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Abstract—This paper reports on a comparative analysis of 
techniques – from simple polynomial curve fitting to digital 
filters, local regression and wavelet denoising – for cleaning 
thin film composite metal oxide gas sensor response signals. 
This research expands and extends a preliminary investigation 
of simple methods for smoothing metal oxide gas sensor 
response signals. As part of the analysis an extensive series of 
systematic experiments were conducted in order to tune the 
parameters, including span or frame sizes and degrees of 
polynomial as appropriate, for each of the digital filters and to 
select the appropriate mother wavelet and threshold chooser 
for the wavelet approach. The signal processing challenge of 
maintaining a balance between the measured signal variation 
and the disparity variation in the smoothed signal is outlined 
and considered in comparing the performance of the signal 
cleaning methods. The results indicate that a Savitsky Golay 
filter with a polynomial degree of 3 and a frame size of 9% of a 
signal’s width provides a practical solution for denoising metal 
oxide gas sensor signals because it was found to consistently 
give a cleaned signal that is suitable for further processing 
(feature extraction and pattern recognition). This work 
provides support for the premise that a generalized method for 
cleaning metal oxide gas sensor signals, regardless of sensor 
composition, is possible and suggests that a Savitsky Golay 
filter is a suitable candidate. 

Keywords-Denoising; Wavelets; Savitsky Golay filter; Frame 
Size; Polynomial; Metal Oxide Sensors. 

I.  INTRODUCTION 

This research expands and extends a preliminary 
investigation of simple methods for smoothing metal oxide 
gas sensor response signals [1]. Precise and reliable 
measurements of trace gases such as carbon monoxide (CO), 
nitrous oxide (NO), sulfur dioxide (SO2) carbon dioxide 
(CO2), methane (CH4) and other hydrocarbons [2] are 
essential for environmental monitoring. Such  gases are 
harmful not only to the environment but also to human health 
if present beyond certain concentrations [3]. Local, national 
and international legislation requires continuous monitoring 
of air quality and rate of emissions. This emissions data is 
critical to the decision making and formulation of policies 
related to climate change. As a consequence, there has been 
considerable effort focused on the fabrication of low cost, 
portable, reliable and accurate sensors for monitoring such 

gases. For the measurements obtained from these sensors to 
be accurate, reliable and interpretable some processing of the 
raw signal is required. A useful summary of statistical and 
optimization methods that have been used to process gas 
sensor array signals is provided by Gutierrez-Galvez [4]. 

The signal processing of gas sensor data has four key 
steps: pre-processing, dimensionality reduction, prediction, 
and validation [5]. This work focuses on the pre-processing 
phase; which facilitates noise elimination, data 
smoothing/filtering and signal enhancement; with the sole 
aim of increasing the signal-to-noise ratio without greatly 
distorting the original response signal. 

In sensor systems noise has several possible sources 
introduced at various points in the measurement process. 
Several forms of noise are irreducible because they are 
inherent to the underlying electronic components or physical 
properties of the sensor [6]. Other forms of noise originate 
from processes and include 1/f noise, quantization and 
transmission noise [7]. The most harmful noise is the noise 
that is propagated in the early stages of measurement and, 
therefore, can be propagated and amplified through the later 
stages in the signal pathway [8]. 

One approach to producing a clean signal would be to 
use physical filters. While physical filters have been shown 
to produce cleaner signals they do not cover the full 
resolution and shape of the curve [1]. This is problematic 
because in order to improve the interpretability, sensitivity 
and selectivity of the measurements from metal oxide 
(MOX) gas sensor array signals it is preferable to use the full 
resolution and profile of the signal. An alternate approach to 
physical filters is to use a digital filter to clean the signal. If 
taking this approach the choice of signal pre-processing 
method is critical because it has a significant impact on the 
overall final quality of the processed signal [7]. 

