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Abstract—We show a way to evaluate functional properties of
distributed algorithms by the example of the AODV algorithm in
sensor networks, Creol and ABS models, and component testing.
We present a new method to structure the evaluation work into
the categories of techniques, perspectives, arrangements, and
properties using executable models. We demonstrate how to use
this structure for network simulations and component testing
using Creol models and demonstrate how the delta modelling
technique of the ABS language can be used to facilitate the
approach.
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I. INTRODUCTION

With increasing miniaturisation of hardware on one hand,
and reduced production cost and power consumption on
the other, computational devices are becoming virtually om-
nipresent and pose new challenges in software development.
A novel systematic methodology for verification of such
distributed system was presented previously [1] on the ex-
ample of wireless sensor networks (WSN) [2] modelled in the
executable modelling language Creol. In this paper, we extend
this work by giving more details on the verification process
and reporting on advancements in modelling by using the Ab-
stract Behavioural Specification (ABS), a recently developed
successor of the Creol modelling language [3].

The sensor network of our case study consists of spatially
distributed autonomous sensor nodes that communicate using
radio connections. Each node can sense, process, send, and
receive data. We concentrate on the verification of a distributed
algorithm for ad-hoc networks between the sensor nodes to
route data packets of the participating nodes. There are many
functional and non-functional requirements for WSN: routing
must fulfil properties for quality of service (QoS), timing,
delay, and network throughput; furthermore, we are interested
in properties like mobility and resource consumption. When
evaluating WSN, autonomous behaviour of the nodes leads to
state space explosion during model checking, making evalua-
tion a complex task that requires a combination of techniques
from different verification approaches.

The presented structured methodology to verify distributed
algorithms introduces the categories of techniques, perspec-
tives, arrangements, and properties. This structure is combined
with techniques from simulation, testing, and model checking
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to create a new, unified method for verification of distributed
systems. We demonstrate the approach by evaluating a large
set of properties on a network using the Ad hoc On Demand
Distance Vector (AODV) routing algorithm [4].

We detail the modelling process using the new language
ABS, a successor to Creol with a variety of improved
characteristics and features. While the basic structure of the
models remains the same, ABS allows to employ one single
executable model that is suitable for simulation, testing, and
model checking without the need to develop separate models
for each task. In contrast to the models developed in our
previous work [1, 5], the new models employ techniques from
software product line modelling [6] to structure the executable
model with a resulting reduction in model size of more than
fifty percent.

The remainder of this paper is organised as follows: After
introducing the concept of model variability in ABS and pre-
senting the used languages and related work (Section II), we
discuss the AODV model developed previously and contrast
it with the newly-developed model (Section III). Next we
present our categories for the validation process (Section IV),
present results from network simulation and component testing
(Section V), and conclude in Section VI.

II. ABSTRACT BEHAVIOURAL MODELLING WITH
VARIABILITY

Diversity poses a central challenge in modern software
development. Typically, engineers create different system vari-
ants to address a number of concerns ranging from different
application contexts to customer requirements [7]. Model-
centric approaches to system development that provide an
abstract representation of system structure and behaviour are
rapidly gaining popularity. There is a lot of research involv-
ing feature description languages [8], architectural languages
for components [9], the Unified Modeling Language (UML)
[10], and state machine-based notations [11-13]. Develop-
ment processes such as software product line engineering [6]
distinguish between generic artifacts that are common to
different system variants and product-level system develop-
ment; these processes are specifically designed to use (and
reuse) high-level artifacts. For this reason, software product
line engineering is a promising approach to model system
diversity. However, a prerequisite for ensuring the consistency
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of different views during software product line engineering is
a uniform semantic foundation [7].

In our model of routing and forwarding algorithms in wire-
less sensor networks, we encountered model variability for a
variety of reasons; these include different features of the model
(timed vs. untimed, adjustable message loss, different routing
protocols and sensor layouts) and code adjustments for testing
purposes. In the Creol version of the model, a preprocessor-
based solution for feature modelling was employed [14] to
address model variability; in the ABS model, we used a more
principled approach based on feature modelling and deltas.

The rest of the section presents in more detail the modelling
approach of Creol and ABS and about product line modelling
in general.

A. The Creol language

The previous paper [1] used Creol to model the AODV
algorithm. Creol [15, 16] is an object-oriented modelling
language that provides an abstract, executable model of the
implementation of components. The Creol tools are part of
the Credo tool suite [17] that unifies several simulation and
model checking tools. The Credo tools support integrated
modelling of different aspects of highly re-configurable dis-
tributed systems both structural changes of a network and
changes in the components and offer formalisms, languages,
and tools to describe properties of the model in different levels
of detail. These formalisms include various types of automata,
procedural, and object-oriented approaches.

To model components, Creol provides behavioural inter-
faces to specify inter-component communication. We use intra-
component interfaces together with the behavioural interfaces
to derive test specifications to check for conformance between
the behavioural model and the Creol implementation. Types
are separated from classes, and (behavioural) interfaces are
used to type objects.

Creol objects can have active behaviour. They are concur-
rent, so that, conceptually, each object encapsulates its own
processor. Each method call in Creol results in the creation of
a new process. This means that the calling process continues
to run and receives the result of the method call later using
a Future variable [18]. Since all object fields are private,
processes running on different objects can run in parallel
safely, without the need for locking of data structures.

Scheduling within an object is based on explicit processor
release points, i.e., processes within an object cooperate on
scheduling. This cooperative scheduling makes it not only
possible to reason about and prove the correctness of parallel
programs (since scheduling points are apparent in the program
text), but, in our experience, it makes code also easy to read
and understand with confidence.

During object creation, a designated run method is automat-
ically invoked if present in the class definition; this method
provides active object behaviour.

Creol includes a compiler, a type-checker, and a simulation
platform based on Maude [19], which allow simulation, guided
simulation, model testing, and model checking.

International Journal on Advances in Telecommunications, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/telecommunications/

TABLE I
ABS LANGUAGE LAYERS AND THEIR ROLE IN MODELLING SYSTEM
DIVERSITY.

