many more.

B. Semi-Distributed Systems

The semi-distributed systems are often based on session
initiation protocols, whereas they afterward use direct com-
munication between the connected devices. See Figure 2 for
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Figure 3. Overview of typical fully distributed architectures

an overview of a semi-distributed system. Because of this,
they usually contain a centralized point for coordinating the
communication. Thus, semi-distributed systems are faster and
to some extent easier to scale than centralized solutions, but
they still have difficulties coping with requirement 2 and
5. Typical examples of these semi-distributed architectures
include: ETSI M2M [41], SENSEI [42], ADAMANTIUM
[43], and other platforms based on 3GPP IMS [44].

C. Fully Distributed Systems

Fully distributed systems operate in a peer-to-peer manner,
where clients both store and administer the information locally
on each entity without centralized components, see Figure
3. To achieve this, they often utilize hash tables to enable
logarithmic scaling when the number of entities increases in
magnitude. These systems do not contain any single point
of failure and are thus more resilient, though the distribution
itself often requires additional overhead in order to maintain
an overlay. The main problem associated with fully distributed
systems is, however, that they place a larger responsibility on
the end devices, and thus have difficult to achieve require-
ment 3. Examples of such systems are the Global Sensor
Networks (GSN) [45], the RELOAD architecture [46], and
MediaSense [2].

IV. TECHNICAL PLATFORM

Because the existing systems are unable to address the five
requirements to enable a large scale IoT stated in Section II to
enable a large scale IoT, a new solution is needed. Therefore,
we have developed a platform based on how well the different
categories achieve the requirements. An overview of this
platform can be seen in Figure 4. In short, the platform is
based on connecting sensor and actuators to form an IoT using
current IP networking, fully distributed systems, peer-to-peer
communication, and distributed hash tables (DHT). DHTS are
distributed systems, which enable the storing of key-value pairs
that can be utilized as a distributed storage service. A DHT
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Figure 4. Overview of the proposed approach.

can therefore be seen as a form of DNS system but without
the centralized servers. The DHT can be used to organize all
connected entities in a logical structure which collaboratively
stores data over distributed entities, where anyone can retrieve
the data.

In detail, the platform should be IPv4 and IPv6 com-
patible which should make it future proof of many years
to come, since the proliferation of the IPv6 standard is still
not widespread. The platform should be scalable and avoid
central points of failure by employing a fully distributed
architecture, with no centralized points and a communication
load that scales at worst logarithmically with the number
of connected devices. The platform should employ peer-to-
peer communication between the connected devices. As this
type of communication is made directly between the data
sources and the sinks without any unnecessary proxying of
the data. Thus, only the normal Internet routing is added as
delay, which is as optimal as one can achieve on the Internet.
The platform should employ DHTs as an overlay network
in order to become stable. Seamlessness in fully distributed
systems is difficult to achieve, but there exists quite prominent
NAT penetration techniques, which can be employed to solve
most cases. Furthermore, constructing the ingoing protocols
for lightweightness is a whole optimization problem in its
own. But the idea is that the chosen DHT protocol should be
lightweight by itself. Lastly, extensibility can be achieved by,
for example, implementation specific solutions such as smart
redistribution protocols, automatic updates, and distributed
dynamic loading of components in runtime.

V. THE SENSIBLETHINGS PLATFORM

In order to address the stated requirements we have cre-
ated the SensibleThings platform, which is implemented as a
layered architecture. A layered structure is chosen in order to
more easily exchange modules as needed in both research and
commercial applications. The layers and their default modules
are explained in detail in the original article, but they are
summarized here as well. The actual SensibleThings code
is based on a fork of the MediaSense platform from 2013,
which is a realization and implementation of the MediaSense
architecture explained in [2].

A. Conceptual solution

The SensibleThings platform can be applied to a wide
range of scenarios because of its versatile features. For exam-
ple, how to perform low latency communication and finding
information within the platform. This section presents these
features and the corresponding conceptual solutions inside the
platform.

1) Communication: Peer-to-peer communication is em-
ployed as the solution for the communication in the Sensi-
bleThings platform. The reasons behind this are many, but
most important are the performance benefits. Peer-to-peer
communication has an inherently low source to sink delay,
because all communication is made with as few intermediate
steps as possible. A fully distributed peer-to-peer system has
no central points of failure and should thus be resilient to
infrastructure failures. In a peer-to-peer system all participants
provide their own network capacity, which is important be-
cause there is a significant investment involved in maintaining
an loT architecture. However, this is also a drawback since it
causes vulnerability to denial of service attacks and an overlay
must therefore be maintained to achieve good functionality and
reliability. The are also many different transport layer protocols
that could be utilized to send the peer-to-peer communication.
Where one might strive for certain capabilities of the protocols,
such as the flow control in TCP and the encryption of SSL.
However, the conceptual idea in the SensibleThings platform
is to enable the communication with as low overhead as
possible, but still maintaining some type of reliability of the
communication.