This paper reports on a systematic series of experiments 
that were conducted in order to compare various 
computational methods for the smoothing or denoising of 
MOX gas sensor response signals using digital filtering 
approaches. For each method a comprehensive and 
systematic set of experiments was conducted in order to tune 
the parameters for the method. The aim was to establish a 
general method and guidelines for the signal pre-processing 
phase (denoising phase) of responses from SnO2-ZnO 
devices regardless of composition. The rest of this paper is 
organized as follows. Section II discusses the relevant 
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background research into the denoising and smoothing of 
chemical sensor responses. Section III outlines the 
fabrication and signal acquisition of the SnO2-ZnO sensor 
devices. Section IV describes the smoothing and denoising 
methods used. Section V provides the results of a series of 
systematic experiments to tune each of these signal 
preprocessing methods. Section VI addresses the issue of 
which of these preprocessing methods is most appropriate for 
the cleaning of MOX sensors by providing a comparison of 
the output signals for each of the methods using the optimal 
values for the tuning parameters as identified in Section V. 
Finally, conclusions are drawn in Section VII. 

II. BACKGROUND 

While the literature on denoising and smoothing of 
chemical sensor signals is extensive, very little has been 
published specifically examining appropriate methods for 
denoising the gas response signals obtained from MOX 
sensors. 

Guiñón et al. used both moving average (MA) and 
Savitsky Golay (SG) filters to smooth the photochemical and 
electrochemical reactor data [9]. They concluded that the SG 
filter was better than averaging because it tends to preserve 
data features that are usually attenuated by the MA filter and 
produce very little distortion in the signal. The SG filter has 
also been used to smooth electrocardiogram (ECG) signals 
and the effect of the smoothing parameters was evaluated 
[10]. Leo at al. [11] reported on the use of SG filters to 
denoise a large scale chemical sensor array prior to 
classifying the response signals from a variety of sensors 
composed of conducting polymer materials. The choice of 
SG filters was based on our earlier preliminary work on the 
use of SG filters for denoising pure SnO2 and pure ZnO thin 
film gas sensor responses to methanol [1]. In this earlier 
work the use of local regression, moving average and SG 
filters were evaluated. Further work using these filters was 
reported but this time with a number of thin film SnO2-ZnO 
composite gas sensor devices [8]. This work resulted in the 
conclusion that the SG smoothing filter gave the best 
denoising result regardless of thin film composition, target 
gas concentration and device operating temperature. 
However, in both of these studies [1][8], the tuning 
parameters were not established in a thorough and systematic 
manner. Instead, they were chosen based on the researcher’s 
knowledge of the data. Therefore, it is necessary to revisit 
this work with a view to tuning the parameters in order to 
obtain an optimal result. 

In the past two decades much of the research in signal 
pre-processing of chemical sensor signals has been focused 
on wavelet transforms because they provide a procedure that 
has low memory requirements, high precision, and good 
reproducibility [12][13]. Wavelet based denoising was 
proposed by Donoho [14]. In 1997 Barclay and Bonner 
reported on the application of wavelet transforms to 
experimental spectra in the analytical chemistry domain. 
They compared discrete wavelet transform (DWT) with 
other common techniques: smoothing (SG filters) and 
denoising (Fourier transforms) on liquid chromatograms and 
electrospray mass spectra. They reported that in this context 

wavelet filters are superior to the other methods evaluated. 
DWT has also been used as a technique for removing noise 
from biosensors [15]. Singh and Tiwari presented an 
evaluation of mother wavelets for denoising 
electrocardiogram (ECG) signals [16]. They reported that 
their wavelet denoising approach, DWT using a Daubechies 
mother wavelet [17] of order 8 and Donoho’s hybrid 
SureShrink threshold selection procedure [18], effectively 
removed noise while retaining the necessary diagnostic 
information in the original ECG signal. One recent effective 
application of denoising based on wavelet transforms was the 
cleaning of GPS receiver positioning data [19]. Kim et al. 
used DWT with hard thresholding and a biorthogonal mother 
wavelet to denoise synthetically generated response signals 
[20]. In examining methods for smoothing MOX sensor 
signals Bassey, Whalley and Sallis [8], proposed that 
wavelets might be a suitable approach but did not investigate 
their usefulness. To date there has been little work that 
systematically compares and evaluates these methods for 
MOX sensor signal denoising. 