Language layer
Functional layer

Modelling role
Specifies internal computations
in behavioural modules
Specifies communication
and synchronisation of
behavioural modules
Modifications to core
behavioural modules
Links features to sets

of delta modules

Selects features and
initialises a product

Concurrent object layer

Delta layer

Product line configuration
layer
Product selection layer

Creol only provides limited features for expressing diversity
through the use of a pre-processor in the extension CreolE
[14]. This approach has the disadvantage that the model can
become hard to read since all possible aspects are present side-
to-side, obfuscating the flow of control. Other features not
available in Creol include user-defined data types and user-
defined functions. Hence, a successor to Creol was developed
to address these deficiencies.

B. Abstract Behavioural Specification

The Abstract Behavioural Specification (ABS) [3, 20] mod-
elling language and its accompanying tool framework proposes
an approach to the engineering of system diversity that pro-
vides a uniform semantic foundation. It supports the precise
modelling of behaviour for highly configurable, distributed
systems in an end-to-end manner. This means that not only
the (concurrent) implementation of features is captured, but
also the feature space and the dependencies among them.
The ABS modelling language aims to fill the gap between
structural high-level modelling languages, such as UML, and
implementation-close formalisms, including programming lan-
guages [20]. Furthermore, ABS supports the explicit mod-
elling of time-dependent behaviour for object-based systems
by means of its real-time extension [21].

ABS has at its core a state-of-the-art, strongly typed,
abstract, concurrent, object-based modelling language [3] that
is fully executable. ABS offers a number of layers to the
system engineer. These layers provide a separation of concerns
between different aspects of a system model. Table I shows
the different language layers provided in ABS and their role
in the system modelling. We now explain the purpose and
particular features of each layer.

The functional layer of ABS is used to provide a model
of internal computation that abstracts from low-level imple-
mentation details such as the imperative representation of
data structures. This layer consists of user-defined parametric
algebraic data types and parametric functions over the terms
of these types, including pattern matching. The integration of
the functional layer into the object-oriented models results in
a very succinct representation of internal computation in the
objects that allows the engineer to focus on the communication
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and diversity aspects in the upper layers of the model without
abstracting from data flow in the model. Thus, ABS models
are abstract, yet faithful to the data and control flow of the
target systems. The ABS functional layer has no counterpart
in the earlier Creol language, which relied on a fixed set of
data types and had no user-defined functions.

The concurrent object layer of ABS is used to define
the modelling artifacts that represent the system entities in
terms of concurrent object groups. Since representation objects
can be replaced by terms from the algebraic data types of
the functional layer, the engineer may abstract from most
representation objects in the model. As a consequence, objects
in ABS are fairly high-level entities, which are more similar to
actors [22, 23] than to Java objects. The concurrent object layer
is based on asynchronous method calls between concurrent
objects, decoupling communication and synchronisation in
the models.Shared memory and synchronous method calls
are only permitted among closely collaborating synchronous
groups of objects in ABS. Otherwise, objects communicate
asynchronously and use message passing to update the state.
Asynchronous method calls do not transfer control between
the caller and the callee. Instead, the reply to a method call
may be retrieved by synchronising on a future [18].Inside the
concurrent object groups, ABS uses collaborative scheduling
to provide reasoning control in the interleaving of active and
reactive behaviour: a method activation can only be suspended
by explicitly yielding control. If no method is active, any
enabled method activation may proceed. The concurrent object
layer is a straightforward extension of the Creol object model,
keeping most of the semantics and introducing concurrent
object groups.

The purpose of the remaining layers in ABS is to engineer
system diversity. None of these layers are present in Creol.
While ABS is an object-based language and, hence, compat-
ible with the UML world, code reuse by inheritance, which
tends to be brittle, is excluded. Instead, system diversity in
ABS is captured by delta modelling (e.g., [24]), which repre-
sents a set of systems by a designated core system and a set
of system deltas specifying modifications to the core system.
Delta modelling is an incremental composition technique for
structured diversity that is highly compatible with feature-
oriented software development [25] and also a good match
for agile and evolutionary development approaches [26].

The delta layer of ABS is used to specify structured changes
to the set of classes by adding or removing variables or
methods from a class or by redefining methods in the class. A
delta consists of a set of such changes, and may additionally
add or remove classes. The integration of deltas into a (core)
model happens in a given order at compile time, transforming
the model. The product line configuration layer of ABS is used
to define features in the software product line as sets of deltas.
Thus, selecting a feature consists of applying the deltas in the
corresponding set in a given order. The product selection layer
of ABS provides the means to configure a system in order to
obtain a given variant of the product line. This is done by
selecting the features that should be provided in a specific
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product of the product line.
C. Timed Modelling

To simulate and verify functional correctness of models as
well as timing- and performance-related criteria, a notion of
time needs to be included in the model. A timed extension for
ABS has been developed in Bjgrk et al. [27]. In its present
form, timed ABS employs discrete time and run-to-completion
semantics, i.e., the maximum amount of computation is per-
formed in each time interval before the (simulated) clock is
advanced. Timing behaviour of models is explicitly encoded,
thus being visible to the modeller.

The new language elements are:

e A statement duration (best, worst) that blocks
the current object between best and worst time units
where no other process can execute on that object. This
can be used to model CPU-intensive tasks.

e« A new guard condition: the statement await
duration (best, worst) causes the current
process to be suspended between best and worst time
units, letting other processes of the current object
execute in the meantime. This can be used to abstractly
model the timing behaviour of interactions with external
systems, such as interactions with an external database
that is not explicitly modelled.

e A function, now (), that returns the current model time
as a monotonically increasing integer value. In practice,
this function can be used for recording completion times
and bookkeeping.

Using duration and await duration, the modeller
can express, e.g., message transfer delays in the network and
processing delays in the sensor nodes for the AODV model.

D. Related Work

Showing functional correctness and non-functional proper-
ties for algorithms employed for WSN helps the developers
in their technical choices. Developers use a variety of tools,
including measurements on real implementations, simulation,
and model-checking. When developing algorithms for packet
forwarding in a WSN, simulation results must be compared
with the behaviour of known algorithms to get a result ap-
proved [28]. Approaches using simulation, testing, and model
checking during the development process use one or more
of the following: modelling, traces, runtime monitoring by
integrating checking software into the code (instrumentation)
[29], or generating software from models automatically [30].

