
72

International Journal on Advances in Telecommunications, vol 2 no 2&3, year 2009, http://www.iariajournals.org/telecommunications/

Escrow Serializability and Reconciliation in Mobile Computing using Semantic
Properties

Fritz Laux
Fakultät Informatik

Reutlingen University
D-72762 Reutlingen, Germany

fritz.laux@reutlingen-university.de

Tim Lessner
School of Computing

University of the West of Scotland
Paisley PA1 2BE, UK

timlessner@lesshome.net

Abstract

Transaction processing is of growing importance for mo-
bile computing. Booking tickets, flight reservation, banking,
ePayment, and booking holiday arrangements are just a
few examples for mobile transactions. Due to temporarily
disconnected situations the synchronisation and consistent
transaction processing are key issues. Serializability is a
too strong criteria for correctness when the semantics of a
transaction is known. We introduce a transaction model that
allows higher concurrency for a certain class of transactions
defined by its semantic. The transaction results are ”escrow
serializable” and the synchronisation mechanism is non-
blocking. The model copes with many mobile scenarios
and is able to improve existing synchronization approaches
through an automatic replay approach, whereas transaction
migration or transactional composition in mobile interac-
tion is not considered. Rather we provide an optimistic
transaction model residing at middleware layer. Experimen-
tal implementation showed higher concurrency, transaction
throughput, and less resources used than common locking
or optimistic protocols.

1. Introduction

Mobile applications enable users to execute business
transactions while being on the move. It is essential that
online transaction processing will not be hindered by the
limited processing capabilities of mobile devices and the low
speed communication. In addition, transactions should not be
blocked by temporarily disconnected situations. Traditional
transaction systems in LANs rely on high speed communi-
cation and trained personnel so that data locking has proved
to be an efficient mechanism to achieve serializability.

In the case of mobile computing neither connection qual-
ity or speed is guarantied nor professional users may be
assumed. A reliable end-to-end protocol (ISO/OSI level 4)
like TCP is not sufficient as a user transaction (ISO/OSI
level 7) may span multiple sessions. The communication
delay due to retransmissions occupies resources e.g blocks

data elements. This means that a transaction will hold
its resources for a longer time, causing other conflicting
transactions to wait longer for these data. If a component
fails, it is possible that the transaction blocks (is left in a
state where neither a rollback nor a completion is possible).

The usual way to avoid blocking of transactions is to use
optimistic concurrency protocols.

In situations of high transaction volume the risk of aborted
transaction rises and the restarted transaction add further
load to the database system. Also this vulnerability could
be exploited for denial of service attacks.

In order to make mobile transaction processing reliable
and efficient a transaction management is needed that does
not only avoid the drawbacks outlined above but also fits
well into established or emerging technologies like EJB,
ADO, SDO. Such technologies enable weakly coupled or
disconnected computing promoting Service Oriented Archi-
tectures (SOA).

These data access technologies basically provide abstract
data structures (objects, data sets, data graphs) that encap-
sulate and decouple from the database and adapt to the pro-
gramming models. We propose a transaction mechanism that
should be implemented in the middle tier between database
and (mobile) client application. This enables to move some
application logic from the client to the application server
(middle tier) in order to relief the client from processing and
storage needs. Validation, eventual transaction rewrites, rec-
onciliations or compensations are implemented in the middle
tier as shown in Figure 1. A client transaction T1 executes
entirely locally after loading the read set RSet1 into the
client. On commit the middleware has to check RSet1 for
possible changes which happened in the mean time due to
other transactions e.g. T2 using the write set WSet2. In
case of serialization conflicts the transaction manager has
to resolve the situation. If there are legacy applications not
running through this middleware the consolidation must take
into account the current database state Ss as well.

The present paper is an extended version of [1], and
it provides more detailled information about the server
phase, the requirements for transaction splitting, and other



73

International Journal on Advances in Telecommunications, vol 2 no 2&3, year 2009, http://www.iariajournals.org/telecommunications/

Figure 1. Three tier architecture for mobile transaction
processing

implementation issues.

1.1. Motivation

The main differences between mobile computing and
stationary computing are temporary loss of communication
and low communication bandwidth. However increased local
autonomy is required at the same time. Data hoarding
and local processing capability are the usual answers to
achieve local autonomy. The next challenge is then the
synchronisation or reintegration of data after processing [2],
[3], [4]. As pointed out above, blocking of host data is not
an option.

The challenge is to find a non-blocking concurrency
mechanism that works well in disconnected situations and
that is not leading to unnecessary transaction cancellations.

We need a mechanism to reconcile conflicting changes
on the host database such that the result is still considered
correct. This is possible if the transaction semantic is known
to the transaction management. In this paper we propose to
automatically replay the transactions in case of a conflict.

We illustrate the idea by an example and defer the formal
definition to the next Section. Assume that we have transac-
tions T1 and T2 that withdraw e 100 and e 200 respectively
from account a. If both transactions start reading the same
value for a (say e 1000) and then attempt to write back a :=
e 900 for T1 and a := e 800 for T2 then a serialization
conflict arises for the second transaction because the final
result would lead to a lost update of the first transaction.

However, if in this case the transaction manager aborts the
transaction, re-reads a (= e 900 now) and does the update on
the basis of this new value then the result (= e 700) would be
considered as correct. In fact, it resulted in a serial execution
from the host’s view. Clearly this transaction replay is only
allowed if it is known that the second transaction’s subtract
value does not depend on the account value (balance). This

precondition holds within certain limits for an important
class of transactions: Booking tickets, reserving seats in a
flight, bank transfers, stock management.

There are often additional constraints to obey: A bank
account balance must not exceed the credit limit, the quantity
on stock cannot be negative, etc.

We will introduce a transaction model based on this idea
that allows higher concurrency for a certain class of trans-
actions defined by its semantic. The transaction results are
”escrow serializable” and the synchronisation mechanism is
non-blocking.

The next section sketches out the related work and ad-
dresses some drawbacks of existing approaches. Section
3 and 4 introduce our model and provide the required
definitions for escrow serializability as well as the trans-
actions’ semantics. Section 5 describes theoretically the
client and server phase in detail, whereas section 6 provides
information about an implementation based on Service Data
Objects (SDO). Section 7 focuses on an alternative conflict
detection using Row Version Verification (RVV) and the
performance of the escrow model is presented in section
8. The paper’s conclusions are presented in section 9.

2. Related Work

For making transaction aborts as rare as possible essen-
tially three approaches have been proposed:
• Use the semantic knowledge about a transaction to

classify transactions that are compatible to interleave.
• Divide a transaction into subtransactions.
• Reconcile the database by rewriting the transaction in

case of a conflict.
Semantic knowledge of a transaction allows non serializable
schedules that produce consistent results. Garcia-Molina [5]
classifies transactions into different types. Each transaction
type is divided into atomic steps with compatibility sets
according to its semantic. Transaction types that are not in
the compatibility set are considered incompatible and are
not allowed to interleave at all. Farrag and Özsu [6] refine
this method allowing certain interleaving for incompatible
types and assuming fewer restrictions for compatibility.
The burden with this concept is to find the compatibility
sets for each transaction step which is a O(n2) problem.
Our proposed model is a O(n) problem, because for each
operation of a transaction it has to be decided if the operation
is reconcilable or not, and it is not required to define the
compatibility with every concurrent transaction.