2) Finding information: The conceptual solution for find-
ing information in the SensibleThings platform has been to
employ a DHT. The SensibleThings platform associates the
IP addresses of sensors with a Universal Context Identifier
(UCD[1] in the DHT. The UCIs can be seen as the unique
identity of a sensor and looks like a combination between a
URL and an E-mail address. To be specific, a UCI follows the
structure of a Universal Resource Identifier according to RFC
3986[47] but we omit the scheme here to save space.

user@domain/path[?options]

Thus, a typical example a Celsius temperature sensors UCI
owned by the user named Victor Kardeby is:

victor.kardeby@miun.se/temperature?unit=celsius

However, most DHT’s only support the finding and re-
solving of an UCI to an IP address, they do not support
searching for information. For example, the DHT can resolve
a previously known UCI to an IP address, but it can not find
the UCT’s of sensors in a particular city. Hence, the conceptual
solution for this is to employ distributed searching algorithms
in the key space to enable intelligent searching of information
and meta information in the system.

3) Publish and Subscribe: Most retrieval of information
on the IoT is based on the publish and subscribe paradigm,
hence the SensibleThings platform should support this. The
conceptual solution for subscriptions in the Sensiblethings
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platform is to create a distributed subscription system where
each device handle its own subscribers. Thus, notifying them
whenever the sensor value is updated.

4) Security: The information on the IoT often originates
from sensors, which have sensed their surroundings. There-
fore, the information can possibly contain private information,
which could be utilized by malicious users. Hence, there is
a need for security in the SensibleThings platform, both in
the form of encryption of the data and authentication of those
who may access it. Security is out of scope, but our conceptual
solution is to encrypt the peer-to-peer communication, which
can be done in a number of different ways. But it is important
to remember that the encryption should be done without the
use of a centralized authority and as lightweight as possible,
because of the devices with limited hardware resources. After
the communication has been encrypted, the authentication
problem can be addressed. However, authentication in the
platform should also be constructed in a fully distributed
manner with low overhead. Thus, some type of distributed
authentication and trust system should be employed.

5) Mobility: Another big problem is the mobility and
connectivity of devices. In the course of seconds a device
might change its IP address multiple times as it switches
between a home WiFi and 3G/4G connectivity when a person
leaves a house. This spontaneous change of IP address makes
traditional mobility services ineffective[48] due to frequent
updates to third party support. The lookup system could
become unreliable as it might have obsolete information in the
DHT. The conceptual solution to this is to employ different
fully distributed solutions to reduce the convergence time
of the DHT’s IP address records and to estimate a persons
behavior in order to predict the change and update the DHT
beforehand.

6) Persistence: To store large amounts of information in
a fully distributed peer-to-peer system is difficult, since each
node might have limited capabilities. Furthermore, because
each node is responsible for its own sensors and is the
only source of its information, they are responsible for the
persistence of their own information. The conceptual solution
to create persistence in the SensibleThings platform is to
introduce cloud based persistence for storing of important
information and as an offloading system when a node exceeds
its ability to persist its data. The cloud based persistence should
only be used as a backup for extremely vital information,
which should never be lost, such as history of medical sensors.

7) Reasoning: Intelligent reasoning is one of the final
purposes of connecting sensors to together, to make appli-
cations alter their behavior depending on the context of the
users. In order to create intelligent reasoning, both large
statistical data and machine learning techniques can be used.
These require computationally heavy calculations, data mining,
storage space, and other resources. Generally, intelligence and
reasoning is solved on the application layer at the respective
endpoint and thus is not a part of the platform itself. Therefore,
an application only has access to data that the user would
be authenticated to access. However, data on the platform
should of course be opened up to support more ubiquitous
types of data mining. The SensibleThings platform has an
extensive add-in system, which can add functionality, such as
intelligent reasoning, as needed in runtime. Different types of
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intelligent reasoning engines have been applied on the data
from the platform. For example, creating intelligence from
continually changing user profiles called context schemas,
which are based on relevancy of the information and derived
from the algorithms in [49]. Furthermore, different types of
machine learning techniques have been applied to estimate the
context of a person, based on information from the IoT [50].

8) Interoperability: There exists a wide range of different
sensor devices, which have different capabilities and support
different protocols, both open and proprietary. This makes
it difficult to build a platform that can utilize all the dif-
ferent hardware and to create interoperability between them.
However, in the latest years there seem to have arrived a
consensus between the different Wireless Sensor Network
operating systems, since both major operating systems TinyOS
[51] and Contiki [52] support the Constrained Application
Protocol (CoAP) [53]. Therefore, the SensibleThings platform
also support sensors and actuators, which expose CoAP in-
terfaces. Furthermore, as the SensibleThings platform is far
from the only platform for enabling IoT applications, there is
a need to create interoperability between platforms as well. The
conceptual solution to this in the SensibleThings platform is
to create add-ins that can bridge between different platform
technologies. For example, create an add in for bridging
sensors connected to different REST-based [54] cloud services.