As an expansion of our initial results [1][8] this paper 
aims to identify a general method for SnO2-ZnO composite 
gas sensor signal preprocessing that is applicable regardless 
of the sensor composition. Hence, this paper evaluates a 
number of potential methods for denoising SnO2-ZnO 
composite gas sensor devices including MA, local 
regression, robust local regression, SG, and wavelet 
transform methods. The results of extensive experiments to 
determine the best span sizes and degrees of polynomial for 
those methods is presented. Additionally, approaches to 
selecting the appropriate wavelet function are explored. The 
signal processing challenge of maintaining a balance 
between the measured signal variation and the disparity 
variation in the smoothed signals is outlined and considered 
within a systematic evaluation process. 

III. ACQUISITION OF THE RESPONSE SIGNALS 

Five sensor devices were fabricated with different SnO2-
ZnO compositions (Table I). Thin films of these composites 
were deposited on to a silicon wafer using a radio frequency 
sputtering process (similar to the reported for BaTi03-CuO 
mixed oxide sensors [21]) for thirty minutes on a 
silicon/silicon dioxide substrate [22]. 

In initial experiments, each of these sensor devices was 
exposed to 150 parts per million of methanol vapor at 150, 
250 and 350 degrees Celsius, respectively. A constant 
voltage of 5 volts was applied to the sensing elements while 
recording the sensor response to the target gas as a function 
of time of exposure to target gas. 

 
TABLE I.  MOLAR FRACTION COMPOSITIONS OF THE MOX SENSORS. 

 Thin film composition (mole percentage) 

SnO2 100 75 50 25 0 

ZnO 0 25 50 75 100 

Sensor ॺ ॺ3ℤ1 ॺℤ ॺ1ℤ3 ℤ 
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Figure 1. A typical gas sensor signal. 

 
Figure 2. A subregion of the ॺ1ℤ3 signal illustrating typical pertubations. 

 
Typically for calibration of MOX sensors the response is 

characterized using a calibration curve of the signal response 
(current or resistance) [23]. An unprocessed digital response 
from the S device, as current in milliamperes, is depicted in 
Fig. 1. The response data was acquired with a sampling rate 
of one sample per second for ten minutes. Data acquisition 
commenced when the target gas reached the required flow 
rate (the rate needed to provide the required concentration of 
target gas) and the gas flow was turned off after five minutes. 
The analog signal acquired was converted to a digital signal 
using a 14 bit analog to digital converter (ADC). 

In initial experiments, it was found that at 150 degrees Celsius the gas response was less sensitive and that the 
optimal temperature of those tested for operation of these 
sensors was 250 degrees Celsius. For this reason the 
experiments for signal cleaning (denoising/smoothing) 
reported here use the raw signal responses obtained from the 
gas sensing experiments conducted at an operating 
temperature of 250 degrees Celsius. 

Fig. 2 shows the signal noise characteristics of the ॺ3ℤ1 
MOX sensor. Apart from the individual signal profile of each 
device, the signal noise characteristics did not exhibit any 
significant variation between devices. Therefore, this paper 
will focus on the signal processing aspects and optimization 
of the filter parameters. 

IV. METHODS 

The following methods, (A) polynomial curve fitting, (B) 
MA smoothing algorithm (C) local regression smoothing, 
(D) SG smoothing algorithm, and (E) wavelet denoising, 
were applied to the sensor response data obtained from the 
five MOX gas sensor devices. 

A. Polynomial curve fitting 

Arguably the simplest approach to removing noise and 
extracting characteristics from the raw sensor signal is to 
model or approximate the sensor response curve using a 
polynomial function. The task of selecting an appropriate 
degree of the polynomial is straight forward and is the only 
tuning required. 

B. Moving average smoothing 

One of the simplest digital filters is the MA filter. It is 
able to reduce random noise, through smoothing the signal, 
while retaining sharp step responses making it a suitable type 
of filter for time domain encoded signals [9]. A MA filter 
that is equivalent to low pass filtering was used to smooth 
data by replacing each data point with the average of the 
neighboring data points within a specified span of data points 
as described by the difference equation (1) where ys(i) is the 
smoothed value for the ith data point, N is the number of 
neighboring data points on either side of  ys(i), and 2N+1 is 
the span. 

