
Emulation of Wireless Multi-Hop Topologies with
Online Mobility Simulation

Anders Nickelsen
Department of Electronic Systems

Aalborg University, Denmark
Email: an@es.aau.dk

Hans-Peter Schwefel
Department of Electronic Systems

Aalborg University, Denmark
and Forschungszentrum Telekommunikation Wien - FTW

Vienna, Austria
Email: hps@es.aau.dk

Abstract—Communication in wireless networks is affected by
uncontrollable disturbances in the channel. Effects of these dis-
turbances are exacerbated in networks with dynamic topologies
and multiple hops. Lack of control of the channel complicates
testing applications in such networks as test conditions are hard,
or impossible, to reproduce. This paper describes a test-bed to
create reproducible test conditions for applications by emulating
the wireless links. Emulation is performed by a topology emulator
to which end-nodes are connected using wired links. In real-time,
the emulator drops or delays packets in traffic between end-
nodes. These imposed link properties are based on simulations
of node mobility, loss and delay models. Two versions for
performing the simulations are described; an offline version in
which the mobility traces and link properties are calculated
beforehand, and an online version where geographic trajectories
are depending on the outcome of the communicating applications.
Evaluation confirms that both versions of the test-bed are
capable of emulating links in real-time and transparently to
upper layer protocols. Additional delays from packet processing
and bandwidth limitations introduced by using the emulator
are shown meet the transparency requirements, also when the
emulator is heavily loaded with packet flows.

Keywords-topology emulation; real-time; scalability; on-
line simulation;

I. INTRODUCTION

Wireless technologies are deployed in increasingly many
types of mobile devices. The vast popularity of these mo-
bile devices, and thus the increased availability of wireless
technologies, makes applications for the mobile domain of
great interest. Evaluation is an integral part of developing
such applications. Evaluation can be performed in fully virtual
simulation models or in experimental lab or field prototypes.
Emulation provides a hybrid of simulation and experimental
setups by allowing real applications to operate in environments
with simulated link properties. The control of the simulation
allows for accurate reproductions of the test conditions to
repeat test runs. A disadvantage of using emulation is that
real applications operate in real-time and thus enforce the
link emulation to run in real-time. This paper describes an
extension of the work on a topology emulation tool described
in [1].

Simulation tools, such as ns-2 [2], provide a high level
of detail in the networking layers. The application under
test is, however, typically simplified as the real application

cannot easily be used in the simulated environment. Hence,
the simulation results represent an application model and not
the real-life implementation of the application itself.

Experimental setups can be used to test the real application
implementation. However, disturbances in the environment
may have a huge impact on the test results. Moreover,
the characteristics of these disturbance are not always
controllable, making it very difficult to repeat even simple
test runs [3].

The objective of this work is to develop an emulation test-
bed to evaluate applications in wireless multi-hop topologies.
In the test-bed the wireless link is replaced by a wired link.
The wired link is less exposed to uncontrollable disturbances
and thus more controllable than a wireless link. The properties
of a wireless link, such as packet drops and delay, are then
imposed on network traffic on the wired link in a controllable
and reproducible manner based on simulation models.

Several types of applications benefit from being tested in
an emulation test-bed. Performance of implementations of
multi-hop routing protocol can be verified under realistic, yet
reproducible, conditions. Other types of applications such as
platooning [4] or driving assistance [5] to be deployed in
car-to-car scenarios can be tested in the risk free environ-
ment of the emulator. In the latter case, the network quality
experienced by the application is mapped into changes of
node movement or transmission parameters. An example of
this is a platooning application that reacts to experiencing a
high packet loss rate by slowing down the speed of the car
to avoid cars colliding. The described applications illustrate
two important aspects of the test-bed. In the first case, a
routing application optimizes network performance based on
the emulated link properties, i.e., affects parameters in layers
above the emulator. In the other case, a platooning application
optimizes geographic trajectories of the nodes based on the
link properties, i.e., directly affects the input parameters of the
test-bed. This paper describes how the test-bed supports both
types of applications.

Several additional requirements must be fulfilled by the
test-bed in order to emulate properties of wireless links suc-
cessfully. Emulating transparently as seen from the network
application is inherent to create results comparable to those

27

International Journal On Advances in Telecommunications, vol 2 no 1, year 2009, http://www.iariajournals.org/telecommunications/

of real experimental setups. Transparency is composed of
several requirements. The emulator must operate in real-time
to resemble access and transmission performance of a real
wireless link, as seen from the applications. It must also
present link-layer interfaces to the network layer (and upper
layers) similar to a real wireless interface. The emulator should
be non-intrusive meaning that as little software as possible
should be added to the end-nodes where the applications
are deployed. In addition, the test-bed must employ accurate
communication models in the link simulation to resemble
influences from a real environment. Lastly, simple and scalable
deployment, use and result processing is required to ensure
usability of the emulator. Scalable deployment means that it
should be easy to connect enough nodes to the test-bed to
create a network of realistic size for the application under
test.

The contributions of this paper are: 1) description of the
design of the topology emulator, a test-bed capable emulating
dynamic multi-hop topologies by changing time-varying link
properties in real-time; 2) development of both an offline
simulation version for complex models to be simulated before
emulation and an online simulation version for simple models
of which parameters can be affected during emulation; 3)
evaluations of both versions of the topology emulator to
illustrate that they are capable of emulating dynamic multi-hop
topologies while accomplishing the specified requirements.