B. Architecture Layers

The SensibleThings platform is divided into five different
layers, which can be seen in Figure 5. The interface layer
exposes the platform’s Application Programming Interface
(API) to the applications, the add-in layer makes it possible to
extend the platform with additional functionality, the dissem-
ination layer addresses finding and retrieving data from other
entities, the networking layer handles the IP connectivity, and
lastly the sensor and actuator layer that connects sensor and
actuators. Thus, each layer focuses on specific problems and
the remainder of this section will describe the layers and their
implementation.

1) Interface Layer: The interface layer is the public inter-
face that applications use to interact with the SensibleThings
platform. It includes a single component, the SensibleThings
application interface, which is a generic API for developers
to build their own applications on top of. The main problem
that the interface layer addresses is related to requirement 5
on easy usage, namely how to make the platform easy to
understand and easy to implement applications with. Different
approaches were explored, but since almost all communication
on the platform is done asynchronously, the listener Java
pattern is typically used in the application interface. Hence,
almost all interface access with the platform is done through
normal function calls, whereas the values are returned in event
listeners. The sensor location address scheme is abstracted
such that they are represented by objects acquired by resolving
UClIs, as defined in Section V-A2. In short, the SensibleThings
platform has the following basic interface:

e  SensibleThingsPlatform(Listener) a constructor that
joins the distributed system and sets the listeners to
use
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Figure 5. Overview of the SensibleThings platform’s architecture

o  Register(UCI) registers the specified UCI in the sys-
tem

e Resolve(UCI) resolves a UCI to an node address

e  Get(UCI, Node) retrieves the value of sensor, given
its UCI and resolved node.

e  Set(UCI, Node, Value) sets an actuator, given its UCI,
resolved node, and the value to set

e  Shutdown() performs a graceful leave from the dis-
tributed system

2) Add-in Layer: The add-in layer enables developers to
add optional functionality and optimization algorithms to the
platform beyond the basic primitives offered by the interface
layer. For example, add-ins can help the platform meet specific
application requirements, such as handling the available ca-
pacity in regards to computational power and bandwidth. The
add-in layer deals with requirement 4 on being extensive. It
manages different extensible and pluggable add-ins, which can
be loaded and unloaded in runtime when needed. These add-ins
are divided into optimization and extension components, but
the platform can include any number of them at the same time.
The add-in layer therefore handles how the add-ins should
be managed, loaded, and the API’s chain of command. In
the current platform, there are still some limitations as these
issues have not been prioritized. For example, some add-
ins hijack functionality of the platform when enabled. Thus,
some add-ins become mutually exclusive and will not function
properly together. Examples of currently implemented add-
ins are: caching, buffering, publish/subscribe, streaming, and
password authentication.

3) Dissemination Layer: The dissemination layer enables
sharing of information between all entities that participate in
the system and are connected to the platform. A variant of the
Distributed Context eXchange Protocol (DCXP) [55] is used,

which offers communication among entities that have joined
the distributed system, enabling exchange of context or sensor
information with low response times. The operation of the
DCXP includes first resolving of UCIs and subsequently trans-
ferring information directly between the peers. Therefore, the
dissemination layer includes three components, a dissemina-
tion core, a lookup service, and a communication system. The
dissemination core exposes the primitive functions provided by
DCXEP, the lookup service stores and resolves UCIs within the
system, and the communication component abstracts transport
layer communication. In short, the dissemination layer enables
registration of sensors in the platform, resolving the location of
a sensor in order to find it, and the communication to retrieve
the actual sensor values.

The main design choices faced when developing the dis-
semination layer was regarding the choice of lookup service
that supports requirements 1, 2, and 3, namely quick dissem-
ination, being reliable with good scalability, and lightweight
operation. There exists a number of DHTs that the platform
could use, where we have chosen to focus on three prominent
ones, namely Chord [56], Kelips [57], and P-Grid [58]. All
three choices have their separate advantages and disadvantages.
Chord uses a ring structure, which is difficult to maintain
and has a logarithmic lookup time O(log(N)). Kelips uses
affinity groups with a much simpler synchronization scheme
and has fixed lookup time of O(1), but it does not scale
as well and has a larger overhead. P-Grid has a trie based
structure with a logarithmic lookup time of O(log(N)) with
load balancing and extra features such as range queries, but
is also quite complex and difficult to maintain. In the current
platform, both Chord and Kelips are completely reimplemented
to operate within the platform and with the same license
as the rest of the code. We have also experimented with
the currently available P-Grid code, but since that is using
multiple source code licenses (including propagating open
source licenses), it cannot be a part of the SensibleThings code
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TABLE I
SERIALIZATION METHOD COMPARISON.

Message Type Binary Java Java compressed
Get 75 bytes 157 bytes 137 bytes
Kelips sync 856 bytes | 2991 bytes 1252 bytes

at this stage. Currently, the platform defaults to the Kelips DHT
implementation, simply because that code is more stable than
the Chord implementation when nodes join and leave rapidly.

