
111

International Journal on Advances in Telecommunications, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/telecommunications/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Bare PC SIP User Agent Implementation and Performance for Secure VoIP

Roman Yasinovskyy, Andre L. Alexander, Alexander L. Wijesinha, and Ramesh K. Karne

Department of Computer & Information Sciences

Towson University

Towson, MD 21252

USA

e-mail: {ryasinovskyy, aalexander, awijesinha, rkarne}@towson.edu

Abstract—Bare PC systems, which run applications without

using any operating system (OS) or kernel, are immune to

attacks targeting a specific OS. They also perform better than

conventional systems due to their reduced overhead. We

describe the design, implementation and performance of a SIP

user agent (UA) for secure VoIP on a bare PC system. In

particular, we discuss SIP functions and message handling,

and CPU tasking. We also give details of the UA design and

code that enable a lean implementation of SIP to be

intertwined with the network protocols needed for secure VoIP

on a bare PC softphone. The interoperability of the bare PC

SIP UA is verified by conducting tests using OS-based as well

as bare PC SIP servers and UAs. We also study bare PC SIP

UA performance by comparing timings for key SIP UA

operations for the bare PC softphone with timings for a

compatible Linux softphone. The results show that processing

times for the SIP register and invite operations for the bare PC

SIP softphone are significantly less than the corresponding

times for the Linux softphone regardless of whether a bare PC

or a Linux-based SIP server is used. Finally, we propose a

simple security extension to SIP authentication that enables the

session key exchange for media protection to be encrypted

without incurring the overhead of TLS or IPsec. Bare PC SIP

softphones can be used for building secure and efficient VoIP

systems that do not require any OS support.

Keywords-bare PC; SIP implementation; SIP performance;

SIP user agent; VoIP; VoIP security.

I. INTRODUCTION

The session initiation protocol (SIP) is a general-purpose
protocol that can be used for video conferencing, instant
messaging and gaming. However, its primary use today is in
VoIP systems, where it serves as a support protocol for
registering and locating users, and for call set up and
management. Conventional SIP implementations in servers
and softphones require the support of an operating system
(OS) such as Windows or Linux, or some form of an OS
kernel. SIP phones are also frequently implemented in
hardware/firmware typically with an embedded OS. The SIP
implementations in OS-based systems take advantage of
their rich supporting environment and capabilities, and are
convenient to use.

Bare PC systems (also known as bare machine
computing systems) enable self-supporting applications to
run directly on the hardware of an ordinary PC (desktop or
laptop) without using an OS or kernel. A bare PC provides
immunity against OS-based attacks, and bare PC
applications perform better than applications running on
conventional systems due to the elimination of OS overhead.

We describe the design, implementation and performance
of a SIP user agent (UA) for secure VOIP on bare PC
systems. The SIP UA is integrated with the bare PC
softphone application. In [1], the design and implementation
of a SIP server and UA for VoIP on a bare PC were
described. However, that study did not consider UA
performance or the elimination of additional protocols such
as TLS or IPsec to secure the key exchange over SIP to
protect the VoIP call. Other studies [2], [3] dealt extensively
with bare PC SIP server (but not SIP UA) implementation
and performance. This paper extends [1] by 1) providing
software design and code details for the UA to illustrate
protocol intertwining; 2) presenting performance data in the
form of timings for key SIP operations on the UA that are
compared with timings on a compatible Linux-based SIP
softphone; and 3) proposing a simple security extension to
SIP/SDES authentication that enables the key exchange for
media protection (via SRTP) to be encrypted using AES
without incurring the overhead of any additional protocols.

The design details and code snippets for the bare PC SIP
UA provided here help in understanding how the lean
implementation of SIP is intertwined with the other
necessary network protocols in the self-supporting bare PC
environment with no OS or kernel resulting in improved
performance of the UA compared to OS-based SIP UAs.
This paper only focuses on the implementation, performance,
and security aspects of the bare PC SIP UA since bare PC
SIP server implementation and performance are discussed in
detail in [3].

In secure environments, an OS-based full SIP
implementation may not be needed and a lean
implementation of SIP on a bare PC is useful due to the low
overhead and inherent immunity of the application against
attacks targeting vulnerabilities in a typical OS such as Linux
or Windows. Compared to their OS-based counterparts, bare
PC systems also have reduced code complexity and code
size, making it easier to analyze the code and fix security

112

International Journal on Advances in Telecommunications, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/telecommunications/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

flaws. Moreover, bare PC systems have fewer avenues open
for attackers to exploit since they only provide essential
functionality and services. The low overhead and
performance improvements of bare PC applications
compared to applications on conventional systems are due to
using direct interfaces to the hardware, fewer context
switches, application-specific optimizations, efficient inter-
layer communication, and streamlined versions of the
necessary protocols and drivers.

As with other bare PC applications, the SIP UA
implementation and interfaces to the hardware constitute a
single self-supporting executable, implements only the
essential elements of SIP and is UDP-based. The bare PC
SIP UA and softphone application currently runs on an IA32
(Intel Architecture 32-bit) or Intel 64-bit architecture in 32-
bit mode.