II. RELATED WORK

Many solutions emulate wireless networks by manipulating
link properties of connections. In general, the solutions can
be put in two categories; with a central architecture or with
a distributed architecture. The central architecture eases de-
ployment, configuration and control of the emulation process.
However, the typical problem with a central approach is perfor-
mance limitation. Tools with distributed architectures address
this limitation by distributing the simulation and emulation
tasks onto more nodes in the network. On the other hand, these
tools are typically challenged by having to coordinate events
between the involved nodes and require an additional piece
of software to be installed on every involved node. The latter
requires that there exists a version of the emulation software
for all platforms used in the application, which is difficult to
support.

An extension to ns-2, called ns-2e [6], can emulate simu-
lated link properties from a traditional ns-2 simulation onto
real traffic. Through so-called network objects real-world
traffic is redirected through the simulation. Incompatibilities
between real and simulated traffic are handled using tap agents
that effectively tunnel real traffic inside special simulation
packets. In its original form, ns-2e is completely transpar-
ent toward end-nodes. However, it cannot guarantee timely
delivery of real traffic. This limitation has been addressed
in [7]. ns-2e has the ability to simulate dynamic topologies
through traditional scripting. However, the number of end-
nodes connected to the emulator is limited by the number of

available network interface cards on the emulating node. This
is a limiting scalability factor.

Another widely used emulation tool is NIST Net [8]. NIST
Net is described as ’network-in-a-box’ capable of emulating
an entire network in a single hop. Similar to ns-2e NIST Net
employs a central architecture with a single node to handle
all end-node connections, simulation and emulation. This
means that it suffers from the same deployment limitations
as ns-2e (individual network interface per attached node and
the need for context switches in the operating system to
handle interrupts for all packets on these interfaces). Also, as
indicated by the term ’network-in-a-box’, NIST Net emulates
entire networks and not links. This means that to use NIST Net
to evaluate networking protocols they need to be implemented
in the emulator, as is the case when using a simulator. Thus,
NIST Net is not transparent to network protocols, as required.

The approach of Seawind [9] is similar to the two described
above. Seawind has mostly be applied for wide-area wired and
wireless networks.

Recently developed tools with centralized architecture
include WNINE [10] and Qomet [11]. WNINE employs
a two-stage emulation process meaning that it completely
separates simulation of the link properties and the emulation.
In the simulation process it offers detailed models, but for
emulation it relies on dummynet [12], which is a tool for
traffic shaping on intermediate nodes in a network. Thus,
WNINE also suffers from the scalability limitations. Qomet
follow the same concept as WNINE, and evaluation of Qomet
only been performed using StarBED [13] and not in a general
network scenario.

In contrast to the centralized approach, each attached node
in a distributed emulation calculates its own view on the link
properties and these views must be synchronized between all
nodes. This approach is used in NetEM [14], EMWIN [15],
JEmu [16]. Testing real applications with these distributed
tools has several challenges. The end-node environment is
deployed as a virtual machine and not a native environment.
This means that the possibility of running the real appli-
cation in a deployment environment is reduced. Moreover,
the communication overhead of synchronization may affect
the performance of the protocols under evaluation. Lastly,
and perhaps most importantly, this type of emulator is not
transparent in the sense that in each case a (potentially small)
piece of code must be running on the attached node.

The tool presented here, called the ’topology emulator’,
employs a central architecture and thus falls in the category of
ns-2e and NIST Net. Compared to NIST Net, the tool emulates
individual layer 2 links between nodes instead of layer 3
paths. This is done in order to facilitate testing of networking
protocols without having to implement them on a software
platform in the involved nodes as well as in the NIST Net
emulator. Compared to ns-2e, the architecture of the topology
emulator uses one central network switch to aggregate node
traffic instead of using a number of network interface cards in
the central emulating device. This has the advantage that more

28

International Journal On Advances in Telecommunications, vol 2 no 1, year 2009, http://www.iariajournals.org/telecommunications/

nodes can be added without changing the hardware set-up of
the emulator. When new nodes are added it is only the internal
link models that need to be updated accordingly.

III. TOPOLOGY EMULATOR

The work presented in this paper builds on the scalable
centralized emulator that is transparent to real applications on
real end-nodes and meets real-time requirements. This version
of the emulator is described in detail in [1] and summarized
in the following. The version of the emulator described here
extends the features of the original emulator to support what
we call online simulation. To distinguish to the two versions,
we refer to the original emulator as the offline version and to
the extended emulator as the online version, which is explained
in the following.

In the offline version, all properties of the network are
assumed to be known beforehand. By knowing distances
between nodes, the specific link properties (packet drop prob-
ability and packet delay) for transmitting packets can be
calculated. To calculate such link properties, models of the
transmission conditions (propagation conditions, transmission
power, coding schemes, etc.) must be specified. All simula-
tion models can be dynamic models. This way geographic
trajectories of nodes can change during simulation, as well
as transmission parameters such as transmission power. Any
parameter can be changed in any model, as long as it is known
beforehand. Once the emulation is running, the parameters
cannot be affected anymore in the offline version.

In the online version, we introduce online simulation
which means that the parameters of the transmission models
can be affected during emulation. To facilitate changing the
parameters online, a control channel from the applications to
the emulator is introduced in the architecture.

Next, the basic architecture of the scalable topology emula-
tor is described. This architecture is designed for both offline
and online simulation. Then, the details of the core parts of the
offline version are described. Finally, the main implementation
choices to realize the online version are described.

Ad-hoc network

Topology emulator with
network connectivity emulation and

mobility simulation

Node

Node

Node

Node

Logical network
connection

Physical Ethernet link

Figure 1. Architecture of topology emulator.

