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Abstract—In amateur radio applications, voice activity detection
(VAD) algorithms enable hands-free, voice-operated transmis-
sions (VOX). In this paper, we first review a recent hybrid VAD
algorithm, which was developed by combining features from
two legacy speech detection algorithms long used in amateur
radio applications. We then propose a novel VAD algorithm
whose operating principles are not restricted to those of legacy
approaches. The new method employs two key features. The first
feature, called sub-band variance ratio, is the ratio of energies
calculated over a low-frequency region and over the rest of
the spectrum of the input audio signal. The second feature,
called temporal formant density, is a running N-frame sum of
the number of low-bandwidth formants over a low-frequency
region. Both features are shown to yield low values for non-speech
segments and relatively high values for speech segments. A two-
state decision logic that uses these two features is employed to
make frame-by-frame VAD decisions, which are then used in the
VOX function for amateur radio transmissions. The proposed
new method is compared against the hybrid method using
both a simple objective measure involving comparisons against
manually derived true VAD data and a subjective pairwise
comparison listening test, over audio signal data from amateur
radio transmissions at various signal-to-noise ratios. The results
from these comparison tests show that the new method provides a
better overall performance than the hybrid method. In summary,
a new VAD/VOX algorithm for amateur radio applications is
proposed that offers performance benefits over existing methods.

Keywords—voice activity detection; VAD; voice-activated
switch; voice-activated transmission; VOX.

I. INTRODUCTION

As technology has progressed, speech processing algorithms
have found ubiquitous deployment within consumer electron-
ics. In many of these algorithms, Voice Activity Detection
(VAD) plays an important role in increasing overall perfor-
mance and robustness to noise. Amateur radios, digital hearing
aid devices, speech recognition software, etc. are common
examples of speech processing applications that employ VAD
[1]–[3]. Precise discrimination between speech and non-speech
allows, for example, an algorithm to capture, characterize, and
update an accurate noise profile for adaptive noise cancellation
[4]. The integrity of silence compression in discontinuous
transmission schemes also relies upon the accuracy of VAD
algorithms. Speech coding, speaker recognition, and speech
enhancement are all examples of VAD applications [4]–[10].

VAD schemes with basic energy level detection can provide
satisfactory performance at high signal-to-noise ratios (SNRs),
but often perform poorly in noisy conditions. More robust
VAD methods have been developed, which consider statistical
features beyond average energy such as long-term spectral di-
vergence [3] or multiple-observation likelihood ratio tests [11].
In 2012, Gonzalez and McClellan [1] published a VAD scheme
that performs well in noisy environments while maintaining
low computational complexity. Their algorithm specifically
targets voice-activated transmission (VOX) applications.

A VOX is an amateur radio application that allows hands-
free switching between the operating modes of a transceiver. A
radio transceiver with a push-to-talk operating scheme requires
a physical ’transmit’ button to be pressed and held for the
duration of the transmission, whereas a VOX automatically
activates ’transmit’ mode upon detection of an operator’s
voice. It then disables ’transmit’ mode after observing a
sufficient interval of non-speech.

In designing the VAD algorithm, Gonzalez and McClellan
emulated a well-known legacy hardware approach to VOX,
and then rectified its deficiencies by incorporating ideas from
a complementary digital approach. The resulting hybrid al-
gorithm was then tested in the context of amateur radio
transmissions and was found to exhibit a higher robustness
to noise than its legacy constituents, without an increase in
computational cost.

Motivated by the success of the hybrid algorithm, this
research investigates the design of a new VOX/VAD algorithm
whose operating principles are not restricted to those of legacy
devices. Instead, features for speech detection in the new
algorithm are extracted from linear prediction coefficients
and spectral sub-band energy analysis. Both algorithms tar-
get amateur radio applications, and are therefore compared
to one another using audio stimuli captured from amateur
radio transmissions. Quantitative evaluations of their relative
performance were performed across multiple SNRs with both
objective and subjective methods. For the remainder of this
discussion, the algorithm by Gonzalez and McClellan will be
referred to as the “hybrid algorithm,” and the new algorithm
will be referred to simply as the “new algorithm.” Performance
comparisons show that the new algorithm has better overall
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performance than the hybrid algorithm.
It is worth emphasizing that our goal in this work has been

to develop a VAD algorithm specifically for use with VOX
transmission for amateur radio application. In this application,
a speech transmission decision is made only after a frame
has been declared as speech, and the decision to stop speech
transmission is made only after a sufficient number of frames
have been declared as non-speech. Therefore, for effective
VOX transmission, it is not necessary that VAD decisions are
made accurately every single frame. Because of the inherent
delay in switching from transmit to no-transmit decision mode,
occasional frame VAD errors are not significant and do not
impact the effectiveness of the VOX transmission system. For
this reason, the new algorithm is not compared to industry
standard VAD implementations.