The rest of this paper is organized as follows. In Section
II, we briefly survey related work. In Section III, we give an
overview of bare machine computing. In Section IV, we
describe the bare PC SIP UA software design and operations.
In Section V, we give details of the UA implementation and
provide some code snippets. In Section V, we describe
testing scenarios, and in Section VI, we give UA
performance data for bare PC and Linux-based SIP UAs. In
Section VIII, we propose a modification to SIP
authentication for protecting session key exchange for media
protection, and in Section IX, we present the conclusion.

II. RELATED WORK

There are numerous implementations of conventional SIP
servers and SIP softphones on various OS platforms. These
SIP servers and UAs run on conventional OSs. In [4], a SIP
server is implemented on top of an existing SIP stack. In [5],
SIP servers and SIP UAs are implemented on the Solaris 8
OS. A client-side SIP service offered to all applications
based on a low-level SIP API is described in [6]. In [7], the
features of a new language StratoSIP for programming UAs
that can act respectively as a UA server to one endpoint and
as a UA client to another are presented. In [8], the UA is a
SIP-based collaborative tool implemented by using existing
SIP and SDP stacks. In [9], a Java-based SIP UA is proposed
for monitoring manufacturing systems over the Internet. The
focus of [10] is a SIP adaptor for both traditional SIP
telephony and user lookup on a P2P network that does not
have a SIP server. The goal of such SIP servers and SIP UAs
is to offer enhanced services to clients by using existing low-
level SIP stacks that rely on an OS. In contrast, bare PC SIP
servers and UAs that are implemented directly on the
hardware will have less overhead and are more suited for
secure low-cost environments.

Intertwining bare PC Web server or email server
application and application protocols (i.e., HTTP or SMTP)
with the TCP protocol contributes to its improved
performance over OS-based servers [11], [12]. In [2] and [3],
the performance of a bare PC SIP server is compared with
that of OS-based servers, and it is shown that the bare PC
SIP server performs better except in a few cases. The SIP
server performance studies did not discuss the SIP UA
design details or its implementation. The design,

implementation, and performance of a bare PC softphone for
peer-to-peer communication are discussed in [13] and [14].
However, the softphone does not support SIP and does not
incorporate a UA of any kind; hence it lacks the ability to
communicate with SIP servers and other SIP softphones.
Details of the SIP protocol itself are given in [15].

III. BARE MACHINE COMPUTING

Bare PC application development is based on the bare
machine computing paradigm, also referred to as the
dispersed operating system (DOSC) paradigm [16]. In this
paradigm, a single self-supporting application object (AO)
encapsulating all of the necessary functionality for a few
(typically one or two) applications executes on the hardware
without an OS. Bare machine applications only use real
memory; a hard disk is not used. The AO, which is loaded
from a USB flash drive or other portable storage medium,
includes the application and boot code.

The application code is intertwined with lean
implementations of the necessary network and security
protocols. If required by the application, the AO also
includes cryptographic algorithms, as well as network
interface and other device drivers, such as an audio driver in
case of the bare PC softphone. The interfaces enabling the
application to communicate with the hardware [17] are also
included in the AO. The AO code is written in C++ with the
exception of some low-level assembler code. The AO itself
manages the resources in a bare machine including the CPU
and memory. For example, every bare PC AO has a main
task that runs whenever no other task is running, and
network applications require a Receive (Rcv) task that
handles incoming packets. Additional tasks may be used
depending on the applications included in the AO, such as an
audio task for the bare PC softphone.

IV. BARE PC SIP UA SOFTWARE DESIGN

The software design of the bare PC SIP UA is simple and
modular. It manages data associated with log in, dialing,
incoming and connected calls, media IP address and port,
and STUN state [18]. The main data structures in the SIPUA
object are phone_book, media, call_session, configuration,
call_log, and via_headers. The call_log struct with some of
its fields is shown in Figure 1. For each char array, an int
variable is used to store its actual size. For example, int
call_id_size stores the size of the char array call_id.

In addition, the SIPUA object defines numerous
constants, variables, and arrays. These are used to store UA
timers, counters, tags, authentication data, menu controls,
and user account information. As in all bare PC applications,
a TCB table [3], [11] is used to store information such as
addresses and ports needed to process incoming packets.

The SIP UA code and methods are designed based on the
various states the UA can be in. Since there is no OS or
conventional protocol stack, the self-supporting SIP UA
application itself sends and responds to messages using the
necessary protocols. This requires that the UA manage
memory, CPU and task scheduling without any OS support.
All memory is real and mapped statically, i.e., there is no
provision to load any modules dynamically at run-time,

113

International Journal on Advances in Telecommunications, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/telecommunications/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

which significantly increases security of the SIP UA and
prevents attackers from gaining access to other parts of
memory or execute code other than the legitimate SIP
application itself.

struct call_log
{
 int phone_state;
 int app_state;
 char call_id[70];
 char cseq[5];
 char password[20];
 char account_name[20];
 char account_domain[20];
 char account_ip[16];
 char account_port[6];
 char media_ip[16];
 char media_port[6];
 char call_tag[100];
 char callee[40];
 char callee_sip_ip_text[16];
 unsigned int callee_sip_port_hex;
 unsigned int callee_media_port_hex;
 int srtp; int srtp_match;
 int originator; struct configuration config;
 …
 };

Figure 1. Example of a UA Data Structure

Excluding methods for booting and loading the UA code
from a USB flash drive (or other portable media), other
“low-level” methods that are common to all bare PC
applications, and the method that runs the Main task, the
remaining methods of the SIP UA consist of those that
initialize the UA, display menus and call state, and interact
with the user via keyboard, and methods that implement key
SIP functionality. The primary user data and SIP state are
contained in char arrays and pointers, and the method
parameters enable the data to be accessed and manipulated
based on SIP messages that are received including
REGISTER, INVITE, and BYE. Authentication is enabled
by default, but can be turned off by the user prior to making
a call.