A. Architecture

The network architecture of the topology emulator is illus-
trated in Figure 1. It consists of one centralized node called
the emulator node and a central network switch to which all
end-nodes are connected. End-nodes contain the applications
or networking protocols for evaluation. When applications are
evaluated in real setups, the wireless networking interface on
the end-nodes is used. When the topology emulator is used
for evaluation, the wired networking interface must be used to
connect to the central network switch. This change of network
interface is the only requirement to use the topology emulator
for evaluation. The network switch allows for connecting many
nodes to the topology emulator and thereby helps ensure the
scalability of the test-bed.

The emulator node receives and forwards all frames trans-
mitted between end-nodes. No end-node receives frames be-
fore they have been forwarded by the emulator node. This
node separation and traffic concentration is obtained by use
of 802.11q virtual LAN (VLAN) tagging [17] on the switch.
This concentrates all frames from one end-node in one unique
virtual LAN per end-node. The VLAN-tag can thereby be used
by the emulator node to identify the sources of the frames.

The emulator node creates virtual links between the end-
nodes by controlling bridges between the VLANs. The virtual
links allow end-nodes to transmit frames to each other only
if enabled by the emulator node. By selectively dropping
or delaying frames on the virtual links, the emulator node
controls the properties of all virtual links between end-nodes.
Ultimately, as the emulator node functions as an enhanced
switch and forwards layer 2 frames, its existence is transparent
by design to any layer 3 protocols (and higher) used on the
end-nodes.

The software architecture of the emulator node consists of
three processes; a simulation process, an emulation process
and a property updating process. The simulation process
simulates link properties (packet drop probabilities and delays)
for all virtual links and saves them to a trace. The emulation
process emulates the links in real-time by deciding if packets
should be dropped or not while end-nodes communicate. If
not dropped, the emulator determines a delay for each packet
and transmits it once the delay expires. The property updating
process binds the simulation process and the emulation pro-
cess together by periodically feeding link properties into the
running emulation process.

In Figure 2 the architecture of the offline version of the
topology emulator is depicted. In contrast to the offline
version, the online version in Figure 3 also contains the
mobility simulation and the link simulation as part of the
real-time execution. In the following the different parts of the
architectures are described in detail.

B. Offline version

In this section, the simulation process, the emulation process
and the property updating process are described for the offline
version. The emulation process is the same for the offline and

29

International Journal On Advances in Telecommunications, vol 2 no 1, year 2009, http://www.iariajournals.org/telecommunications/

Figure 2. Emulation with offline simulation.

Figure 3. Emulation with online simulation.

online version and therefore it is only described in this section.

Storage

Packet drop probability
(PDP) trace

Delay table

IN

IN

Network interface

Ingoing packet queue
[all nodes]

Outgoing packet
queue

[all nodes]

Emulator

Periodically update PDP
of all linksPDPs

Delays

Evaluate packets
according to link properties
(if dropped or delayed)

Packets

Schedule packets according to delayPackets

IN

OUT

Not dropped packets

Figure 4. Emulation process

1) Simulation process: In the offline version simulation is
carried out before the emulator is started.

The simulation process is a function that outputs packet drop
probability and packet transmission delay for all virtual links
in time-slices. As input it takes a trace of node positions, a
transmission model and input parameters for the transmission
model. Two examples of transmission models and parameters
are described below. These are also the models used to verify
the performance of the two emulator versions. This verification
is described further in section IV.

One model is a simple unit-disk model that determines
packet drop probability of the link between nodes i and j
at time t by use of a threshold D on distance di,j between the
nodes:

PDPi,j(t) =
{

0 if di,j(t) < D
1 otherwise (1)

Here the delay is constant on all links, which would represent

simply a medium access delay where the channel is assumed
error free and without other contenders when a packet is
transmitted.

To use this model in the simulation process with a trace of
node positions as input, the model parameters needed are the
distance threshold and the constant delay.

More realistic (and thus more complex) transmission models
than the unit-disk model are supported by the simulation
process. In [18], a stochastic model is used which is detailed
in the following.

To model packet drop probability, channel properties, phys-
ical layer properties and link layer properties are used to relax
some of the simplifying assumptions of the simple model.
Rappaport’s shadowing model [19] as seen in (2) is used to
model attenuation of transmitted power to received power (α is
the path-loss coefficient, σ is the shadowing parameter which
is the standard deviation of the zero-centered Gaussian random
variable Xσ).

Pr(d) = Pt − 10 · α · log10(d) + Xσ (2)

The mapping between received power and bit error rate in the
physical layer is modeled by Mangolds OFDM model [20],
assuming use of IEEE 802.11a. To calculate a frame error
rate from the bit error rate the assumption of independent,
identically distributed losses is used, leading the following
expression (where Lframe is size of frame in bytes):

FER = 1− (1−BER)8·Lframe (3)

The frame error rate is then mapped one-to-one into a packet
drop probability in this model. To model the delay, we use
the Bianchi IEEE 802.11 DCF model [21], assuming that
the only causes for frame losses are collisions due to other
nodes transmitting and thus the only factor in delay is the
time spent backing off from the channel. Propagation delay
is considered as a constant and independent of distance. To
model the number of nodes contending for a channel, we
model how many nodes are likely to transmit packets within a
time-slice by using a threshold on the packet drop probability
for all virtual links. If a link between two nodes has a packet
drop probability below a threshold P , we consider the two
nodes as being neighbors and consider the transmitted packets
from them probable to collide. The more neighbors a node has,
the more likely it is for packets transmitted by this node to
have a high delay.

In this paper the latter complex model is used for the
evaluations of the offline version. For comparison of the offline
and online version, the simple link model is used in order to
keep processing power needs of the emulator node low (and
to avoid having to performance optimize the implementation
of the complex model).