 

 ys(i)=
1

2N+1
൫y(i+N)+y(i+N-1)+…+y(i-N)൯  (1) 

 

C. Locally weighted regression 

Locally weighted scatterplot smoothing (loess and 
lowess) are two non-parametric regression methods that 
combine multiple regression models in a k-nearest-neighbor-
based meta-model [24]. For lowess and loess the smoothed 
values are determined by considering neighboring data 
points within a span. The process is weighted using a 
regression weight function that is defined for all the data 
points contained within the specified span. The span, which 
specifies the neighborhood as a fraction of the total number 
of data points, is often referred to as the smoothing 
parameter or bandwidth. This is the main parameter for these 
methods and controls the smoothness of the estimated signal 
in each local surrounds. Lowess and loess are differentiated 
by the model used in the regression: lowess uses a linear 
polynomial, while loess uses a quadratic polynomial. 

With MA the smoothing parameter defines the span of 
the moving window. However, for the local regression 
methods the span size is given in terms of the percentage of 
data points in the span. 

The robust local regression methods (rlowess and rloess) 
differ from lowess and loess in that a lower weight is 
assigned to outliers in the regression, and a zero weighting is 
given to data outside six mean absolute deviations. This 
robust approach typically gives results that are more resistant 
to outliers. 

Experiments using loess, lowess, rloess and rlowess with 
span sizes of 1, 5, 8, 10, 15, and 20% of the data points were 
conducted in order to tune each of these methods. 

D. Savitsky Golay smoothing 

The SG smoothing algorithm is one of many other types 
of digital smoothing polynomials [25] and has arguably 
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become “an almost universal method to improve the signal-
to-noise ratio of any kind of signal” [26]. The SG method 
[27] is a generalization of the moving average filter and is 
considered to be both relatively simple and have a low 
computational cost. It uses polynomial coefficients to 
determine the best least-squares fit to the points in the span. 
The procedure consists of replacing the central point p of a 
frame (2p+1) with the value obtained from the polynomial 
fit. The frame is moved one data point at a time, until the 
entire signal is scanned, creating a new smoothed value for 
each data point. The smoothed signal g(t) is calculated by 
convolving the signal f(t) with a smoothing (or convolution) 
function h(t) [13] for all observed data points p where f(m) is 
the curve function at point m and h(m−t) ≠ 0 (2). The 
convolution function h(t) is defined for each combination of 
degree of the polynomial and frame size. 

 
 g(t) = f(t)×h(t)=

∑ f(m)h(m − t)∑ h(m)
 
 (2) 

In SG smoothing each data point fi is replaced with a 
linear combination of gi (3) and a number of nearby 
neighbors n where nL is the number of neighboring points 
prior to the data point i, nR is the number of neighbors after 
data point i, and the coefficients cn are the weights of the 
linear combination [28]. 

  gi= ෍ cnfi+n

nR

n= -nL

  (3) 

The moving frame average (4) is computed as the 
average of the data points from fi − nL to fi + nR for some 
fixed nL = nR = M and the weights cn = 1 / (nL + nR +1) 
[29]: 

 gi= ෍ fi+n

2M+1

M

n= -M   (4) 

The weights cn are chosen in such a way that the 
smoothed data point gi is the value of a polynomial fitted by 
least-squares to all (nL + nR + 1) points in the moving 
window. That is, for the group of 2M + 1 data centered at n = 
0 the coefficient of the polynomial is obtained by (5) [30]. 

 cn=p(n)= ෍ aknk

N

k=0

  (5) 

This minimizes the mean-squared approximation error 
(6) for the group of input samples centered on n = 0. 