In Figure 2, SIP UA method declarations appearing in the
SIPUA.h file and their parameters are shown. It can be seen
that method parameters reference user account, and IP
address and port number information, as well as SIP/SDP
headers and tags in incoming and outgoing messages. In
addition, the local data structures referred to earlier are
directly manipulated by these methods. The methods
instantiate other objects such as DHCP, STUN, and SRTP
[19] together with the usual RTP, UDP, IP, and Ethernet
objects used for network communication. Keyboard input
and screen output is done via special bare PC interfaces that
are use by all bare PC applications. Although the bare PC
SIP implementation is lean, it requires strict adherence to the
SIP protocol specifications given in [15] in order to
communicate with both OS-based and bare PC SIP servers
and UAs. From a security viewpoint, the code is simpler and
there are no hidden dependencies on external libraries or
code other than that of the SIP UA application itself. The
elimination of OS or kernel code and external dependencies
enables only functionality that is essential to the SIP

application to be implemented, which simplifies code
analysis and detection of vulnerabilities.

Figure 3 shows the call flow relationships among the key
methods in the UA. The method parameters and return types
are omitted since they were specified in Figure 2. It can be
seen that several methods in the UA are also used by the SIP
server [3]. These include siphandler, sipsenddata,
format_sip_response, parse_headers, copy_tag_line,
create_packet, copy_sip_request, create_response_packet,
and generate_sip_response, and several methods that are
used to parse tags. The main difference between the SIP
server code and the UA code is that the server also contains
code to manage the database storing registration and
authentication information for users. In contrast, the UA
contains code to process SIP authentication (i.e., handle the
SDP challenge/response messages), secure the VoIP media
stream via SRTP, and provide the user interface via menus
and keyboard input.

When the UA is booted, sipuainit and sipuser_init are
used to initialize the UA and store user information
respectively; generate_sip_response sets up memory for the
packet to be sent and calls sipsenddata; sipsenddata in turn
calls format_sip_response to construct the SIP message, and
then calls the relevant methods in the UDP, IP, and Ethernet
objects to construct the necessary protocol headers and send
the packet; format_sip_response constructs the SIP message
in the following cases: received INVITE, TRYING,
RINGING, ACK, BYE, OK, UNAUTHORIZED, or
PROXY_AUTH; or sent INVITE, RINGING, REGISTER,
ACK, BYE, DECLINE, BUSY, or REGISTER_LOGOUT.

As shown in Figure 3, when a packet is received,
siphandler calls parse_headers to determine the type of the
received SIP message, and then calls handle_session to
retrieve or store state information, followed by
generate_sip_response to construct the response;
parse_headers in turn calls several methods to parse tags
including copy_tag_line, parse_from_to_tag, and
parse_call_id_tag; copy_sip_request, create packet, and
create_response_packet are used to create SIP packets;
parse_authenticate is used to parse an authentication
challenge and compute an authentication response;
route_packet method is used to determine whether the packet
can be delivered directly or whether it needs to be sent to the
default gateway; and shout_or_route is called directly from
the main task for start-up, displaying menus, registering the
user, and initiating calls. SIPUA also includes methods for
displaying menus and submenus, switching screens, and
quick dialing.

After shout_or_route is called as above and the user is
registered, the user can initiate a new call. Incoming calls are
handled as follows. When the Rcv task receives a UDP
message containing a SIP Invite, the main task actives a SIP
task. Then siphandler is invoked and the SIP responses
(TRYING and RINGING) are sent by using the relevant
methods in the SIPUA application as described above. When
a SIP response message such as an ACK or 200 OK is
received, the TCB entry is used to retrieve the information
needed to process the message.

114

International Journal on Advances in Telecommunications, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/telecommunications/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4 shows the relationship between protocols and
the Main, Rcv and SIP tasks in the SIP UA. Tasks handling
audio processing [14] are not shown here. All upper layer
protocols use UDP/IP/Ethernet and SRTP uses RTP.
Incoming UDP packets are handled by the Rcv task
regardless of the upper layer protocol. The SIP task handles
SIP processing that is initiated by siphandler, and passes
control back to the main task after sipsenddata terminates.