Simulation systems are used to analyse performance pa-
rameters of communication networks, such as latency, packet
loss rate, network throughput, and other metrics. Most of
these systems use discrete event simulation. Examples for such
simulation systems [31] include OPNET [32], OMNeT++ [33],
the network simulator ns-2 [34], its successor ns-3 [35], or
mathematical frameworks like MathWorks [36]. Many of these
tools have specialised libraries for certain properties, hardware,
and network types. While these network simulators are often
used to evaluate the performance of algorithms, they are
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primarily not designed for model checking tasks. This implies
that code for model checking needs to be implemented in these
simulators rather than using these features as integrated parts.

The CMC model checker [29] has been applied on existing
implementations of AODV by checking an invariant express-
ing the loop-freeness property. In that work, both specification
and implementation errors were found and later corrected in
more recent versions of both specification and implemen-
tations. CMC interfaces C-programs directly by replacing
procedure calls with model-checker code, thus avoiding the
need to model AODV. Wibling et al. use the model checking
tools SPIN and UPPAAL to verify properties for the correct
operation of ad hoc routing protocols [37], such as the LUNAR
and DSR algorithms [38]. They use Propagation Localised
Broadcasting with Dampening (PLBD) as a basic operation,
and perform model checking on the LUNAR and DSR al-
gorithms. Both LUNAR and DSR are related to AODV, but
use different mechanisms. Chiyangwa and Kwiatkowska [39]
uncovered in a timing analysis in UPPAAL that many AODV
connections unnecessarily timed out before a route could be
established in large networks. To avoid this, they proposed to
set the timeout value dependent of the network diameter.

Timed automata implemented in UPPAAL have been used
for validating and tuning of temporal configuration parameters
and QoS requirements in network models that allow dynamic
re-configurations of the network topology by Tschirner et al.
[40]. The strength of UPPAAL is that both average-case and
worst-case behaviours can be analysed. Tschirner et al. com-
pare their results with a similar implementation in OMNeT++.
They found that the results from both simulations coincide
closely. While the UPPAAL implementation is more high-
level, the task of implementing the C++ code for OMNeT++
is rather time-consuming.

The model checker Vereofy [41, 42], part of the Credo
tools, was used to analyse aspects of sensor networks and
AODYV, as presented by Baier et al. [43]. For Vereofy formal
semantics relies on constraint automata. Thus, a model of
a WSN describes the behaviour of the sensor nodes and
the network at the interface level. The specification of the
interface behaviour of a sensor node is given in terms of
CARML (Constraint Automata Reactive Module Language)
sub-modules for sensing, receiving and sending. For unicast
and broadcast the communication media have been modelled
as dynamic component connector networks composed with the
help of RSL (Reo Scripting Language).

While Vereofy uses an automaton approach and process al-
gebra with exogenous coordination, Creol and ABS are based
on executable object-oriented models. Note that properties that
can be checked by Creol or ABS are not necessarily suitable to
be checked by Vereofy, and vice versa. We also used Vereofy
as a reference for evaluating the properties and as source for
the traces employed for the component testing.

Real-Time Maude [44] is a language and tool supporting
the formal specification and analysis of real-time and hybrid
systems, based on rewriting logic. It is particularly suitable to
specify object-oriented real-time systems. Real-Time Maude
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can be seen as complementing on the one hand timed/hybrid
automaton-based tools such as UPPAAL, HyTech, and Kro-
nos, as well as, e.g., timed Petri nets. The OGDC-algorithm
used in certain sensor networks has been simulated and model-
checked in Real-Time Maude [45]. The comparison of these
simulation results in Real-Time Maude against simulation
results in ns-2 have uncovered weaknesses in a concrete ns-2
simulation.

III. MODELLING THE COMPONENTS AND THE ROUTING
ALGORITHM

Distributed applications can be described in terms of com-
ponents interacting in an open environment based on the mech-
anisms of Creol [46]. This framework models components
and the communication between these components, and exe-
cutes the models in rewriting logic. Different communication
patterns, communication properties, and a notion of time are
supported. The lower communication layers use tight, loose,
and wireless links.

Based on this work, we defined a model of AODV in
a WSN using Creol [47] that expresses each node and the
network as objects with an inner behaviour. The interfaces of
the objects describe the communication between the nodes and
the network object. In Figure 1, we show the object structure
of the model, including the most important interfaces of a
node. Note that the object structure shown in Figure 1 is rather
generic and can be employed for modelling AODV in other
simulators. This interface model is in contrast to the interface
model used by the test harness shown later in Figure 4.

Inside a node, its behaviour was implemented in Creol
as routines that are not unlike real-world implementations.
The model contained different aspects (message loss, timed
simulation, different routing algorithms) that were enabled or
disabled via a pre-processor.

In the remainder of this section we discuss an ABS model
that has been implemented later with the same interfaces using
the experiences from the previous Creol model and using the
advantages of ABS.

The transition from Creol to ABS reduced the size of the
model by about 50%, as measured by line count. Much of
the reduction comes from the new language features of ABS,
predominantly the added functional layer. In addition to being
shorter, the new code is also more readable. The model is
structured into a basic layer with a number of deltas adding
additional features. The basic layer specifies the interfaces and
object structures. It implements a simple flooding protocol
without routing or retransmission. Based on that simple but
working model, a delta replaces the routing functionality in the
sensor class with new code that implements the AODV proto-
col. This layer also adds attributes for storing the local routing
tables in each sensor object. Additional deltas implement
message timeout and message loss simulation facilities. In the
Creol model, all these functionalities were implemented in one
place and switched on and off by preprocessor directives; the
new structure allows to implement, read, and understand the
different aspects in isolation.
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Figure 1. Objects of a WSN model and their communication interfaces.
Figure 2. Example of AODV message propagation in a WSN with eight
nodes.

A. The AODV Routing Algorithm

The purpose of a routing algorithm is to establish a path
between a source node and a sink node, so that data can flow
from the source node to the sink node via forwarding nodes
in-between. AODV is a reactive routing protocol that builds
up the entries in the dynamic routing tables of nodes only if
needed. AODV can handle network dynamics, e.g., varying
wireless link qualities, packet losses, and changing network
topologies.