Dividing transactions into subtransactions that are delim-
ited by breakpoints does not reduce the number of conflicts
for the same schedule but a partial rollback (rollback to
a subtransaction) may be sufficient to resolve the conflict.
Huang and Huang [7] use semantic based subtransactions
and a compatibility matrix to achieve better concurrency



74

International Journal on Advances in Telecommunications, vol 2 no 2&3, year 2009, http://www.iariajournals.org/telecommunications/

Table 1. Comparison of high concurrency mechanisms

Mechanism Bibliography Drawbacks
uses Ta semantics to [5], [6] semantic classification
build compatibility set complexity is O(n2)
uses subtransactions to [7], [8], [9] manual division
build compatibility matrix [10] into sub-Ta, O(n2)
uses multiversions and [11], [3] not performant in
conflict resolution function case of hot spots
uses semantic to reconcile [13], [1] semantic dependency
Ta (escrow-serializability) function required

for mobile database environments. Local autonomy of the
clients may subvert the global serializability. The solutions
proposed by Georgakopoulous et al. [8] and Mehrotra et
al [9] came for the prize of low concurrency and low
performance. Huang, Kwan, and Li [10] achieved better
concurrency by using a mixture of locking to ensure global
ordering and a refined compatibility matrix based on se-
mantic subtransactions. Their transaction mechanism still
needs to be implemented in a prototype to investigate its
feasibility. The reconciliation mechanism proposed in this
paper attempts to replay the conflicting transactions and
produce a serializable result. This method has been inves-
tigated in the context of multiversion databases. Graham
and Barker [11] analysed the transactions that produced
conflicting versions. Phatak and Nath [3] use a multiversion
reconciliation algorithm based on snapshots and a conflict
resolution function. The main idea is to compute a snapshot
for each concurrent client transaction which is consistent in
terms of isolation and leads to a least cost reconciliation. The
standard conflict resolution function integrates transactions
only if the read set RSet of the transaction is a subset of
the snapshot version S(in) into which the result needs to be
integrated. In the case of write-write conflicts this is not the
case, as RSet * S(in).

We illustrate this by an example using the read-write
model with Herbrand semantics (see [12]). Assume we
have two transaction: T1 = (r1(a), w1(a), r1(b), w1(b))
transfers e 100 from account a to account b and T2 =
(r2(b), w2(b)) withdraws e 100 from account b. If both
transactions are executed in serial, the balance for account
b will end up with its starting value. Now assume, that
snapshot version V (0) = {a0, b0} is used and both trans-
actions start with the same value b0. Assume the schedule
S = (r1(a0), r2(b0), r1(b0), w1(a1), w2(b1), c2, w1(b1), c1).
S is not serializable and no other schedule either if both
transactions use the same version of b. The last transaction
attempting to write account b will produce a lost update and
should abort.

The multiversion snapshot based reconciliation algorithm
of Phatak and Nath [3] will not be able to reconcile T1

as RSet(T1) = V (0) = {a0, b0} * V (1) = {a0, b1}.
V (1) is the result of transaction T2. If no snapshot would

have been taken and making sure that the update (read-
write sequence) of b is not interrupted (interleaved) the
result would have been the serializable schedule R =
(r1(a), w1(a), r2(b), w2(b), c2, r1(b), w1(b), c1). This shows
the limitations of snapshot isolation compared to locking
in terms of transaction rollbacks. On the other hand the
schedule R leads to low performance because no interleaving
operations for the read-write sequence are allowed. Table 1
gives an overview on transaction mechanisms used to reduce
or resolve concurrency conflicts.

Many mobile replication and synchronization models are
introduced in literature. Some of these models could be
improved by an application of the ec - model. The Iso-
lation Only (IO) [14] for example, enables disconnected
operations in a private workspace and distinguishes between
1st and 2nd class transactions, whereas only the 1st class
is serializable with all committed transactions (SR). The
2nd class is only local serializable with other 2nd class
transactions (LSR). SR is granted if a local transaction was
successfully reintegrated (LSR → SR). IO defines global
serializability (GSR) to be the next level of serializability,
and the difference between LSR, SR, and GSR is that GSR
is not testable during a transaction’s execution. If a test
for GSR fails, the IO model also proposes to re-execute
a transaction with the current DB’s state. However, the
IO model doesn’t define the types of conflicts where re-
execution is applicable. The ec-model is capable to extend
the IO model since our model provides a semantics based
classification for conflicts and a mechanism to automatically
replay conflicting transactions. Furthermore, the IO model
is based on Kung’s OCC model to ensure SR (see [15]),
and in section 5 we present how to extend an OCC with
an additional reconcile phase. So the ec - model is able
to improve GSR and SR in the IO model. The idea to
replay a transaction on a stationary DBMS is referred to
as transaction oriented synchronization and is described in
the Two - Tier - Replication model ([16]). Reconciliation is
based on the transaction’s semantics. Our model focuses on
the server or middleware and the transaction’s semantics has
to be made available for the server only, i.e. the TM. If local
transactions have to be aware of the semantics, because the
ec-model is applied to local DBMS, a ”Combat” mechanism
as introduced in the Pro-Motion transaction model ([[17],
[18]) is a proper solution.

Our approach is to abort a conflicting transaction and
automatically replay the operation sequentially. The isolation
level should be read committed to avoid cascading roll-
backs or compensation transactions. Our model relies on the
optimistic snapshot validation without critical section [19]
algorithm or row version verifiying (RVV) [20], and to ease
the reconciliation processing we classify transaction in terms
of its semantics.



75

International Journal on Advances in Telecommunications, vol 2 no 2&3, year 2009, http://www.iariajournals.org/telecommunications/

3. Transaction Model

A database D may be viewed as a finite set of entities
or elements a, b, · · · , x, y, z (see [21]). If there exists more
than one version of an entity, we denote it with the version
number, e.g. x2. These entities will be read (read set RSet)
and modified (write set WSet) by a set of transactions T =
{T1, T2, · · · , Tn}. The database D at any given time exists
in a particular state DS . A snapshot of D is a subset of a
database state DS (see [22]).

Our mobile computing system consists of a database
server, an application middleware with mobile transaction
management, and a mobile client with storage and com-
puting capabilities as sketched out in Figure 1. A mobile
transaction is a distributed application that guaranties trans-
actional properties. We assume that the data communication
is handled transparently by a communication protocol that
can detect and recover failures on the network level. Mobile
client and server have some local autonomy so that in case
of network disconnection both sites can continue their work
to some extent.

The data base consists of a central data store and snapshot
data (at least the RSet) on the mobile client for each
active transaction. From a transactional concept’s view the
transactions on the client are executed under local autonomy.
The local commit is ”escrowed” along with the changes to
the server. The transaction manager tries to integrate all
escrowed transactions into the central data store. In case
of serialization conflicts reconciliation can be achieved if
the semantic of the transaction is known and all database
constraints are obeyed.

3.1. Escrow Serializable

For the sake of availability we want to avoid locked
transaction as far as possible. One approach is to use opti-
mistic concurrency, the other way is to relax serializability.
Optimistic concurrency suffers from transaction aborts when
a serialization conflicts arises [22]. The multiversion based
view maintenance could minimize that risk but it requires a
reliable communication at all times [3].

Much research was invested to optimize the validation
algorithms [23], [24], [25], [26] for serialization. We prefer
to allow non-serializable schedules that produce consistent
results for certain types of transactions similar to [27].

A transaction T transforms a consistent database state
into another consistent state. This may be formalized by
considering a transaction as a function operating on a subset
of consistent database states D, i.e. D2 = T (D1) with
suitable D1, D2 ∈ D, where RSet ⊆ D1 and WSet ⊆ D2.
If we want to make the user input u explicit we write
D2 = T (D1, u).

Definition 1: (escrow serializable)

Let Q be a history of a set of (client) transactions
T = {T1, T2, · · · , Tn} that are executed concur-
rently on a database D with initial state D0. For
each transaction Ti the user input is denoted by ui.
The history Q is called escrow serializable (ec) if

1) there exists a serial history S for T with
committed database states
DS = (D1, D2, · · · , Dn), where

2) ∃r ∈ {1, 2, · · · , n} with D1 = Tr(D0, ur)
and

3) ∃s ∈ {1, 2, · · · , n} with Dk = Ts(Dk−1, us)
for each k = (2, 3, · · · , n)

Please note that this kind of serializability is descriptive
as it is not based on the operations but on the outcome
(semantic) of the transactions. Escrow serializability means
that the outcome is the same as with a serial execution using
the same user input.