When performing offline simulation the distances can be
calculated from node positions which are input to the simula-
tion process over time t as (x, y)-coordinates. These positions
can be based on realizations of either recorded traces of real
movement, deterministic paths that simulated nodes follow or

30

International Journal On Advances in Telecommunications, vol 2 no 1, year 2009, http://www.iariajournals.org/telecommunications/

based on simulations of stochastic models such as random
walk or random way-point [22].

SimulatorStorage

Node position trace Channel model PHY model

Link layer model

Packet drop probability
(PDP) trace

Delay table
Delays

PDP

Bit error rate

RSS
IN

OUT

OUT

Figure 5. Offline simulation process

Packet drop probability of a link is calculated based on
distances between nodes and the transmission models of the
channel, the physical layer and link layer as shown in Figure
5.

The output of the calculations is a trace of packet drop
probabilities over time pi,j(t) on every link (between nodes
i and j) in the topology. Note that the symmetry of the
probabilities on a link depends on the simulation model as
the topology emulator supports asymmetrical links where
upstream and downstream links have unequal properties.

The delays are calculated as a static table of inverse cu-
mulative distribution functions. The table is used primarily to
enable fast lookup of delays as it need to be determined for
each packet when emulating. As the traffic patterns of the
nodes are not known prior to the emulation, a parameterized
family of delay distributions for K = 1, 2, ..., n (number
of simultaneously transmitting nodes) is used instead of just
samples of delays. n is the total number of nodes in a
simulation and is scenario-specific. The reason several delay
distributions are used is the fact that the distribution of the
delay depends on the number of nodes able to transmit in a
channel. Therefore we generate a delay distribution for each
possible number of next-hop neighbors in a network. When
nodes move around or the transmission conditions change,
the number of next-hop neighbors will change and the real-
time emulator will access the corresponding distribution in the
table. This also means that the table containing the delays
is generated once during simulation and not continuously
updated during emulation.

Using the simple model with constant delay for all numbers
of next-hop neighbors the delay table is a column vector of
height n− 1. In the complex model with stochastic delay the
table is a (n−1)×r matrix, where r is the chosen discretization
of the inverse CDF in the table.

Based on the probability threshold P , the number of next-
hop neighbors ni(t) of node i at time t is calculated from
pi,j(t) for all t. This is used as index to find the appropriate
delay distribution during emulation.

All simulation models must compensate for the fact that

all calculations are performed before running the emulation.
For the delay, this means that the patterns of generated
traffic by applications connected to the emulator must match
the traffic models used in the simulation models. As an
example, the Bianchi-model assumes a saturated channel,
which may not always be the case for the applications. Also,
in the offline version, it is not possible for the applications
to dynamically change communication parameters, such as
modulation scheme, when emulation is running. If in need of
such changes, they must be implemented in the simulation
models when simulating.

2) Property updating process: In the offline version the
trace of link properties is saved to a file in the simulation
process. To be able to use the trace-file for emulation, the
property updating process reads the file and updates arrays
accordingly which are then read by the emulation process
when determining packet drop probabilities and number of
next-hop neighbors. The static delay table is only loaded
once. The entries in the trace are time stamped relative to
the beginning of the simulation and ordered ascending. When
the real-time clock reaches the next time-stamp, the next entry
in the file is loaded into the emulation process. The property
updating process supports update frequencies up to 10Hz.

3) Emulation process: All nodes are physically connected
to a Cisco Catalyst 2950T VLAN-aware 24-port switch. Two
of the ports have a capacity of 1Gbit/s traffic whereas the
remaining ports support 100Mbit/s. One of the gigabit ports is
used in trunking mode, such that all traffic received on other
ports is concentrated in this port. The emulator node is then
connected to the trunk port. This node has an Intel Core 2 Duo
1.86GHz processor and has Linux kernel v2.6.18 installed in
our setup.

Packets received on the emulator node are filtered twice
before reaching the emulation process; on layer 2 by ethernet
bridging controlled by ebtables and on layer 3 by netfilter
controlled by iptables. The layer 2 bridging is necessary to
prevent transmission of link layer datagrams, e.g from ARP,
when there is no virtual link. If emulation was only enforced
using netfilter, link layer datagrams would not be filtered.
Netfilter is used to deliver packets to the emulation process.

The details of the emulation process resemble NIST Net,
however, as the packet flow using the VLANs was not easily
integrated into the existing solution, a new emulation process
was developed.

On layer 2, the packet control uses a binary value li,j(t)
indicating if a link exists or not between source and destination
of a packet identified by the VLAN tag. If li,j(t) = 1 then
there is a link and the packets are forwarded to layer 3. If
li,j(t) = 0 then there is no link and the packet is dropped.
li,j(t) is calculated as

li,j(t) =
{

1 if pi,j(t) < P
0 otherwise (4)

On layer 3, the packets are forwarded to the emulation process.
For each uni-directional link between two nodes, parameters

31

International Journal On Advances in Telecommunications, vol 2 no 1, year 2009, http://www.iariajournals.org/telecommunications/

are stored in tables representing packet drop probability, the
number of next-hop neighbors, and packet delay distributions.
To determine if a packet is dropped the emulation process
draws a uniform random number in [0,1] and compares it to
pi,j(t). The process also determines the delay by using the
number of next-hop neighbors of the source node i, ni(t), and
the static delay table. To determine a delay, ni(t) is used to
find the appropriate distribution (row in the table). A uniformly
distributed random number is drawn and used as index in
the tabularized form of the inverse CDF which then indicates
the delay of that particular packet. Once the delay has been
determined, the packet is scheduled for delayed transmission.

