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VID/ÖAW
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Abstract—A common way to evaluate surrogate models is by
using validation measures. This amounts to applying a chosen
validation measure to a test data set that was not used to train
the surrogate model. The selection of a validation measure is
typically motivated by diverse guidelines, such as simplicity of
the measure, ease of implementation, popularity of the measure,
etc., which are often not related to characteristics of the measure
itself. However, it should be recognized that the validity of a
model is not only dependent on the model, as desired, but also
on the behavior of the chosen validation measure. Some, although
very limited, research has been devoted to the evaluation of
validation measures, by applying them to a given model that
is trained on a data set with some known properties, and then
evaluating whether the considered measures validate the model in
an expected way. In this paper, we perform an evaluation of some
statistical and non statistical validation measures from another
point of view. We consider a test data set generated by an agent-
based model and we successively remove those elements from it
for which our previously developed Gaussian process emulator, a
surrogate model, produces the worst approximation to the true
output value, according to a selected validation measure. All
considered validation measures are then applied to the sequence
of increasingly smaller test data sets. It is desired that a validation
measure shows improvement of a model when test data points on
which the model poorly performs are removed, irrespective of the
validation measure that is used to detect such data points. Our
experiments show that only the considered statistical validation
measures have this desired behavior.

Keywords–Gaussian process emulation; Agent-based models;
Validation.

I. INTRODUCTION AND OUTLINE OF THE PAPER

In previous work we applied Gaussian process emulation,
a surrogate model, to a training data set generated by an
agent-based model that we had developed before [1]. Several
alternative implementations of the Gaussian process emulation
technique were considered and each of these was evaluated
according to two different validation measures. Evaluation of
the emulators was performed with respect to a test data set of
size 500.

In this paper, we consider a research question that is not
given proper attention in the literature, namely the evaluation

of validation measures themselves. Although some researchers
have examined certain characteristics of validation measures,
their research is typically limited to the application of several
selected validation measures to a given model that is trained
on a data set with some known properties, and then evaluating
whether these measures are able to validate these properties,
see, e.g., [2], [3], [4]. Although such research is, of course,
useful, we take here another perspective on the evaluation of
validation measures. We consider the influence on validation
measures when elements from the test data set are removed
in the order proposed by a fixed validation measure. That
is, we select a validation measure and we use that measure
to find the element in the test data set for which a given
surrogate model produces the worst approximation. We will
simply refer to the element of a given test data set in which
a given surrogate model produces the worst approximation
according to a given validation measure as the worst test
data point, and we will use the more vague term bad test
data point to denote a test data point in which the surrogate
model produces a bad approximation according to the given
validation measure. It is then clear that the selected validation
measure will show improvement when applied with respect to
the reduced test data set, i.e., the elements of the test data set
that remain after removing the worst test data point. However,
an interesting and important research question is how the other
validation measures will perform on the same reduced test data
set. Will they also consider the selected test data point as the
most problematic and thus have improved values when they
evaluate the surrogate model on the reduced test data set? Or
will they have another view on the test data point that is to
be considered as the one where the surrogate model performs
worst and, therefore, maybe even show deterioration of the
surrogate model on the reduced data set?

The operation of removing the worst test data point is
then repeatedly performed on the remaining test data set such
that a graph of the considered validation measures results.
This graph shows the evolution of the validation measures on
increasingly smaller test data sets, where each test data set
in this sequence does not contain the worst test data point
of its predecessor. The whole procedure is then repeated by
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choosing another validation measure to detect bad test data
points and to remove them accordingly. Consequently, an-
other graph of all considered validation measures is produced.
These graphs are then analyzed to supply an answer to the
following questions. Which validation measures show steady
improvement by removing test data points that are designated
as bad according to both selected validation measures? For
which validation measures does the improvement depend on
the choice of fixed validation measure that is used to detect bad
test data points? Our previously developed Gaussian process
emulator that emulates an agent-based model will be used as
case study to answer these questions.

The significance of the above research questions is that
it is desired to use validation measures whose evaluation of
a given model in terms of its performance on a test data
set is consistent with respect to other validation measures.
That is, if one researcher employs validation measure A and
detects a region in input space where the model has low
performance, then it is desired that another researcher using
validation measure B should see improvement of the model
after additional training on points in that region, even though
he is using another validation measure. Otherwise, there would
be inconsistency between both measures and this would make
it impossible to state any justified claim related to the perfor-
mance of the model. The above described method to evaluate
validation measures then simulates the often applied practice
of additional training in regions where the given surrogate
model performs bad, since such additional training results in
improvement in that region. This implies that previously bad
test data points will not have that statute anymore and this can
be simply simulated by removing them from the test data set.