unsigned short get_destsipport (char *data_array, int size);
void sipuainit();
int route_packet(char *source_ip, char *dest_ip, char *subnet_mask,
char *dest_mac);
void shout_or_route();
void siphandler(char *packet_array, int packet_size);
int create_packet (char *cat_array, char *data_array, int datasize);
int parse_headers (char *data_array, int size_array);
int parse_call_id_tag (char *data_array, char *tag_line, int start);
int parse_from_to_tag (char *data_array, int start, int end,
char *account_name, int account_name_size, char *account_domain,
int account_domain_size);
void generate_sip_response(char *data_array, int response);
void sipsenddata(char *cptrl, long InPtr, char *data_array, int response);
int format_sip_response(char *send_buffer, char *data_array, int
response);
int create_response_packet (char *cat_array, char *data_array, int
datasize);
int copy_sip_request (char *cat_array, char *data_array, int
new_data_size, int datasize, int enddatasize);
int copy_tag_line (char *data_array, char *tag_line, int start, int end);
int get_ip(char *data_array, int start, int end);
char parse_sdp_ip(char *ip_address_string, int size, int octet);
void parse_sdp_media(char *data_array, int start, int end);
void parse_sdp_attribute(char *data_array, int start, int end);
int parse_crypto_tag (char *data_array, int start);
int parse_encrypt_tag (char *data_array, int start);
int text_ip(char *data_array, int end, char * hex_ip);
int handle_session(char *address_name, int address_name_size, char
*address_domain, int account_domain_size, int type);
int int_text(int i, char *port_string);
int check_media();
void init_sdp_media();
void reset_values();
void sipuser_init();
void sipserver_init(int flag);
void parse_authenticate(char *data_array, int start, int end);
int parse_cseq_tag (char *data_array, int start, int end);
int parse_expires_tag (char *data_array, int start, int end);
int parse_contact_tag (char *data_array, int start, int end);
void clear_all_menus(int type);
void header_label();
void footer_label(int type);
void middle_label();
void call_connected_menu();
void incoming_call_menu();
void selected_item(int type);
void button_press();
int wait_timer(int type);
void switch_screen();
void main_start_menu();
void sub_main_menu();
void sub_quick_dial_menu(int type);
void sub_phone_config_menu();
void sub_stun_menu();
void sub_ip_config_menu();

Figure 2. SIP UA methods and parameters

V. BARE PC SIP UA IMPLEMENTATION

The bare PC SIP user agent (UA) is integrated with the bare
PC softphone enabling calls to be set up. Its operational
characteristics are similar to those of a SIP UA in a
conventional OS-based SIP softphone. However, the UA
implementation is different due to the absence of an OS and
a built-in protocol stack, and results in a UA with less
overhead and better security. The UA can also directly
communicate with a peer on a local network (without using a
SIP server).

A. UA Operation/User Interface

As in the case of the bare PC SIP server, only two tasks
Main and Rcv are needed for the UA, and arriving SIP
messages and responses are processed in a single thread of
execution as described earlier. When the UA is booted, if an
IP address for the UA has not been preconfigured, the UA
sends out a request for an IP address and obtains one using
DHCP. If this is a private address, the UA is behind a NAT
and uses STUN [18] to learn its public IP address and port.
In this case, the UA first sends a DNS request and obtains
the IP address of a public STUN server. The bare PC STUN
implementation is described in more detail below.

Figure 3. UA call flow relationships

Figure 4. UA protocol/task relationships

After UA completes the initialization process it displays
the main login menu, which enables the user to login-in to a
particular SIP server or to communicate directly with a peer
as noted earlier. In case SIP server login is selected, the UA
sends a SIP Register request to the server after performing a
DNS resolution if needed. Once the 200 OK messages are

 sip_handler()

parse_head() handle_sess() gen_sip_resp() copy_sip_req()

parse_auth() copy_sip_req() sip_send_data()

 route_packet() form_sip_resp()

 create_packet() create_resp_packet() copy_sip_req()

115

International Journal on Advances in Telecommunications, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/telecommunications/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

received from the SIP server, the UA displays a “main
menu” screen as in Figure 5. The menu has several options,
which enables the user to see the IP configuration
information from DHCP, and NAT mappings from STUN
that show the external IP address and internal/external SIP
and RTP ports for the softphone. Such information is useful
to troubleshoot connectivity problems. In addition, a separate
option shows call status and connectivity information, and
indicates whether security is on. A “quick dial” option for
selecting specific users is also available.

Figure 5. UA Main Menu Screen.

The essential UA functionality contained in the SIPUA
object consists of about 3000 lines of C++ code. This object
is supplemented by 1) objects for cryptographic and other
algorithms needed for key establishment (HMAC, SHA-1,
MD5, AES, and Base64); 2) objects implementing the
essential elements of the necessary auxiliary protocols
(STUN, DHCP, and DNS); and 3) objects needed by the bare
PC softphone including the Ethernet, IP, and UDP objects,
the RTP, audio, and G.711 objects that handle voice data
processing, recording, and playback on the bare PC
softphone, and the SRTP object [19] that provides VoIP
media security. The SRTP protection is optional and can be
turned off. However, the additional overhead due to using
SRTP is low [20].

B. User Agent Client and User Agent Server

The bare UA consists of two independent components:
the SIP user agent server (UAS) and SIP user agent client
(UAC). The UAS is operationally similar to the bare PC SIP
server with respect to its handling of SIP packets. For
example, it listens for call requests and its actions are
activated by the Rcv task when a packet arrives as discussed
earlier for the case of the SIP server. The UAC can be
activated by keyboard input. The UA functionality is
contained in a SIPUA object that is responsible for
processing SIP messages and SDP tags, displaying the SIP
UA interface, and interacting with the user. The SIPUA
object is integrated in a single AO with several other objects
needed to implement the UA.