When a node wants to send a message to a sink node and
the next hop cannot be retrieved from the local routing table,
it initiates a route discovery procedure by broadcasting RREQ
(route request) messages. Nodes that receive a RREQ message
will either send a RREP (route reply) message to the node that
originated the RREQ message if the route is known; otherwise
the node will re-broadcast the RREQ message. This procedure
continues until the RREQ message reaches a node that has
a valid route to the destination node. The RREP message is
unicast to the source node through multi-hop communications;
as the RREP message propagates, all the intermediate nodes
also establish routes to the destination. After the source node
has received the RREP message, a route to the destination
has been established, and data packages can be sent along this
route. As an illustration, Figure 2 shows an example of a small
WSN with eight nodes, where the potential RREQ messages
are shown in blue, while the RREP messages are shown in
red. Note that other paths for the RREP messages are possible
in this example.

The essential entries of the routing table in each node
include the next hop, a sequence number, and the hop count to
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the sink node. The hop count is the most common metric for
routing to choose between routes when multiple routes exist.
The sequence number is a measure of the freshness of a route.

When communication failures imply a broken route, the
node that is unable to forward a message will inform other
nodes so that the routing tables can be updated. To do this, it
sends a RERR (route error) message along the reverse route
that is also stored in the nodes. Thus the source node will
become aware of the broken route, and initiate a new route
discovery procedure.

B. Modelling Message Types

For modelling AODV messages and their operations, we use
the functional layer of ABS. For simplicity, object references
to the sending, origin, and target nodes serve as tokens inside
messages. The message payload is represented by a single
integer since we do not model higher-level protocols that
process message data.

data MsgType = RREQ | RREP | RERR | PAYLOAD;

data Message = Msg (MsgType msgType, Node sender,
Node origin, Node target, Int originSegNo,
Int ttl, Int hops, Int content);

These data type definitions also generate functions
(msgType (), sender (), etc.) to access the components
of a message.

C. Modelling Active Objects

The Node type used above is an interface type. In ABS,
classes are not types, so each class must implement at least
one interface if it wants to be assignable to a variable. Note
that classes without interfaces can be meaningful if they have
active behaviour — objects of that class can interact with the
rest of the model via references passed to their constructor.

interface Node({
Unit receiveMsg (Message msg);
Unit timeout (Message msg) ;

}

interface Sink extends Node {}

interface Sensor extends Node {
Unit start();

}

The methods receive, timeout, and start implement
the component behaviour shown in Figure 1. Sending the
messages and the network behaviour are implemented by the
following interface:

interface Network({
Unit createlink (Node nodel,
Unit deletelLink (Node nodel,
Unit send(Message msq);

Node node2);
Node node2) ;

}

Besides the method send (), the Network interface contains
the methods createLink and deleteLink that are used
for configuring the network topology and expressing which
nodes are neighbours. Neighbours can directly receive each
other’s messages.
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D. Implementing and Augmenting Classes
The class that describes a sensor node is defined as follows:

class SensorNode (Network n,

{

Sink s) implements Sensor

Unit receiveMsg(Message msg) {
msg = incHopCount (msg) ;
this.recordMsg (msg) ;
this. forwardMsg (msqg) ;

}

}

Most of the implementation is elided for brevity, but we
show an implementation of receiveMsg, which is called
by the network when a neighbouring node sends a message.
To explain the model variability principles of ABS, we first
present code that implements a flooding protocol where routing
is not involved. In this code, the method forwardMsg
checks whether the incoming message already has been seen;
otherwise, it calls n.send() for retransmission.

To add the AODV routing protocol to the model, we use
a delta. This allows us to selectively modify classes, adding
and replacing methods and member variables. To add AODV
routing, the delta replaces the method receiveMsg with a
message that also updates the routing table before invoking
the original method via the original () call.
delta AODV ({

modifies class SensorNode({

modifies Unit receiveMsg (Message msqg) {
this.updRoutingTable (msqg) ;

original();

}

}
}

The delta also adds member variables for the routing table,
and modifies forwardMsg with functionality to handle the
different kinds of messages and only re-send messages if the
node is on the path to their destination. Again, these parts are
elided for brevity.

In the end, when running simulations, we can choose which
model to run by defining a product containing the right
combination of features, and giving its name as parameter to
the ABS tool chain.

product FloodingBSN (Flooding) ;
product AODVBSN (AODV) ;

We refer to the work by Schaefer et al. [24] for details about
delta modelling.

E. Comparison to the Previous Creol Model

The ABS language has been designed from the experiences
of Creol. We outline some improvements of ABS. In Creol,
only basic data types and classes are available for modelling
purposes.

In a first attempt to model AODV in Creol, we implemented
messages as objects. However, this soon caused an overload
of the interpreter in the sense of high execution time and
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large space requirements, making this model rather imprac-
tical. Moreover, since messages do not have an independent
behaviour, the use of objects for messages is not required.

Modelling messages as integer numbers would theoretically
be possible, but does not allow to add annotations in the form
of log messages to the object. Since the underlying Maude
interpreter does not allow for writing log files, we need another
mechanism for creating traces of messages. From a practical
perspective, it is valuable for evaluations to follow the path
of messages after having performed a simulation. The final
implementation of the Creol model, therefore, used maps of
strings, where annotations could be added to the message.
This allows the extraction of the wanted information from
the Maude state file. Modelling messages in this way proved
feasible for simulation purposes, but manipulating messages
was unwieldy and contributed to the comparatively larger code
size of the Creol model.

The Creol nondeterministic choice operator ([]) was used
to model message loss. While this was a succinct formulation
of the semantics of message loss, it was not really suitable for
simulation purposes because we could not adjust the likelihood
of message loss. Consequently, ABS introduced a proper
random function that was used for expressing a parameter-
isable likelihood of message loss, allowing for Monte Carlo
simulation. Despite the use of (pseudo-)random behaviour,
simulation results are still reproducible because the seed value
for the random number generator in Maude can be supplied
as a parameter.

As already mentioned, the Creol model mixed different
model parameters in-line in the code, relying on a preprocessor
to generate the desired code. While this approach works, the
resulting model is hard to follow for the reader. The product
line- and delta-modelling capabilities of ABS proved to be a
good approach to extract different behavioural aspects of the
model into their own semantic units and generate models with
the desired aspects on demand.

IV. METHODOLOGY FOR SIMULATION, COMPONENT
TESTING, AND MODEL CHECKING

In this section, we show how to evaluate and validate
the functional behaviour of the AODV model in the Credo
framework [17]. While the Credo tool set is based on Creol, it
is easy to see from the previous discussions that the presented
concepts are applicable to the ABS model presented in the
previous sections. We present the techniques, perspectives,
arrangements, and properties necessary for the validation and
show how to evaluate selected non-functional properties.