The packet scheduler checks for and transmits packets
every 122µs. In order to achieve such a high time reso-
lution, the Linux Real-Time Clock chip (RTC) was used
to trigger a scheduler in the emulation process. This clock
supports triggering processes at frequencies up to 8192Hz
(1/8921Hz = 122µs), which is much higher than normal
timer resolution of Linux of 10-100Hz. Once triggered, the
emulation process advances a ring buffer containing a list of
packets to be transmitted in the current time slot and transmits
all the packets in the list.

C. Online version

For the online version the simulation is performed in real-
time during the emulation. An overview of this process related
to emulation is given in Figure 3. The main difference to the
offline version is that here parameters of the simulation models
can be changed online. This means that instead of having all
inputs to the simulation process being known and specified
beforehand, these properties can be actively updated during the
emulation. This directly enables application to affect mobility
parameters, namely to be able to affect the position of a node
as a consequence of the experienced network quality. With the
online version, this becomes possible as all input parameters
to the simulation process can be updated, including the node
movement.

As illustrated in Figure 3, the online version requires the
simulation process to be deployed on the emulator node.
In turn, if applications affect the mobility of the nodes,
updated position information must be communicated to the
link simulation process. As the example applications in the
vehicular scenarios do not manipulate (x,y)-coordinates but
rather node physics (such as speeder or brakes), there must
exist a function capable of transforming application output
to link simulation input. In the car scenario this function
would transform braking and speeding information into
updated (x,y)-coordinates which would be loaded into the
link simulator. To handle this transformation, an additional
mobility simulation entity is needed in the network between
end-nodes and the link emulator.

Online link simulation during emulation can be performed
on several levels; an event-based level (where link properties
are calculated per packet) or periodically (where link prop-
erties are calculated per time-slice) as in the offline version.

The event-based level is very precise as the networking envi-
ronment is adapted according to each packet. The periodic
level may be less precise as it only represents an average
of properties over the specific time-interval. On the other
hand, simulating complex models per packet can become very
processing-intensive when a large amount of packets is sent
through the emulator process. Simulating periodically is not
influenced by the incoming packet rate and may therefore be
more suitable for more complex models as high packet rates
can still be supported. In this work, the online simulation
is performed periodically as the event-based level is very
processing-intensive and not necessary to illustrate support
of online simulation. As described in section III-B, a simple
simulation model was developed to reduce implementation
complexity and processing-intensity. The simple model is
sufficient as main purpose of the model is to evaluate the
performance of the online simulator compared to the offline
simulator.

The connection between the online simulation process and
the emulation process is quite similar to the offline version. In
the online version the link properties are transmitted from the
simulation process to the updating process using a socket. This
structure has been chosen as it enables the simulation process
to be located on a secondary, resourceful computer. To be
able to use the properties for emulation, the property updating
process for the online version reads the incoming data on the
socket and updates the emulator arrays. The arrays are updated
in an event-driven manner whenever new data is received by
the updating process. As in the offline version, this updating
process supports update frequencies up to 10Hz.

IV. EVALUATION

The topology emulator has been evaluated on several lev-
els; 1) evaluating that the emulator is capable of emulating
dynamic multi-hop topologies and 2) verifying that the per-
formance requirements are met. Results from both evaluations
are presented and discussed in the following. As the emulation
process is the same for both offline and online simulation, the
emulation capability has only been evaluated once by using
the offline version. Meeting performance requirements is a
different task depending on simulation version and therefore
has been evaluated for both offline and online version.

A. Functionality evaluation

To evaluate the functionality of the emulator, a scenario
is specified where mobile nodes create a dynamic topology in
which end-to-end communication is supported by ad-hoc rout-
ing over multiple hops. This scenario illustrates the intended
use of the emulator, namely to test prototypes of networking
algorithms such as routing or addressing schemes or even
transport or service protocols for highly dynamic networks.

The movement of the nodes in the scenario is illustrated in
Figure 6. In the scenario, the R2 node moves out of range
of the destination node and is replaced in the end-to-end
path by R1. Throughout the scenario packets are dropped and
delayed on the links according to the simulated parameters.

32

International Journal On Advances in Telecommunications, vol 2 no 1, year 2009, http://www.iariajournals.org/telecommunications/

The objective of the scenario is to illustrate how the ad-
hoc routing algorithm is performing in a dynamic multi-hop
topology. The link properties model an IEEE 802.11a wireless
link incorporating shadowing and fading in the channel, as
previously described. The parameters of the physical model
are set to α = 2 and σ = 4. For the IEEE 802.11a link the
background noise is set to -100 dBm, the modulation scheme
to 64-QAM, transmission power to 100 mW, Lframe to 1500
bytes and the number of retransmissions in the medium access
to 7. The specified movement is used as input to simulate

Figure 6. Scenario with relay nodes R1 and R2 move periodically back and
forth.

PDP and delay. The PDP of the links is illustrated in Figure
7 as the probability varying over time on each link in the
network topology. A 3-hop path is always present (R2-R1-
Destination). Also a 2-hop path is always present, however
it changes over time. This effectively illustrates the dynamic
multi-hop topology. The trace of simulated PDP and the delay
table are then used as input for the emulation process to
impose the topology information onto real traffic. ping is set
to continuously ping from source to destination while OLSR
[23] is used as ad-hoc routing algorithm between the nodes.

The resulting traffic recorded by the emulator is illustrated
in Figure 8. From the figure, we see that the emulator is capa-
ble of emulating a dynamically changing multi-hop topology
as seen from the end-nodes. This is seen as the flow of packets
is redirected to use the available links when the currently used
link becomes unavailable. Moreover, the packets sent using
the R1-R2 link clearly demonstrate the multi-hop emulation
capability.