Another important design choice faced in the dissemination
layer was the choice of communication protocol. Require-
ment 1 states that the communication should be fast with
low overhead. Therefore, the aim was to have the useful
payload data already in the first packet. Because of this, a
variant of a Reliable User Datagram Protocol (RUDP) [59] is
utilized as the default protocol. The problem with RUDP is
however that the packets are sent in clear text, but to support
industry applications the platform must provide the possibility
of encryption. There exists several approaches for enabling
this, such as different key exchange schemes with varying
degrees of security and overhead. In the end, the decision was
to support standard Secure Sockets Layer (SSL) encryption
through the Java Secure Socket Extension to make it possible
to encrypt the data if needed. The encryption is however only
useful to prevent eavesdropping, not man in the middle attacks,
because all certificates will be self signed by the end devices.
There is also a significant overhead related to SSL, and since
there is an initial handshake the useful data will no longer
arrive in the first packet.

We have also made design choices in relation to the serial-
ization of messages, namely how the messages are coded when
sent over the Internet (before any encryption). Furthermore,
minimizing the message size is tightly coupled to require-
ment 1 on fast dissemination and requirement 3 lightweight
operation. For example, a binary serialization format is most
suitable from a performance perspective, but a text based
format is most usable from a human-readable perspective and
a code-specific format is the easiest to program. In the end,
the choice was to support all different serialization formats
but the default is set to Java’s object serialization with added
GZIP [60] compression, to make it easier to develop new
extensions. Likely, the Java serializer will be replaced in the
future, in order to make transitions to other platforms and
programming languages feasible. Table I shows a comparison
of the message sizes depending on some of the different
options for serialization. Where the Get message is a typical
small message and the Kelips sync message is a typical large
message.

4) Networking Layer: The networking layer enables com-
munication between different entities over current IIP based
infrastructure, such as fiber optic networks or wireless and
mobile networks. Hence, the networking layer is separated
into two inner components, an IP network and the physical
network medium. In short, the networking layer thus abstracts
any underlying IP-based network architecture. The problem
faced in the networking layer was related to requirement 2 on
stability and seamless communication. The first versions of the
platform did not take NAT and firewalls into consideration, it
only worked if all devices was on the public Internet. However,
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today almost all consumer devices are connected to the Internet
through either NAT or some type of firewall, either in their
home or at their work, but also on the mobile phone networks.
The NAT and firewall problem is however only a question of
configuration if the user is allowed to enable features such as
port forwarding on the NAT routers. But that this rarely the
case.

Multiple approaches were considered, ranging from IPv6
solutions, to Universal Plug and Play (UPnP), different hole
punching techniques, and finally simple proxy solutions. The
chosen solution first tries the normal approaches, such as
direct connections and UPnP. If this fails, it instead utilizes
distributed proxy nodes in the system. However, the proxy
solution stands in direct contradiction to requirement 1 on
real-time communication without unnecessary relaying of in-
formation and requirement 2 on no central points of failure.
Because of this, it is only used as a last resort when there are
no other possible options. There also exists problems related to
the capacity of the Internet connections and the network delay,
but since the SensibleThings platform is built on top of the
existing Internet architecture, it cannot affect these parameters.
Therefore, as long as the useful payload data is sent in the
first packet, as in the RUDP implementation, it is considered
to be transmitted as fast as possible by the underlying network
infrastructure.

5) Sensor and Actuator Layer: The sensor and actuator
layer enables different sensors and actuators to connect into
the platform. The sensors and actuators can vary greatly and
the platform therefore offers two options to connect them.
Firstly, they can be connected directly if they are accessible
from the application code, such as in the case of smartphone
sensors. Secondly, the sensors and actuators can connect
through the sensor and actuator abstraction. The abstraction
enables connectivity either directly to wireless sensor networks
or via more powerful gateways. Hence, the sensor and actuator
layer is separated into five components: the directly accessible
sensors and actuators, an abstraction component, different
sensor and actuator networks, sensor and actuator gateways,
and the physical sensors and actuators.

In the sensor and actuator layer, there were problems with
the actual sensor hardware platforms that is available today,
especially in regards to requirement 3 on being lightweight.
Different vendors of sensors have different platforms that the
sensors run on, especially when it comes to connecting large
Wireless Sensor Networks (WSN). Typically, cheap analog
sensors can be connected directly to a more powerful device,
such as a smartphone or a Raspberry Pi [61]. But to connect
traditional WSN architectures such as TinyOS [51] or Contiki
[52], the platform must communicate via CoAP [53] or other
lightweight protocols that they can handle. Therefore, in most
of the examples we have utilized either smartphones with
sensors already built in, or Raspberry Pi devices with attached
sensors. However, any device that can run the Java code for the
platform can be a part of the system, and any low end device
that can communicate via CoAP can easily be connected via
a more capable device.