In Section II, the theoretical backgrounds behind the hybrid
algorithm and the new algorithm are discussed. The legacy
VAD approaches used in designing the hybrid algorithm are
explained. The operating principles behind the new algo-
rithm are described mathematically and shown graphically.
In Section III, two methods used to compare the algorithms’
performances are explained. One method is comprised of an
objective performance measurement, and the other method is
a subjective listening test. The results of the comparisons
are given and discussed. The new algorithm was found to
achieve equal or better performance under the majority of
tested conditions. In Section IV, areas of further research are
presented.

II. THEORY OF OPERATION

In a VAD paradigm an input audio signal can be generalized
to fall into one of three categories at any given instant: noise
(Eq. (1)), noise and voiced speech (Eq. (2)), or noise and
unvoiced speech (Eq. (3)).

y(n) = q(n), (1)

y(n) = q(n) + v(n), (2)

y(n) = q(n) + u(n), (3)

where q(n) represents noise, v(n) is voiced speech, and u(n)
is unvoiced speech. Distinguishing audio signals best modeled
by Eq. (1) from those characterized by Eq. (2) or Eq. (3) is
the goal of VAD.

In a general sense, speech is a statistically non-stationary
signal. That is, its statistical description changes with time.
However, a finite number of speech samples observed over a
sufficiently short time period will exhibit wide-sense stationary
statistical behavior [12]. To exploit such behavior for speech
processing, an observed frame of audio samples must be short
enough for meaningful statistical analysis but long enough to
capture vocal features of interest. A detailed description of
the two VAD/VOX algorithms is presented in the following
subsections.

Figure 1. A high-level diagram of the MICOM algorithm, reprinted with
permission from [1].

A. Hybrid Algorithm

The hybrid algorithm’s operational theory proceeds from a
combination of techniques found in two legacy VAD schemes.
The first scheme is a hardware-driven approach developed by
Motorola in the 1970s [13]. This circuit, which we refer to
as the “MICOM” implementation, was popular with amateur
radio enthusiasts since it provided a simple and easily im-
plemented speech detection subsystem. The MICOM VOX
continuously monitors a specified channel, suppressing non-
speech noise in the idle channel while allowing detected
speech signals to activate transmission. MICOM-like circuits
exploit the syllabic rate of human speech (about 3 syllables
per second) and include a detector for short-term frequency
modulation, which is characteristic of voiced speech. The main
components of the MICOM implementation include a high
gain amplifier, a trigger circuit to produce constant width
pulses, a 3.25 Hz low-pass filter, comparators, and timing
circuitry to create hysteresis on the output “voicing” signal.

To implement MICOM features into the hybrid algorithm,
a SPICE variant (Multisim [14]) was used to analyze and ac-
curately decompose MICOM’s functional components. These
functional components were then duplicated using a simulation
package (Simulink [15]) to model the subsystems via signal
processing algorithms. Fig. 1 depicts a high-level block dia-
gram of the MICOM algorithm.

Detailed descriptions of the individual blocks in Fig. 1 are
given in [1], [13]. Briefly, the bandpass filter BPF extracts
the voiceband part of the input audio signal; the Limiter
and Trigger Circuit amplifies all non-zero samples to extreme
saturation levels as a means of zero-crossing detection and
generates a steady stream of uniform-width pulses, one per
zero-crossing; the LPF and Phase Splitter block uses a 3.25
Hz low-pass filter to extract the syllabic rate envelope and
a phase splitter to separate the signal into “top phase” and
“bottom phase” voltages; the Detectors declare a detection
event if either of these phase voltages is above a manually-
set threshold; and finally, the Output Switch causes a single
detection event to lead to a one-second holdover, using a
timing capacitor, thereby avoiding “drop-outs” in the middle
of active speech.

The second technique that influenced the design of the hy-
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Figure 2. A high-level diagram of the Harris algorithm, reprinted with
permission from [1].

brid algorithm is a software-driven single-lag-autocorrelation
process published by Harris Corp. in 1991 [16], which we
refer to as the “Harris” algorithm. The Harris algorithm has
several useful features for robust speech detection. However,
in a complete implementation it may be lacking key features
that are provided very effectively by aspects of the MICOM
system. A block diagram of the Harris system is shown in Fig.
2.