The name escrow serializable stems from the idea that a
mobile client ”escrows” its transaction to the server. On the
server site the transaction manager reconciles the transaction
if all database constraints are fulfilled. This can be achieved
by analysing the conflicting transactions and producing the
same result as a serial execution would have done. We
demonstrate this with the following example:

Example 1: (withdraw)
Let T1 and T2 be two withdraw transactions that
takes e 100 resp. e 200 from account x. We denote
by ci (resp. ai, eci) the commit (resp. abort, escrow
commit) command. The history
Sc = r1(x)r2(x)w2(x′ := x− 200)ec2w1(x′′ :=

x− 100)ec1

normally produces a lost update, but it is escrow
serializable. The transaction manager on the server
will detect the conflicting transaction. T1 is aborted
and automatically replayed with the previous input
data. The resulting history on the server will be

Ss = r1(x)r2(x)w2(x′ :=
x− 200)c2w1(x− 100)a1r1(x′)w1(x′ − 100)c1.

Schedule Ss is equivalent to the serial execution
(T2, T1).
If there exists a constraint, say x > 0 any violating
transaction has to abort. Assume that x = 300 and
take the same operation sequence as in schedule Sc

then transaction T1 has to abort because x′−100 ≯
0.

3.2. Escrow Reconciliation Algorithm

Escrow serialization relies on reconciling transaction in
such a way that the outcome is serializable. This is only
possible if the semantic of the transactions including the user
input are known. The idea is to read all data necessary for a



76

International Journal on Advances in Telecommunications, vol 2 no 2&3, year 2009, http://www.iariajournals.org/telecommunications/

ensure: set of transactions T = {T1, T2, · · · , Tn}
ensure: actual database state Ds, set of constraints C(D)
ensure: only committed data in read set RSet(i) of Ti
ensure: Ti = (opik, i = 1, 2, · · · , ki)
for ∀ eci ∈ {ec1, ec2, · · · , ecn} received do

// test if Ti conflicts with Ds

if RSet(i) ⊆ Ds and ∀ c ∈ C(D): (c = true) then
commit Ti

else // abort and replay transaction
abort Ti
ensure: serial execution
for each opik ∈ op(Ti) do opik
if ∃ c ∈ C(D) with (c = false) then // c violated

abort Ti
else

commit Ti
end if

end for
Figure 2. Reconciliation algorithm for ec serializability

transaction and defer any write operation until commit time.
If a serialization conflict arises at commit time this means
that a concurrent transaction has already committed. In this
case the transaction is aborted and automatically replayed
with the same input data.

Our transaction model is divided into two phases:
• client phase

During the processing on the client site, data may only
be retrieved from the server. It is important that the read
requests are served in an optimistic way. Technically a
read set of data, a data graph or any other snapshot
could be delivered to the mobile client. The client
transaction terminates with an escrow commit (ec) or
an abort (a).

• server phase
When the server receives the ec along with the write
set and no serialization conflict exists the transaction
is committed. In case of a conflict the transaction is
aborted. The replay is done automatically with pes-
simistic concurrency control or serial execution. This
prevents nested transactions conflicts or the starvation
[22] of a transaction. If no constraints are violated the
replayed transaction is committed.

A possible reconciliation algorithm using the abort-replay
mechanism is presented in Figure 2. Section 5 describes the
server phase in detail and provides an extended version of
this algorithm.

Care has to be taken with transactions not using the abort-
replay mechanism. In this case the database should work in
isolation level ”serializable”.

If the abort-replay mechanism is always used to integrate
the transactions on the server there is no need for a certain
isolation level as the read sets only contain consistent results.

Any competing transactions will not alter the database until
the server integrates the result. As the transaction results are
integrated one-by-one, no read phenomena may occur and
serial results are ensured.

So far we have illustrated the model with transactions that
produce a constant change for a data item (see Example
1). The model is valid for any transaction with a known
semantic (see Theorem 1). For instance the transaction
T3 = (r3(x), w3(x := 1.1x), ec3) increases the prize x of a
product by 10%. If the first read of x and the reread differ
(r′3(x) 6= r3(x)), then the replay will produce a 10% increase
based on the actual value.

For an automatic replay it is is essential to know which
transactions are ”immune” or depend in a predicted manner
from the read set. These are the candidates for escrow
serializability.

There is a technical issue for the banking example. Here
we do not really need the actual withdraw amount of the
transaction to replay it. It is sufficient to know three database
states since the new value can be calculated by a := a1 +
ac−a0 where a1 is the actual balance, ac is the new balance
calculated by the client transaction, and a0 is the basis on
which the value ac was computed. This observation gives
reason to find classes of transactions that are ec serializable
without knowing the actual user input.

An implementation using SDO technology is described
later in Section 6.

4. Semantic Classification of Transactions

To facilitate the task for the reconciliation algorithm
we shall classify the client transaction according to their
semantic, in particular the dependency of the input from the
read set.

Definition 2: (dependency function)
Let T be a transaction with RSet =
{x1, x2, · · · , xn} and WSet = {y1, y2, · · · , ym}
on a database D. The function fi : ~x → yi with
~x = (x1, x2, · · · , xn) and yi ∈ WSet is called
dependency function of yi.
Let xk ∈ RSet and yi ∈ WSet be numeric data
types for all k. If fi is a linear function then yi is
called linear dependent and we can write

yi = fi(~x) = ~ai
T~x + ci (i = 1, 2, · · · , m) (1)

with ~ai
T being the transposed vector ai =

(ai1, ai2, · · · , ain).
If all functions fi are linear dependent, then

~y = A~x + ~c (2)

with m× n-Matrix A = (aik) and m-dimensional
vector ~c. We call the corresponding transaction T
linear dependent.



77

International Journal on Advances in Telecommunications, vol 2 no 2&3, year 2009, http://www.iariajournals.org/telecommunications/

If fi(~x) = ~1T~x + ci then fi is called linear
dependent with gradient 1 (~1 is the vector with
magnitude 1).
If fi(~x) = ~bT~x + ci then fi is called linear
dependent with gradient ~b.

In our banking example the accounts are linearly depen-
dent with gradient 1. The 10% price increase is an example
for a transaction that is linearly dependent with gradient
b = 1.1.

If the values of the WSet however depend in an non-
formalized user dependent manner from the RSet then there
is no way to reconcile the transaction automatically. The
escrow serializable execution of a transaction depends on
the fact that the outcome does change in a known functional
manner.

Theorem 1: (escrow serializable)

Let T be a set of transactions where each trans-
action T has known dependency functions fi (i
= 1,2, ..., m). Then the concurrent execution of
T is escrow serializable using the abort-replay
algorithm of Figure 2.

Proof 1: (escrow serializable)

Let D0 be a consistent state of a database with
transactions T = {T1, T2, · · · , Tn}. Let H be a
history of T and let w.l.o.g. the commit order be
the same as the transaction index. We construct a
serial transaction order that matches the definitions
of escrow serializability using the abort-replay al-
gorithm. Any write operations of the transactions
Ti are postponed until commit time. The read set of
T1 is a subset of database state D0. Then we have
D1 = D0 ∪ S1 := T1(D0) after the first commit
c1. When a subsequent transaction Tk tries to
commit and RSetk∩(∪κ≤k−1S

κ) = ∅ then there is
no serialization conflict and the commit succeeds.
In case of a conflict, the transaction is aborted
and replayed with the same user data. During
the replay the algorithm ensures serial execution,
so further commits are queued. Finally we have
Dk = Dk−1 ∪ Ts(Dk−1, us) for k = 1, 2, · · · , n.
QED

Let {r1, r2, · · · , rn} ⊆ Dc be the read set values of a
client transaction and let {s1, s2, · · · , sn} ⊆ Ds be the read
set values on the server when the transaction tries to commit.
Then the abort-replay mechanism produces WSet(T ) =
T (Ds, ~u) = A~s + ~u. The value of any numerical data item
x ∈ WSet for a linear dependent transaction is computed

as

xT = ΠxT (Ds, ~u) = ~aT~s + u

= ~aT~s + (~aT~r + u)− ~aT~r

= ~aT (~s− ~r) + ΠxD
c

= ΠxA(~s− ~r) + ΠxD
c

(3)

From the above equation we see that the reconciliation
for transactions with a linear dependent write set may be
simplified. For the transaction manager it is sufficient to
know the client state Dc, the read set Ds at commit time
and the state produced by T (Dc, u).