A. Techniques for Simulation, Testing, and Model Checking

In order to evaluate the properties of a model, several fech-
niques are used to provide the necessary technical measures
and procedures to make a model amenable to verification.
In general, the following modifications can be applied to
the model in preparation for simulation, testing, and model-
checking:
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Auxiliary variables are added to the model to improve the
visibility of a model’s behaviour. They must not alter the be-
haviour and are updated when certain relevant events happen,
e.g., a counter is incremented when a new instance is created.
When running a simulation, these values can be extracted from
the state information and visualised in a step-by-step execution
or after the execution of the model execution terminates.
Assertions might be necessary depending on the functional
requirements to check. While a number of properties can be
checked at the final state using auxiliary variables, properties
on the transient behaviour of the model require a check during
runtime. For such cases, Creol provides assertions that stop
the execution of a model when the condition is violated. The
state that caused the violation of the property is then shown
for further analysis.

Monitors are pieces of software that run in parallel to the
actual model and are used for properties that go beyond simple
assertions. A monitor constitutes an automaton that follows the
behaviour of the model to decide the validity of a path.
Guarded execution replaces nondeterministic decisions by
calls to a guarding object, here denoted as the DeuxExMachina
module. This allows to check the behaviour of the model under
different conditions, while still maintaining reproducibility of
the runs. This technique also specifies certain parameters of
the environment, like failure rates of the network.

Fault injection adds a misbehaving node (possibly after a
certain time) to check error recovery properties. For instance,
misbehaviour in a node may be triggered when energy is
used up. Such behaviour can be implemented by sub-classing
nodes and implementing certain misbehaving routines in the
subclass.

Property search employs model checking techniques to check
whether certain conditions hold for all or a given subset of
states. Such a search can be directly performed by Maude,
the execution engine for our interpreter, without the need of
implementing the search code in the model.

B. Perspectives

A perspective describes the scope of an evaluation. For the
AODV model, we developed two perspectives: (a) observing
the behaviour of the entire network configuration including
all nodes and the network and (b) observing the behaviour
of one node. Testing, simulation, and model checking can
be performed from different perspectives and levels of detail
for a given model. For AODYV, a holistic perspective focuses
on the networking aspect of the nodes implementing all the
involved nodes and the network in one model. However, for
model checking such a model leads to a high number of states
and long execution time. Therefore, for realistic models the
networking perspective is not feasible.

For the perspective of testing a single node, we use the
same model code for the nodes in the holistic perspective, but
instantiate only one node explicitly. The network is replaced by
a test harness that impersonates the network and the remaining
nodes. The behaviour and responses of the test harness are
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determined by a rule set that is derived from traced messages
between the nodes, as outlined in Section V-B.

C. Arrangements

An arrangement denotes a set of configuration settings that
influences how the model operates. Examples are the use
of untimed or timed models, changes to the node topology,
perfect or unreliable communication, communication failures,
timeouts, and energy consumption. ABS supports different
arrangements natively using its delta layer, while for Creol a
preprocessor can be used. Examples for arrangement entities
that can be selected in the models, together with implementa-
tion details for the AODV model, are given in the following:
The communication behaviour in our model can be set to be
either reliable, non-deterministic, or one of several packet loss
patterns including random packet loss. (Note that pure non-
deterministic behaviour in a simulation currently is not useful
due to restrictions in the implementation of the underlying run-
time system, and in general because of non-reproducibility of
simulation results.) Using the differences in communication
behaviour we can study how the algorithm behaves when
communication packets can get lost.

Topology changes are used to check the robustness of the
protocol. They can be triggered by certain events, e.g., after a
certain number of messages or after a certain amount of time
for timed models. A topology change affects the connection
matrix in the network and triggers the AODV algorithm to
find new routes in the model.

The timed model is realized using discrete time steps and
introducing a global clock in the network object and internal
clocks in the nodes that are synchronised when a task is
performed in one or more nodes. This allows, e.g., to reason
about messages being sent simultaneously, which eventually
will lead to packet loss. Also, the effect of collisions can be
shown without using non-deterministic packet loss. The use of
a timed model is most viable together with topology changes
since the topology needs to be re-installed for a state when
another branch is searched in model checking.

Energy consumption is modelled using an auxiliary variable
in each sensor node with an initial amount of energy. For each
operation, a certain amount of energy is subtracted until the
capacity is too low to perform operations on the radio. This
indicates a malfunction of the sensor node. Such a node does
not perform any actions and represents a topology change of
the network, since given path are no longer valid. This allows
us to identify in which cases an energy-restricted network can
perform communication and whether AODV can find routes
around an energy-empty node.

Note that arrangements for memory and buffer sizes can
be implemented similarly. When maximum memory size is
reached, a node will alter its behaviour and stop performing
certain actions.

Timeouts are modelled nondeterministically by the use of a
global guarding object and can occur between a message is
sent and the corresponding answer is received. AODV employs
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timeouts in order to work in environments where communica-
tion errors can occur and sends messages repeatedly in case
an expected reply has not been received from the network.

D. Properties

A functional property is a concrete condition that can
be checked for given arrangements, while non-functional
properties are values given by metrics. For AODV, we
chose the following functional properties: a) correct-operation,
b) loop-freeness, c¢) single-sensor challenge-response proper-
ties, d) shortest-path, e) deadlock-freeness (both for node and
for protocol), f) miscellaneous composed system properties,
and additionally some non-functional properties.
Correct-operation: For a routing algorithm to be correct, it
must find a path if a path exists, i.e., it is valid for some
duration longer than what is required to set up a route from
sender to receiver [37, 38]. Checking this property requires the
algorithm-independent predicate whether a route exists. In the
absence of topology changes, this predicate can be calculated
beforehand. When topology changes are possible, however,
we need to check the existence of a path between sender
and receiver at any step in the algorithm. Since checking this
property in Creol involves explicitly visiting all nodes, this
increases the reachable state-space of the model. To evaluate
this predicate effectively, a suitable implementation would be
to interface a Maude function, which is possible in ABS.
Meseguer and Rosu [48] give an overview of existing work
on model-checking language semantics in Maude, which can
be used for Creol and ABS.

