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Abstract—In this paper, we extend a model of the fundamental
user profiles, developed in our previous works. We explore
customer behavior in cellular networks. The study is based on
investigation of activities of millions of customers of Orange,
France. We propose a way of decomposition of the observed
distributions according to certain external criteria. We analyze
distribution of customers, having the same number of calls during
a fixed period. A segmentation of the population is provided
by an approximation of the considered distribution by means
of a mixture of several more ”basic” distributions presenting
the ”granularity” of the user’s activity. In order to examine
the meaning of the found approximation, a clustering of the
customers is provided using their daily activity, and a new
clustering procedure is constructed. The optimal number of
clusters turned out to be three. The approximation is reduced
in the optimal partition to a single-exponential one in one of
the clusters and to two double-exponential in others. This fact
confirms that the proposed partition corresponds to reliable
consequential social groups.

Keywords–Customer behavior pattern; Market segmentation;
Probability distribution; Mixture distribution model; Machine learn-
ing; Unsupervised classification; Clustering.

I. INTRODUCTION

This paper presents an extended and improved version of
[1], where we introduced the general framework of modelling
behavior patterns in cellular networks.

Customer behavior is a way people, groups and companies
purchase, operate with and organize goods, services, ideas and
knowledge in order to suit to their needs and wants [2], [3].
Multidisciplinary studies of the customer behavior strive to
comprehend the decision-making processes of customers and
serve as a basis for market segmentation. Through market
segmentation, large mixed markets are partitioned into smaller
sufficiently homogeneous sectors having similar needs, wants,
or demand characteristics.

In the cellular networks context, the mentioned products
and services can be expressed in spending of the networks
resources such as the number of calls, SMS messages and
bandwidth. Market segmentation in this area is able to char-
acterize behavior usage or preferences for each sector of
customers. In other words, typifying of the customers‘ profiles
is aimed at using this pattern in order to suitably adapt specific
products and services to the clients in each market segment.

A segmentation of the population is provided by an approx-
imation of the considered distribution by means of a mixture
of several more ”basic” distributions, which represent the
”granularity” of the user’s activity. Such mixture distribution
models are conventional in machine learning due to their
fruitful applications in unsupervised classification (clustering).
In this framework, the underling probability distribution is
decomposed into a mixture of several simple ones, which
correspond to subgroups (clusters) with high inner homo-
geneity. In our application, hypothetically, each one of these
clusters corresponds to a social group of users, having its own
dynamics of calls depending upon the individual group social
parameters.

The common applications of the known Expectation Max-
imization algorithm [4], which estimates parameters of the
mixture models (for instance, in the clustering), suggest the
Gaussian Mixture Model of the data. This well-understood
technique is much admired because it satisfies a monotonic
convergence property and can be easily implemented. Never-
theless, there are several known drawbacks. If there are mul-
tiple maxima, the algorithm may discover a local maximum,
which is not a global one. In addition, the obtained solution
strongly depends on the initial values [5]. Moreover, many
studies are recently devoted to analysis of non-Gaussian pro-
cesses, which are often related to the power law distributions.

While in clustering as a rule the Gaussian Mixture Model of
the data is assumed, we treat the user activity in a cellular net-
work as a mechanism generating non-Gaussian distributions.

In physics, hyperbolic dependencies are often observed
(e.g., theories during phase transitions that clarify the corre-
sponding mechanism). On the other hand, there are a number
of general formal models (for example, the law of Yule [6]),
where such a distribution appears. In these models, hyperbolic
behavior is often observed as asymptotic or applicable to
certain parts of the distribution.

Our research develops a novel model of the fundamental
user behavior patterns (user profiles) in cellular networks. We
adopt the standard simple regression methodology of [7] to
our purposes. We show that empirical densities of the studied
underlying distributions are monotone decreasing and do not
exhibit multi-modality. These properties characterize mixtures
of the exponential distribution [8], [9]. In this sense, we extend
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the study of [10], where it was shown that a parallel user
activity in recording in an email address book leads to an
appropriate exponential distribution of the clients.

In order to explore the meaning of the found approxima-
tion, a clustering of the customers is provided, based on their
daily activity, and a new clustering procedure is constructed
in the spirit of the bi-clustering methodology of [11], [12].

We base our study on analysis of the underlying distribution
of customers, who have the same number of calls during a fixed
period, say a day. In this research, an exponential distribution
mixture model is applied. It is shown that a three-exponential
distribution fits well the needed target.

The estimated optimal number of clusters turned out to
be three. A straightforward clustering of the original data is
hardly expected to deliver a robust and meaningful partition.
Such a situation is a common place in the current practice.
Moreover, in many applications the aim is to reveal not merely
potential clusters, but also a quite small number of variables,
which adequately settle that partition. For instance, the sparse
K-means (SK-means) proposed in [13], at once discovers the
clusters and the key clustering variables.