The system incorporates a fixed delay and a multiply oper-
ation, which essentially computes a running autocorrelation at
a single predetermined lag, according to Eq. (4).

ACF (l) =
∑
n

XnX̄n−l (4)

The output from this delay and multiply operation is fed
into a simple low-pass filter implemented as an accumulator.
The resulting low-frequency component of the running auto-
correlation is then compared to a threshold β to determine
the presence of speech. The effect of the Harris approach is
to detect strong, stable correlations around the predetermined
lag value, which is related to pitch frequency.

Although the MICOM and Harris systems have advantages,
they both also have shortcomings. The MICOM circuit is
robust and simple to implement in an analog system, but some
subtleties of modeling analog phenomena make it less stable
and more difficult to implement directly in a discrete time
system. The Harris algorithm performs well in detecting the
onset of speech, but is inconsistent during active speech seg-
ments. The detector output has many false negatives (namely,
non-speech) within active speech, and the resulting audio is
choppy and incomprehensible. When the threshold is lowered
to prevent these drop-outs, the same results occur during
silence intervals since the noise creates a high enough output
to repeatedly trigger a detect event.

The idea of detecting strong correlations around a prede-
termined lag value used in the Harris approach is valuable,
but by itself it does not provide a reliable system. The hybrid
implementation described here uses aspects of the MICOM
system to address these problems.

A high-level diagram of the hybrid algorithm is shown in
Fig. 3.

Each of the hybrid algorithm blocks is explained below:
• Bandpass Filter (300-700 Hz): The BPF provides the

same function as the BPF in the MICOM circuit but the

Figure 3. A high-level diagram of the hybrid algorithm, reprinted with
permission from [1].

voiceband is decreased so that processing is done on more
selective data.

• Delay and Multiply: Extracts short term periodicities in
filtered audio. The chosen delay of 50 samples at a sam-
pling frequency of 8000 Hz provides smooth operation
and sufficient sensitivity.

• MICOM Low-pass Filter: Instead of using a simple ac-
cumulator, the 3.25 Hz low-pass filter from the MICOM
circuit is used to extract syllabic rate information from
the delay and multiply block. This filter also provides
a much sharper cut-off, eliminating unwanted frequency
components that interfere with the estimation in the
Harris algorithm.

• Derivative and Absolute Value: The derivative converts
the slowly changing output of the LPF into a more
defined and faster changing waveform, which increases
the tolerance and sensitivity of the threshold. Since the
output of the LPF contains information about the changes
in syllabic rate, like the phase splitter subsection of the
MICOM circuit, both positive and negative deviations are
important. The absolute value allows a single threshold
to consider both deviations.

• Threshold Calculation: Removes the need for manual
setting of the threshold value. To accomplish this, when-
ever speech is not detected, the energy of the noise
is continuously calculated and the baseline threshold is
established according to this changing energy level. This
allows detection in varying noise floors.

• Modified MICOM Output Switch: Forces a holdover
period following a detection event. Instead of using a
1.0s holdover (as in the MICOM circuit) the hybrid
algorithm uses a 0.25s holdover, which minimizes drop-
outs during active speech without overly extending the
detection period.

The performance of the hybrid algorithm was compared
against the MICOM system and the Harris algorithm in [1].
The hybrid algorithm was shown to exceed the performances
of the Harris algorithm as well as the MICOM approach in
both stability and robustness to noise. Fig. 4 shows perfor-
mances of the Harris, MICOM, and hybrid VOX implemen-
tations in a low-noise condition. Although Fig. 4 seems to
display a fairly “clean” or lab quality original signal, the signal
is actually a speech utterance captured from an amateur radio
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transmission, and contains some objectionable, non-speech
noise. In the figure, several error conditions are labeled. Note
the highly erratic performance of the Harris approach in voiced
segments (“A”), but also the ability of the Harris approach to
reliably (albeit aggressively) determine non-speech segments
(“B”). Also note the inaccurate speech/non-speech decisions
of the MICOM approach (“C”). The hybrid approach typically
produces accurate voicing indicators with acceptable overhang,
and without aggressive penetration into non-speech segments.
There are a few exceptions (e.g., a missed onset at “D”).
However, this level of performance is quite acceptable for
real-time implementation, which avoids clipping, slow-attack,
and other behaviors that are objectionable to amateur radio
operators. For a more detailed discussion of the comparison
among the hybrid algorithm, the Harris algorithm, and the
MICOM implementation, the reader is referred to [1]. The
performance comparison results presented in [1] show that the
hybrid algorithm performs significantly better than the other
two algorithms and provides robust and stable speech detection
performance in realistic operational conditions.