C. STUN/DHCP/DNS/SRTP

The public IP address and port learned from the public
STUN server is used in SIP Invite requests to enable the peer
to communicate with the UA behind the NAT. The bare PC
SIP UA sends out multiple STUN messages to find the
external port for its voice channel over RTP. Since the

signaling channel is proxied through the SIP server, STUN is
not needed to discover the external SIP signaling port. After
the bare PC client is booted, STUN messages for the media
channel are sent every 30 seconds until the SIP UA
establishes the call. The Invite message contains the last
known media channel external port number. Since the NAT
binding may change, the UA sends voice packets to the
destination host using a sequence of consecutive ports. The
UA stops sending on the other ports once voice packets are
received on a particular port.

The bare PC SIP UA also needs to send DHCP messages
to automatically obtain an IP address and other essential
configuration information at start-up. Since there is no OS
and no built-in protocol stack on the bare PC softphone, a
lean implementation of DHCP is used. The DHCP messages
follow the typical DHCP call flow (Discover, Offer, Request,
and Ack). The softphone can also send DNS requests to
resolve the domain name of the SIP or STUN server. As
noted earlier, the implementation of the DHCP and DNS
protocols have only the minimal features needed by the bare
PC SIP softphone.

The bare PC SIP UA is also integrated with SRTP. The
implementation and performance of SRTP on a bare PC
softphone are presented in [20]. SRTP allows the UA to
communicate securely with conventional SIP UAs that are
SRTP capable. The bare PC softphone AO includes
implementations of SHA-1, MD5, HMAC, and AES in
counter mode, which are used by SRTP. The bare PC SRTP
implementation also supports addition of a recommended
authentication tag to the end of the RTP packet. The UA
currently implements the SDP Offer/Answer model via
SDES for key exchange. This method is used by several
conventional SRTP clients. The keys used to generate the
session keys are Base64 encoded by the bare PC softphone
prior to transmission. Since this approach for transmitting
keys is not secure, a more secure alternative is described in
Section VIII.

D. Protocol Intertwining

An essential component of the bare PC SIP UA
application is code that intertwines the necessary network
protocols with the SIP UA application code. Since there is no
protocol stack and a distinction between user space and
kernel space as in a conventional OS-based system, it is
necessary to provide methods that can directly instantiate
objects of other protocols and invoke their methods. To
illustrate this idea, we consider two methods in the SIPUA
object: generate_sip_response and sipsenddata in Figs. 6 and
7. Comments and code lines unessential to the present
discussion are not shown.

In Figure 6, the SIPUA object instantiates the bare PC
Ethernet object EtherObj. This enables the UA to access the
Ethernet buffer directly, which significantly reduces
overhead. It can be seen that addresses and memory in the
bare PC are directly manipulated by the SIPUA. Such
“hardcoding” makes the SIP UA code more secure: it is
more difficult for an attacker to perform standard buffer
manipulations since different bare PC SIPUAs can use a

116

International Journal on Advances in Telecommunications, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/telecommunications/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

different memory layout. The last action of the
generate_sip_response method is to invoke sipsenddata.

In Figure 7, the code for the sipsenddata method is
shown. This code illustrates how the SIP UA directly
instantiates the necessary protocol and “lower layer” objects:
DHCP, UDP, IP, and Ethernet. The method calls
route_packet, which calls ARP to find the MAC address,
then calls format_sip_response to create the correct SIP
response (depending on the current state determined by a
received SIP message such as an INVITE), and finally sends
the data via a call to UDP. Again, it can be seen that header
sizes are “hardcoded”, which improves security, and that
direct invocation of the necessary protocols eliminates the
overhead of interlayer communication and context switching
that would be present in a conventional OS-based system.

VI. TESTING

Operational tests of the bare PC SIP server and SIP
softphone implementations with and without authentication
and SRTP security were conducted using Dell GX-260
desktops with Intel Pentium 4 2.4 GHz processors, 1.0 GB
RAM, and a 3COM Ethernet 10/100 PCI network card. The
test network consists of a dedicated LAN within the Towson
University network, and an external network connected
through an ISP as shown in Figure 8. The bare PC SIP server
and user agents were first tested within the dedicated LAN.
Testing was performed to verify 1) correct operation
between the bare PC SIP server and bare PC SIP softphones;
2) interoperability of bare PC SIP softphones with the
OpenSer v3.0.0 server [21]; 3) interoperability of the bare
PC SIP server with Linphone 2.1.1 [22] and Snom360-5.3
softphones [23]; and 4) interoperability of bare PC SIP
softphones with the Linphone and Snom softphones.

void SIPUAObj::generate_sip_response(char *data_array, int response)
{
EtherObj EO;
char *sip_send_buffer;
long *p1;
long cb;
char ca;
long InPtr = 0;
long x = 0;

p1 = &cb;
sip_send_buffer = &ca;

x = EO.DownListPointer + EO.SendInPtr * 32 + 8 - ADDR_OFFSET;

p1 = (long*)x;
sip_send_buffer = (char*) *p1;