 εN= ෍ (p(n)−xሾnሿ)2

M

n= -M = ෍ ቌ෍ aknk

N

k=0

−xሾnሿቍ2
M

n= -M
 (6) 

Therefore, gi the smoothed data [29] is given by (7). 

 gi=
∑ cnfi+n

nR
n= -nL∑ cn

nR 
n= -nL

  (7) 

For the SG smoothing algorithm there are two tuning 
parameters: the frame size F = (nL + nR + 1) and the 
polynomial order k. The polynomial order k must be less 
than the frame size F, which must be odd. If k = F − 1 then 
the designed filter produces no smoothing. Frame sizes of 5, 
25, 55, 75, and 95 data points with polynomials of order 3, 6, 
and 9 were evaluated in order to find the optimal tuning 
parameters for the MOX gas sensor response signals. 

E. Wavelet denoising 

Where the previously discussed methods smooth the 
signal by removing high frequencies and retaining low 
frequencies, denoising attempts to remove whatever noise is 
present and retain whatever signal is present regardless of the 
frequency content of the signal. This is essentially denoising 
by shrinking (nonlinear soft thresholding) in the wavelet 
transform domain. Third, it consists of three steps: a linear 
forward wavelet transform (8), a nonlinear shrinkage 
denoising (9), and a linear inverse wavelet transform (10). 
This can be defined mathematically assuming that the 
observed data x(t) consists of the true signal s(t) and noise 
n(t) as functions in time t to be sampled [31]: 

 y = W(x) (8) 

 z = D(y, λ) (9) 

 ŝ = W-1(z) (10) 

Where ŝ(t) is the signal recovered as an estimate of s(t), 
W(·) and W−1(·) are the forward and inverse wavelet 
transform operators respectively, and D(·, λ) is the 
denoising operator with soft threshold λ. 

One of the main considerations in wavelet denoising 
involves the selection of an appropriate mother wavelet 
function at a suitable level N and the subsequent computation 
of the wavelet decomposition of the signal s down to level N. 
There are many different types of mother wavelets available 
and it is important that a suitable mother wavelet is selected. 
The most common selection method is to visually compare 
the signal with potential mother wavelets and select a mother 
wavelet based on the degree of visual similarity. An alternate 
quantitative approach is to calculate the regularity, vanishing 
moment and degree of shift variance [32][33]. Other 
quantitative approaches include Satio’s use of the minimum 
description length (MDL) as a means of selecting the optimal 
wavelet, from a database of orthonormal bases, for noise 
suppression [34]. MDL is based on an assumption that the 
best model is one that provides the shortest description of 
both the data and the model itself. Another method is to use 
the maximum cross correlation coefficient as a selection 
criterion [16][35]. To date there is no accepted standard or 
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generalized method for selecting the mother wavelet function 
[36]. In the experiments conducted here the mother wavelet 
was selected using the maximum cross correlation 
coefficient method. This approach was used after an initial 
selection of potential mother wavelets by visual inspection in 
order to ensure that the mother wavelet selected was 
appropriate. 

The next step is to threshold, for each level from 1 to N, 
the detail coefficients. Therefore, the next important 
consideration is the choice of threshold selection rule [37]. A 
choice between hard and soft thresholding must also be 
made. Hard thresholding is the simpler method and results in 
the sharp signal features being restored but smooth regions 
within the signal are not always as smooth as desired. On the 
other hand, soft thresholding can result in over smoothing of 
sharp transitions but the smooth regions of the signal are 
restored well. It has been reported that soft thresholding 
tends to give better denoising results [38] for audio files. 
Because audio files appear to often have similar noise 
perturbations to those observed for the MOX sensor data it is 
reasonable to extrapolate that a soft thresholding approach 
will prove more appropriate for the preprocessing of MOX 
sensor gas response signals. Moreover, because we are 
interested in preserving the overall signal profile and in 
smoothing the signal more than denoising the signal a soft 
thresholding chooser seems to be the best option. In order to 
ensure that the correct thresholding chooser method was 
selected four commonly used choosers are evaluated: 

• universal threshold selection method [14] 
• minimax threshold [39] 
• Stein’s unbiased risk estimator (SURE) [40] 
• an heuristic variant of Stein's Unbiased Risk and 

fixed form thresholding (heurSURE) [41] 