The outline of the paper is as follows. In Section II, we
review Gaussian process emulation and agent-based models to
ensure that the paper is self-contained. For the same reason
we review our previous work, which is done in Section III.
As described above, several validation measures will be con-
sidered. Some of them have been developed by statisticians to
validate statistical models, such as Gaussian process emulation,
while we also consider some validation measures that are
popular outside statistical domains and apply to deterministic
models. These validation measures are reviewed in Section
IV. An in-depth description of and motivation for our exper-
iments is provided in Section V. Results are presented and
analyzed in Section VI. Section VII contains a discussion of
the experiments, evaluating the implications and meaning of
the experimental results.

II. RELATED WORK

A short overview of the aspects of our previous work that
are relevant for this paper is provided in Section III. In this
section, we briefly review Gaussian process emulation and
agent-based models.

A. Gaussian process emulation
Gaussian process (GP) emulation provides an approxima-

tion to a mapping ν : Rn → R. The approximation to
ν, i.e., the emulator, is determined as follows. In the first
step, it is assumed that nothing is known about ν. The value
ν(x) for any x is then modeled as a Gaussian distribution
with mean m(x) =

∑q
i=1 βi hi(x), where βi are unknown

coefficients and where hi represent linear regression functions.

The covariance between ν(x) and ν(x′), with x and x′

arbitrary input vectors in Rn, is modeled as

Cov
(
ν(x), ν(x′) |σ2

)
= σ2 c(x,x′) (1)

where σ2 denotes a constant variance parameter and where
c(x,x′) denotes a function that models the correlation between
ν(x) and ν(x′). In our previous work, we have used the most
common choice for c:

c(x,x′) = exp
[
−
∑
i

(
(xi − x′i)/δi

)2]
(2)

with xi and x′i the ith component of x and x′ resp., and where
the δi represent the so-called correlation lengths. In the second
step, training data (x1, ν(x1)), . . . , (xn, ν(xn)) are used to up-
date the Gaussian distributions to Student’s t-distributions via a
Bayesian analysis. The mean of the Student’s t-distribution in
x is then considered the best approximation to ν(x). Therefore,
we refer to this mean as ν̂(x). It is given by

ν̂(x) = m(x) + UT (x)A−1([ν(x1), . . . , ν(xn)]
T −Hβ) (3)

with

β = (β1, . . . , βq)
T (4)

(5)

H =

h1(x1) . . . hq(x1)

. . .

h1(xn) . . . hq(xn)

 (6)

and where U(x) contains the correlations, as given by (2),
between x and each of the training data points xi, and where
A is the correlation matrix, containing the correlations between
xi and xj for i, j = 1, . . . , n. The expression (3) shows that
the Bayesian analysis adds a correction term to the prior mean
m(x) by taking into account the information encapsulated in
the training data set. The parameters δi can be optimized in
terms of maximum likelihood [5], while optimal values for the
βi and for σ2 can be determined by optimization principles in
Hilbert space. For a more detailed account on GP emulation
we refer to [6] and [7].

In practical applications, the Student’s t-distributions are
approximated by Gaussian distributions that are then used for
all further operations. The variance of the Gaussian distribution
in x, denoted as v(x), gives a measure of the uncertainty
in approximating ν(x) by ν̂(x). That is, the larger v(x)
the more tricky it is to approximate ν(x) as ν̂(x). A 95%
confidence interval for the true output ν(x) is given by
[ν̂(x)− 2

√
v(x), ν̂(x) + 2

√
v(x)]. An analytical formula for

v(x) is given in [7].
The main use of an emulator lies in the critical property

that its execution is typically much faster than running the full
model ν [8].

An example application of GP emulation is provided in
Fig. 1. The model to be approximated is the function f(x) =
x sin(x). The training data points (referred to as observations
in the figure) are shown as red dots, while the approximation
(called prediction in the figure), given by (3), is denoted by
a blue line. A 95% confidence interval can be constructed as
outlined above and this is also shown in the figure. It is seen
that an emulator is an interpolator, i.e., the approximation is
exact in the training data points and the confidence interval
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Figure 1. Example application of GP emulation
(From http://scikit-learn.org/stable/modules/gaussian process.html)

in these points have length zero. Another typical property of
a GP emulator is clearly noticed from the figure: the length
of the confidence intervals increases with increasing distance
to the nearest training data point. This property is intuitively
clear, since moving away from a training data point means
moving away from a point where there is precise information
about an output value of the function to be approximated. One
final observation is the large discrepancy between f(x) and
the emulator over the interval (0.8, 1], which does not contain
any training data point. Such a behavior is often observed for
approximation techniques and shows that extrapolation should
be avoided if possible [9].