C. Source Code License

One purpose of the platform is to make it available
for industry partners to develop their own applications and
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then commercialize the products, see requirement 5. This
requirement made it impossible to use a strict and propagating
open source license such as GNU General Public License
(GPL). The amount of external code should also be kept to
a minimum in order to enable an open source community
centered around the platform with the power and possibility
to easily incorporate changes into the code without navigating
multiple licenses. In the end, the decision was to use the GNU
Lesser General Public License (LGPL) that allows companies
to make commercial products on top of the platform, without
forcing their products to be open source as well, while forcing
changes to the core to propagate back to the platform and
allow the creation of an open source community centered on
the platform.

VI. RESULTS

The current results include launching our new
development website for the SensibleThings platform
(www.sensiblethings.se). This website will act as a portal
for all developers who want to utilize the platform in
their applications. For example, the website has developer
packages to download, the complete source code, example
applications, exercises, tutorials, and a wiki. All the code
and resources is provided free and under the LGPL version
3 open source license. The remainder of this section will
present measurements made on the platform, an evaluation of
the platform in relation to the requirements, and some of the
demonstrator applications, which have been built using the
platform.

A. Measurements

Initial testing, demonstration, and evaluation of the plat-
form has been conducted using a testbed with fixed and
mobile access to the Internet. In terms of performance we have
measured the platform to be on par with UDP traffic. This was
made in two steps, first general expressions were created for
the amount of messages sent in the platform, and secondly
actual measurements of these expressions were performed in
the testbed. The expressions were derived from the life cycle of
a device within the system. This life cycle can be seen in Figure
6, which shows the external join rate \j,;, and the amount of
messages per join 1m,i,. The rate of resolve operations in an
application A,¢soive and the amount of messages per resolve
Myresolve- The rate of get operations in an application \g.; and
the amount of get messages per get operation m4.;. The rate a
device has to perform maintenance \,,qin¢ and the amount of
messages per maintenance run m,,qin¢. Finally, the leave rate
of devices in the testbed Ajeqye and the amount of messages
for a single device to leave myeqy. General expressions for the
total amount of messages sent within in the testbed can be seen
in (6) to (9). In these, M,;,, represents the total amount of join
messages being sent within the platform, which is expressed as
the rate of new devices \j;,, times the amount of messages for
a single join operation 1.y, In similarity, M4, represents
the total amount of leave messages being sent within the
system, which is expressed as the rate of devices leaving Ajcqye
times the amount of messages for a single leave operation
Mieque- The variable M, qin¢ represents the total amount of
maintenance messages being sent within the system. It is
expressed as the rate of performing maintenance A, q;n¢, times
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Figure 6. The life cycle of a device.

the amount of messages for a single maintenance operation
Mjoin Per device, times the total amount of devices in the
testbed N. The variable M, represents the total amount
of application messages being sent within the system. It is
expressed as the rate of the resolve operations A,¢sorve times
the amount of resolve messages for a single resolve operation
Myesolve and the rate of the get operations Age; times the
amount of get messages for a single get operation mgyes. By
summarizing these operations Mjoin, Micaves Mmaint, and
Meppr we get the total amount of messages being sent within
the whole system M;o1q:

Mjoin = )\join * Mjoin (6)

Micave = Aeave * Micave N
Mnaint = N * Anaint * Manaint (®
Mappl = Aresolve * Mresolve + )\get * Mget 9

Mtotal = Mjoin + Mleave + Mmaint + Mappl (10)

We have also formalized expressions for the latencies in
the testbed, which can be seen in (11) to (14). In these, L;oin
represents the latency for a device to join the testbed, which
is expressed as the processing delay induced by the devices
dprocessing and the amount of messages required for joining
Mjoin times the network delay dpetwork. In similarity Lyesorve
represents the latency for a device to perform the resolve
operation in the testbed, which is expressed as the processing
delay and the amount of messages for a single resolve oper-
ation My.esoipe times the network delay. Furthermore, Licqqpe
represents the latency for a device to gracefully shutdown and
leave the testbed, which is expressed as the processing delays
and amount of messages for the graceful shutdown mjcqye
times the network delay. Lastly, Lg.; represents the latency
for a device to get a sensor value from another device in the
testbed, which is expressed as the amount of messages required
for retrieving the data mg.; times the network delay and any
processing delays.