B. New Algorithm
The operating principle behind the new algorithm relies on

the predictability of formant locations during voiced speech. A
spectral estimate of audio samples can be analyzed to exploit
this property. The frame length must be kept small enough to
minimize computational latency, but large enough to resolve
the temporal events of interest. A 30 millisecond buffer with
a 50% overlap was found to fall appropriately within this
envelope of efficiency and speed, yielding a new data set
every 15 milliseconds. Two features, or speech indicators, are
implemented in the new algorithm. Section II-B1 explains the
first feature, which is a ratio of energy levels at predetermined
spectral locations. A summary of the second feature, which
tracks formant activity, is given in Section II-B2. Finally,
the logic that determines speech presence given the available
feature data is discussed in Section II-B3.

1) Feature 1, Sub-band Variance Ratio: To analyze the
spectral energy, the 30 millisecond frame is multiplied by
a Hamming window and a 512 point fast Fourier transform
(FFT) is applied. The absolute value of the FFT can be seen in
Fig. 5, in which the shaded range (with width W, and distance
from the origin d) represents the test area for active speech
information.

To test for increased spectral activity in this range, the ratio
of the variance within the shaded region to the variance of
the remaining spectrum is compared to a threshold value. The
derivation of this ratio, Γvar can be seen in Eq. (5) - Eq. (7).

σ2
1 =

1

W − 1

W∑
k=1

(s1(k) − µs1)2, (5)

σ2
2 =

1

N −W − 1

N−W∑
k=1

(s2(k) − µs2)2, (6)

Γvar =
σ2

1

σ2
2

, (7)

where s1(k) is the shaded portion of the spectral estimate;
s2(k) is the spectrum with s1(k) removed and the remainder
concatenated together. µs1 and µs2 are the means of s1(k) and
s2(k), respectively.

To maximize the selectivity of the Γvar metric, the statistical
distance between distributions of Γvar values during speech
and during non-speech should be maximized. A script was
created, which adjusts the W and d values incrementally and
creates distributions of Γvar values for speech and non-speech
audio after each adjustment. It then calculates the statistical
distances between the distributions, using the well-known
Bhattacharyya distance measure, and stores them into a two-
dimensional array. By doing this many times, for many com-
binations of W and d values, a three-dimensional space can
be analyzed in which peaks represent W and d combinations
that yield high statistical separability of classes. Fig. 6 shows
the described three-dimensional space for a range of W and d
values obtained from processing test data from amateur radio
transmissions with varying SNRs.

Through this analysis, the determined values for the W and
d parameters were 781 Hz and 219 Hz, respectively. Fig. 7 dis-
plays the Γvar function (bottom graph) and the utterance from
which it was extracted (top graph). The utterance was sourced
from an amateur radio broadcast and is mostly clean speech.
Clearly, Γvar is relatively small for non-speech segments and
relatively large during speech segments.

2) Feature 2, Temporal Formant Density: The second fea-
ture of interest is also motivated by spectral distribution
analysis, but is realized in a different manner. As described
by Eq. (8), the coefficients (ai) of a 10th order forward linear
predictor (LPC) are calculated for each windowed frame of
time-domain data y(n). The general idea behind Eq. (8) is
that a given speech sample at time n can be approximated
as the linear combination of the past 10 samples (10th order)
weighted by their respective coefficients, ai.

y =

10∑
i=1

aiy(n− i) (8)

The predictor coefficients (ai) for each frame are computed
via autocorrelation and Levinson-Durbin recursion [12]. Once
these coefficients are found, they are treated as the coefficients
of a polynomial whose roots are then solved for. These
complex conjugate pairs of roots are expressed as r0e

±iφ0 ,
where i is the square root of -1, r0 is the root magnitude,
and φ0 is the root angle. From these roots, Eq. (9) and Eq.
(10) are used to estimate formant center frequencies (F) and
bandwidths (BW), respectively [12]; fs denotes the sampling
frequency in Eq. (9) and Eq. (10). These estimates are valid
for high Q formants [12], which is the case for our formant
analysis.