B. Agent-based models
An agent-based model (ABM) is a computational model

that simulates the behavior of and interactions between au-
tonomous agents. A key feature is that population level phe-
nomena are studied by explicitly modeling the interactions of
the individuals in these populations [10], [11]. The systems
that emerge from such interactions are often complex and
might show regularities that were not expected by researchers
in the field who solely relied on their background knowledge
about the characteristics of the lower-level entities to make
predictions about the higher-level phenomena. In [12], the
authors describe situations for which agent-based modeling
can offer distinct advantages to conventional simulation ap-
proaches. Some include:

• There is a natural representation as agents.
• It is important that agents learn and engage in dynamic

strategic behaviors.
• The past is no predictor of the future.
• It is important that agents have a dynamic relationship

with other agents, and agent relationships form and
dissolve.

Examples of situations where ABMs have been successfully
applied are infectious disease transmission [13], the develop-

ment of risk behaviors during adolescence [14], the simulta-
neous study of the epidemiological and evolutionary dynamics
of Influenza viruses [15], the sector structure of complex
financial systems [16] and pedestrian movement [17]. ABMs
are especially popular among sociologists who model social
life as interactions among adaptive agents who influence one
another in response to the influence they receive [18], [19],
[20], [21].

Since nonlinear interactions and successive simulation
steps are key ingredients of an agent-based model, such
models are often computationally expensive. Consequently, if
the model has to be executed on a large set of given input
points, e.g., to determine parameter values that minimize an
error criterion between model output and observed data, this
task can often only be accomplished within a reasonable time
by relying on emulation. Surprisingly, it is only recently that
one has started to realize the use of Gaussian process emulation
in analyses with agent-based models [22], [23], [24], [25], [26],
[27], [28].

III. PREVIOUS WORK

A. Our agent-based model
In previous work, we developed an ABM to analyze the

effectiveness of family policies under different assumptions
regarding the social structure of a society [29]. In our model
the agents represent the female partner in a household and are
heterogeneous with respect to age, household budget, parity,
and intended fertility. A network of mutual links connects the
agents to a small subset of the population to exchange fertility
preferences. The agents are endowed with a certain budget of
time and money which they allocate to satisfy their own and
their children’s needs. We assume that the agent’s and their
children’s consumption levels depend on the household budget
but increase less than linearly with household budget. This
implies that wealthier households have a higher savings rate. If
the household’s intended fertility exceeds the actual parity and
the disposable budget suffices to cover the consumption needs
of another child, the household is subject to the corresponding
age-specific fertility. If an additional child is born, other agents
may update their intended fertility.

We considered two components of family policies: 1. the
policy maker provides a fixed amount of money or monetary
equivalent per child to each household and 2. a monetary or
nonmonetary benefit proportional to the household income is
received by the household. The output on the aggregate level
that is simulated by the ABM consists of the cohort fertility,
the intended fertility and the fertility gap. Here, as in previous
work, we restrict attention to the output component cohort
fertility. The input variables include the level of fixed and
income dependent family allowances, denoted by bf and bv ,
and parameters that determine the social structure of a society,
such as a measure for the agents’ level of homophily α, and
the strength of positive and negative social influence, denoted
by pr3 and pr4 resp.

Our simulations revealed a positive impact of both fixed
and income dependent family allowances on completed cohort
fertility and on intended fertility, and a negative impact of
fixed and income dependent child supports on the fertility gap.
However, several network and social influence parameters are
such that they do not only influence fertility itself but also
the effectiveness of family policies, often in a detrimental
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Figure 2. The decision making process in a household

way. For instance, while a higher degree of homophily among
the network partners has a positive effect on fertility, family
policies may be less effective in such a society. Therefore,
policymakers aiming to transfer a certain policy mix that has
proved successful from one country to another one ignoring
differences in the social structure may fail. Family policies
can only be successful if they explicitly take into account the
characteristics of the society they are assigned for.

A flow-chart of the simulations performed by the ABM is
provided in Fig. 2. Our model and the sociological hypotheses
derived from application of it are extensively described in our
previous work [29].