Ljoin = Mjoin * dnetwork: + dprocessing (1 1)
Lresolue = Myresolve * dnetwork + d;m“ocessing (12)
Lleave = Mieave * dnetwork + dprocessing (13)
Lget = Myget * network + dprocessing (14‘)

We can practically measure (8), (11), (12), (13), and (14)
directly in the testbed environment. All other expressions are
too highly dependent on the churn rates and the specific
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TABLE II
LATENCY MEASUREMENTS FOR JOIN, RESOLVE, AND LEAVE OPERATIONS

Device Dell 780 Nexus 4
Operation " o “w o
Join (Ljoin) 464 ms 7.67 ms 2580 ms 1320 ms
Resolve (Lyesolve ) 36.8 ms 13.5 ms 423 ms 175 ms
Leave (Licque) 1.87 ms | 0.129 ms 21.9 ms 12.6 ms
TABLE III

LATENCY MEASUREMENTS FOR THE GET OPERATION (L get)

Sink Dell 780 Nexus 4

Source N o " o

Fujitsu TX100 477 ms | 0.145 ms 154 ms 43.5 ms
Padphone infinity 280 ms 136 ms 437 ms 92.8 ms
Py (Telia) 41.4 ms 2.08 ms 248 ms 40.6 ms
Pio (Servanet) 47.1 ms 11.7 ms 209 ms 38.3 ms
Piz (BBB) 76.3 ms 11.5 ms 277 ms 64.9 ms
Piy (SUNET) 94.7 ms 61.2 ms 303 ms 68.9 ms
P15 (Bahnhof) 106 ms 24.9 ms 289 ms 97,9 ms
Pig (Acreo) 111 ms 36.7 ms 317 ms 123 ms
P17 (Telia) 197 ms 24.6 ms 449 ms 59.7 ms
Pig (Telia) 213 ms 35.1 ms 643 ms 98.2 ms
Pig (Telenor) 370 ms 89.8 ms 1260 ms 937 ms

application scenarios, for any practical and useful measure-
ments to be made. The measurements were performed using
a total of 9 Raspberry Pi devices, 2 desktop computers, and
2 mobile device. All with heterogeneous connectivity and
different network properties. The performance evaluation was
performed on one of the mobile devices (a LG Nexus 4)
and one of the desktop computers (a Dell OptiPlex 780), in
order to evaluate the effects of the mobile Internet connection
and its weaker hardware. Both the desktop computers was
connected directly to the campus network with a public IP
address and the mobile devices was connected via Telia’s
mobile 3G/4G network available at the campus in Sundsvall.
The maintenance overhead of the whole testbed M,,,qint IN
(8) with all 13 devices connected, was measured to be on
average 82.6 messages per minute with a standard deviation of
3.75 messages. The latencies for the different operations L ;o;n,
Liyesolves Lieave can be seen in Table II. Where, p stands for
the numerical average and o for the standard deviation of the
measurements. Finally, we measured the latency for retrieving
the actual sensor values L., from all the other connected de-
vices, namely a desktop computer (a Fujitsu Primergy TX100),
another mobile device (a Padphone infinity), and 9 Raspberry
Pi devices. The results from these measurements can be seen
in Table III. Where the Dell desktop computer and the Nexus
4 was used as measuring sinks and all the other devices acted
as sensor sources.

All the measurements was setup with the two desktop
computers and Piq, Pig, and Pig connected directly with
public IP to the platform, while the two mobile devices, Pig
to Pis, and Piy; to Pig was connected via different NAT
solutions. An overview of the measurement setup can be seen
in Figure 7. To be specific, both desktop computers were con-
nected via Mid Sweden University’s SUNET 100/100 Mbps
network with public IP addresses. The Nexus 4 was connected
via Telia 3G 10/2 Mbps connection behind carrier grade NAT.
The Padphone infinity was connected via Telia 4G 20/2 Mbps
connection, also behind carrier grade NAT. P¢; was connected
via Telia ADSL 30/12 Mbps connection with public IP. Piy
was connected via ServaNet 100/100 Mbps connection with
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Figure 7. The measurement setup.

a public IP address. Pi3 was connected via Bredbandbolaget
(BBB) 100/10 Mbps connection behind a home NAT router.
Piy was connected via Mid Sweden Universities SUNET
100/100 Mbps network behind an enterprise NAT router. Pis
was connected via Bahnhof 100/100 Mbps connection behind
a home NAT router. Pig was connected via Acreo 100/100
Mbps connection with public IP. Pi; was connected via Telia
ADSL 8/1 Mbps connection behind a home NAT router. Pig
was connected via Telia 4G 40/2 Mbps connection behind a
mobile Internet router. Pig was connected via Telenor 3G 10/2
Mbps connection behind both carrier grade NAT and mobile
hotspot NAT.

B. Evaluation

In order to ensure that the platform achieves the require-
ments from Section II and evaluation of them have been
made in the currently available platform using the Kelips
lookup and RUDP communication. The first requirement on
being fast was evaluated using (1), which states how efficient
the communication is, as a percentage of the ideal case i.e.,
ping. To evaluate this, a subset of the setup as the previous
measurements were used. We found that the Rjgtency ratio
of our platform is calculated to be 5.09 or around 500%
using equation (1). This mean that the response times of our
platform is 5 times worse than the most optimal ideal case
of the shortest response time made possible by the underlying
networks. Hence, there is room for improvement in terms of
low latency, which is understandable because some of the
nodes in the measurements were behind NAT and thus had
to be tunneled.