A related property to evaluate is whether a route is re-
established after a transmission error given a path still exists.
We also evaluate how long the path is interrupted after a
transmission error occurs.

Loop-freeness: A routing loop is a situation where the entries
in the routing tables form a circular path, thus preventing
packets from reaching the destination. The invariant for loop-
freeness [29] of AODV must be valid for all nodes. It uses
sequence numbers of adjacent nodes, and the number of hops
in the routing tables as input. The loop-freeness property is
checked every time a message is transmitted between nodes.
To do this the network-object calls a routine that checks the
loop-freeness invariant in an assertion. Since this assertion
is complex and contains nested loops, it again should be
implemented as a call to a Maude function instead of Creol
or ABS code.

Single-sensor challenge-response: The reaction of one node
under test is checked using component testing (Section V-B).
Messages are sent to the node under test, and the responses
from this node are matched against all correct responses.
The correct responses are extracted from specifications or
from running simulations using different implementations.
The single-sensor properties that can be checked express a
certain behaviour or the absence of a certain behaviour after
a challenge, e.g., whether an incoming message leads to a
specified state change in the node or whether the node sends
an expected response messages.
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Shortest-path: Here, we investigate whether the AODV algo-
rithm finds the shortest path for the paths between the source
and sink node; also other metrics for paths could be checked.
While AODV finds the shortest path in the case of no packet
loss, it does not always fulfil the shortest-path property in
the case of packet loss. To check this property we count the
number of hops that each payload-message takes from the
source to the sink and compare it with the shortest existing
path between the source and sink.

Deadlock freedom: Deadlocks in a node, in the protocol
or in the model are a threat to robustness, and can reveal
errors in the specification, implementation, or model. Global
deadlocks will automatically be detected by the underlying
Maude implementation and result in an inspectable error state
of the model.

Miscellaneous composed-system properties: Examples are
properties that state whether valid routes stay valid, avoidance
of useless RREQ messages, number of messages received,
timing properties, and network connectivity. Most of these are
implemented by adding counter variables and predicates.
Non-Functional Properties: Non-functional properties from
the application domain such as timing, throughput, delivery
ratio, network connectivity, energy consumption, memory and
buffer sizes, properties of the wireless channel, interferences,
mobility, or other QoS properties can be evaluated by using
counter variables and additional code for the model. Note that
for most non-functional properties the use of Creol might not
be the optimal choice, since it is best suited for the evaluation
of conformance or violation of non-functional properties. ABS
has some support for modelling deployment scenarios and
resource consumption [49, 50], which could be extended to
cater to our modelling requirements.

V. HoLISTIC AND COMPONENT TESTING

Instrumented Creol and ABS models can be used for differ-
ent verification and testing techniques: symbolic simulation,
guarded test case execution, and model checking. Auxiliary
code for assertions and monitor state is added and executed
together with the model code. This increases the size of the
states and therefore poses a handicap for model checking. A
more light weight approach would implement the monitors
directly within the checking tools. This is, however, not yet
available in the analysis tools. All experiments in this section
were first performed on the Creol models. TABLE II gives
a detailed list of properties that were identified as being of
interest for the network example with the symbol e marking
properties that were evaluated, ® partially evaluated and o not
evaluated yet for simulation and testing. Model checking was
used for generating execution traces for testing as detailed in
Section V-B. The Creol models have been re-implemented in
part to ABS. Unsurprisingly, these show the same behaviour
while the model size, measured in lines of code, is reduced.

A. Holistic Testing

For our evaluation of the network properties we used
simulation using techniques such as auxiliary variables and
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Figure 3. The network used as example in our simulations.

assertions. Most of our experiments used a network with
symmetrical communication via four sensor nodes and one
sink node, as shown in Figure 3. We also experimented with
models of 6, 15, and 30 nodes for selected arrangements. The
evaluated model consists of code for the network nodes as well
as an explicitly modelled network that transmits the messages
between the nodes such that, e.g., a broadcast message of
Sensor 2 reaches the nodes Sink, Sensor 1, and Sensor 4. This
gives the flexibility to simulate the AODV model using various
arrangements including reliable networks, lossy networks,
timeouts, energy consumption, and timed modelling.
Symmetrical communication means that whenever a node
A can transmit a message to node B, then communication in
the reverse direction can also take place. By changes to the
network structure, we also could show that this is a property
the AODV routing algorithm in fact relies on. This is because
if node B receives a broadcast message from A, it updates is
routing entry for messages destined for A. We also checked
selected properties from the classes (a), (b), (d), (e), and (f)
presented in Section IV-D for the composed network.
Reliable communication: As long as the network is connected,
the evaluations showed that the modelled AODV algorithm
fulfils the properties (a), (b), (d), (e), and (f) of Section IV-D.
We emphasised on the evaluation of packet loss, and loop-
freeness assertion. Other predicates for loop-freeness were also
used (which failed as expected), and small, faulty changes in
the model were introduced (which led to expected failures of
the loop-freeness property). The shortest path property was
fulfilled in all simulated occasions.
Lossy communication: When simulating lossy communication
both for singlecast and for broadcast messages, the packet
loss rate f.(xxvi) increases as expected. We also observed an
increased number of RREQ and RREP messages in the system
using auxiliary variables.
Timeouts: The model allows re-sending of lost RREQ mes-
sages up to a certain number of times, using a timeout
mechanism. We could observe that this mechanism decreased
the packet loss rate, f.(xxvi), but at the same time does not
prevent all packet loss for payload packets.
Energy consumption: Using the energy consumption arrange-
ment we can force a communication failure of certain nodes
after some actions. Using this arrangement we can study the
re-routing behaviour in detail, including the packet loss rate
f.(xxvi).
Timed model: Using the timed model we can study the number
of time steps needed for sending messages, as well as control-
ling the number of actions being performed simultaneously.
We observed that the packet loss rate f.(xxvi) is different to
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TABLE III
NUMBER OF REWRITES AND RUN-TIME FOR SAMPLE ARRANGEMENTS
AND PROPERTIES.

# t steps ‘ energy ‘ loss ‘ timeout #rewrites time
500 — | none never 9.4-106 17.1s

5000 — | none never | 62.8- 106 114.8s

500 - 10% never | 10.7-10% 19.5s

5 500 - | 10% /10 | 12.1-10 22.3s
500 50 | 10% 1/10 8.3-106 15.5s

untimed 50 | 10% 1/10 | 11.6- 10 17.9s
untimed - | 10% never | 32.5-10° 14.8s

6 | untimed - 10% never | 90.5- 109 40.9s
15 5000 — | none never 2.7-10° 31m
30 5000 ~ | none never | 24.8-10° 8h

the untimed case, which is expected.