B. Data set generated by agent-based model
The input variables of our ABM are given equidistant val-

ues from the input domain and the ABM is applied to generate
the corresponding outputs. As input domain we considered the
variables bf , bv, α, pr3 and p4, a selection of the larger amount
of variables that were used in the ABM. These five variables
were found to have the largest influence on the outcomes. On
the output side we restrict attention to one variable, namely
cohort fertility. The ABM was applied to 10,732 vectors in
the input domain, resulting in a large training data set. A test
data set containing 500 input-output pairs was generated, the
use of which will be described below.

C. Gaussian process emulation applied to our agent-based
model

We applied GP emulation to our ABM. However, the
large training data set necessitated us to adapt the originally
developed GP emulation technique described in Section II-A.
The reason is that the inverse of the correlation matrix is
needed in the analytical formulation of the emulator. As this
matrix is of quadratic order in the training data set size, it is
obvious that the inverse operation cannot be performed (at least

Figure 3. Illustration of k-means for two-dimensional data set with k = 2
(From http://mines.humanoriented.com/classes/2010/fall/csci568/portfolio exports/mvoget/cluster/cluster.html)

not in a numerically stable way). Therefore, we proceeded as
follows.

First, we applied k-means [30], a popular cluster analysis
algorithm, to subdivide the very large training data set into
clusters. Cluster analysis is the unsupervised partitioning of
a data set into groups, also called clusters, such that data
elements that are member of the same group have a higher
similarity than data elements that are member of different
groups. Similarity is expressed in terms of a user-defined dis-
tance measure, such as the commonly used Euclidean distance
which we employed. An illustration of the k-means principle is
provided by Fig. 3. The application of k-means to our training
data set resulted in 34 clusters with sizes ranging from 15
to 500. Implementation details are described in our previous
work [1]. An emulator was then constructed for each of the
resulting clusters.

Secondly, values of the parameters of each of the emulators
were determined. Determination of the parameters βi and σ2 is
simple, as analytical expressions exist for their optimal values
(see, e.g., [31]). However, such expressions do not exist for the
δi. These are typically obtained by applying the maximum like-
lihood principe, as described in [5]. This amounts to optimizing
their joint density function which is a nontrivial task here as
this function is a R5 → R mapping (there are five correlation
lengths, one for each of the input variables bf , bv, α, pr3 and
pr4), potentially having many local optima. We used genetic
algorithms [32] to perform this optimization task. Genetic
algorithms are a type of heuristic optimization method that
mimics some aspects of the process of natural selection, in that
a population of candidate solutions to an optimization problem
is evolved toward better solutions. This is done by applying
certain operators, called mutation, crossover and reproduction,
to the set of candidate solutions. These operators have been
inspired by the principles of their biological counterparts and
ensure that the population as a whole becomes fitter, i.e.,
the set of candidate solutions improves gradually according
to a chosen error criterion. Fig. 4 illustrates the basic idea
of genetic algorithms. Key advantages of genetic algorithms
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Figure 4. Illustration of genetic algorithms
(From http://www.ewh.ieee.org/soc/es/May2001/14/Begin.htm)

are that they only employ function evaluations (and thus not,
e.g., information about the derivative, as is required by many
other optimization methods, such as, for example, gradient
descent) and that they are well suited to avoid getting stuck
in local optima [33], [34], [35]. Both characteristics make
them particularly useful to optimize the density function of
the correlation lengths. For implementation details we again
refer to our previous work.

Finally, given an input point x we determine an approxi-
mation to the output of the ABM in x as the output generated
by the emulator that corresponds to the cluster closest to
x. We define the distance from a point to a cluster as the
minimum of all distances from that point to any training data
point that is member of the considered cluster. Obviously,
there are other ways to combine the 34 emulators into one
approximator. However, experimental results in our previous
work demonstrated that the described approximator performs
better than some alternative methods to combine the emulators.

In summary, when we speak of the output of the emulator
in x we refer to the output of the emulator that was trained
with the part of the full training data set that constitutes the
cluster to which x is closest in terms of the described minimum
distance. The notation ν(x) is used to denote the output of the
ABM in x, while ν̂(x) refers to the output of the emulator in
that input point.