B. Performance evaluation

As previously described, the emulator must appear trans-
parent to end-nodes meaning that lower network bandwidth
and higher link delay (besides the emulated delay) compared
to a wireless environment is not tolerated. Evaluations of
bandwidth and service time have thus been performed to
ensure that the topology emulator meets these requirements.

Bandwidth limitations in a network occur at processing or
communication bottlenecks. In the topology emulator, two

Figure 7. Packet drop probability (PDP) trace on links. The path changes
from using R2-Destination to Source-R1.

Figure 8. Traffic on links during emulation shows that different available
links are used.

such potential bottlenecks exist; in the switch and in the
emulator node. As the complexity and processing need in
the emulator node is far greater than that of the switch,
the emulator node is considered the significant bandwidth
bottleneck in the setup. Hence, only the bandwidth capabilities
of the emulator node were evaluated.

To evaluate available bandwidth of the emulator node,
the traffic generator D-ITG [24] is used. By use of 7 nodes
in a fully connected emulated topology, each sending and
receiving streams of 100MBit/s asynchronously to other
nodes, the emulator node was heavily loaded. D-ITG is also
capable of recording the received bandwidth on the nodes
which should amount to 100Mbit/s per node deducting a
small overhead percentage from transport and network layers.
In total this amounts to 700Mbit/s theoretical load on the
emulator (experiments showed the real max to be 644Mbit/s).

Considering that the expected maximum throughput of
IEEE 802.11a in a real wireless channel is 54Mbit/s, the
emulator node is capable of supporting 12 separate channels
within the 644Mbit/s limit. This limitation of 12 channels
is equal to 24 connected, fully loading nodes in separated
networks of only two nodes and is in effect only when the
nodes experience a traffic- and noise-free channel.
The measured bandwidth capability of the emulator is

33

International Journal On Advances in Telecommunications, vol 2 no 1, year 2009, http://www.iariajournals.org/telecommunications/

considered acceptable due to the following reasons. First,
currently it is only possible to connect 20 nodes to the switch.
Second, for these 20 nodes to fully load the emulator node
on links between them with up to 54Mbit/s, the simulation
scenario would need to produce 10 separate channels with
only two nodes each and these channels would need to
be free of any external noise. This is of course a possible
situation when testing the wireless application, although not
considered very likely.

Service time of the entire topology emulator is also eval-
uated. Service time is defined to be the time it takes from a
packet is sent from one end-node until it is received at another
end-node. This includes transmission time from one end-node
to the switch, between switch and emulator node both ways,
and finally between switch and the other end-node. To be
able to use the emulator to emulate any delay transparently,
the service time must not exceed the time it takes to send a
packet between two nodes on a real wireless link. The Linux
network tool ping was used to measure the service time for a
link between two nodes by sending out packet probes. ping
measures the round-trip time when sending and acknowledging
a packet. To measure the delay between two nodes, half of the
round-trip time was used.

The evaluation is performed on a emulated link (with
emulated delay = 0) and compared to both a direct wired
link and measurements of an IEEE 802.11a wireless link.
This is done to establish if the maximum service time of the
topology emulator is less than smallest delays expected on
a real wireless link. As the service time includes processing
time of a packet in the switch and in the emulator node, and
this time is dependent on the packet size, several packet sizes
are used. Layer 3 packets of sizes 0-5000 bytes, with Ethernet
maximum frame size of 1500 bytes payload, are used. Having
a maximum layer 2 frame size smaller than the maximum layer
3 packet size will result in fragmentation, which in turn will
result in more frames to traverse the topology emulator, which
ultimately will result in longer service times. The measurement
of the wireless delays was done using two Linux-equipped
laptops with IEEE 802.11a network interface cars in ad-hoc
mode standing next to each other. The measurement of the
wired link used the same laptops, but connected through a
single cross-over Ethernet cable. The delays were measured
using ping and in the wireless case multiple times during a
week. The results of all measurements are illustrated in Figure
9. Here it is illustrated that transmitting a packet through the
entire topology emulator uses approx. 250µs more than when
transmitting using a direct wired link. In addition, the figure
shows that the excess 250µs are well below the transmission
times of the tested wireless link. This means that the service
time of the topology emulator is acceptable as it is below the
values of the tested IEEE 802.11a link.

A comparison between the service times of the offline
and the online version was also performed. This was done
to establish if the transparency requirement is met in the
online version as well. As the simulation process consumes

� ��� ���� ���� ���� ���� ���� ���� ���� ���� �����
���
�

���
�

���
�

��	
��
��� ���

� ��� ��� �� ��
� ���

 �!�	� 	"##�	��"#$%&'���("##�	��"#)*��+"&� �%&'���((�'�,-.��' *�!�'�

 	"##�	��"#/�0 	"#1�(�#	� �#��!2�'

Figure 9. Service time from various packet sizes on: A real wireless IEEE
802.11a link, a direct emulated link (with delay = 0) and a direct wired
Ethernet link. The confidence interval is shown for the wireless measurements
only, as the variations in the remaining measurements are insignificant.

processing power besides the emulation process, it is important
to confirm that the performance of the online version is not
different from the offline version.

The evaluation was performed during the bandwidth test
described previously using ping to probe the delay from one
node to another while loading the emulator process heavily.
The emulator was loaded traffic ranging from 0 to 700 Mbit/s
and ping probes of size 1500 bytes measured delay 30 times
during the load period. From these measurements the mean
one-way delay was calculated. The offline and the online
versions were set up using equal simulation models and equal
property update rates. The simulated link model was using
equal property update frequencies at maximum (10Hz).