F =
fs
2π
φ0 (9)

BW =
−fs
π

ln(r0) (10)

For a more intuitive understanding of the formant estimation
process, Fig. 8 graphically summarizes the steps from raw
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Figure 4. Performance of all three voice detection algorithms in a low noise, natural environment. The utterance was captured from an amateur radio
transmission, and contains some non-speech noise. Annotations “A” through “D” indicate detection errors in each algorithm.

Figure 5. Spectral estimate of a 30 millisecond frame of audio data. The
variance of the signal within the gray area with width W, and distance from
origin d, is divided by the variance of the remaining spectrum. This quotient,
Γvar, signifies the level of spectral activity within the shaded area relative to
the remaining spectrum.

Figure 6. This plot shows the statistical distance between distributions of
Γvar values while processing speech audio versus non-speech audio for a
large combination of W and d values. The highest peak in this space, which
corresponds to a d value of 219 Hz and a W value of 781 Hz, represents a con-
figuration that yields the highest statistical separability between speech/non-
speech classes for the given test data.
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Figure 7. A recorded utterance sourced from an amateur radio transmission
(upper) and its resulting Γvar function (lower). The Γvar function is truncated
above an arbitrary value along the y-axis for clearer representation. The
graph shows that the Γvar feature yields relatively high values during speech
segments and relatively low values during segments of non-speech.

audio data to formant estimation via Eq. (8) and Eq. (9). First,
the raw audio data for a 30 millisecond frame (Fig. 8(A)) is
multiplied by a Hamming window. From the weighted data,
the autocorrelation and Levinson-Durbin recursion methods
are used to calculate an LPC model for the given frame, as
defined by Eq. (8). The LPC coefficients are treated as polyno-
mial coefficients whose roots are then extracted and are plotted
in polar form in Fig. 8(B). Eq. (9) is then used to translate root
angles to formant center frequencies. The resulting formant
estimations are plotted over the LPC spectrum in Fig. 8(C),
along with the raw audio spectrum overlaid for comparison.

By comparing each root in Fig. 8(B) (in order of increasing
angle) to their respective formant estimates in Fig. 8(C) (in
order of increasing frequency) it is clear that roots farther
from the origin correspond to estimated formants with smaller
bandwidths.

By analyzing the formant locations and their bandwidths,
an estimate of the spectral energy distribution can be made
for each frame of time-domain data. In Fig. 9 and Fig. 10,
two separate audio frames are displayed above scatter-plots of
their respective formant estimates.

In these scatter plots, the y-axis represents formant band-
width and the x-axis represents formant frequency. The shaded
rectangles represent a decision space, within which formants
will tend to lie when voiced speech is present. Adopting a
similar approach to that used for determining the W and d
values in the Γvar analysis of Section II-B1, we chose the
decision space dimensions to include formants with center
frequencies between 100 and 1000 Hz, and bandwidths under
100 Hz. In an LPC spectrum, these formants would manifest as

relatively lower frequency, pronounced spectral peaks. Notice
that two formants fall within the shaded region during the
particular speech frame displayed in Fig. 10 while no formants
do so in Fig. 9. The speech frame in Fig. 10 is extracted from
a voiced segment of the word ’principle,’ recorded over an
amateur radio transmission; the non-speech frame in Fig. 9 is
background noise extracted from the same transmission.

By monitoring the number of formants within the decision
space and computing a running sum of this number over
the last N frames (labeled ρf below), a temporal density of
formants is computed. That is, the number of formants that
have landed within the decision space over the last N frames
is computed to detect the presence of speech. By choosing N
= 10, some hysteresis is introduced into ρf . In Fig. 11, the
ρf feature is plotted above the utterance from which it was
extracted. Clearly, non-speech segments correspond to values
of ρf closer to zero while speech segments correspond to ρf
values closer to 10.

3) Two-State Logic: To combine the above-mentioned fea-
tures (Γvar and ρf ) into a speech detection scheme, decision
thresholds were chosen statistically. Histograms of feature
values during both speech and non-speech were calculated
over a variety of utterances and noise levels. Given some
overlap in these distributions, two thresholds for Γvar were
chosen to indicate a high or low likelihood of speech presence,
labeled T 1

Γ and T 0
Γ , respectively. This creates three possible

sample spaces for Γvar values at a given instance: likely
speech (Γvar >= T 1

Γ), likely non-speech (Γvar <= T 0
Γ), or

inconclusive (T 0
Γ < Γvar < T 1

Γ). Given the higher statistical
distances between distributions of ρf values during speech and
non-speech, only one threshold Tρ is used.