Corollary: A linear dependent transaction can be recon-
ciled (replayed) in a generic way, if client state
Dc at begin of transaction, the read set Ds at
commit time and the state produced by T (Dc, u)
are known.

The corollary statement is similar to the reconciliation
proposed by Holliday, Agrawal, and El Abbadi [4].

4.1. Quota Transaction

In many cases the semantic of a transaction has well
known restrictions. We can guaranty the successful execution
of certain transactions if the user input remains within a
certain value range.

Assume a reservation transaction. If the transaction is
given a quota of q reservations then the success can be
guarantied for reservations within these limits. It is the
responsibility of the transaction manager to ensure that
the quota does not violate the consistency constraints. For
example if there are 10 tickets left and the quota is set for
2 tickets, then only 5 concurrent transactions are allowed.
As soon as a transaction terminates with less than two
reservations the transaction manager may allow another
transaction to start with a quota that ensures no overbooking.

Quota transactions in this sense are similar to increment
or decrement of counter transactions with escrow locking
(see [12]).

Definition 3: (quota transaction)
Let T be a transaction with WSet =
{y1, y2, · · · , ym} on a database D. For each
yi there is a value range I := [l, u] associated.
T is called quota transaction if the success of
the transaction can be guarantied in advance if
the result values yi do not exceed the quota, i.e.
yi(old) + l ≤ yi(new) ≤ yi(old) + u.

Setting quotas is a mean to guaranty success for a trans-
action by reserving sufficient resources without locking the
resources. Caution has to be taken when using quotas as
resources are reserved that finally should be taken or given
back. Therefore a time out or a cancel operation is required
on the server site.



78

International Journal on Advances in Telecommunications, vol 2 no 2&3, year 2009, http://www.iariajournals.org/telecommunications/

4.2. A transaction’s role

We will briefly describe the idea how to apply the role
pattern on transactions. Consider the situation where a
transaction has to prevail against other transactions’ mod-
ifications. If validation fails (e.g. a constraint was violated)
there is no chance for a transaction with a higher priority
to prevail against concurrent transactions. However, if we
assign an owner or master role to that transaction, the TM
is able to detect the role and adapt the transaction’s handling.
In the case of an owner, he may write modifications of the
owner transaction regardless of any other transactions, and
conflicting transactions have to abort.

In general, roles are a well understood concept, but
transaction models do not apply this concept directly to
transactions. Instead, the concept is shifted up to application
level whereas our intention is to apply a role directly to the
transactions. Generally, a role is represented by a logical
identifier, and a set of conditions reflect the roles’ intention,
whereby each condition leads to activities. The role model
could be implemented based on the ECA (Event, Condition,
Activity) concept of Active Database Management Systems
(see [28]). The event is thrown, if the TM detects a role
associated with the current transaction. The conditions are
validated, and the activities are executed. In our model an
activity, thrown by a role, affects the TM’s behaviour which
isn’t data centric as the ECA is.

Security aspects may complement, add or even contradict
the activities implied by the transaction’s role. Care has to
be taken if transactions with an identical role operate on the
same data, and they run into a deadlock situation, e.g. two
owner roles. If this is an unwanted state, the first role is a
semantic lock for other identical roles.

5. Server phase of the ec-model

The sections above focus on reconcilable elements, i.e.
values with a linear dependency function. But, in general
a transaction consists of non-reconcilable elements (not
able to get corrected), too. E.g. a customer name is non-
reconcilable (provided no dependency function is found).
On the other hand an account balance, as in the example
above, is reconcilable. Both kinds of elements may belong
to the same transaction.

Reconciliation prevents only reconcilable elements
from unnecessary conflicts. Therefore, we will apply the
escrow model to an optimistic concurrency control (OCC)
algorithm in order to handle non reconcilable elements,
too. Kung and Robinson [15] describe in their paper a
general approach for an OCC algorithm with three different
phases; The read, validation, and write phase. The obstacle
of this approach is the critical section namely validation
and write. The indivisibility of these two phases leads
transactions in their read phase to also interrupt their work

if other transactions are validating or writing. Unland [19]
suggest a validation without critical section V AL¬CS . Read
transactions together with currently writing transactions can
validate concurrently except for a short critical section when
a transaction number (counter access only) is generated
and assigned. The V AL¬CS is extended by an additional
reconcile phase in order to comply with reconcilable
elements.

The V AL¬CS defines a transaction to be either in the
(i) read, (ii) validation or (iii) write phase. The additional
reconcile phase is explained later (see figure 3 for an
example). During the read phase (i) a transaction has to
validate against all transactions terminating in this phase
(write). This is referred to as forward-oriented optimistc
concurrency control [12].
If a transaction enters the validation phase (ii) a transaction
number TNR is assigned (the only critical phase), and the
transaction has to validate against all transactions with a
smaller transaction number not finished validation yet.
In the write phase (iii) Ti’s result is published provided the
write succeeds.
The ec-model needs an additional reconcile phase for values
necessary to reconcile. A validation order within a transac-
tion is also indispensable, since some elements need valida-
tion only, and reconcilable elements need reconciliation (see
later). Generally, OCC algorithms verify that a RSet of a
transaction T have no intersection with another transaction’s
WSet. The intersection is determined on an entity basis,
but reconciliation is on a value basis. Recall, reconciliation
means to re-exceute an operation with the current value(s).
Thus, for non reconcilable elements validation on an entity
basis is proper, whereas reconciliation is on a value basis.
Therefore, a transaction may need two different validation
strategies. Furthermore, we have reconcilable values with a
constraint, e.g. an account is not allowed to fall below the
credit limit.

Based on the observations so far we define the following
(Definition 5).

Definition 4: (escrow transaction)
A transaction consists of 1) reconcilable ele-
ments ~x = (x1, . . . , xi) (see definition 2), 2)
reconcilable elements with a constraint ~cx =
(cx1, . . . , cxi), and 3) non reconcilable elements
~nx = (nx1, . . . , nxi).For each reconcilable value
xi and cxi the dependency function fi of yi is
known (see defintion 2). The userinput is denoted
by u.
• (1) (~y, ~cy, ~ny) = T (~x, ~cx, ~nx, u)
• (2) Validation of ~x and ~cx is on an element

basis, whereas ~nx is on a variable basis.
• (3) RSet(T ) = {~x, ~cx, ~nx}
• (4) WSet(T ) = {~y, ~cy, ~ny}



79

International Journal on Advances in Telecommunications, vol 2 no 2&3, year 2009, http://www.iariajournals.org/telecommunications/

Figure 3. Modified validation without critical section (V AL¬CS), see [19]
T2, 3, 4 have to validate against T1 because T1 writes (t1). T2 has to validate against T3, because T2’s TNR < T3’s

TNR.

Example 2: (product inventory) Several employees receive
new products. Each product is stored at exactely one storage
location and employees store products concurrently. Before
an employee starts to stock, he reads the product’s data
(id,location,quantity) via infrared using his mobile device.
An infrared access point with a limited coverage resides near
each product’s location. After an employee finishes work he
commits the changes on the mobile device, and sents his
modifications (WSet or change set) back to the host via
infrared. Let quantity be the only reconcilable value.

T = (r(id), r(location), r(quantity), w(quantity′ :=
quantity + a)), where a is the amount of new products.

RSet(T ) = {~x = ∅, ~cx = {quantity}, ~nx =
{id; location}} (see definition 4)

The reconcilable elements depend on the transaction. In
the withdraw example the user transfers money and the
current balance does not affect his decision to execute the
transfer, e.g. to pay a bill. However, assume the actual
balance affects the decision to pay the bill. In the first
situation the balance is classified as reconcilable, whereas
it’s non - reconcilable in the second one.

In the next section we describe the read phase’s issues.
The validation, and reconcile phase are described later.

5.1. Read phase

Since the V AL¬CS was designed for connected archi-
tectures we analyze the read phase in order to fit the
requirements for disconnected architectures and reconcili-
ation. The support for local autonomy requires to replicate
data on the mobile device. Beside this aspect, the read set
contains reconcilable, as well as non-reconcilable entities
(see defintion 4).