V. PARAMETER TUNING RESULTS 

This section firstly presents the results for the tuning of 
the parameters for the smoothing methods and the selection 
of mother wavelet for wavelet denoising. All the experiments 
were conducted using MATLAB. All the raw data were in 
quantized form. The raw data or signals and denoised or 
smoothed signals each contained 600 data points. The best or 
optimal signal smoothing method was considered to be the 
one that best preserves the height, width, amplitude, and 
overall profile and data features of the signal while also 
reducing noise in the signal. The process for determination of 
“best fit” used was a visual examination. Given the data 
point distribution generated, this method was regarded as 
both adequate and appropriate. In order to assist in the 
determination of “best fit” the curves produced were also 
plotted against the 95% confidence intervals (CIs). CIs are 
useful in determining the precision of the predicted model 
and help give an idea of how useful the model is for a 
particular region of the data. 

For the non-parametric methods, MA and the four local 
regression techniques, it is not possible to directly calculate 
CIs because the smoothed curve (model) is not based on a 
specific mathematical model or distribution [42]. Calculating 
CIs for the nonparametric methods can in principle be 

achieved by viewing each fitted value as a predictor value 
from a regression equation and then calculating the pointwise 
confidence limits for each of the predicted values [43]. To 
plot the CIs all adjacent upper and lower confidence limits 
are connected with line segments in order to produce the 
final confidence band. It should be noted that although 
pointwise confidence limits do not strictly define the ‘global’ 
CIs they are known to work well, in practice, for illustrating 
the uncertainty in a loess curve [44]. 

In the following discussions we have not presented 
exhaustive examples of these experiments but instead have 
given examples to illustrate key points. 

A. Polynomial curve fitting 

In order to find the best polynomial fit for the sensor 
response curves 3rd, 6th, and 9th degree polynomials were 
fitted to the response curves. The aim is to find the lowest 
degree polynomial that still provides a good fit to the raw 
signal without attenuation of the data features. The best fit 
for all sensor devices was that given by the 9th degree 
polynomial; curve fittings of less than polynomial 9 gave 
poor results (Fig. 4). In the case of the ॺ sensor the fit is 
largely within the 95% confidence bounds for the entire 
profile but does not maintain the profile of the signal at the 
start or end of the signal (Fig. 5). The polynomial curves fit 
less well with the other sensor devices (e.g., Fig. 6). While 
the 9th degree polynomial model for the ॺℤ sensor does not 
fit well in the equilibrated measurement phase (~200-300 
seconds) and the initial ‘gas off’ period (300-400 seconds), it 
provides a better fit after 400 seconds, when the response 
returns to the base line ‘off’ state, than the 6th degree 
polynomial curve. 

 
Figure 4. 3rd, 6th and 9th polynomial curve fitting for the ॺℤ sensor 

response signal.  

 
Figure 5.  9th degree fitted polynomial for the ॺ sensor response signal. 
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Fig. 4 and Fig. 6 clearly illustrate that using this approach 
is not the best solution because it is difficult to fit the 
polynomial to areas of the signal that exhibit rapid change. 
Thus, this approach – curve fitting with simple polynomial 
functions – is not explored further. 

 

 
Figure 6.  9th degree fitted polynomial for the ॺℤ sensor response signal 

(inset) showing data outside of the 95% CIs for the model.  

 

B. Moving average 

To establish the optimal smoothing parameter using the 
MA technique span sizes of 5, 25, 55, 75, 95, and 125 data 
points were evaluated. Fig. 7 gives the root-mean-square 
error (RMSE) for each device using the MA filter with 
varying span sizes. As expected, as the span size increases 
the RMSE error increases meaning that the smoothed signal 
is deviating further from the profile of the original signal. 

 

 
Figure 7.  RMSE of the smoothed signals by device and span size.  

 
The optimal smoothing span should therefore be the 

lowest possible span to ensure preservation of the profile of 
the raw signal and prevent loss of signal features. 