IV. VALIDATION MEASURES

We consider several validation measures that can evaluate
the performance of a given emulator. Two of them are related
to popular measures in statistics, namely the average interval
score and the average absolute individual standardized error.
They take the uncertainty in the approximation generated by
the emulator into account. Five other measures (Nash-Sutcliffe
efficiency, coefficient of determination, index of agreement,
relative Nash-Sutcliffe efficiency and relative index of agree-
ment) are non statistical measures and have been used in

a variety of fields. A final, extremely simple measure, is
just the average of the absolute relative differences between
approximations and true outputs. The values of the measures
are determined with respect to a given test data set T .

A. Average interval score
The quality of a confidence interval [l(x), u(x)] around

ν̂(x) can be evaluated using the interval score described in
[36]. Given an (1−α)% confidence interval [l(x), u(x)], with
α = 0.05 chosen in this paper, the interval score is defined as

IS(x) =
(
u(x)− l(x)

)
+

2

α

(
l(x)− ν(x)

)
1{ν(x)<l(x)}

+
2

α

(
ν(x)− u(x)

)
1{ν(x)>u(x)} (7)

where 1{expr} refers to the indicator function, being 1 if
expression expr holds and 0 otherwise. This scoring rule
rewards narrow intervals, while penalizing lack of coverage.
The lower its value, the higher the quality of the confidence
interval. In terms of the average interval score, the given
emulator is perfect when the value of the average interval score
equals zero. This can only happen when l(x) = u(x) = ν(x).
The first equality implies that the confidence interval is reduced
to a single point, and if this is combined with the other equality
we find that the value of this single point equals the value of
the emulator. Thus, the perfect case occurs when the estimate
equals the true value and when, at the same time, there is no
uncertainty about how well the predicted value approximates
the true one. Or in other words: the estimate equals the true
value and we know that this is the case. The average interval
score is simply the average of IS(x) over all considered test
points x. An important advantage of the average interval score
is that, unlike many other validation measures, this measure
simultaneously evaluates the uncertainty in the approximation
as given by the confidence interval, and the quality of the
approximation. The first term in (7) evaluates the amount of
uncertainty in the approximation: the larger the uncertainty re-
lated to the approximation, the larger the first term. The second
and third term evaluate the quality of the approximation. If the
true value is outside the confidence interval, and thus far from
the approximation in a certain sense, one of both terms will
be large. For some other work where this measure is used, we
refer to [37] and [38].

B. Average absolute individual standardized error
Given x, the corresponding individual standardized error

[39] is given by

SE(x) =
ν(x)− ν̂(x)√

v(x)
(8)

This measure takes both the approximation and the constructed
confidence interval into account, just as the average interval
score discussed in Section IV-A. The measure SE, given by
equation (8), is very useful since it allows to evaluate the
magnitude of SE in a rather straightforward way. As outlined
in Section II-A, the distributions of the approximations are
approximately Gaussian. This implies that if the emulator
properly represents ν, the distribution of SE is approximately
standard normal. Thus, we expect that about 95% of SE values
are smaller than 2 in absolute value. That is, if there are a
considerable number of test points x for which the absolute



193

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

value of SE(x) is larger than 2, then this is a clear warning
that the emulator might not perform well. This convenient
evaluation of a given emulator is an important advantage
over the average interval score, where we do not have such
reference values. The average interval score is only useful
when at least two different emulators are to be compared to
each other, while SE can be used to evaluate a single emulator.
On the other hand, the average interval score has the benefit
of not making any assumption about the distribution of the
approximations. Taking absolute values and averaging over all
considered test data points, we obtain our average absolute
individual standardized error.

C. Nash-Sutcliffe efficiency

The Nash-Sutcliffe efficiency (NSE), proposed in [40], is
determined as

NSE = 1−

∑
x∈T

(
ν(x)− ν̂(x)

)2
∑

x∈T

(
ν(x)− ν

)2 (9)

with ν the average of ν(x) over all elements of T . The
range of NSE lies between 1.0 (perfect fit) and -∞. An
NSE of lower than zero indicates that ν would have been
a better predictor than the calculated approximations ν̂(x).
The fact that the Nash-Sutcliffe efficiency squares differences
between true and estimated values implies that large values
have large influence while small values are almost neglected,
which might or might not be desired for the application at
hand [4]. Furthermore, while the NSE is a convenient and
normalized measure of model performance, it does not provide
a reliable basis for comparing the results of different case
studies [41]. Nevertheless, NSE is a popular measure for the
evaluation of models, especially of hydrological models [42].