In OCC, a reading transaction is not allowed to read data
which intersect with the write set WSet of a transaction (see

preliminaries, read phase (i)). Section 5.2 shows that recon-
ciliation prevents from critical read anomalies. Therefore,
the test in (i) reduces to ~nx components only. Validation of
non reconcilable data is on an entity basis, so we denote
RSetNX as the read set for non-reconcilable elements and
WSetNX respectively. For the modified validation in the
read phase of Unland’s V AL¬CS algorithm see figure 4.

for ∀Ti ∈ Tread do
if (∀Tj ∈ Twrite : RSetNX(i) ∩WSetNX(j) 6= 0)

abort Ti
end for
//Tread:=All reading transactions.
//Twrite:=All writing transactions.

Figure 4. write - read validation

5.2. Read anomalies and reconciliation

The lost update anomaly is not treated in this section
because the example above (see example 1) shows that
reconciliation prevents from a lost update.
Dirty read
Assume the schedule

S = r2(x)w2(x′ := x− 200)ec2r1(x′)a2w1(x′′ :=
x− 100)ec1, where eci indicates an escrow commit, and

ai an abort.

S normally produces a dirty read, but it is escrow serial-
izable. The TM will detect the conflicting transaction T1,
replay it automatically, and will use the current value of x.
The result is the following schedule which prevents from a
dirty read:

S = r2(x)w2(x′ := x− 200)ec2r1(x′)a2w1(x′′ :=
x− 100)ec1a1r1(x)w1(x′ := x− 100)ec1c1



80

International Journal on Advances in Telecommunications, vol 2 no 2&3, year 2009, http://www.iariajournals.org/telecommunications/

ai indicates an abort by the TM, because a constraint x > 0
was violated, and assume x was 200 at r2(x).
Non repeatable read
Assume the following schedule:

S = r1(x)r2(x)w2(x′ := x + 200)ec2c2r1(x′)ec1c1

As denoted in the schedule x 6= x′.
The non repeatable read anomaly is predestinated to briefly
sketch out the problem of read anomalies in disconnected
architectures. After T1 reads x, x is only present in T1’s
workspace. Each re-read in the workspace will produce the
same result and on the mobile client’s side no non repeatable
read is present. But the server side handling is of interest.
If the operation is replayed with x’s current value the read
is still non-repeatable. Therefore only to lock x, or restrict
repeatable read to workspace level is possible. But, the point
is that the ec-model exploits a non-repeatable read for x
values to replay the operation. Thus, the ec-model doesn’t
support an isolation of repeatable read.
Phantom read
Assume the following schedule:

S = cnt11 := count1(X)insert2(x)ec2c2cnt12 :=
count1(X)ec1c1

Both count(X) operations execute in the transaction’s
workspace (mobile client), and they have to produce the
same result, unless a concurrent transaction accesses the
same workspace (not provided by ec), or an explicit re -
read was performed. If the count operation is able to get
reconciled and a phantom read should be prevented, T1

has to be ec-aborted and replayed with the current state.
The result is the following schedule which prevents from a
phantom read:

S = cnt11 := count1(X)insert2(x)ec2c2ec1a1cnt11 :=
count1(X ′)c1

Summarizing, escrow serializability prevents reconcilable
values from lost update, dirty read, but phantom read is
possible.

5.3. Validation - and reconcile phase

Validation starts with an escrow commit and the associ-
ated change set. As described in the phase validate (ii), each
transaction starting validation has to validate its change set
against each (currently) validating transaction with a lower
TNR (see figure 6).

Applying this test to transaction

Tw = (r(id), r(location), r(quantity), w(quantity))

(see example 2) means to test if ~nx = (id, location) or
~x = (quantity) intersects with another transaction’s WSet
with a lower TNR. If validation succeeds the modifications
are written, and if either id, location or quantity intersects

with another transaction’s WSet the transaction aborts.
But, considering that quantity is a reconcilable value an
intersection of quantity does not lead to a unresolvable
conflict provided no constraint is violated. According to
that, the test in (ii) is customized to fit the requirements
for reconcilable elements (see figure 6).

There are some other conclusions. For the validation of
reconcilable elements it’s sufficient to validate the constraint
only (on a value basis). If no constraint is present, validation
is unnecessary and the algorithm is directly entering the
reconciliation phase, because to reconcile means just to
replay the conflicting operation with the current value.
Therefore, only non reconcilable entities enter the validation
and write phase, whereas constrained reconcilable elements
need validation and reconciliation. And in contrast, recon-
cilable elements enter the reconcile phase only. Recall, that
reconcile includes to write data.

Assume the validation of location fails. Under this cir-
cumstance the transaction aborts due to atomicity, and to
prevent from unnecessary reconciliation a validation order
from non-reconcile to reconcile ~nx

order→ ~x has to be
followed.

Following this order, to replay means that the operation
which leads to a conflict is replayed only, because each write
of a non-reconcilable element was still performed, and to re-
write again is unwanted due to performance reasons. Thus,
the ec-model treats with transaction splitting, because for
each element of ~x a new nested sub transaction is created
and executed by the TM.
Conclusions:
• (1) A validation order from non-reconcilable to recon-

cilable prevents from unnecessary reconciliation. De-
noted by ~nx

order→ ~x
• (2) A replay will only replay the conflicting operations.
• (3) The replay of an operation leads to a new nested

transaction.

Figure 5 defines the possible states and transitions of the
server phase.

Each non-reconcilable element nxi validates first (1). If
validation succeeds the value of nxi is written (2) and
committed. If validation fails, T is aborted (3).
If each nxi was written successfully each cxi is validated
next (1). The transaction aborts if a constraint is violated (3).
Provided a constraint is not violated cxi enters reconciliation
(4). In case each nx and cx commits, each xi directly enters
the reconcile phase (5). After the reconciliation and write
phase a commit is only possible, since we assume a reliable
and physical error free hardware (6). If hardware fails, this
is a matter of recovery. Transactions, like the proposed
Quota, try to prevent from constraint violation through pre-
estimation. For such transactions a relaxed validation might
be applicable. It could be indicated by a role, and classified
by failure probabilities.



81

International Journal on Advances in Telecommunications, vol 2 no 2&3, year 2009, http://www.iariajournals.org/telecommunications/

Figure 5. States of an escrow transaction

Reconciliation ensures a serial execution (see figure 6)
and the performance section shows higher throughput for
reconcilable transactions.

As mentioned before an escrow transaction is splitted to
comply with the execution order ~nx

order→ ~x. Definition 5
defines how an escrow transaction is splitted by the TM.

Definition 5: (Transaction splitting)

(1) Let T ′ be a user transaction which spans sub
transactions Ti. To ensure atomicity T ′ is aborted
if any sub transaction Ti ∈ T = Ti fails.
(2) The set of sub transactions T contains one
nested transaction TNX , and two nested atomic
sets of transactions TCX and TX .
T ′ := {TNX ,TCX ,TX}
(3) Each operation opn(cx) ∈ T ′ which modifies
a constrained reconcilable entity leads to the cre-
ation of a new sub transaction in order to replay
the operation within T ′. Let TCX represent these
kind of transactions.
TCX := (T1(op1(cx)), . . . , Ti(opn(cx)))
(4) Each operation opn(x) ∈ T ′ which modifies a
reconcilable entity leads to the creation of a new
sub transaction in order to replay the operation
within T ′. Let TX represent these kind of sub
transactions.
TX := (T1(op1(x)), . . . , Ti(opn(x)))
(5) Let TNX be the transaction which contains
all operations opn(nx) that are non-reconcilable.
TNX := (op1(nx), . . . , opn(nx))

To split a transaction requires information about the
variables and their semantics. We base our model on the
idea of change sets which are delivered to the TM after
local (on the mobile device) modifications took place. A
change set ChS represents the user transaction T ′ and
consists of several entities e. Beside the different versions
for a variable (old and new), each e must provide a key
(e.g. unique type name) to enable a mapping between
transaction, reconciliation rules and constraints. Usually a
transaction defines which variable is reconcilable or non
- reconcilable. This information, and the type information
of the change set is adequate to split a transactions into
its corresponding sub transactions TNX ,TCX ,TX . In our
prototyp a type handler is used in order to faciliate the
mapping. The reconcilable entities are defined transaction
specific on a unique type basis, and after a transaction
starts, it registers immediately by the TM. This registration
and the type handler enable, as long as the transaction and
the TM rely on an identical type basis, to split a transaction
and utilize a transaction specific reconciliation.