The results are shown in Figure 10 and Figure 11. It
was possible to measure the delay between load values of
0 to 500 Mbit/s. Above 500 Mbit/s no ping-packets were
acknowledged within the measuring period. As a consequence
load values above 500Mbit/s are not depicted.

As illustrated in Figure 10 the service time of both versions
are well below 1 ms, which can be read from Figure 9
to be sufficient to be transparent for packet of 1500 bytes.
In Figure 11 it is seen that the service time starts to vary
significantly more and increase once the emulation process is
loaded with more than 350Mbit/s. This is shown to be the case
for both versions. This means that the emulator cannot reliably
be considered transparent toward end-nodes above 350Mbit/s,
which is then considered the bandwidth performance limit. If
the simulated delay is above the service time of 30ms seen
in Figure 11, then an algorithm could be applied to take the
service time (that changes with the load) into account when
delaying packets. As this is out of the scope of this work, the
bandwidth performance limit is kept at 350Mbit/s.

The increased service time is most likely due to overloading
of the CPU in the emulator node causing buffering on either

34

International Journal On Advances in Telecommunications, vol 2 no 1, year 2009, http://www.iariajournals.org/telecommunications/

0 100 200 300
0

0.5

1

1.5

2

Bandwidth (Mbit/s)

O
ne

−
w

ay
 d

el
ay

 [m
s]

Offline
Online

Figure 10. Service delay at different bandwidth (0-350 Mb/s)

350 400 450 500
−10

0

10

20

30

40

Bandwidth (Mbit/s)

O
ne

−
w

ay
 d

el
ay

 [m
s]

Offline
Online

Figure 11. Service delay at different bandwidth (350-500 Mb/s). Continuation
of Figure 10 with increased y-scale.

the networking interface card or in the operating system.
One immediate solution to this issue would be to distribute
the emulation process into two threads working on incoming
packets using both cores of the processor.

V. EXTENSIONS

Information about node positions or link quality is not
communicated to end-nodes. To distribute this information to
the end-nodes would require an additional control channel.
Such a control channel could be deployed using the existing
connections between end-nodes and emulator node. In doing
so, the resources consumed by the control traffic on the
links should be accounted for in the simulation models. An
alternative solution to reusing connections is to deploy a
separate network, which would then require additional net-
working interfaces in all nodes, but would not interfere with

the application traffic on the emulated links. Moreover, only
packet drop probability and delay are calculated, meaning
that the upper layers do not have access to traditional link
layer information such as received signal strength indication
(RSSI). The setup requires all upper layer technologies to be
independent of the link layer and the physical layer, which is
a reasonable assumption to test many distributed applications.
Approaches to actively deliver such information through an
emulated virtual network interface on the end-node are being
investigated. Transporting such information from the emulator
to the end-nodes requires test-bed specific software to run on
the end-nodes during emulation.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a new network emulation tool
capable of emulating dynamic multi-hop topologies. This is
especially important when developing wireless applications,
as field tests of such applications become cumbersome or
even impossible to reproduce. As an advance to existing
tools, the topology emulator features real-time emulation of
dynamically changing multi-hop topologies that are resulting
from node movement in a pre-specified scenario. Moreover,
the architecture of the topology emulator is designed to be
scalable and modular to facilitate extensions without any
modification to the deployed version.

The functionality is divided into two parts; a simulation
part and an emulation part. The simulation part simulates a
complex wireless network from node movement resulting in
packet drop probabilities and delays on each link between
nodes. The emulation part imposes these properties in real-
time to received packets on a central emulator node. End-
nodes, that are usually in the wireless domain, are connected
to the emulator node via wired links through a central switch.
All frames sent from end-nodes are forwarded to the emulator
node and based on the link property traces the emulation
part decides if frames should be forwarded further. If so,
a delay is determined and the frames are scheduled for
transmission to the receiving end-node. This two-part model
has been deployed in two different execution environments;
offline simulation and online simulation. The offline version
simulates the link properties prior to any emulation whereas
the online version simulates the properties in real-time during
emulation. In the online version it is thereby possible to change
the parameters of the simulation model to reflect changes in the
environment and allow end-nodes to affect their own positions
based on the experienced network properties or on the content
of the communicated messages. By designing the connecting
point as a switch, the network architecture allows for up to 20
real end-nodes to be connected to the emulator. Evaluations of
the functionality and the performance of the emulator shows
that it is capable of emulating dynamically changing topol-
ogy properties toward all connected end-nodes. The results
also show that the end-nodes do not experience limitations
in bandwidth or longer transmission delays when using the
emulator. This has proved valid for both the offline and the
online emulator. The maximum capacity of the emulator was

35

International Journal On Advances in Telecommunications, vol 2 no 1, year 2009, http://www.iariajournals.org/telecommunications/

determined to be 350 Mbit/s. This limit has shown sufficient to
support up to 14 nodes in WLAN scenarios using at maximum
54 Mbit/s per channel.

Future work includes optimization of the performance of
the online simulation process. Approaches to deliver simulated
link information, such as RSSI-values, layer 2 packet loss
rates or even position coordinates, to end-nodes are currently
under investigation. An interesting investigation is to establish
the maximum possible complexity of the simulation model in
the online version. As highly complex model requires many
resources during simulation, the processing power remaining
from the emulation process can be used to determine the
maximum level of complexity for calculating link properties.