InPtr = EO.SendInPtr;
EO.SendInPtr++;
if (EO.SendInPtr == EO.SndLstSize)
{
 EO.SendInPtr = 0;
}
sip_send_buffer = sip_send_buffer + 14 + 20 + 8 - ADDR_OFFSET;

sipsenddata(sip_send_buffer, InPtr, data_array, response);
}

Figure 6. Code to generate a SIP response

void SIPUAObj::sipsenddata(char *cptr1, long InPtr, char *data_array,
int response)
{
static int jj = 0;
EtherObj EO;
UDPObj udp;
DHCPObj dhcp;
IPObj ip;
char *send_buffer;
char c1;
send_buffer = &c1;
int retcode = 0;
int SIPPack_size=0;

//call route packet to get proper mac
route_packet(dhcp.ip_data.ip_address, SIPDestIP, dhcp.ip_data.subnet,
SIPDestMac);

send_buffer = cptr1;

//format_sip_response creates the SIP response packet
SIPPack_size = format_sip_response(send_buffer, data_array,
response);

send_buffer = send_buffer - 8; //8 byte UDP header
retcode = udp.FormatDHCPUDPPacket(send_buffer, SIPPack_size,
udp.SIPSourcePort, udp.SIPDestPort, 0);
SIPPack_size = SIPPack_size + 8;
send_buffer = send_buffer - 20; //20 byte IP header
retcode = ip.FormatIPPacket(send_buffer, SIPPack_size, SIPDestIP,
SIPDestMac, UDP_Protocol, 0);
SIPPack_size = SIPPack_size+20;
send_buffer = send_buffer - 14; //14 byte ethernet header
retcode = EO.FormatEthPacket(send_buffer, SIPPack_size, IP_TYPE ,
SIPDestMac, InPtr, 0x04, 0);
SIPPack_size = SIPPack_size+14;
}

Figure 7. Code to send a SIP message

Similar tests were conducted over the Internet by
establishing calls between a softphone on the external
network and another on the dedicated LAN when the SIP
servers are connected to the LAN. These tests also served
toverify that the UA and the lean DHCP, STUN, and DNS
implementations on the bare PC SIP softphone work
correctly when it is connected to the Internet. In particular,
the bare PC STUN implementation was found to be adequate
for connecting between clients behind NATs on the
dedicated test LAN and on an ISP network.

Figure 8. Test Network.

117

International Journal on Advances in Telecommunications, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/telecommunications/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VII. SIP UA PERFORMANCE

To evaluate performance of the SIP UA, experiments
were conducted using a 100 Mbps Ethernet test LAN
consisting of two SIP UA client machines and a SIP server.
All machines were Dell GX260 with Intel Pentium 4 (2.4
GHz), 1.0 GB RAM, and 3COM Ethernet 10/100 PCI
network cards. The OS-based (non-bare) machines ran Linux
CentOS 5.6 (2.6.18). The non-bare SIP server and SIP UA
used were OpenSER 1.3.4 [21] and Linphone 2.1.1 [22]
respectively.

Times to complete each of the four SIP message
exchanges corresponding to REGISTER, INVITE,
SESSION OK and BYE as shown in Figure 9 were measured
by capturing the relevant packets using Wireshark 1.5.0 [24].
Each exchange was repeated several times to ensure that the
measurements were stable.

The results are shown in Figs. 10-12. In Figs. 10 and 11,
Linux SIP UAs are connected to a bare PC or Linux SIP
server. The times for completing REGISTER in each case
are seen to be highest compared to the other SIP exchanges.
In Figs. 12 and 13, bare PC SIP UAs are connected to a bare
PC or Linux SIP server. The times to complete all exchanges
except for SESSION are much smaller for the bare PC SIP
UA than for the Linux SIP UA. For both UAs, it does not
make much difference whether a Linux or bare PC SIP
server is used. For the REGISTER and INVITE exchanges in
particular, it can be seen that the time for the bare PC SIP
UA is less than 1 ms, whereas the Linux SIP UA averages 67
ms and 15 ms respectively. As expected, the BYE exchange
takes negligible time for both SIP UAs. The excessive time
taken by the bare PC SIP UA for the SESSION OK
exchange (compared to the Linux SIP UA) is due to
processing the media stream prior to sending the ACK. This
time could be reduced by only processing SIP messages in
this case as done by the Linux SIP UA.

Figure 9. SIP message exchanges

Figure 10. SIP message processing time (Linux client/bare server)

Figure 11. SIP message processing time (Linux client/Linux server)

Figure 12. SIP message processing time (bare client/bare server)

Figure 13. SIP message processing time (bare client/Linux server)

118

International Journal on Advances in Telecommunications, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/telecommunications/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VIII. SECURE KEY EXCHANGE

Security is an important aspect of VoIP. First, the caller
and callee must be authenticated; and second, the voice
packets must be encrypted and their integrity needs to be
ensured. SRTP provides a standardized convenient method
to achieve these requirements. Since SRTP does not mandate
a specific key exchange method, a variety of methods are
used in practice. A common approach used by many
softphones is to use TLS to protect the SRTP key exchange.
However, TLS key establishment is expensive and the
handshake requires TCP. This means significant overhead
and delay may be incurred prior to the beginning of a call
before voice packets secured by SRTP can be exchanged. A
low overhead alternative is to send Base64-encoded
SIP/SDES messages to exchange the SRTP keys [20].
Unfortunately, this method is not useful from a security
viewpoint. We describe below a simple modification using
SIP/SDES that significantly enhances security without
incurring the penalty of TLS.