Finite-state logic is then employed to allow state changes
only when both features indicate that the current frame of
audio differs from the previous frame of audio. With three pos-
sible Γvar interpretations and two possible ρf interpretations,
six combinations of feature indications can be realized, but
only two merit a state change. The state logic is summarized
in the diagram of Fig. 12, where a represents detected speech
from both features, b represents detected non-speech from
both features. For hands-free VOX switching applications,
the transceiver would begin transmissions when the algorithm
moves to the “speech” state. It would then end transmissions
when the algorithm moves back to the “non-speech” state, and
remains there for a sufficient duration.

III. PERFORMANCE COMPARISON

A human subject’s perceptual evaluation of audio stimuli
is the outcome of a complex physiological process. In this
process, the quality aspects of the audio are considered along
with the subject’s expectations, mood, context, etc. When
assessing the quality of audio stimuli, the criteria upon which
opinions are formed are difficult to characterize, even for
the assessor. Forming a mathematically predictive model to
forecast such psychoacoustic assessments is therefore difficult.
In this research, a simple objective metric was designed to
estimate the relative performance of the algorithms. Although
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Figure 8. A graphical summary of the mathematical transition from raw audio to LPC formant estimates. A 30 millisecond sample of audio data is plotted in
(A). After computing the LPC coefficients from the weighted data, the LPC polynomial roots are extracted and plotted in polar form (B). The formant center
frequencies are estimated from the roots with Eq. (9) and plotted over the LPC spectrum in (C). The raw audio spectrum is also displayed in (C).

Figure 9. A 30 millisecond frame of non-speech audio (above) and its
corresponding formant estimates (below). The y-axis of the lower plot is
the estimated formant bandwidth, as defined by Eq. (10), and the x-axis is
frequency. The shaded area signifies the decision space for speech-data. Notice
that no formants lie within the shaded area.

Figure 10. A 30 millisecond frame of voiced speech data (above) and its
corresponding formant estimates (below). The y-axis of the lower plot is
the estimated formant bandwidth, as defined by Eq. (10), and the x-axis is
frequency. Notice two formants fall within the perimeter of the decision space,
indicating an increased likelihood of speech presence.
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Figure 11. A running temporal formant density (ρf ) (upper graph) extracted
from an amateur radio speech recording (lower graph). It is clear from the
graph that higher (ρf ) values correspond to speech segments and lower (ρf )
values correspond to non-speech segments.

Figure 12. Two-state logic used for making VAD decisions. The audio
is deemed either speech or non-speech by the algorithm depending on its
previous state and current inputs. Path a is taken if both features indicate
speech presence, path b is taken if both features indicate non-speech presence.
Path symbols ā and b̄ refer the logical complements of a and b.

this metric was not intended to predict subjective assessments,
it provided valuable feedback during algorithm design at little
cost.

In addition, a subjective evaluation using a paired com-
parison listening test was administered. Untrained subjects
were briefly informed on the purpose and scope of the VAD
algorithms, and then presented with a series of audio samples
to evaluate. The samples were organized into pairs, and the
subjects were asked to choose the preferred audio from each
pair. The following sections provide greater detail into these
test methods and their results.

A. Objective Comparison

To objectively evaluate a given VAD performance, its re-
sulting activity mask was first compared to a manually derived
true marker mask as seen in Fig. 13. In this figure, the audio
is plotted under the resulting VAD activity mask. The absolute
value of the difference between the VAD mask and the true
marker mask is shaded in gray. Taking the integral of the

Figure 13. Audio with VAD activity mask overlaid. Gray shaded areas
represent errors relative to true markers. The integral of the shaded area
divided by the audio sample length gives the error percentage.

shaded areas and normalizing by the audio sample length gives
a percentage error relative to the true markers, which was used
to gauge the VAD accuracy.

To employ this test metric, the algorithms first processed
relatively clean speech captured from radio transmissions and
were scored accordingly. Noise was then added systematically
to the speech files and the algorithms were graded objectively
over a variety of SNRs. Fig. 14 plots the quantitative results
from two radio speech transmissions processed at three differ-
ent SNRs (30 dB, 15 dB, and 0 dB). Admittedly, the database
used for evaluation was relatively small but was found to be
adequate for our purposes. In Section IV, we suggest test
methods that use a larger speech database.