A new procedure in the spirit of such a bi-clustering
methodology, where features and items are simultaneously
clustered, is applied in this paper. Firstly, 24 hours inside a day
(the features) are clustered consistent with the corresponding
users’ activity. In the next step, the users are divided in groups
according to their occurrences in the previous partition of
hours. As a result, a sufficiently robust clustering of users is
obtained together with a description of the clusters in terms of
call activity.

The observed dissimilarity between hours (from the point
of view of the users’ behavior) can be naturally characterized
by a distance between the corresponding distributions. In this
paper, we employ Kolmogorov-Smirnov two sample test statis-
tic [14], [15], which is actually the maximal distance between
two empirical normalized cumulative distribution functions.

Then we use the Partitioning Around Medoids clustering
algorithm [16], in order to cluster the data. This algorithm
operates with a distance matrix, but not with the items
themselves. This is feasible for small data sets (such as the
considered one, composed of 24 hours) and a small number
of clusters three in our case. One of the input parameters
of the algorithm is the number of clusters. We estimate the
optimal number of their hours clusters, using the Silhouette
coefficient of [17]. Here ideas of both cohesion and separation
are combined: for individual points as well as for partitions.
The number of clusters was checked in the interval of [2−10],
and the optimal one was found to be 3 for all the considered
data sets.

When we obtain classification of users’ activity across the
hour clusters, we built a vector, composed of the fractions of
calls falling within each hour cluster. At this stage, we produce
user clustering employing this new data representation. Note
that, due to the large amount of data, we deal here with a
high complexity clustering task. It means that the traditional
clustering algorithms cannot be directly applied to this situa-
tion. In order to resolve this problem we apply a resampling
clustering procedure, according to which the whole data set is
partitioned based on clustering of its samples.

Figure 1. DSN curves for InCalls (a) and OutCalls (b), obtained on
each day of the whole period of observation (13 days).

Finally, we obtain the optimal partition with a single-
exponential call distribution in one of the clusters and two
double-exponential call distributions in others. This fact con-
firms that the proposed partition corresponds to reliable con-
sequential social groups. We emphasize the fact that the
similarity measure, applied in the clustering process, is formed
without any reference to the previously discussed mixture
model.

The results, presented in the paper, are obtained by means
of a study of the daily activity of a real group of users during
the period from March 31, 2009 through April 11, 2009. For
each considered day, several million users in this group are
active (making one or more calls). The time of each input or
output call is known. Note that the sets of active users on
different days vary.

The paper is structured as follows. Section II is devoted
to a distribution model of user activity and its decomposition.
Section III describes the customer clustering procedure and its
evaluations. The section presents model-based evaluation of
the proposed customer classification. Section IV summarizes
the paper and provides outlook.

II. DISTRIBUTION MODEL OF USER ACTIVITY

In this section, we consider a mixture model approximation
of the underlying distribution of users having the same number
of calls during a day. We denote by DSN the Day Same
Number distribution. We distinguish two types of user activity:
input calls, denoted by InCalls, and output calls, denoted by
OutCalls.

All users (about five millions) are divided into groups
according to their number of calls per day, so that the i-
th group contains all customers having exactly i calls per a
particular day. The size of the i-th group is denoted by Ni.
Obviously, the contents and sizes of the groups are not the
same for different days. In addition, the number of groups with
i > 100 is very small in the dataset, and these groups most
likely contain ”non-standard” users such that sales agents, call
centers and so on. We omit such groups together with users,
who do not call at all in a given day, since this lack of activity
could be explained by factors that are not directly related to
the user activity on the network.

The DSN curves, normalized to 1, of InCalls (a) and
OutCalls (b) as well as the corresponding numbers of calls
ranging from 1 to 50, are shown in Fig. 1. We note that the
curves are of almost the same monotonically decreasing form
for all 13 days of the observation.
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TABLE I. p-values for different numbers of components

Number of components 1 2 3 4
p-value 0 8.6e− 06 0.025 0.282

As it was mentioned in Section I, a mixture distribution
model with exponential components seems to be an appropriate
approximation of DSN . In our context, it is natural to assume
that the underlying population is actually a mix of several
different sub-populations. Mixture distribution models appear
in many applications as an inherent and straightforward tool to
pattern population heterogeneity. The assumption about expo-
nentially distributed components of the mixture is commonly
invoked in the study of lifetime or more universal duration
data. Here you have a simple k-finite exponential mixture
model, having a density function of the following form

f(x) =

k∑
j=1

Ajexp(−tj · x), (1)

where Aj and tj , j = 1, ...k are nonnegative numbers, and∑k
j=1Aj = 1. For a given number of components k, the

Expectation–Maximization (EM ) algorithm [4] is a traditional
method for maximum likelihood estimation of finite mixtures.