The second requirement was evaluated using two metrics.
The first was how the function for the average amount of
messages per node changes as the number of nodes increase.
Basically the communication load on each node in the system.
This was measured in an emulated environment, where a
single powerful computer could run multiple instances the
platform nodes. Thus, the amount of nodes was incremented
between 10 to 100 nodes in steps of 10 for each run. In
each of these runs, the total number of messages was counted
during a 10 minute period, after which the total was averaged
down to messages per minute and then averaged in according
to (2) with the number of nodes. The results from these
measurements can bee seen in Figure 8, which shows that the
current Kelips lookup has a decreasing average communication
load, which converges to a constant about 11 messages. This is
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Figure 9. A graph of the standard deviation of the communication load in

the platform.

because each additional node only adds a fixed amount of new
messages into the system. This show that the Sensiblethings
platform scales well, since each new device does not induce
a heavier communication load for the ingoing devices. The
reason for the higher average with few nodes and decreasing
average is because the bootstrap device sends 21 extra mes-
sages compared to the other nodes.

In relation to requirement 2, the standard deviation of
these values are interesting as well. As it indicated how even
the system is and an increasing standard deviation indicates
potential central points of failure. A graph of this can be
seen in Figure 9, which shows that the standard deviation is
decreasing toward a constant around 2 messages. Hence, the
system becomes more evenly loaded as new nodes join the
platform and there does not seem to exist any central points
of failure. In similarity with the average, the only reason for the
high standard deviation with few nodes is because the bootstrap
device sends more messages compared to the other nodes.

In relation to requirement 3 on being lightweight, the
resource utilization has to be evaluated. To evaluate this we
tested three different devices running the platform, a Dell
780 workstation, a Raspberry Pi, and a Nexus 4 Android
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phone. In detail, we measured the memory usage, the processor
utilization, and the network utilization of each of these devices
when they run live platform. The memory usage and processor
utilization measurements was taken directly from the device.
But to determine the network utilization, first the maximum
network capacity had to be determined. This was determined
by using online broadband test tools [62], which show the
practical maximum network capacity. This was done because
the devices can not achieve their theoretical network speeds
because of hardware limitations. For example, the Raspberry
Pi has a 100/100 mbit network card but can practically only
come up to around 70/30 mbit in actual throughput. Table IV
show the results from all the utilization measurements, and
thus the utilization metric was measured to be 26.7% in the
platform, because that was the utilization on the most heavily
loaded device property in our test. Namely, the processor load
on the Nexus 4 device.

TABLE IV
UTILIZATION MEASUREMENTS.

Device Dell 780 | Raspberry Pi | Nexus 4
Processor 0.258% 11.0% 26.7%
Memory 1.029% 5.27% 2.10%
Network download | 0.0194% 0.0552% 0.209%
Network upload 0.0200% 0.114% 2.10%

Requirement 4 on extensibility can be consider achieved
because of the many add-ins developed for the platforms,
as well as its component based nature. Where, for example,
the lookup service can be exchanged in the future for a
more suitable one. Thus, the platform is extensible and future
proof because changes can be made to the platform as new
standards and paradigms emerge. Lastly, requirement 5 on
being easy to adopt and free to use, can be considered achieved
since there exists simple tutorials and example code on the
website. There is also no monetary cost directly involved in
the platform because each node brings their own resources to
the system and it has an open source code license that allows
commercialization.

C. Demonstrator Applications

Proof-of-concept demonstrator applications have been built
using many different devices, sensors, and actuators, in or-
der to show the versatility of the SensibleThings platform.
In most demonstrators we have utilized computers, Android
smartphones, and Raspberry Pi devices to show the show
that the platform works across different devices and net-
work connections. In detail, this article will present func-
tional demonstrators in three areas where the platform can
applied to. The first type of application area is sensor reading
applications, which simply retrieves sensor values over the
platform to monitor things. The second application area is
the intelligence home, which is a combination of sensors and
actuators. Lastly, the third application, in which we show
demonstrator applications of is surveillance applications, to
monitor an area with images and video feeds. These are all
typical IoT scenarios, but the platform itself is versatile enough
to be applied to even more areas. We can foresee possible
applications of the platform ranging from health-care, logistics,
emergency response, tourism, and smart-grids, to more social-
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Figure 11. Intelligent home example application.

oriented applications such as crowd sourcing, dating services,
and intelligent collaborative reasoning.

1) Sensor Reading Applications: The first demonstrator
applications are simple sensor reading applications. In these
demonstrators we have attached different types of sensors to
Raspberry Pi devices and connected the to different types of
networks. Figure 10 shows an example Raspberry Pi sensor
device and two example android applications, which retrieves
the sensor values in a ubiquitous real-time manner trough
the SensibleThings platform. The left application show radon
measurements from a Raspberry Pi device with an attached
radon sensor, which, for example, a landlord or house owner
can monitor their properties with. The right application show
a graph of a temperature sensor attached to another Raspberry
Pi device, which can be used, for example, to monitor the
health status of sensitive objects in logistics, such as food or
medicine.