Using the timed model, we could observe a model deadlock,
e.(xix), which is caused by the way the model is implemented,
and certain properties of the current implementation of the
Creol runtime system. This observation made changes in the
model implementation necessary using asynchronous method
calls.

The properties f.(xxi), f.(xxiii), and f.(xxiv) could not be
evaluated in a satisfactory manner as they require to store all
messages during the simulation. Although the properties can
be modelled and evaluated in principle, such an arrangement
leads to state explosion and exceeds time and memory con-
straints of our current setting.

The developed Creol model was evaluated by using simula-
tion for sample arrangements and properties. The entire model
contains about 1600 lines of Creol code excluding comments.
After compilation, the resulting code size was about 1050 lines
of Maude code, depending on the arrangement. We varied
the timing behaviour, the energy consumption, the message
loss behaviour, and the timeout behaviour of the model as
well as the number of nodes. The results for the tested cases
considering the number of rewrites, and execution time on an
AMD Athlon 64 Dual core processor with 1.8 GHz is shown
in TABLE III. The timing behaviour and the number of nodes
are the most significant parameters.

While these values may seem high for a simulation system,
we emphasise that the purpose of the Creol model is to offer
one model that is suitable for several perspectives. While
the transition from simulation to model checking consists in
changing some few Maude statements, the search space during
model checking gets combinatorially too high to be viable
already for a low number of nodes.

B. Component Testing of One Node

For component testing, we use one node under test with
the same code as for holistic testing. However, we replace the
network and all the other nodes using a test harness shown in
Figure 4. This harness simulates the possible behaviour of the
network and the further nodes as visible by the node under
test. The output signals of the node under test are connected
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64
TABLE 11
PROPERTIES EVALUATED IN Creol; NOTE THAT S MARKS SIMULATION, WHILE T MARKS TESTING AS THE METHOD OF CHOICE.
[ Property [ Description [ Evaluation [ STT] [ Property | Description [ Evaluation [STT]
a Correct Operation yes; for some ar- | e c.(xiii) updates terminate yes  (implicitly .
rangements. during other tests)
[b Loop-Freeness [ yes [ o] l c.(xiv) update success yes  (implicitly D
c Sgl-sensor challenge-res es during other tests)
- £1-SCn _Cnge-Tesp. yes : . c.(xv) only one RREQ n/a (needs timed
c.(i) always send with own ID yes, as invariant dur- interpreter)
— - ng other tests c.(xvi) Rec. in IDLE mode n/a
c.(il) msg leads to valid route yes (inferred from
other tests) [d [ Shortest-Path [ yes [ o] ]
c.(iii) RREQ w/o route==RREQ bc. | yes e Deadlock-Freeness partially ®
c.(iv) RREQ for me leads to RREP | yes e.(xvii) node deadlock no
c.(v) RREP triggers route to origi- | yes e.(xviii) protocol deadlock yes °
nator e.(xix) model deadlock yes .
c.(vi) RREP is rebroadcasted yes T Misc. Composed-System | yes -
c.(vii) send if route known yes (no send if route F.(xx) route stays valid yes o
_ _ _ unknown) f.(xx1) only data msg possible, not done | o
c.(viii) routing table integrity no Tl o RERR yes .
c.(ix) all msg'tor s1.nk _ yes . f.(xxiii) no useless RREQ possible, not done | o
c.(x) processing without receive yes (during other T.0ooxaiv) RREQ triggers RREP possible, not done | o
- - - tests) - . f.(xxv) # msg.rec. yes .
c.(x1) increasing sequence number yes, as invariant dur- o) packet 10ss yes .
— - - ing other tests — f.(xxvii) timing properties partially ®
c.(xii) neighbour update triggers n/a (not accessible in T.(oxviil) | metwork connectivity yes "
black-box test f.(xxix) parameter tuning partially ©
start/stop nos Node under testing . . .
:’M?’ noved it expects a message from the object under test that is not
' sensint » "

Network:

broadcast_,
singlecast
M

receive (RREQ)
receive (RREP)

send (RERR|

receive (RERR)
timeout

Figure 4. Testing of one node using the network object as a test harness.
The test harness replaces the network and all other nodes in the network.

to the test harness, which then in turn generates the inputs
that would be received from the real network. The test is then
evaluated by studying the output messages of a node when the
input messages for the test case are supplied by the harness.

1) Test harness: The task of the test harness is to send mes-
sages to the interfaces of the node under test, and to observe
its answers. Both input messages and expected answers can be
generated from the specification or from traces of real systems
or other simulations.

Although incoming broadcast, singlecast, and outgoing
packets involve invoking different methods, the ABS lan-
guage, with its object-level parallelism, makes it easy to
encode a test case as a single sequential list of statements.
Incoming messages are stored in a one-element buffer; the
test case simply performs a blocking read on that buffer
when waiting for a message from the object under test before
sending out the next message to the object. In this way, both
creating a test case by hand and generating test cases from
recorded traces are feasible.

A test verdict is reached by running the test harness in
parallel with the object under test. If the test harness deadlocks,

TYPE message_t =

arriving, a test verdict of Fail is reached. The other reason for
test failure is an incoming message that does not conform to
the expectations of the test harness; e.g. by being of the wrong
type or having the wrong content.

A test verdict of Success is reached if the test harness

completes the test case and the object under test conforms
to the tester’s expectations in all cases.

2) Traces: In addition to domain-specific single-object

properties, test cases can be generated from the model im-
plemented with Vereofy [43] (see Section II-D). Vereofy is
a different language and uses independent mechanisms than
both Creol and ABS to create the traces. Therefore, we can
compare the two different models against each other, with the
Vereofy traces as a partial specification for the behaviour of
the Creol and ABS models.

To receive the traces from Vereofy, we collect the ex-

changed data, the content of all variables in the nodes and
buffers in the network, and the output of the automaton before
and after each step, in addition to the exchanged data. After
the state information is removed, we receive a sequence of
messages that are exchanged simultaneously.