This section described the server phase of the ec-model
and how the V AL¬CS algorithm is extended by an ad-
ditional reconcile phase. To split a transaction is an ade-
quate solution to handle reconcilable and non-reconcilable
elements within the same transaction.

5.4. Nested transactions in the ec-model

So far, an user transaction is defined to be atomic, but
there might be some dependencies within an user transaction



82

International Journal on Advances in Telecommunications, vol 2 no 2&3, year 2009, http://www.iariajournals.org/telecommunications/

which allow to weaken the execution order. To obtain a
weakened execution order we classify sub transactions ac-
cording to the open nested transaction model first (see [29],
[12], [30]). Generally, the nested transaction model allows
to relax atomicity and isolation which is often required in
mobile, transactional workflow scenarios, or other so called
Advanced Transaction Models (ATM) (see [31]). In the open
nested transaction model a sub transaction, or child, is:

1) open (iso = false), if the results are published to
all transactions. It is closed (iso = true), if results
are published to the parent transaction only (ISOLA-
TION).

2) It is vital (vit = true), if to abort leads its parent to
abort, too. And, non- vital (vit = false), if an abort
does not affect its parent (Atomicity, abort

−−→
TcTp).

3) T depends on its parent (dep = true), if the parents
abort leads T to abort, too; independent (dep = false)
if not (Atomicity, abort

−−→
TpTc).

By definition 5 T ′ has to be atomic, thus each T ∈ T ′

is dependent, vital, and closed in order to avoid cascading
rollback (see section 2). For independent, non-vital and open
children however, it’s possible to change the execution order,
and to execute this new class of transactions seperately (pos-
sibly pooled or even delayed). E.g. in example 2 assume an
additional transaction which monitors the time an employee
needs to complete an order. A time variable is incremented
locally and synchronized at the location with the time of all
employees in order to calculate the average delivery time for
that product. This is an example for an independent, non -
vital and open transaction on a reconcilable value.

The drawback of intra transaction dependencies is that
the TM needs to know them. Our implementation (see 6)
as well as our model requires a change set reflecting local
modifications. If the change set provides the information
needed to classify a transaction a new execution order is
applicable. Based on the classifications for sub transactions
definition 6 extends definition 5.

Definition 6: (ec-independency)
(1) Let TIN be the set of all independent, non-
vital, and open transactions.
(2) T ′ is defined as an user transaction with one
nested transaction TNX , two nested atomic sets of
transactions TCX and TX , and one atomic, and
ec-independent set of sub transactions TIN . Each
T ∈ TIN is ec-independent.
T ′ := {(TNX ,TCX ,TX),TIN}
(3) A transaction Tc is ec-independent if the de-
pendency function dep of Tc is known for all
other transactions Ti ∈ T ′ : Ti 6= Tc, and for
each Ti ∈ T ′ dep validates to true, whereas true
indicates the ec-independency of Tc.
(4) ec-independency:iso = 0 ∧ vit = 0 ∧ dep = 0

Although mobile transaction models deal with (non-)
substitutable, compensable, temporal, and spatial transac-
tions1, none of them have been considered here. Such intra
transaction dependencies often originate from the use case’s
semantics and less from the value’s or operation’s semantics.
In an interaction scenario (e.g. workflow based) the state
and transition model is able to provide the information
about such intra dependencies. In mobile computing, service
selection and composition is context aware and an (formal)
interaction model might not given. Hahn’s model [33] ex-
ploits transactional properties (non-functional) defined in the
interface to determine which workflow pattern (XOR, AND,
and SEQUENCE) is proper for a service interaction.

Our focus is to exploit the semantics on a data and
operations level first, and not to exploit the semantics of
complex interaction scenarios. The ec-model may provide a
reliable foundation other transaction models could rest upon.
To benefit from both kinds of semantics (data & value and
interaction) seems to be a worthwhile objective.

6. Example Implementation of the ec Model
with SDO

Service Data Objects (SDO [34], [35]) are a platform
neutral specification and disconnected programming model,
which enables dynamic creation, access, introspection, and
manipulation of business objects.

Our implementation (see Lessner [36]) of the transaction
manager (TM) uses SDO graphs and resides between the
data access service (DAS) and the client. This way, the TM
fits well into SDO’s vision of being independent of the data
source.

A snapshot of each delivered graph is taken by the TM and
each SDO graph associates a change summary that complies
with the requirements for optimistic concurrency control
(see Section 3). To assert ”escrow serializabilty” (provided
by the reconciliation algorithm) an association between a
transaction and the semantic of this transaction is needed2.
This association results in a classification of the transaction
(e.g. ”linear dependent”).

An association between a classification and a verifier (see
Figure 8) enables a semantic transaction level (e.g. quota
verifier, escrow concurrency (EC)).

Assume that we have an incoming transaction (T-
Level=EC) with a changed data graph. The transaction
handler delivers the transaction to the verifier. To ensure
EC, optimistic concurrency control (OCC) is checked first.
If OCC is passed there is no serialization conflict. In case
of a conflict the semantic level concurrency control (T-
Level=EC) is invoked. This means, two verifier implemen-

1. Temporal and spatial describe transactions subject to temporal and
spatial restrictions, respectively.

2. In heterogeneous environments an additional data object could be used
to describe the semantic of a transaction, SDO uses XML as protocol



83

International Journal on Advances in Telecommunications, vol 2 no 2&3, year 2009, http://www.iariajournals.org/telecommunications/

Figure 7. The transaction manager’s architecture

tations come into play (Step 1, Figure 7) in the execution
order ~nx→ ~x.

Each changed attribute is OCC validated against the
snapshot (Step 2, Figure 7). If an OCC conflict exists and
the attribute associates a known ”dependency function”,
then reconciliation is possible and a conflict object is in-
stantiated that represents the transaction rewrite (withdraw
correction). If an OCC conflict occurs for an attribute that
is not corrigible, the transaction has to abort. In a second
step the EC verifier tries to resolve the conflicts (e.g. to
reread the balance from the latest snapshot). If any conflicts
exist after the EC verifier has finished (e.g. the withdraw
amount would exceed the credit limit), the transaction has
to abort, too. Each time a conflict is eventually resolvable
the modification is sent to the replay manager (Step 3,
Figure 7) who handles the snapshot’s modifications and the
graph’s changes (Step 4, Figure 7). Finally all changes are
written and committed to the database. The database requires
isolation level ”repeatable read” during steps 2 to 4.

The snapshot is data centric, which means that there exists
a snapshot version of each delivered data object related
to a transaction. Therefore the knowledge about the type’s

schema is necessary. To acquire this knowledge we decided
to implement a separate meta schema. Another possibility
would be, to use the schema provided by the implementation
of the SDO Data Access Services (DAS). The first possibility
fits better into a general usage of the TM but causes schema
redundancy. In both cases a type handler module is needed,
either for accessing the schema of the SDO DAS or for
accessing the additional schema.