2) Intelligent Home Applications: The second demonstra-
tor application is a typical intelligent home scenario, where
one wants to control appliances in a home. To this we have
utilized an intelligent wall socket, which has built in sensor and
actuator functionality. For example, it can turn and off each
socket and measure the power consumption of the connected
appliance, as well measuring the environmental temperature
and humidity. Figure 11 shows this intelligent wall socket and
a simple intelligent home application, both connected to the
platform. The application can retrieve the sensor values from
the socket, control the power, and measure the consumption
of the appliances that are plugged in.

3) Surveillance Applications: The third demonstrator ap-
plication is a typical surveillance scenario, where one wants
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Figure 12.

Surveillance example application.

to monitor a specific area. For example, to detect trespassers
or to avoid collisions with obstacles. To this demonstrator
application we have utilized Raspberry Pi devices with at-
tached camera sensors, to then transfer the images over the
platform. Figure 12 shows this Raspberry Pi camera device and
an applications, which utilize the data from the camera. The
application retrieves the camera images and performs image
analysis to detect obstacles and anomalies. In this case, to
detect if a person some other obstacle is present on a railroad
track.

VII. FUTURE INTERNET-OF-THINGS SERVICES

The IoT is often discussed [63], [64], [65], as one of the
next steps in the evolution of everyday computing. However,
the proliferation has so far only been marginal. Thus, the
future of IoT services is still quite uncertain. Where the most
prominent one is that there is still no real killer application
for the IoT. The scenarios often discussed when advocating
an IoT (logistics, health-care, intelligent home, surveillance,
etc.) are simply not engaging enough to start the revolution.
Furthermore, people are generally skeptical to sharing sensor
information [66], which are tightly coupled to themselves,
even though some people still share almost anything on social
media such Facebook, Twitter, and Google+. Either way, we
believe the open sharing of information is paramount to the
proliferation of the IoT and without a killer application to
really show the benefits to the common user, the proliferation
will probably not happen.

The are also uncertainties in the business model [67], for
example, the IoT will consume quite significant amount of
network resources. This raise questions, such as who shall
build this infrastructure and who shall stand for this cost.
Basically, how can sensor manufacturer make money on IoT
devices, how can operators make money on IoT traffic, and
how can application developers make money from applications
that utilize information from the IoT. There is also the question
of ownership of the information, who owns the information on
the IoT and thus determines the cost of using it. Furthermore,
as we presented in Section III, there is still no single standard
or commonly accepted solution for the IoT, there are still
questions regarding the protocols and architectures to use.
We believe that because of the vision of an open flow of
information on the IoT, an open protocol, and free open
source implementations has the most advantages, which is why
we built the SensibleThings platform. But the standardization
committees might have a different points of view on the
openness of the information and protocols and the patent
situation also plays a large role in the standardization efforts.
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Because of all the uncertainties we believe that the true
killer application of the IoT is caught in a form of catch 22.
We believe that this killer application is the creation of truly
intelligent behavior in all different applications, which can
understand the situations and context of their users and react
accordingly. The closest service available today is Google Now
[68], which tries to achieve this behavior with the information
Google has available. However, to truly create this type of
functionality it will require large amounts sensor information,
which is not yet available, since people do not have the
hardware or are not sharing it yet. Furthermore, truly context
aware applications also require large amounts of processor
power to run different machine learning algorithms, which
some one must pay the cost for. And since there is real
business model yet, no one can take this cost responsibility
for it. Hopefully, there will some type of consensus in the IoT
research soon. So that the common user can start seeing the
benefits what a global and ubiquitous IoT with open sharing
of information can offer.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented the challenges we have encoun-
tered when researching and developing the SensibleThings
platform. The first contribution is the identification of the
requirements for a functional and fully distributed IoT platform
in Section I. The second contribution is a short survey of
existing IoT platforms, presented in Section III. The main con-
tribution is however the SensibleThings platform itself, which
is shown to fulfill all the stated requirements. The platform
can disseminate information to end devices quickly with low
overhead (requirement 1). It is reliable and operates without
any central points of failure (requirement 2). The platform
is lightweight and can run on mobile devices or Raspberry
Pi devices (requirement 3). It is extensible (requirement 4)
with all its add-ins and functionality. Finally, the platform is
licensed under a well known and widely accepted open source
license making it free to use and at the same time encourag-
ing development of commercial a products (requirement 5).
Therefore, our conclusion is that when compared to related
work, the SensibleThings platform can be classified as a fully
distributed solution, where the overhead and communication
is kept as lightweight as possible. This is the only type of
solution that will scale for billions of connected devices and
still be able to disseminate sensor information with real-time
demands.

Our future work are directed toward improving and opti-
mizing the existing code, as well as investigating other possible
choices of the DHT and communication protocol. We will
also develop more extensions to satisfy specific applications
demands, such as seamless integration with other IoT platforms
and cloud infrastructures. Finally, we will investigate the
possibility to create a formal open communication standard
of the platform.
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