The messages in the trace are defined using a Vereofy struct:

struct {
// determine the type of the message
message_type_t message_type;

id_t dest_id;

// encapsulation of sender and receiver IDs
address_t to_ip;

id_t from_ip;

// case 1: sending AODV messages
hop_counter_t hop_count;

seq_no_t dest_seq_no;
id_t orig_id;
seq_no_t orig_seq_no;
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Bool unknown_seq_no;

// omit TTL and XFlag for AODV.

// case 2: for sending data messages
data_type_t the_data;

}i

In the following example, Node 1 sends three RREQ
messages to find a route to the Sink (Node 0). The RREP
generated by the Sink does not arrive, since it remains in a
buffer.

{send[1]={RREQ,0,2,1,0,0,1,1,1,datal}}

{receive[0]={RREQ,0,2,1,0,0,1,1,1,datal}}

{send[0]={RREP,1,1,0,0,1,0,0,0,datal},

send[1]={RREQ,0,2,1,0,0,1,2,1,datal}}

{receive[0]={RREQ,0,2,1,0,0,1,2,1,datal}}

{send[1]={RREQ,0,2,1,0,0,1,3,1,datal}}

In the tester for Node 1, written in ABS, the run-
method waits for the messages denoted as send[1], and
sends messages denoted as receive[l]. A trace can
contain messages that are sent simultaneously, such as the
third statement of the above trace. Synchronous commu-
nication, the calls of send[0]={RREP,1,1,...} and
receicve[1]={RREP, 1,1, ...}, take place simultane-
ously.

Traces received from the node under test are tested against
message patterns, i.e., we remove details that could lead to
spurious test failures not expressing a malfunctioning system.
For example, the message sequence number can be chosen
by the node, the only requirement is that it be monotonically
increasing. This property is checked using an invariant in the
tester, but a different concrete message number than that used
by the Vereofy model will not lead to test failure.

C. Other Mechanisms in the Credo Tools

The Credo tools based on Creol, Vereofy, and UPPAAL
offer different ways of modelling, supporting different tech-
niques, perspectives, arrangements, and evaluation of proper-
ties. The evaluations shown in TABLE II have been performed
with a similar model in Vereofy for a comparison of results
where this was suitable [51]. This shows that Vereofy is suit-
able for Properties c, e, and f.(xx) to f.(xxiv). Vereofy offers
a model-checking approach based on Reo automata using
the exogenous coordination model where the components are
represented by their behavioural interfaces. Similar to Creol
and ABS, Vereofy supports the verification of components
and their communication structure. The concrete case study is
described elsewhere [43].

For completeness, we mention that selected properties have
been evaluated in UPPAAL. However, this model only im-
plemented connectivity between sensors rather than ADOV
[40]. Properties in the classes f.(xxv) to f.(xxix) have been
verified. We mention, however, that UPPAAL is capable for
other properties, as the work by Chiyangwa and Kwiatkowska
[39] and Wibling et al. [37, 38] shows.

VI. CONCLUSION

We presented a structured methodology for the evaluation of
complex distributed systems by introducing the dimensions of
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techniques, perspectives, arrangements, and properties for this
evaluation. We divided the properties used for this evaluation
into six property classes, and performed network simulations
of the composed system, and component testing of a single
node.

Using the network simulation, we evaluated several arrange-
ments. While most of the properties were fulfilled as expected,
some properties did not validate in the simulation; this either
due to bugs in the model, artificially introduced misbehaviour
in the model, properties of the modelled AODV algorithm, or
property variants that are not supposed to validate successfully.
In one occasion, we could detect deadlocks in the model
in a timed-model arrangement, which could be recognised
and fixed afterwards. Evaluating other protocols in sensor
networks, e.g., proactive dynamic routing protocols, is possible
using the variability features of ABS, with test cases and test
scenarios adapted to these new protocols.

Using component testing, we validated the correct be-
haviour of a single node against properties extracted from
the specification of the AODV algorithm. No deviations from
specified component behaviour were identified in this process,
which is unsurprising since components had already been
extensively used for simulation and animation during initial
model development at that point in time. However, the test
suite served as an excellent tool in regression testing during
subsequent changes and extensions of the model.

Evaluating the properties of the AODV algorithm, we had
previously encountered several challenges, such as modelling
suitable abstractions, using language constructs of Creol, and
observing the properties from a suitable perspective. The
major challenge when evaluating the AODV algorithm from a
network perspective is to avoid a high number of states in the
underlying interpreter. We showed how to overcome modelling
difficulties in the existing Creol model by refactoring it into a
software product line in ABS, thereby significantly reducing
code size and increasing maintainability and understandability,
which was also aided by the higher-level language features of
ABS.

Besides simulation and state space search using the inter-
preter, a current line of research concentrates on the automated
extraction of a verifiable model for model checking. The
approach assumes finite data and a bound on the messages
and translates ABS models to the input language for MC-
MAS [52], a model checker for multi agent systems. While
this approach does not allow verification of large systems, it
integrates the presented approach by providing new techniques
for test case generation and abstraction. A publication on this
topic is currently under submission.

The main objective of this study was to evaluate how Creol
and ABS can be applied to complex, distributed algorithms in
networks. We found the Creol and ABS languages and their
tools useful in the evaluation of functional properties of the
AODV algorithm and we gained insight into how complex
algorithms like AODV work. We observed how small changes
in the algorithm, and in the chosen arrangement, affect its
behaviour so that certain properties fail. We studied these
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properties in the implementation of our model, which will
lead to further investigation of the reasons for its behaviour or
misbehaviour, and the development of better formalisms and
languages for modelling and evaluation of properties.

Systems such as Vereofy are more specific towards model
checking using the automaton approach that is farther from
real programs than ABS and Creol. On the other side,
simulators, such as ns-2, ns-3, or OMNeT++, are better suited
to evaluate the values of properties, such as timing or power
consumption. However, these do not offer native facilities for
model checking. Thus, the choice of language and simulating
system is highly dependent on the question to a model and a
simulation.

The choice of evaluation and simulation tools for distributed
algorithms depends on the goal of the evaluation. ABS is a
further development of Creol and contains most of Creol’s
features that have shown to be useful. ABS has mended some
of the restrictions of Creol. ABS and Creol belong to the
languages that allow executable models that are suited for both
simulation, model checking, and testing.
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