However, we apply another approach in the spirit of the
linear regression methodology without any prior assumption
about k - the number of components. For this purpose, we
initially form explanatory variable X = (1, 2, ..., 100) and
response Y . For each value x ∈ X , Y = ln (f(x)), where
f(x) is the normalized frequencies of DSN in a day.

Using the standard simple regression methodology of [7],
a linear regression model is identified as Y = a + b · X
and the first estimation of the density f(x) in (1) is con-
structed: f (1)(x) = A1 exp(−t1 · x), for A1 = exp(a)
and t1 = −b. In the next step, the new response is built:
Y = ln

(
f(x)− f (1)(x) + C

)
, where C is a sufficiently big

positive number insuring that f(x)− f (1)(x) + C > 0 for all
x and j. In each step, p-value coefficient of significance:

F =
R2(X,Y )

1−R2(X,Y )
(100− 1) (2)

is calculated. Here R(X,Y ) is the Pearson correlation coef-
ficient between X and Y [18]. The described procedure is
repeated until the actual p-value is less than the traditional
level of significance 0.05. In our particular application, for all
cases of daily activity, the procedure has been stopped after
three components were extracted.

The parameters of (1), calculated for each of the 13 days
of the observation, are presented in Tables II and III. They
demonstrate high stability of the exponent indexes t1, t2, t3,
which are practically independent of time but are somewhat
different on the weekends, i.e., Saturdays 4 and 11 of April
2009 and Sunday 5 of April 2009. Amplitudes A1, A2, A3 dif-
fer to a greater degree (in percentage terms). Thus, the absolute
number of active users varies from day to day to a greater
extent than the distribution pattern, which actually corresponds
to a set of exponent indexes. The p-values, calculated for the
first of the considered days, are presented in Table I.

TABLE II. Values of the approximation function parameters on different
days for InCalls. (The designations of the amplitudes (A) and indexes (t)

correspond to (1))

Dates A1 t1 A2 t2 A3 t3
03 30 80001 0.12 399893 0.32 420568 1.02
03 31 110555 0.12 441268 0.33 380258 1.15
04 01 94021 0.11 421456 0.31 401002 1.01
04 02 99683 0.11 419564 0.3 411258 1.05
04 03 96660 0.11 409176 0.29 405050 0.98
04 04 90424 0.12 406385 0.34 420161 1.07
04 05 59971 0.12 399873 0.36 530064 1.08
04 06 91189 0.11 425022 0.31 450957 1.04
04 07 83467 0.11 415012 0.3 431301 0.96
04 08 93358 0.11 430842 0.31 422297 1
04 09 102169 0.11 426124 0.31 416794 1.07
04 10 97814 0.11 402832 0.3 408717 1
04 11 65206 0.11 353998 0.33 439797 1.01

TABLE III. Values of the approximation function parameters on different
days for OutCalls. (The designations of the amplitudes (A) and indexes (t)

correspond to (1))

Dates A1 t1 A2 t2 A3 t3
03 30 100684 0.16 561222 0.37 527907 1.25
03 31 119660 0.16 560344 0.36 514682 1.32
04 01 116329 0.16 564578 0.35 498085 1.32
04 02 118910 0.16 546314 0.35 494688 1.27
04 03 130193 0.16 538984 0.34 497177 1.3
04 04 95354 0.16 524779 0.39 548041 1.34
04 05 87109 0.17 522660 0.46 617407 1.41
04 06 110086 0.16 562064 0.36 548389 1.34
04 07 102030 0.15 560233 0.35 497784 1.22
04 08 90481 0.15 568191 0.34 510487 1.21
04 09 115820 0.16 543334 0.34 505349 1.26
04 10 121782 0.16 518418 0.34 500068 1.24
04 11 80915 0.15 445910 0.39 538691 1.22

In the case of InCalls (Table II), the ratio of the exponent
indexes is: 3·t1 ≈ t2, 3·t2 ≈ t3. In the case of OutCalls (Table
III), this ratio is somewhat different: 2 · t1 ≈ t2, 3.5 · t2 ≈ t3.
The decay value x0 of each component in (1) is chosen in
order to normalize the component value at this point to 1.

The components are not equivalent in the sense of their
decay value (see Table IV). In fact, the exponent with index
t3 = 1.0 and amplitude A3 = 500, 000 (these values are
typical for one of the three exponents, which describe the daily
activity) already decays at x0 = 13. For the second typical
pair of the values: t2 = 0.33 and A2 = 400, 000, the decay
occurs at x0 = 39. Moreover, the exponent with t1 = 0.12
and A1 = 90, 000 has the longest effect on DSN : x0 = 95.
Accordingly, two of the three components, which describe the
user activity, disappear in the middle of the considered interval
of calls. Only the third exponent continues, and its values may
be considered as the ”asymptotic behavior” of the distribution.