In Fig. 14(a), both algorithms perform similarly. In Fig.
14(b) the hybrid algorithm fails in ’open’ mode during the
0 dB test while the new algorithm remains functional. That
is, the hybrid algorithm reports detected speech during the
entirety of the test. A closer analysis of the algorithms’
behavior during this particular test can be seen in Fig. 15.

The objective metric in Fig. 14 proves suitable for dis-
tinguishing between large performance disparities (such as
those seen in Fig. 15). However, small differences in VAD
performances may go unnoticed in this basic test paradigm.
To the human auditory system, these small differences may
exhibit high perceptual significance depending upon their
context within an utterance. Therefore, the objective metric
may be limited in its ability to accurately predict perceptual
evaluations. To investigate this possibility, a paired comparison
listening test was conducted.

B. Subjective Comparison

Although the objective metric described in Section III-A
offers a relative evaluation, its comparison proved inconclusive
for all but extreme disparities in algorithm performances. To
pursue the possibility of subtle differences in algorithm per-
formances (such as those in Fig. 14(a)) containing overlooked
perceptual significance, a paired comparison listening test was
designed and administered to 10 untrained participants.

Two utterances captured from radio transmissions were
used as test audio for the subjective evaluations. Gaussian
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Figure 14. A comparison of algorithm performance swept over SNR. The raw test audio for the comparison in (a) was captured from a radio transmission
containing clean speech. In (b) the raw test audio was captured from a radio transmission containing mostly clean speech with occasional hand clapping
sounds. Noise was added systematically to both files to create the SNR sweep.

Figure 15. The noisy utterance used during the 0 dB objective measurement
from Fig. 14(b) along with the algorithms’ resulting VAD activity masks
and the utterance’s true marker mask. Here, the hybrid algorithm fails
’open,’ falsely indicating speech throughout the utterance. The new algorithm
maintains overall functionality.

white noise was added to produce three different SNRs per
utterance. Signal power measurements for SNR calculations
were taken only over the speech sections of the utterances,
as determined by manually derived true markers. The test
files were processed by the two VAD algorithms, which were
configured to zero (mute) the sections they deemed non-speech
and preserve the sections deemed speech. Eight pairs of the
resulting processed audio files were played to listening test
participants in the order presented in Table I.

Rows 6 and 8 in Table I contain pairs of audio samples with
significantly different SNRs, which we included for control
purposes. Test results from these pairs were used as a means

Figure 16. The format for each pair of audio stimuli administered in the paired
comparison listening test. The pair number is first announced, followed by
the two samples, which are separated by a cue tone for clarity.

to identify potentially unreliable listeners and to exclude their
scores from statistical analysis.

The untrained test participants were provided a brief de-
scription of the definition and purpose of VAD algorithms
before taking the test. An ordinal A/B multiple choice answer-
sheet comprised the response format. Each of the 8 pairs of
audio stimuli presented in Table I were played to the test
participants in the fashion depicted by Fig. 16. The ’number’
in Fig. 16 indicates which pair is about to be played; the ’cue’
tone serves to separate the samples in each pair.

The mean of the responses was calculated at each tested
SNR, and is plotted in Fig. 17. This data indicates that the new
algorithm was preferred over the hybrid algorithm at SNRs
above 4 dB. The hybrid algorithm was preferred slightly at
0 dB SNR. Thus, the new algorithm provides a better overall
performance than the hybrid algorithm.

IV. FUTURE RESEARCH DIRECTIONS

We suggest below a few areas for further research. The
first area is to investigate ways of reducing the computational
complexity of the proposed new VAD/VOX algorithm. Recall
that the temporal formant density feature used in the new
algorithm requires solving for the roots of the LPC polynomial
and calculating the number of low-bandwidth formants in the
designated low-frequency region (see Section II-B2). Solving
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TABLE I
LISTENING TEST DETAILS.