D. Coefficient of determination

The coefficient of determination r2 is the square of the
Pearson correlation coefficient:

r2 =


∑
x∈T

(ν(x)− ν)(ν̂(x)− ν̂)√∑
x∈T

(ν(x)− ν)2
√∑

x∈T
(ν̂(x)− ν̂)2


2

(10)

where ν̂ refers to the averages of ν̂(x) over the test data points.
The measure is widely applied by statisticians [43].

The values of r2 are between 0 and 1. The measure
describes how much of the observed dispersion is explained
by the estimation. A value of zero means no correlation
at all, whereas a value of 1 means that the dispersion of
the estimations is equal to that of the true values. Although
many authors consider the coefficient of determination a useful
measure of success of predicting the dependent variable from
the independent variables [44], the fact that only the dispersion
is quantified is a major drawback of r2. A surrogate model that
systematically over- or underestimates all the time can still
result in good r2 values close to 1.0 even if all estimations are
critically wrong [45], [46].

E. Index of agreement
The index of agreement d was proposed in [47] to over-

come the insensitivity of NSE and r2 to differences in the
true and estimated means and variances. It is defined as:

d = 1−

∑
x∈T

(
ν(x)− ν̂(x)

)2
∑

x∈T

(
|ν̂(x)− ν|+ |ν(x)− ν|

)2 (11)

Due to the mean square error in the numerator, d is also
very sensitive to large values and rather insensitive to small
values, as is the case for NSE. The range of d is [0, 1] with 1
denoting perfect fit.

Practical applications of d show that it has some disad-
vantages [45]. First, relatively high values, say more than
0.65, may be obtained even for poor surrogate model fits.
Secondly, systematic over- or underestimation can, as with
the coefficient of determination, be masked by high values
of d. There exist several variations on the above definition of
the index of agreement, for example, by considering absolute
differences instead of squared differences [48] or by removing
the approximations ν̂(x) from the denominator [49].

F. Relative Nash-Sutcliffe efficiency
The NSE described above quantifies the difference between

the original model and the surrogate model in terms of absolute
values. As a result, an over- or underestimation of higher
values has, in general, a greater influence than those of lower
values. Therefore, one has introduced the following relative
NSE [45]:

NSErel = 1−

∑
x∈T

(
ν(x)− ν̂(x)

ν(x)

)2

∑
x∈T

(
ν(x)− ν

ν

)2 (12)

Some recent research where the relative NSE is used include
[50] and [51].

G. Relative index of agreement
The same idea can be applied to the index of agreement,

resulting in the relative index of agreement [45]:

drel = 1−

∑
x∈T

(
ν(x)− ν̂(x)

ν(x)

)2

∑
x∈T

(
|ν̂(x)− ν|+ |ν(x)− ν|

ν

)2 (13)

H. Average absolute relative difference
Given a test data point x, we can evaluate the quality of

the approximation as the absolute relative difference between
ν(x) and ν̂(x) as follows:

RD(x) =
∣∣∣ ν̂(x)− ν(x)
1/2(ν̂(x) + ν(x))

∣∣∣ (14)

The average absolute relative difference, denoted ARD, is then
the average of RD(x) over all considered test data points.
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This measure has the disadvantage of being unbounded, which
makes it difficult to evaluate whether the obtained value is, e.g.,
large or very large. However, the fact that this measure is very
simple makes it easy to interpret.

V. DESCRIPTION OF THE EXPERIMENTS

We experimentally evaluate how the described validation
measures evolve when we successively remove elements from
the test data set. Three methods are considered to remove
elements. First, removal in terms of the absolute individual
standardized error. That is, we calculate all validation measures
for the full test data set T consisting of 500 test points. Then
we remove the element with the largest absolute individual
standardized error and calculate the validation measures again
with respect to this reduced test data set. This procedure is
repeated until only two elements remain (we do not calculate
the measures for a test data set consisting of one element
since this makes some measures, such as r2, undefined due to
division by zero). Secondly, removal in terms of the absolute
relative difference, where the element with the largest absolute
relative difference is removed first, then the element with
the second largest absolute relative difference, etc. The third
removal method discards elements in a purely random way.