The relatively complex nature of the obtained empirical
distribution model of user activity may indicate the hetero-
geneity of the entire set of the users. This set is conceivably
composed of a few groups such that the total user activity in
a group is described by a certain simpler distribution.
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TABLE IV. Decay value for each component of DSN on different days.
Columns 1, 2, 3 show decay values, x0, of the corresponding components.

Date InCalls OutCalls
1 2 3 1 2 3

03 30 94 40 12 71 35 10
03 31 96 39 11 73 36 9
04 01 104 41 12 72 37 9
04 02 104 43 12 73 37 10
04 03 104 44 13 73 38 10
04 04 95 37 12 71 33 9
04 05 91 35 12 66 28 9
04 06 103 41 12 72 36 9
04 07 103 43 13 76 37 10
04 08 104 41 12 76 38 10
04 09 104 41 12 72 38 10
04 10 104 43 12 73 38 10
04 11 100 38 12 75 33 10

Obviously, the social status, gender and age of the users
affect their activity on telephone networks. However, such
types of personal data are not available for us. Therefore, in
the following section, we divide the users into groups, based
merely on the features of their individual activity during a
given day. It is assumed that these features are related to some
of the social characteristics of the users. A justification for this
assumption may be found, for example in [19].

III. USER CLASSIFICATION

We assume that the obtained three-component exponential
mixture model reflects the inner customers’ behavior patterns,
exposed by the observed data. In order to identify these
patterns, all the users are divided into groups according to
a comparable daily performance. In this way, analysis of the
overall cluster behavior can characterize the corresponding
pattern.

We apply a procedure in the spirit of the bi-clustering
methodology of [13]. First of all, we cluster 24 hours inside
a day (the features) according to the corresponding users’
activity. Then, the users are divided in groups according
to their occurrences in the hour’s partition. As a result, a
sufficiently robust clustering of users is obtained together with
a description of the clusters in terms of call activity.

A. Clustering of hours

First of all, we try to outline a similarity between hours in
a day. For this purpose, we consider each hour as a distribution
of users across the actual numbers of calls within this hour. It
means that we examine how many people did not call at all
in this hour, how many people called just one time, two times
and so on.

The observed dissimilarity between hours can be naturally
characterized by a distance between the corresponding distribu-
tions. Generally speaking, any asymptotically distribution-free
statistic is suitable for this purpose. In fact, the distribution
of an asymptotically distribution-free statistic does not depend
on the underlying distribution of the populations for samples
of sufficiently large size. Here, we employ the well-known
Kolmogorov-Smirnov (KS) two sample test statistic [14], [15].

Figure 2. Silhouette plots for April 5 and April 10

Calculating the KS-distance for each pair of hours, we get
a 24 × 24 distance matrix. The Partitioning Around Medoids
(PAM ) clustering algorithm [16] is applied now to cluster the
data. In order to divide a data set into k clusters using PAM ,
firstly, k objects from the data are chosen as initial cluster
centers (medoids) with the intention to attain the minimal total
scattering around them (to reduce the loss function value).
Then, the procedure iteratively replaces each one of these
center points by non-center ones with the same purpose. If
no one of further changes can improve the value of the loss
function then the procedure ends.

In addition to the clustered data, PAM requires as an
input parameter the number of clusters k. Hence, the first
step of our procedure is devoted to estimation of the optimal
number of the hour’s clusters. For this purpose, we use the
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Figure 3. Empirical cumulative distribution functions for hours 9 (upper) and 19 (lower).

Silhouette coefficient of [17]. For each point, the Silhouette
index takes values in [−1, 1] interval, if that the Silhouette
mean value, calculated across the whole data, is close to 1
specifies ”well clustered” data, and value −1 characterizes
a very ”poor” clustering solution. Therefore, the Silhouette
mean value, found for several different numbers of clusters,
can indicate the most appropriate number of clusters by its
maximal value. The number of clusters was checked in the
interval of [2−10], and the optimal one was found to be 3 for
all the considered data sets (i.e., for all considered days). An
example of Silhouette plots (for 5 of April and 10 of April)
is shown in Fig. 2. Fig. 3 presents examples of two different
normalized cumulative distribution curves, calculated for hours
9 and 19.

The partition of 24 hours into 3 hour clusters is presented
in Fig. 4 for three different dates. It can be concluded that
although the partitions slightly depend on the particular data
set (date), the overall structure of the clusters is preserved.
Namely, there is a silent ’night’ cluster (red), an active ’day’
cluster (blue), and a ’morning/evening’ cluster (green). Table
V shows the same distribution of 24 hours with another color
convention: ’night’ cluster (dark gray), ’morning/evening’
cluster (light gray) and ’day’ cluster (white) for all the
considered dates. The procedure was successfully applied to
our data sets, which contains information on the activity of
about 5 million users during the period of observation: 13
days. We recall that only active users, those having at least
one, are considered in our procedure. Based on the results of
this clustering of hours, we can obtain information from the
original data regarding the user activity during those hours,
which correspond to the clusters.