7. Alternative conflict detection using RVV

Another approach (not sketched out in section 6) to detect
conflicts at row level is the Row Version Verification (RVV)
discipline (see [20]). A version indicates a change of a
tuple/row and it is incremented each time the row is mod-
ified. To detect conflicts the TM reads the current version
and compares the current version with the version read by
the transaction. If the two versions differ the transaction is
aborted, otherwise committed. RVV’s advantage is a fast
conflict detection at row level (DBMS level), and even
modifications of non ec - transactions (connected or legacy)
are detectable. Concerning the ec-model a more fine grained



84

International Journal on Advances in Telecommunications, vol 2 no 2&3, year 2009, http://www.iariajournals.org/telecommunications/

ensure: set of transactions T = {T1, T2, · · · , Tn}
ensure: actual database state Ds, set of constraints C(D)
ensure: only committed data in read set RSet(i) of Ti
ensure: Ti = (opik, i = 1, 2, · · · , ki)
ensure: T ′ := {TNX ,TCX ,TX}
for ∀ eci ∈ {ec1, ec2, · · · , ecn} received do
T-number: TNRi := TNC; TNC + +
for ∀Tj ∈ Tval : TNRj < TNRido

// test 1 for NX only
if(RSetNX(i) ∩WSet(j) 6= 0)

abort T ′

else
// test 2 for CX only
ensure: RSet(T ′) ⊆ DS

ensure: serial execution
if (∃cx:(c = false) then

abort(T’)
else

for ∀Ti(opn(cx)) ∈ TCX

//reconcile
do Ti(opn(x))

end for
for ∀Ti(opn(x)) ∈ TX

//reconcile
do Ti(opn(x))

end for
end if
end if

end for
end for

Tval each validating transaction.

Figure 6. V AL¬CS with reconciliation for ec serializabil-
ity

Figure 8. Abstract design of the transaction manager

detection of changes is required.
Assume the row (tupel) (id, location, quantity, v), where

v is the version. Now, two transactions T1 and T2 update
quantitiy concurrently, where T1 writes first. Thus, the
version is incremented and if T2 tries to write, the TM has
to abort T2. To faciliate the TM to support a reconciliation

the TM (1) has to know the row’s current version vc in order
to compare vc with the version read by the transaction. And,
(2) if a conflict is detected the TM must be able to indicate
a modification of quantity only; Assumed quantity is rec-
oncilable. To detect fine grained modifications if a conflict
was detected, requires to re-read the row with its current
version and to analyze the row. Analyzing means that the
TM has to correlate the changes with the matching tupel’s
component. If such fine grained modifications are detectable
reconciliation is possible. Nevertheless, the drawback of (1)
and (2) is that during the phases re-reading of the version
and conflict detection, or in the case of a conflict also the
phases re-read the row, analyzing it, and reconciliation, the
row has to be consistent.

Now, assume the row above is divided into
(id, location, ref q, v) and (quantity, vq), where ref q
is a reference on quantity. Now two versions have to
be verified, but vq directly indicates modifications for
quantity, and prevents the analysis of the whole row.

Another concern is, if modifications, represented by an
atomic change set, belong to several rows with correspond-
ing versions. Then version verifiying has to be atomic and
each version has to be compared, or another mechanism
is provided (e.g. intent versioning). Furthermore, to enable
reconciliation for each modified row the TM has also to
re-read each conflicting row.

In general, the main difference is RVV tries to write on the
database in order to detect conflicts. Whereas the snapshot
handler detects conflicts and ensures ec serializability before
any data is written (sent) into the DB. The snapshot handler’s
drawback is to ensure a synchronous and consistent state be-
tween middleware and DB level. Its advantage is a common
representation for the change set, and the snapshots which
alleviates conflict detection. As mentioned, RVV’s advantage
is a fast conflict detection at row level (DBMS level), and
even modifications of non ec - transactions are detectable.
The overhead for a fine grained error detection and the
required consistence of a row have to be still analyzed.

Another solution like an event driven one, which triggers
an event to notify each participating node of a modification
is also conceivable. Each solution has to break through the
obstacle to keep versions or snapshots synchronous across
layers and during concurrent access.

In summary, RVV is an easy to understand solution and
it’s generally applicable on the ec-model, especially for nx
entities. RVV itself is a more architectural aspect which may
be needed in some scenarios. Versioning in principle is a
well known discipline.

8. Performance of the ec-model

We ran a series of simulations of concurrent withdraw
transactions accessing the same account. The transaction
configuration parameters were as following: Reading the



85

International Journal on Advances in Telecommunications, vol 2 no 2&3, year 2009, http://www.iariajournals.org/telecommunications/

Figure 9. Performance of EC compared with OCC and locking

balance took less than 10 ms, the user’s thinking time was
randomly chosen between 1 and 2 seconds, and the write
time needed about 10 ms. The throughput results for up to
30 concurrent transactions is shown in Figure 9.

Running 30 transactions in parallel generated 23 seri-
alization conflicts which triggered the replay mechanism.
The net processing time for a transaction or a replay was
approximately 20 ms. The total elapsed time for all 30
transactions was t = 2.1 sec which is consistent with the
minimum thinking time (1 sec) plus the time for processing
30 transactions ((30 + 23) × 20 ms = 1.06 sec) in escrow-
serialization mode. The results show that we achieved an
elapsed time close to the theoretical limit considering the
number of replays necessary.

The nearly linear growth of the throughput when using
the escrow concurrency control indicates that we have not
reached the throughput limit. Given a processing time of 20
ms, the theoretical limit for this scenario (”hot spot” on the
balance) would reach 50 transactions per second.

In contrast, the traditional OCC and locking schemes
could not interleave the transactions and resulted in essen-
tially serial processing. Therefore the performance saturated
at 1/1.5 = 0.66 transactions per second, where 1.5 sec are
the average transaction duration.

In order to have a more complex example than the
withdraw transaction we used the popular TPC-C benchmark
[37] and analysed the New Order (NOrder-Ta) and the Pay-
ment (Pay-Ta) transactions. The NOrder-Ta exhibits two ”hot
spots” with linear dependency semantics defined in section
4. One is the update of the next order id (d next o id) in the
district table and the other is the update of the quantity on

stock (s quantity) for each line item. The Pay-Ta contains
”hot spots” in the tables Warehouse, District, and Customer.
Again, the semantics of the transaction is linear dependent
with gradient 1 (see section 4) as it deals with updating
three balances with a fixed amount, updating the year to
date payment by the same amount, and incrementing the
payment count.

In total we have identified 7 situations where the escrow-
serialization mechanism could be beneficial for performance.
First tests indicate a substantial improvement over traditional
locking mechanism.

9. Conclusions

Mobile transactions have special demands for the trans-
action management. We propose a transaction model that is
non-blocking and is reconciling conflicting transactions by
exploiting the semantic of the transaction. A simple abort-
replay mechanism can produce reconciliation in the sense
of escrow serializability. The abort-replay algorithm detects
conflicts by rereading the data. The mechanism is easy to
implement and can make use of update operation when read
- and write set overlaps.

If all writes are postponed until the commit is issued
and the reread and write operations during reconciliation
are executed serialized or serial, then no inconsistent data
will be read. A further option is to use consistent snapshots.
Independent from the mechanism the read phase should be
executed with optimistic concurrency control.

In contrast, the reconciliation phase should run in a pre-
claiming locking mode. This ensures efficient sequential



86

International Journal on Advances in Telecommunications, vol 2 no 2&3, year 2009, http://www.iariajournals.org/telecommunications/

processing of competing transactions without delays as user
input is already available and starvation is avoided. With
this marginal condition the escrow serialization algorithm
has the potential to outperform other mechanisms.

For the class of linear dependent transactions it is suffi-
cient for reconciliation to know the client state at begin of
transaction, the state produced by the client transaction on
the client site, and the database server state at commit time.

10. Future work

The following outlines some important points of future
research. Even if first simulations show higher transaction
throughput, they need to become re-engineered. More com-
plex business scenarios with several devices involved and
an implementation based at databases driver level are some
aspects. Such an implementation will simplify benchmarks
and ease the existing SDO-implementation. Concerning the
development of software, developers should be supported
by methods to define or classify dependency functions for
transactions which intend to use escrow serializability. In
general, to define and detect a transaction’s semantics man-
ually is a drawback of many other transaction models using
semantic properties. Regarding our model, an investigation
of the opportunities to derive dependency functions based
on common interaction patterns or on a data type base is
intended. A not mentioned, but relevant concern is recovery
in the escrow model, and more research has to be done in
this field.

Acknowledgements

This paper was inspired by discussions with the members
of the DBTech network and the ideas presented during the
DBTech Pro workshops. The DBTech Project was supported
by the Leonardo da Vinci programme during the years 2002
- 2005.