ACKNOWLEDGMENTS

This work was partially supported by the EU IST FP6
project ’HIghly DEpendable ip-based NETworks and Services
– HIDENETS’, see www.hidenets.aau.dk and the EU ICT FP7
project ’Open Pervasive Environments for iNteractive migra-
tory services – OPEN’, see www.ict-open.eu. The Telecom-
munications Research Center Vienna (ftw.) is supported by
the Austrian Government and by the City of Vienna within
the competence center program COMET.

REFERENCES

[1] A. Nickelsen, M. Jensen, E. Matthiesen, and H. Schwefel, “Scalable
emulation of dynamic multi-hop topologies,” in Proceedings of the
4th International Conference on Wireless and Mobile Communications
(ICWMC 2008), 2008.

[2] S. McCanne and S. Floyd, “Network simulator ns-2.” The Vint project,
available for download at http://www.isi.edu/nsnam/ns, May 6, 2009.

[3] H. Waeselynck, Z. Micskei, M. Nguyen, and N. Riviere, “Mobile
Systems from a Validation Perspective: a Case Study,” Parallel and
Distributed Computing, 2007. ISPDC’07. Sixth International Symposium
on, pp. 14–14, 2007.

[4] T. Tank and J. Linnartz, “Vehicle-to-vehicle communications for AVCS
platooning,” Vehicular Technology, IEEE Transactions on, vol. 46, no. 2,
pp. 528–536, 1997.

[5] R. Bishop, R. Consulting, and M. Granite, “A survey of intelligent
vehicle applications worldwide,” in Intelligent Vehicles Symposium,
2000. IV 2000. Proceedings of the IEEE, pp. 25–30, 2000.

[6] K. Fall, “Network emulation in the VINT/NS simulator,” in Computers
and Communications, 1999. Proceedings. IEEE International Sympo-
sium on, pp. 244–250, 1999.

[7] D. Mahrenholz and S. Ivanov, “Real-Time Network Emulation with ns-
2,” in Proceedings of the The 8-thIEEE International Symposium on
Distributed Simulation and Real Time Applications (DS-RT 2004), 2004.

[8] M. Carson and D. Santay, “NIST Net–A Linux-based Network Emula-
tion Tool,” Computer Communication Review, vol. 33, no. 3, pp. 111–
126, 2003.

[9] M. Kojo, A. Gurtov, J. Manner, P. Sarolahti, T. Alanko, and
K. Raatikainen, “Seawind: a Wireless Network Emulator. In proceeding
of 11th GI,” ITG Conference on Meaurement, Modelling and Analysis
(MMB 2001), pp. 151–166, 2001.

[10] T. Perennou, E. Conchon, L. Dairaine, and M. Diaz, “Two-stage wireless
network emulation,” in Proceedings of the Workshop on Challenges of
Mobility held in conjunction with 18th IFIP World Computer Congress
(WCC), pp. 57–66, Springer, 2004.

[11] R. Beuran, L. Nguyen, K. Latt, J. Nakata, and Y. Shinoda, “QOMET:
A Versatile WLAN Emulator,” in Proceeding of the 21st International
Conference on Advanced Information Networking and Applications,
2007.

[12] L. Rizzo, “Dummynet FreeBSD network emulator.” http://info.iet.unipi.
it/~luigi/ip_dummynet, May 6, 2009.

[13] J. Nakata, S. Uda, R. Beuran, K. Masui, T. Miyachi, Y. Tan, K. Chinen,
and Y. Shinoda, “StarBED2: Testbed for Networked Sensing Systems,”
in Networked Sensing Systems, 2007. INSS’07. Fourth International
Conference on, pp. 142–145, 2007.

[14] S. Hemminger, “Network Emulation with NetEm,” in Proceedings of
Linux Conf Au 2005, 2005.

[15] P. Zheng and L. Ni, “EMWIN:: emulating a mobile wireless network
using a wired network,” Proceedings of the 5th ACM international
workshop on Wireless mobile multimedia, pp. 64–71, 2002.

[16] J. Flynn, H. Tewari, and D. O’Mahony, “A Real-Time Emulation System
for Ad Hoc Networks,” Proceedings of the Communication Networks
and Distributed Systems Modeling and Simulation Conference, 2002.

[17] D. McPherson and B. Dykes, “VLAN Aggregation for Efficient IP
Address Allocation.” RFC 3069 (Informational), Feb. 2001.

[18] A. Nickelsen and M. Jensen, “Evaluation of routing dependability in
manets using a topology emulator.” Master Thesis, 2007.

[19] T. Rappaport, Wireless communications. Prentice Hall PTR Upper
Saddle River, NJ, 2002.

[20] S. Mangold, S. Choi, and N. Esseling, “An Error Model for Radio
Transmissions of Wireless LANs at 5GHz,” in Proc. Aachen Symposium,
pp. 209–214, 2001.

[21] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed co-
ordination function,” Selected Areas in Communications, IEEE Journal
on, vol. 18, no. 3, pp. 535–547, 2000.

[22] C. Bettstetter, H. Hartenstein, and X. Pérez-Costa, “Stochastic Properties
of the Random Waypoint Mobility Model,” Wireless Networks, vol. 10,
no. 5, pp. 555–567, 2004.

[23] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol
(OLSR).” RFC 3626 (Experimental), Oct. 2003.

[24] S. Avallone, A. Pescape, and G. Ventre, “Distributed internet traffic
generator (D-ITG): analysis and experimentation over heterogeneous
networks,” ICNP 2003 poster Proceedings, International Conference on
Network Protocols, Atlanta, Georgia, 2003.

36

International Journal On Advances in Telecommunications, vol 2 no 1, year 2009, http://www.iariajournals.org/telecommunications/