B. Clustering of users
We obtained classification of users’ activity across the hour

clusters. Apparently, a user can move from cluster to cluster,

for example, in case when the corresponding SIM card is
transferred to another person like a family member. However,
as it was mentioned, the clustering structure is very similar
for different working days, e.g., the most of the users do not
change their behavior in a cellular network.

Now, for each user we built a vector, composed of the
fractions of calls falling within each hour cluster. We produce
user clustering employing this new data representation. Due
to the large amount of data, we are dealing here with a high
complexity clustering task. We apply a resampling clustering
procedure. User behavior patterns are obtained from analysis
of the users falling within a certain cluster. In this section, we
describe the proposed classification procedure and its results.

1) Clusterization procedure: The main aim of the users
clustering procedure is to divide the clients into groups, using
information about their activity in each one of the hour clusters,
obtained in the previous stage. We present each user as three
dimensional vector (r1, r2, r3), where ri is the ratio of a user’s
activity during a cluster of hours number i. More precisely, ri
is a fraction of a user’s calls during the cluster i in the total
number of calls during a day.

The proposed resampling clustering procedure is based on
the well-known K-means algorithm [20], and implementing
de-facto the idea, proposed in [21]. The K-means algorithm
has two input parameters: the number of clusters k and the
data set to be clustered X . It strives to find a partition π(X) =
{π1(X), . . . , πk(X)} minimizing the following loss function

ρ{c1,...ck}(π(X)) =
1

N

k∑
j=1

∑
x∈πj(X)

‖x− cj‖2 , (3)

where cj , j = 1, ..., k is the mean position (the cluster
centroid) of the objects belonging to cluster πj(X), and N
is the size of X .
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TABLE V. 24 hours partition into dark gray (night), light gray (morning/evening) and white (day) clusters for different dates.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

30.03 2 2 2 2 2 2 2 2 1 1 1 3 3 3 3 3 3 3 3 3 3 1 1 2
31.03 2 2 2 2 2 2 2 2 1 1 1 3 3 3 1 3 3 3 3 3 3 1 1 2
01.04 2 2 2 2 2 2 2 2 1 1 3 3 3 3 3 3 3 3 3 3 3 1 1 1
02.04 2 2 2 2 2 2 2 2 1 1 1 1 3 3 1 1 3 3 3 3 3 1 1 2
03.04 2 2 2 2 2 2 2 2 1 1 1 3 3 3 3 3 3 3 3 3 3 1 1 2
04.04 2 2 2 2 2 2 2 2 2 1 3 3 3 3 3 3 3 3 3 3 3 1 1 1
05.04 1 2 2 2 2 2 2 2 1 1 3 3 3 3 3 3 3 3 3 3 3 3 1 1
06.04 2 2 2 2 2 2 2 2 1 1 1 3 3 3 3 3 3 3 3 3 3 1 1 2
07.04 2 2 2 2 2 2 2 2 1 1 1 3 3 3 1 3 3 3 3 3 3 1 1 2
08.04 2 2 2 2 2 2 2 2 1 1 3 3 3 3 3 3 3 3 3 3 3 1 1 1
09.04 2 2 2 2 2 2 2 2 1 1 1 3 3 3 3 3 3 3 3 3 3 1 1 2
10.04 2 2 2 2 2 2 2 2 1 1 3 3 3 3 3 3 3 3 3 3 3 1 1 1
11.04 2 2 2 2 2 2 2 2 1 1 1 3 3 3 3 3 3 3 3 3 3 1 1 2

Figure 4. 24-hour partition for Mars 30, Mars 31, April 01: ’night’ cluster (red), ’day’ cluster (blue), and ’morning/evening’ cluster (green).

Initially, the centroid set can be predefined or chosen ran-
domly. Using the current centroid set, the K-means algorithm
assigns each point to the nearest centroid aiming to form
the current clusters and then recalculates centroids as the
clusters means. The process is reiterated until the centroids are
stabilized. In the general case, as a result of this procedure, the
objective function (3) reaches its local minimum. Note that in
the K-means algorithm, a partition is unambiguously defined
by the centroid set and vise versa. Moreover, in the general
case, the loss function (3) can be used for assessing the quality
of arbitrary partition π̂(X) with respect to given centroid set
{c1, . . . ck}. The resampling procedure allows partitioning a
large data set based on partitioning its parts as presented in
Algorithm 1.

2) Choosing the number of users clusters: In order to
evaluate the optimal number of clusters, usually, one compares
stability of the obtained partition for different numbers of
clusters. To this aim, we repeat the users’ clustering procedure
ten times on the same data set and evaluate the Rand index
value between all obtained partitions. The Rand index [22]

represents the measure of similarity between two partitions.
It is calculated by counting the pairs of samples, which are
assigned to the same or to different clusters in these partitions.
The closeness of the Rand index value to 1 indicates similarity
of the considered partitions.