Our experiments are related to the well established practice
of evaluating a model with respect to some test data set
and enlarging the training data set if the evaluation indicates
poor performance. Preferably, the training data set is extended
with bad points, i.e., points for which a chosen validation
measure indicates large discrepancy between the true output
value and the generated approximation, since it is intuitive
to consider such points as lying in regions of input space
where training was not performed properly. The points with
which the training data set is extended should then be removed
from the test data set. However, our purpose here is not to
consider the influence of the extension of the training data
set on the performance of the model, since it is clear that
overall performance will, in general, be improved by extending
learning to regions that were not given proper attention in
a previous learning step. Rather, our goal is to assess the
influence of removing bad data points from the test data set on
our validation measures. Of course, it is obvious that removing
the element with the largest absolute individual standardized
error will result in an improvement of the average absolute
individual standardized error. What is less obvious, however,
is how this will affect the other validation measures. Thus,
a first research question is to what extent the values of the
described validation measures are sensitive to the choice of
criterion that is used to describe a test data point as bad. From
another perspective, this research question asks if the validation
measures are compatible. That is, if a test point is regarded as
bad by a certain measure, do all the other measures agree with
this, in the sense that removing such an element improves their
value? This research question is of the utmost importance, as it
is desired that our evaluation of the goodness-of-fit of a model
is only, or at least mainly, dependent on the model and not on
the choice of validation measure. Furthermore, even when it
would hold that all validation measures improve by removing
test points that are bad according to a certain measure, they
might not improve to the same extent. Some measures might
improve very significantly when one bad point is removed,
while other measures might encounter only a marginal benefit.

It is also important to detect such differences, if they exist,
between validation measures, since an overly optimism in the
improvement of a model after having extended training might
not be justified if the improvement according to other measures
would only show incremental improvement. Indeed, such a
case would point to an artifact of the chosen validation measure
rather than to inherent characteristics of the improved model.

The random removal of elements serves as a benchmark
case: validation measures should improve much more in re-
sponse to the removal of bad points according to a well
chosen validation measure than according to a removal that
is completely random.

VI. RESULTS

The results are shown in Figs. 5-12. Each figure displays
the evolution of one of the eight considered validation mea-
sures, described in Section IV, as elements are progressively
discarded from the test data set, and this for each of the three
removal methods (i.e., according to the absolute individual
standardized error, according to the absolute relative difference
and via random removal).

It is seen that, at first sight, the average interval score,
the average absolute individual standardized error, the Nash-
Sutcliffe efficiency, the coefficient of determination, and the in-
dex of agreement behave as desired: they all gradually improve
as the worst element of the current test data set is removed.
However, a closer look at Figs. 7-9 reveals that the Nash-
Sutcliffe efficiency, the coefficient of determination and the
index of agreement evaluate the emulator as becoming worse
for the removal of, approximately, the first 20 elements when
removal is done according to the absolute relative difference.

Although the relative versions of the Nash-Sutcliffe effi-
ciency and of the index of agreement have been developed to
compensate certain deficiencies of these measures, we observe
that these extensions do not result in unequivocally better
behavior in our experiments. Their behavior with respect to
the removal of elements according to the absolute individual
standardized error is quite erratic, almost indiscernible from
their behavior when removal is random. On the other hand,
these relative measures show more consistent behavior in
terms of removal according to the absolute relative difference.
Whereas the non relative Nash-Sutcliffe efficiency and the
non relative index of agreement become worse by removing
the approx. first 20 elements and only steadily increase after
having reduced the test data set by these 20 elements, the
relative counterparts increase steadily from the removal of the
first element on.

Our simplest validation measure, the average absolute
relative difference, decreases steadily if removal is with respect
to the absolute relative difference. But this is of course a
trivial observation, as it is obvious that a measure improves
if elements are discarded that are bad according to that same
measure. Much more relevant is that the average absolute
relative difference shows undesired behavior when elements
are removed according to their absolute individual standardized
error. Although its global trend is decreasing until about 350
elements are deleted, it suddenly starts to increase after that
turning point.
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Figure 5. Average interval score
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Figure 6. Average absolute individual standardized error
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Figure 8. Coefficient of determination

0.75

0.8

0.85

0.9

0.95

1

0 100 200 300 400 500

In
de

x 
of

 a
gr

ee
m

en
t

Number of removed validation points

absolute individual standardized error
absolute relative difference
random

Figure 9. Index of agreement
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Figure 10. Relative Nash-Sutcliffe efficiency
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VII. DISCUSSION

The experiments indicate that the average interval score
and the average absolute individual standardized error have
the most desired behavior. Whether a point is labeled ’bad’
according to its absolute individual standardized error or
according to its absolute relative difference, removing the
worst element from the test data set results in better values
of both measures. We remind that only these two measures
take the uncertainty in the approximation into account (see
Section IV). Thus, our experiments suggest that statistical
surrogate models, such as Gaussian process emulation, have
certain benefits over deterministic surrogate models, such as
polynomial approximation, in particular that the uncertainty in
the approximation is also modeled. This uncertainty measure
should then be taken into account in validating the model.