The proposed key exchange technique is an adaptation of
a technique that is frequently used for establishing a shared
encryption key between clients when a trusted key server is
available. We assume that the local SIP servers S1 and S2
associated with the caller and callee are trusted, and that S1
and S2 pre-share secrets s1 and s2 respectively with the
caller and callee. For convenience, we also assume that these
secrets are the respective passwords used for SIP registration
and authentication by the caller and callee (or derived from
the passwords), and that the caller and callee share the same
SIP server S i.e., S1=S2=S. The technique is easily extended
when the caller and callee have different SIP servers S1 and
S2 (provided that S1 and S2 have a secure pre-established
channel or an IPsec tunnel between them to encrypt the
payload of any messages exchanged between them).

At most one new message is required when using this
technique to secure the SRTP key exchange. It works as
follows. Whenever a SIPUA initiates a call with
authentication, the usual challenge/response technique
requires that a nonce be generated by the SIP server and sent
to the SIPUA in order to verify that the SIPUA has the
correct password/secret (see Section IV). If two nonces
instead of one are sent by the SIP server, the second nonce
can be used as a seed for the TLS PRF (pseudorandom
function) [25] in order for the SIP server and SIPUA to
generate a common AES encryption key of length 128, 192
or 256 bits for encrypting SIP/SDES messages. The TLS
PRF uses the following data expansion function:

P_hash(secret, seed) = HMAC(secret, A(1)||seed) ||
HMAC(secret, A(2)||seed) ||…

Here || denotes concatenation. HMAC can use any one-
way hash function such as MD5, SHA-2 or SHA-3, and
A(i)=HMAC(secret, A(i-1)) for i ≥ 1 with A(0)=seed. For a
128-bit AES key, the TLS PRF needs to be iterated only
once with either an MD5 or SHA-2 hash; for a 256-bit key,
at most two iterations are needed depending on the hash size.
This technique enables the SIP server and the SIPUA at the
caller and callee respectively to compute common AES keys
k1 and k2 of desired lengths. The SIP server can now

exchange messages with the caller and callee that are
encrypted with the keys k1 and k2 respectively. In particular,
the server can send a message encrypted with the key k2 that
transfers the key k1 to the callee. The key k1 can then be
used by the caller and callee to encrypt the SIP/SDES SRTP
key exchange over UDP/IP without incurring the overhead
of a TCP connection or an expensive TLS handshake. Since
implicit authentication based on knowledge of a pre-shared
key is used instead of verifying a certificate as in TLS, the
proposed technique trades off reduced security for less
overhead.

In effect, the single message used to authenticate a
SIPUA also serves to transfer the extra nonce for generating
an AES key. The only additional cost is the cost to transfer
an extra nonce within this message, which should be
insignificant, and the cost of the extra message to the callee
to transfer the key k1. For each call, a different AES key is
generated since the nonce will be different. If the caller and
callee have different SIP servers S1 and S2, it will be
necessary for S1 to securely transfer the key k1 to S2 so that
it can be relayed to S2. This can be done via IPsec or TLS as
usual, or by use of preshared keys. In a local network, two
bare PC SIP UAs can directly establish a secure VoIP call
after authentication without using a SIP server. In this case,
authentication is based on a preshared secret, and the
preceding technique can be used for the caller and callee to
generate a common AES key to encrypt the SRTP key
exchange between them.

IX. CONCLUSION

We described the design, implementation, and
performance of a bare PC SIP UA, which provides essential
SIP functionality with less overhead and better security than
a conventional OS-based SIP UA due to the absence of an
OS. The underlying bare PC system enables the bare PC SIP
UA to benefit from simple tasking, lean protocols, and
efficient data handling.

To illustrate SIP implementation for VoIP on a bare PC,
we discussed the software design and provided code snippets
for sample data structures and methods of the bare PC SIP
UA. In particular, we provided details about the data
structures used to store information associated with the user
and for setting up and managing calls. We then examined the
key methods in the SIPUA and the call flow relationships
among these methods.

The tests conducted show that the bare PC SIP UA can
interoperate with both bare PC and OS-based SIP UAs and
SIP servers. In addition, we conducted experiments to
compare the performance of the bare PC SIP UA and a
compatible Linux SIP softphone with respect to key SIP
operations. The experimental performance results show that
regardless of whether a bare PC SIP server or OS-based SIP
server is used, the time for the Register and Invite operations
using a bare PC SIP UA are significantly less than the time
for these operations using a Linux SIP softphone.

To enhance VoIP security, we proposed a simple
modification to the technique used for SIP authentication to
generate an AES key for encrypting the SIP/SDES SRTP key
exchange. The modification does not require any new

119

International Journal on Advances in Telecommunications, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/telecommunications/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

messages and does not incur the overhead of a TCP/TLS
exchange.