For the same purpose, the Adjusted Rand index of [23],
which is the corrected-for-chance version of the Rand index,
can be used as well. However, in our consideration, it is
more suitable to use the regular one because it still reflects
well the closeness of the partitions. The mean values of the
obtained Rand indexes naturally characterize stability of the
partition by the maximal value. So, the ”true” number of
clusters corresponds to the most stable partition.

C. Experimental study

In this section, we are mostly concentrated on the data set
for April 1, which is taken as a typical example of the original
data sets. The results (obtained for other data sets) are very
similar including all the parameters, considered below.
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Figure 5. Rand index plot for the data set of April 1.

Algorithm 1: Partitioning
Input:

X dataset to be clustered;
k the number of clusters;
N the number of samples;
m the sample size;
ε the threshold value.

Resampling procedure: Randomly draw N samples Si of
size m from X without replacement.

1: for all Si do
2: In the first iteration, set of centroids C is chosen

randomly.
3: Cluster Si by K-means algorithm, starting from the

given centroid set C.
4: Cluster X by assignment to the nearest centroid, using

the centroids, obtained in the previous step.
5: Calculate the object function value of the partition π(X)

from the previous step according to (3).
6: end for
7: Choose from the set {S1, . . . , SN} a sample S0 with the

minimal object function value.
8: if the first iteration is being processed or if the absolute

difference between two minimal object function values,
which are calculated for two sequential iterations, is
greater than ε then

9: replace C with the set of centroids of π(S0), and return
to step 1

10: else
11: stop
12: end if
end

1) Estimation of the ”true” number of clusters: In order
to estimate the optimal number of clusters in the users’ clus-
terization procedure described in Section III-B1, we repeat the
clustering stability evaluation procedure described in Section
III-B2 for each of the possible number of clusters in interval
[2, 10]. The results for all dates are very similar. Fig. 5
demonstrates an example of Rand-index curve for April 1. It
is easy to see that the maximal stability attitudes appear for
N = 2 and N = 3.

Recall that the main purpose of the user clustering is
to recognize behavior patterns, which represent the general
structure of the users’ population. Let us consider two possible
estimators for the ”true” number of clusters from this point of
view. We describe a behavior pattern via an average level of the
users’ activity within each of the three hour clusters, defined in
Section III-A. So, we take a three-dimensional representation
of users, introduced in Section III-B1, and calculate the mean
and standard deviation of each coordinate in each user cluster.

The user activity patterns for April 1 are shown in Fig. 6
by means of the error bar plot of values in each hour cluster.
Recall that for the given date we obtained a ’night’ cluster
(red) with hours 1-8; a ’day’ cluster (blue) with hours 11-21;
and a ’morning/evening’ cluster (green) containing hours 9-10
and 22-24 (see Fig. 4). For example, pattern A (the left panel
in the picture) is characterized by the prevalence of the day
activity since the average activity value is 0.84 for the ’day’
hour cluster, in comparison with the values of 0.09 and 0.06 for
the other hour clusters. Similarly, the behavior pattern B (the
middle panel) describes users with significant activity in all
hour clusters, while pattern C (the right panel) is characterized
by high activity in the morning-evening hours.

The obtained result shows that we have a ”clear” par-
tition into 2 clusters and that one of them is well divided
into 2 more sub-clusters. In fact, the two-clusters partitions
contain the cluster corresponding to Pattern B and the united
cluster for Patterns A and C. For our purposes, therefore,
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Figure 6. Profiles of 3 customer clusters (green, red, blue) for work day (April 1; InCalls).

Figure 7. Profiles of 3 customer clusters (green, red, blue) for off day (April 5; InCalls).

it is natural to choose 3 as the ”true” number of clusters.
Note, that it is common situation in cluster analysis: the ”ill-
pose” number of clusters determination task can have several
solutions depending on the model resolution. In the most cases,
the population is partitioned into three clusters, with about
70, 20, and 10 user percentages in these clusters. This fact
demonstrates the distribution within the population, connected
to the call activity. This fact may be related to the nature of
the people working time.

2) Procedure convergence: Now, we demonstrate that the
resampling clustering procedure (Algorithm 1) converges very
fast. In fact, Table VI shows the minimal objective function
values for the first five iterations of the resampling procedure,
executed on 100 samples for k = 3 (for others k, the situation
is similar). The results show that, even in the second iteration,
the minimal average of the distances does not change signif-
icantly as compared to the first iteration. In the subsequent

iterations, this value remains constant to within 0.0001.
3) Profile stability: Further, we use behavior patterns for

comparison of the results of our procedure on different
datasets. The profiles for each considered date are shown in
Tables VII and VIII. It is easy to see that they are stable both
for work days and off days. However, the difference between
work and off days is significant (see Fig. 6 and Fig. 7 for
comparison). Although qualitative descriptions of profiles are
very similar in both cases (pattern A with prevalent ”day”
activity; pattern B with significant activity throughout 24 hours
and pattern C with prevalent ”morning-evening” activity), in
off days higher ”night” activity is detected.