Comparing Fig. 5 and Fig. 6, the main difference between
the average interval score and the average absolute individual
standardized error is that the first one reacts much more
pronounced to the removal of elements, at least concerning the
removal of about the first half of all elements. The decrease
of the average interval score appears to be of exponential
order, while the average absolute individual standardized error
seems to improve only linearly except for the first dozen or so
elements. This indicates that one should be careful to report an
improvement in a model as very significant when the average
interval score is used as validation measure, since part of the
improvement might be solely due to characteristics inherent
in that validation measure. It is advised to validate the model
in terms of both the average interval score and the average
absolute individual standardized error.

The other measures do not show steady improvement with
respect to either the average interval score or the average
absolute individual standardized error. Remarkably, each of
these other measures do improve steadily in terms of one of
these measures. The Nash-Sutcliffe efficiency, the coefficient
of determination and the index of agreement improve con-
sistently when removal of elements is performed according
to the absolute individual standardized error, as is seen from
Figs. 7, 8, and 9. On the other hand, the relative Nash-
Sutcliffe efficiency, the relative index of agreement and, of
course, the average absolute relative difference show steady
improvement in terms of the absolute relative difference. This
implies that these measures are sensitive to the criterion that is
used to measure the quality of the approximation in a certain
point. A point that is designated as bad, i.e., low quality
of approximation in that point, according to the absolute
individual standardized error might not be recognized as such
by the aforementioned six non statistical validation measures.
The same applies to measuring the quality of approximation
in a point by the absolute relative difference.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have evaluated eight validation measures
for surrogate models: the average interval score, the average
absolute individual standardized error, the Nash-Sutcliffe ef-
ficiency, the coefficient of determination, the index of agree-
ment, the relative Nash-Sutcliffe efficiency, the relative index
of agreement and the average absolute relative difference. The
first two measures are statistical in nature, taking into account
the uncertainty of the approximation generated by the surrogate
model. The other measures are solely based on the generated

approximation values. The evaluation was performed using
a Gaussian process emulator that was applied to an agent-
based model. We developed both Gaussian process emulator
and agent-based model in previous work.

Our method of evaluating validation measures has, as far as
we are aware of, not been applied yet. We consider a test data
set and successively remove those elements from it for which
our emulator produces the worst approximation to the true
output value, in terms of the absolute individual standardized
error. The considered validation measures are then applied to
the sequence of increasingly smaller test data sets. The same
procedure is applied with removal of test data points in terms
of the absolute relative difference. It is desired that a validation
measure shows improvement of a model when test data points
on which the model poorly performs are removed, irrespective
of the measure that is used to detect such data points. Our
experiments indicate that only the average interval score and
the average absolute individual standardized error have this
desired behavior.

Our work has some practical implications:

• Statistical surrogate models, which not only produce
an approximation to or estimation of the output in a
given input point but also a measure for the uncertainty
in the approximation, are preferred over deterministic
models. Evaluation of such a model should then be
done by a statistical validation measure that takes this
uncertainty measure into account, such as the average
interval score and the average absolute individual
standardized error.

• It is bad practice to evaluate a given model in terms
of a single validation measure, as the value of this
measure might not only reflect the performance of the
model but also certain inherent artifacts of the measure
itself. Evaluating a model using several measures
ensures different perspectives on the performance of
the model, and thus avoids an overly optimistic or
pessimistic view on its performance that might not be
justified.

As future research, it would be interesting to evaluate other
validation measures according to our evaluation procedure.
Especially recently developed validation measures that are
meant to extend or improve previously developed measures
should be evaluated. Examples include:

• A relatively recent alternative to the index of agree-
ment that is dimensionless, bounded by -1.0 and
1.0 and for which the authors claim that it is more
rationally related to model accuracy than are other
existing indices [52].

• Another alternative to the index of agreement that
is also dimensionless and bounded [53]. The authors
demonstrate the use and value of their index on
synthetic and real data sets, but an evaluation in line
with our procedure would increase justification of their
claims.

• A bounded version of the Nash-Sutcliffe efficiency
[54].

Our experiments show that such an additional evaluation is
not superfluous, as modifications to existing measures that in
terms of analytical formulation seemingly compensate some
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clear drawbacks of the existing measure might not show as
consistent behavior in practice as one is inclined to anticipate.
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