The bare PC UA provides essential SIP functionality
with better performance than OS-based SIP UA, and
immunity from OS-based attacks due to the absence of an
OS. Bare PC SIP softphones can thus be used for improving
performance in VoIP networks with OS-based SIP servers
and softphones, or for building secure communication
systems consisting of only bare PC SIP servers and UAs.

REFERENCES

[1] A. Alexander, A. L. Wijesinha, and R. Karne, “Implementing a VoIP
SIP Server and User Agent on a Bare PC,” 2nd International
Conference on Future Computational Technologies and Applications
(Future Computing), pp. 8-13, 2010.

[2] A. Alexander, A. L. Wijesinha, and R. Karne, “A Study of Bare PC
SIP Server Performance,” 5th International Conference on Systems
and Network Communications (ICSNC) pp. 392-397, 2010.

[3] A. Alexander, R. Yasinovskyy, A. L. Wijesinha, and R. Karne, “SIP
Server Implementation and Performance on a Bare PC,” 5th
International Journal on Advances in Telecommunications, vol. 4, no.
1 & 2, 2011.

[4] L. Chen, and C. Li, “Design and Implementation of the Network
Server Based on SIP Communication Protocol,” World Academy of
Science, Engineering and Technology, pp. 138-141, 2007.

[5] S. Zeadally and F. Siddiqui, “Design and Implementation of a SIP-
based VoIP Architecture,” AINA, 2004.

[6] A. Singh, A. Acharya, P. Mahadeva, and Z-Y, Shae, “SPLAT: a
unified SIP services platform for VoIP applications,” International
Journal of Communication Systems, vol. 19, no. 4, pp. 425-444,
2006.

[7] P. Zave, E. Cheung, G. W. Bond, and T. M. Smith, “Abstractions for
Programming SIP Back-to-Back User Agents,” IPTComm, 2009.

[8] S Siddique, RK Ege, SM Sadjadi, “X-Communicator: Implementing
an advanced adaptive SIP-based User Agent for Multimedia
Communication,” SoutheastCon, pp. 271-276, 2005.

[9] K. J. Kim, Y, Jang, J. W. Chung, and J. H. Seo, “Design and
implementation of SIP UA for a manufacturing network,”
International Journal of Advanced Manufacturing Techniques, vol.
28, no. 7-8, pp. 822-826, 2006.

[10] K. Singh and H. Schulzrinne, “Peer-to-Peer Internet Telephony using
SIP,” International Workshop on Network and Operating System
Support for Digital Audio and Video, pp. 63-68, 2005.

[11] L. He, R. Karne, and A. Wijesinha, “The Design and Performance of
a Bare PC Web Server,” International Journal of Computers and
Their Applications, vol. 15, pp. 100 - 112, June 2008.

[12] G. Ford, R. Karne, A. Wijesinha, and P. Appiah-Kubi, “The
Peformance of a bare machine email server,” 21st International
Symposium on Computer Architecture and High Performance
Computing, SBAC-PAD, pp.143-150, 2009.

[13] G. H. Khaksari, A. L. Wijesinha, R. K. Karne, L. He, and S.
Girumala, “A Peer-to-Peer bare PC VoIP Application,” IEEE
Consumer and Communications and Networking Conference
(CCNC), pp. 803-807, 2007.

[14] G. H. Khaksari, A. L. Wijesinha, R. Karne, Q. Yao, and K. Parikh,
“A VoIP Softphone on a Bare PC,” Embedded Systems and
Applications Conference (ESA), 2007.

[15] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, “SIP: Session Initiation
Protocol,” RFC 3261, 2002.

[16] R. K. Karne, K. V. Jaganathan, T. Ahmed, and N. Rosa, “DOSC:
Dispersed Operating System Computing,” 20th Annual ACM
Conference on Object Oriented Programming, Systems, Languages,
and Applications (OOPSLA), Onward Track, pp. 55-61, 2005.

[17] R. K. Karne, K. V. Jaganathan, and T. Ahmed, “How to Run C++
Applications on a Bare PC?” 6th International Conference on Software
Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD), pp. 50-55, 2005.

[18] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session
Traversal Utilities for NAT (STUN),” RFC 5389, 2008.

[19] M. Baugher, D. McGrew, M. Naslund, E. Carrara and K.Norrman,
“The Secure Real-time Transport Protocol (SRTP),” RFC 3711, 2004.

[20] A. Alexander, A. L. Wijesinha, and R. Karne, “An Evaluation of
Secure Real-Time Protocol (SRTP) Performance for VoIP,” 3rd
International Conference on Network and System Security (NSS), pp.
95-101, 2009.

[21] Kamailio (OpenSER) SIP server,[Online].Available:
http://sourceforge.net/projects/openser Accessed: November 12,
2012.

[22] Linphone, [Online]. Available: http://www.linphone.org Accessed:
November 12, 2012.

[23] Snom VoIP phones, [Online]. Available: http://www.snom.com
Accessed: November 12, 2012.

[24] Wireshark, [Online]. Available: http://www.wireshark.org Accessed:
November 12, 2012.

[25] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2,” RFC 5246, 2008.