D. Call activity, associated within patterns
Now, we consider the call activity of the users, who

correspond to each one of the three found clusters. The total
activity of all the users within a day has a density with two
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TABLE VI. Minimum of average distances to the nearest centroid for the
first 5 iterations of the resampling procedure of Algorithm 1.

Iteration 1 2 3 4 5
Minimum 0.014487 0.013302 0.013295 0.013309 0.0132901

TABLE VII. Mean values for different Patterns in 3 clusters partition. (For
Pattern X mean values for each hour cluster (red - ’night’, green -

’morning/evening’ and blue - ’day’)).

peaks. One of them is placed in the workday middle, and the
second one, the higher peak, is located in the period after 7 p.m
such that a local activity minimum is observed immediately
after.

The shape of the corresponding density in the first cluster
(A) is actually the same. However, the user’s activity almost
does not vary in the second cluster (B), i.e., the density curve
has several insignificant peaks, and the activity decreases at 10
p.m. The total activity of the users belonging to cluster three
(C) has two peaks, which are located in the morning and in
the evening of a day.

The corresponding curves are shown in Fig. 8 and Fig.
9, where columns A, C present InCalls , and columns B,
D present OutCalls. Here, the blue curves corresponds to
the total activity densities of all the users; the red, green and
brown ones give the total activity densities for clusters 1, 2
and 3, respectively. Note that both activity types have the
same distribution shapes. Furthermore, the distribution of calls
during a day for all three clusters is almost independent on the
activity type (see Fig. 10a).

1) Features of the cluster model parameters: The model
that we use reveals major differences between the DSN of the
entire set of users and the DSNs for the individual clusters.
In fact, for InCalls, the DSN for Cluster 1 is almost always
best fitted by a single exponent. On the other hand, in more
than half of the observed cases, the DSN for Cluster 2 is fitted
by two exponents. Moreover, during the weekend period, the
curve is fitted by three exponents. The DSN for Cluster 3
is usually fitted by two exponents, while the three-exponent
fit sometimes arises without regard for the day of the week
(Table IX). For OutCalls (Table X), the above irregularities
are more pronounced for Clusters 1 and 2, since all the best
fits for Cluster 3 are two-exponential.

TABLE VIII. Standard deviation for different Patterns in 3 clusters partition.
(For Pattern X std values for each hour cluster (red - ’night’, green -

’morning/evening’ and blue - ’day’)).

Tables IX and X demonstrate comparison of the DSNs
performance in Clusters 1-3 with the DSN, which is found
within the total set of users. Each one of the curves exhibits
its own cluster behavior characterizing the group. Nevertheless,
joining any two of these clusters results in a three-component
DSN . At the same time, we split the data randomly. This
random partition into three clusters (with the same number of
users as in the calculation of Clusters 1, 2, 3 as mentioned
above) yields the same three exponent indexes, t1 = 0.11,
t2 = 0.31 and t3 = 1.01 for all three clusters, which coincide
with those calculated for the total set of users on the same day
(see Table XI).

Thus, simplification of the cluster model shows that the
partition into Clusters 1-3 actually reflects different activity
characteristics for different groups of users. There are some
differences on the weekends. However, in general, the param-
eters of a particular DSN are the same for each day. Note also
that the DSNs of Clusters 2 and 3 are not in the least close
to the second or third component (exponent) of the total set
DSN . Indeed, in our model, the DSN of Cluster 2 consists
mainly of two exponents, with one exponent disappearing at
the decay value of 30, while the other (as a rule) is not
decaying up to the value of 70. The DSN of Cluster 3 also
has long-lasting components (up to 100 and more - see Table
XII).

IV. CONCLUSION AND FURTHER STUDIES

Most of the recent studies, which consider the analysis
of non-Gaussian processes, are related to hyperbolic distri-
bution. The mere existence of such a distribution does not
depend on the particular model, but rather is the result of the
process being non-Gaussian in nature. Indeed, the Gnedenko-
Doeblin limit theorem imposes restrictions on the form of
a non-Gaussian distribution. Namely, its asymptotic behavior
coincides with the Zipf distribution to within a slowly varying
function.

For example, the hyperbolic distribution was first observed
in some fields of human endeavor, e.g., Pareto distribution
of people according to their income and Zipf’s law for the
frequency of words in a text, [24]. It later turned out that the
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TABLE IX. Parameters of the approximating curves for Clusters 1-3 during the days of observation (InCalls).