References

[1] Fritz Laux and Tim Lessner. Transaction processing in mobile
computing using semantic properties. The First International
Conference on Advances in Databases, Knowledge, and Data
Applications, DBKDA, Cancun, Mexico, 169, March 2009.

[2] J.H. Abawajy and M. Mat deris. Supporting disconnected
operations in mobile computing. Computer Systems and
Applications, ACS/IEEE International Conference on, 0:911–
918, 2006.

[3] Shirish Hemant Phatak and Badri Nath. Transaction-centric
reconciliation in disconnected client-server databases. Mob.
Netw. Appl., 9(5):459–471, 2004.

[4] Joanne Holliday, Divyakant Agrawal, and Amr El Abbadi.
Disconnection modes for mobile databases. Wirel. Netw.,
8(4):391–402, 2002.

[5] Hector Garcia-Molina. Using semantic knowledge for trans-
action processing in a distributed database. ACM Trans.
Database Syst., 8(2):186–213, 1983.

[6] Abdel Aziz Farrag and M. Tamer Özsu. Using semantic
knowledge of transactions to increase concurrency. ACM
Trans. Database Syst., 14(4):503–525, 1989.

[7] Shi-Ming Huang and Chien-Ming Huang. A semantic-based
transaction model for active heterogeneous database systems.
Systems, Man, and Cybernetics, 3:2854–2859, 1998.

[8] Dimitrios Georgakopoulos, Marek Rusinkiewicz, and Amit P.
Sheth. On serializability of multidatabase transactions
through forced local conflicts. In Proceedings of the Seventh
International Conference on Data Engineering, pages 314–
323, Washington, DC, USA, 1991. IEEE Computer Society.

[9] Sharad Mehrotra, Rajeev Rastogi, Henry F. Korth, and Abra-
ham Silberschatz. Non-serializable executions in heteroge-
neous distributed database systems. In PDIS ’91: Proceedings
of the first international conference on Parallel and dis-
tributed information systems, pages 245–252, Los Alamitos,
CA, USA, 1991. IEEE Computer Society Press.

[10] Shi Ming Huang, Irene Kwan, and Chih He Li. A study
on the management of semantic transaction for efficient data
retrieval. SIGMOD Rec., 31(3):28–33, 2002.

[11] Peter Graham and Ken Barker. Effective optimistic con-
currency control in multiversion object bases. In Elisa
Bertino and Susan Darling Urban, editors, ISOOMS ’94: Pro-
ceedings of the International Symposium on Object-Oriented
Methodologies and Systems, volume 858 of Lecture Notes
in Computer Science, pages 313–328, London, UK, 1994.
Springer-Verlag.

[12] Gerhard Weikum and Gottfried Vossen. Transactional infor-
mation systems: theory, algorithms, and the practice of con-
currency control and recovery. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2001.

[13] Fritz Laux, Tim Lessner, and Martti Laiho. Semantic trans-
action processing in mobile computing. In Cherif Branki,
Brian Cross, Gregorio Daz, Peter Langendrfer, Fritz Laux,
Guadalupe Ortiz, Martin Randles, A. Taleb-Bendiab, Frank
Teuteberg, Rainer Unland, and Gerhard Wanner, editors,
TAMoCo, volume 169 of Frontiers in Artificial Intelligence
and Applications, pages 153–164. IOS Press, 2008.

[14] Qi Lu and M. Satyanaranyanan. Isolation-only transactions
for mobile computing. Operating Systems Review, 28:81–87,
1994.

[15] H. T. Kung and John T. Robinson. On optimistic methods for
concurrency control. ACM Trans. Database Syst., 6(2):213–
226, 1981.

[16] Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha.
The dangers of replication and a solution. In SIGMOD
’96: Proceedings of the 1996 ACM SIGMOD international
conference on Management of data, pages 173–182, New
York, NY, USA, 1996. ACM.



87

International Journal on Advances in Telecommunications, vol 2 no 2&3, year 2009, http://www.iariajournals.org/telecommunications/

[17] G. D. Walborn and P. K. Chrysanthis. Supporting semantics-
based transaction processing in mobile database applications.
In SRDS ’95: Proceedings of the 14TH Symposium on Re-
liable Distributed Systems, page 31, Washington, DC, USA,
1995. IEEE Computer Society.

[18] Gary D. Walborn and Panos K. Chrysanthis. Transaction
processing in pro-motion. In SAC ’99: Proceedings of the
1999 ACM symposium on Applied computing, pages 389–398,
New York, NY, USA, 1999. ACM.

[19] Rainer Unland. Optimistic concurrency control revisited.
Technical report, Department of Business Informatics, Uni-
versity of Muenster, 1994.

[20] Martti Laiho and Fritz Laux. Data access using rvv discipline
and persistence middleware. e RA - 3, Greece, 2008.

[21] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer
Widom. Database Systems: The Complete Book. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2001.

[22] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan.
Database System Concepts, 5th Edition. McGraw-Hill Book
Company, 2006.

[23] K. A. Momin and K. Vidyasankar. Flexible integration
of optimistic and pessimistic concurrency control in mobile
environments. In Julius Stuller, Jaroslav Pokorný, Bern-
hard Thalheim, and Yoshifumi Masunaga, editors, ADBIS-
DASFAA ’00: Proceedings of the East-European Conference
on Advances in Databases and Information Systems Held
Jointly with International Conference on Database Systems
for Advanced Applications, volume 1884 of Lecture Notes
in Computer Science, pages 346–353, London, UK, 2000.
Springer-Verlag.

[24] Stefano Ceri and Susan S. Owicki. On the use of optimistic
methods for concurrency control in distributed databases. In
Berkeley Workshop, pages 117–129, 1982.

[25] Ho-Jin Choi and Byeong-Soo Jeong. A timestamp-based op-
timistic concurrency control for handling mobile transactions.
In Marina L. Gavrilova et al., editor, ICCSA (2), volume
3981 of Lecture Notes in Computer Science, pages 796–805.
Springer, 2006.

[26] Adeniyi A. Akintola, G. Adesola Aderounmu, A. U. Osakwe,
and Michael O. Adigun. Performance modeling of an en-
hanced optimistic locking architecture for concurrency control
in a distributed database system. Journal of Research and
Practice in Information Technology, 37(4), 2005.

[27] V. Krishnaswamy, D. Agrawal, J. L. Bruno, and A. El
Abbadi. Relative serializability: An approach for relaxing
the atomicity of transactions. SIGMOD/PODS 94, 1994.

[28] Klaus R. Dittrich and Stella et al. Gatziu, editors. Aktive
Datenbanksysteme. dpunkt Verlag, Heidelberg, BW, GER,
2000.

[29] J. E.B. Moss. Nested transactions: an approach to reliable
distributed computing. Massachusetts Institute of Technology,
Cambridge, MA, USA, 1985.

[30] Kyong-I Ku and Yoo-Sung Kim. Moflex transaction model for
mobile heterogeneous multidatabase systems. In RIDE ’00:
Proceedings of the 10th International Workshop on Research
Issues in Data Engineering, page 39, Washington, DC, USA,
2000. IEEE Computer Society.

[31] Sushil Jajodia and Larry Kerschberg, editors. Advanced
Transaction Models and Architectures. Kluwer, 1997.

[32] Jim Gray and Andreas Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann, 1993.

[33] Katharina Hahn and Heinz Schweppe. Exploring transactional
service properties for mobile service composition. In Markus
Bick, Martin Breunig, and Hagen Höpfner, editors, MMS,
volume 146 of LNI, pages 39–52. GI, 2009.

[34] M. Adams and C. Andrei et al. Service data objects for java
specification. OSOA (BEA Systems, IBM, et al.), 2.1, 2006.

[35] J. Beatty, S. Brodsky, M. Nally, and R. Patel. Next-generation
data programming. BEA Systems, IBM, 2003.

[36] Tim Lessner. Transaktionsverarbeitung in disconnected Ar-
chitekturen am Beispiel von Service Data Objects (SDO)
und prototypische Implementierung eines Transaktionsframe-
works. Diploma thesis (ger), 2007.

[37] TPC. Tpc benchmark c, standard specification, revision 5.9,
2007.