SAMPLE A SAMPLE B
ALGORITHM SNR UTTERANCE ALGORITHM SNR UTTERANCE

1 hybrid 30 dB 1 new 30 dB 1
2 new 0 dB 2 hybrid 0 dB 2
3 hybrid 15 dB 1 new 15 dB 2
4 new 15 dB 2 hybrid 15 dB 2
5 hybrid 30 dB 2 new 30 dB 2
6 hybrid 15 dB 1 new 0 dB 1
7 new 0 dB 1 hybrid 0 dB 1
8 new 30 dB 2 hybrid 15 dB 2

Figure 17. The averaged preference of test participants at different SNRs. The
two preference functions sum to 100%. The listening test results reported a
preference for the new algorithm when processing stimuli with SNRs over 4
dB. The hybrid algorithm was preferred at 0 dB.

for the polynomial roots is a computationally intensive task.
Reference [17] proposes a way of directly calculating the
number of formants in a given frequency range without first
solving for the roots of the polynomial and shows significant
computational savings. This approach may be modified to
directly calculate the number of formants with bandwidths
smaller than a specified value. The same paper also contains
a procedure for calculating the bandwidths of formants in a
specified frequency region.

We can also reduce the computational complexity of the
sub-band variance ratio feature used in the new algorithm.
Since the LPC analysis (used in the temporal formant density
feature) provides the zeroth autocorrelation coefficient R(0),
by Parseval’s theorem, R(0) equals the energy under the entire
power spectrum. By computing the power spectrum only over
the shaded region in Fig. 5 and by using R(0), we can compute
a ratio similar to the one given by Eq. (7). The approximation
involves not using the means in Eq. (5) and Eq. (6), yielding
an energy ratio rather than a variance ratio. The modest
computational savings here arise from not having to compute
the spectral values in the frequency range outside the shaded
region.

As described in Section II, both sub-band variance ratio and
temporal formant density features focus on the low-frequency
region and as such are effective in identifying voiced frames.

By the same token, the new method may likely misclassify un-
voiced speech frames as non-speech. While these errors should
not affect the effectiveness of our target VOX transmission
application, it may be desirable to minimize misclassification
of unvoiced speech as non-speech. To this end, a third feature
may be developed by focusing on energy ratio and/or formant
density in a designated high-frequency region; VAD decisions
are then made using all three features.

Although the focus of this work was on VOX transmission
for amateur radio application, it may be of interest to evaluate
the effectiveness of the proposed new algorithm by comparing
against industry standard VAD algorithms like the ones used
in the ITU standard G.729 or 3GPP Adaptive Multi-Rate
(AMR) standard [4]. The challenge here is to have access
to a speech database with known ground-truth VAD decision
data. We have identified one such database that is included
in a 1998 TIA standard called TIA/EIA/IS 727 [18]. This
database includes 5 male and 5 female clean speech sentences,
noise files in four noise environments (which can be used to
generate noisy speech files at different signal-to-noise ratios),
and ground-truth VAD decision data for the ten clean speech
files. Both objective and subjective tests may be performed
in comparing the new algorithm against widely used industry
standard VAD algorithms.

V. CONCLUSION

Motivated by the success of a hybrid VAD algorithm
described in [1], a new algorithm targeting amateur radio ap-
plications was developed. Unlike the hybrid algorithm, whose
design combines ideas from two well-known methods, the
new algorithm was designed without restricting its operating
principles to those of legacy approaches. The performance
of the new algorithm was compared to the hybrid algorithm,
both objectively and subjectively, in the context of amateur
radio transmission data. The objective evaluations, which
were computed by comparing the algorithm behavior to true
VAD markers as described in Section III-A, indicate that the
new algorithm achieves equal or higher performance than
the hybrid algorithm under the tested noise conditions. The
subjective evaluations, which were performed through the
listening test described in Section III-B, show that the new
algorithm was preferred over the hybrid algorithm by the
majority of listeners, particularly at higher SNRs. In Section
IV, future research ideas are suggested for (i) reducing the



44

International Journal on Advances in Telecommunications, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/telecommunications/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

computational complexity of the new algorithm, (ii) preventing
the new algorithm from misclassifying unvoiced speech as
non-speech, and (iii) enlarging the performance testing by
using an industry standard speech database and by comparing
the new algorithm against well-known industry standard VAD
algorithms.

REFERENCES

[1] E. Gonzalez and S. McClellan, “A hybrid VOX system using emulated
hardware behaviors,” in International Conference on Digital Telecom-
munications (ICDT), April 2012, pp. 105 – 110.

[2] T. V. den Bogaert, J. Wouters, S. Doclo, and M. Moonen, “Binaural cue
preservation for hearing aids using an interaural transfer function multi-
channel Wiener filter,” in IEEE International Conference on Acoustics,
Speech and Signal Processing, vol. 4, April 2007, pp. IV–565 – IV–568.

[3] J. Ramı́rez, J. Segura, C. Benı́tez, Á. de la Torre, and A. Rubio, “Efficient
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