TABLE X. Parameters of the approximating curves for Clusters 1-3 during the days of observation (OutCalls)

same laws could be detected in other areas of human endeavor
(e.g., the distribution of cities according to population) as well
as in natural phenomena (e.g., time distribution of disasters).
Internet activity and, in particular, user activity on social
networks, appears to be an appropriate area for such analysis.
Numerous studies suggest different models of social networks
and try to link particular network characteristics with some
measure of user activity. These characteristics often obey the
hyperbolic law in one form or another.

From a practical point of view, the difference between
non-Gaussian distributions (sometimes referred to as heavy-
tailed) and the Gaussian distribution is quite important. The
frequencies of extreme deviations in the two distributions are
very different. The moments of non-Gaussian distributions
increase with sample size, but do not tend to be limited as
in the Gaussian case.

Although the social activity distribution of a population

takes a specific and constant form, it can be assumed that
the observed distribution is in some sense an averaged one.
Obviously, it is composed of various types of distributions,
generated by different social layers. We have in mind not only
the groups, arising from the simplest types of differences, such
as age and gender, but also the more complex features of the
population under consideration. The purpose of this paper is
to analyze the phenom as well as to decompose the observed
distributions, according to certain external criteria.

It can be assumed that the hyperbolic law or the combina-
tion of distribution laws for various social groups, depend on
the nature of the user joint activity. In some cases, each user’s
actions are in some sense sequential, so that their average
behavior can be considered in the framework of a single law.

In the cases where users’ actions occur in parallel, each
user group, which is uniform with respect to some criterion,
can generate its own law of activity distribution. Typically,
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Figure 8. Distribution of InCalls and OutCalls during the day in the
three clusters of users (A) and (B).

users actions in such a group are aggregated in order to pattern
the group behavior. Researchers, who study the parameters of
such networks, often find fractal properties and hyperbolic dis-
tributions. An example of parallel user activity is the number
of records in an email address book. In a population of 16,881
users of a large university computer system, the cumulative
distribution is not a powerful one, [10].

Since telephone calls are also more likely to be a parallel
user’s activity in the sense described above, we expected to
find that the observed distribution of calls is the sum of several
distribution functions, corresponding to different social groups

 

Figure 9. Distribution of InCalls and OutCalls during the day in the
three clusters of users (C) and (D).

TABLE XI. Decay value of each DSN component in the activity/cluster
model for all the three clusters considered (InCalls)

cluster 1 cluster 2 cluster 3
1 2 3 1 2 3 1 2 3

03 30 80 0 0 60 13 0 34 6 0
03 31 95 0 0 57 12 0 132 37 6
04 01 85 0 0 34 7 0 65 13 0
04 02 86 0 0 35 6 0 64 13 0
04 03 82 0 0 125 48 8 36 31 6
04 04 82 26 0 92 37 2 96 21 0
04 05 23 0 0 84 32 2 91 21 0
04 06 80 0 0 114 43 7 36 6 0
04 07 96 0 0 39 6 0 142 52 12
04 08 87 0 0 65 13 0 34 6 0
04 09 88 0 0 36 6 0 149 58 12
04 10 94 0 0 32 2 0 64 12 0
04 11 87 26 0 91 35 2 73 17 0
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Figure 10. (a) Distribution of InCalls for the clusters obtained for
OutCalls. (b) Distribution of InCalls for the clusters obtained for

InCalls. Date: April 8. Notations of the curves are the same as in Fig. 8.

TABLE XII. Decay value of each DSN component in the activity/cluster
model for all the three clusters considered (OutCalls)

cluster 1 cluster 2 cluster 3
1 2 3 1 2 3 1 2 3

03 30 70 0 0 25 5 0 50 12 0
03 31 75 0 0 24 2 0 52 12 0
04 01 80 0 0 50 12 0 29 7 0
04 02 81 0 0 52 12 0 25 2 0
04 03 82 0 0 51 11 0 29 7 0
04 04 86 28 0 94 37 2 20 21 0
04 05 24 0 0 76 29 2 96 24 0
04 06 75 0 0 23 2 0 50 11 0
04 07 76 0 0 25 5 0 52 12 0
04 08 76 0 0 52 12 0 25 5 0
04 09 83 0 0 28 6 0 51 11 0
04 10 81 0 0 31 7 0 52 12 0
04 11 112 27 0 87 35 2 70 17 0

of users. The limited number of these groups is an important
prerequisite for such differentiation because averaging over
the groups is absent in this case. In [25], we introduced
the notion of user strategy and showed that the number of
different strategies is small. Therefore, we expected to obtain
a small number of groups with equivalent user activity. Having
no real-life socio-relevant parameters, we assumed that the
peculiarities of a user’s activity during a day may correlate
with the user’s social status.

We split the population into three clusters and showed that
these clusters have simpler distribution functions than those
for the total population. Yet, it is quite possible that a more
detailed partition exists with even simpler distributions for each
group.
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