MA smoothing produced the best smoothing using a span 
size of 25 (e.g., Fig. 8(a) and (b)). The smoothing achieved 

provided an improvement on the initial reported results (see 
[1][8]). For all the sensors when a span size of more than 55 
was used the MA filter over-smoothed the approximation 
and, therefore, the approximated curve did not fit as well 
with the raw signal and response information was lost (e.g., 
Fig. 8(c) and (d)). 

C. Weighted regression methods 

For loess and rloess the best smoothing result was 
achieved with a span of 10% (Fig. 9). With a span of 1% the 
signal still contained perturbations that might obscure the 
values of the gas response features (see the ytS1i curves in 
Fig. 9). As the span size increases the noise in the signal 
becomes lower; however, using a 25% span shows that as the 
span size increases distortions in the signal are observed due 
to the smoothing filter (see the ytS25i curves in Fig. 9). Using 
a 20% span the resulting signal was considered to be slightly 
“over-smoothed”, as it did not maintain the resolution of the 
signal (Fig 10(c)). The other sensor devices also displayed 
the best loess and rloess smoothing with a 10% span (Fig. 
10). This finding confirms earlier work in which a span size 
of 10% was suggested to be optimal for MOX sensor signal 
smoothing with loess and rloess filters [1][8]. 

The lowess filter of the ॺ3ℤ1, and ॺ and ℤ sensor signals 
exhibited the best smoothing with a 5% span. Spans of 8% 
and 10% gave the best smoothing for the ॺℤ (Fig 11(a)) and ॺ1ℤ3 sensor signals, respectively. For rlowess the best 
smoothing was observed, for all the sensor devices, when a 
5% span was used (e.g., the ytS5i curve in Fig. 11(b)).  

Generally, above a 10% span all the local regression 
smoothing methods resulted in “over-smoothed” signals 
where noise was removed at the expense of the profile of the 
signal response. This results in a loss of the key diagnostic 
characteristics of the gas sensing signal. The results of these 
experiments show that different local regression smoothing 
methods provide optimal smoothing at different span sizes. 
For this reason local regression is not a viable option as a 
generalized method for the smoothing of MOX sensor 
response signals. 

D. SG smoothing 

In the polynomial curve fitting experiments reported 
earlier in this section it was found that polynomials of less 
than 9 gave a poor fit for the gas response signals for all of 
the sensor devices. In earlier work it had been reported that 
SG smoothing gave the best result using a frame of size of 55 
data points [1][8], with a cubic (3rd order) polynomial but 
neither of these parameters had been tuned to ensure that 
these were the optimal values. In fact, the earlier work had 
been restricted to frame sizes of only 5 and 55. 
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Figure 8. Raw vs smoothed signal using a MA filter: (a) ॺ device with a span of 25, (b) ॺℤ device with a span of 25, (c) ॺℤ device with a span of 75 

(insets) highlight some of the areas where the model is outside of the 95% confidence bands, and (d) ॺ3ℤ1 device with a span of 55. 

 
Figure 9. The same signal filtered with 1, 10 and 25% spans respectively, signals are offset for visibility: (a) noisy ॺℤ signal vs. loess curves, (b) noisy ℤ 

signal vs. rloess curves. 

 
Figure 10. Smoothing with a 10% span using loess: (a) ॺ3ℤ1 signal and (b) ॺ signal and rloess curve filtering (c) ॺℤ device signal filtering using a 20% 

span, (d) ℤ device signal filtering using a 10% span. 

(a)   (b) 

(c) (d) 

(a) (b)

 (a)  (b) 

(c) (d)
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Figure 11. Raw signals vs. filtered curves, signals are offset for visibility: (a) noisy ॺℤ signal lowess filtered with 5, 8, 10 and 25% spans, (b) noisy ℤ signal 

rlowess filtered with 1, 5, 10 and 25% spans.  

 
 

Frame sizes F of 5, 25, 55, 75, and 95 data points with 
polynomials of order k = 3, 6, and 9 were tested in order to 
find the optimal tuning parameters for the SG filtering 
model. As a general rule of thumb it has been suggested that 
the best value for SG filter is the same as that for MA and 
that the polynomial order k should be kept as low as possible 
[45]. Generally, a k value should be chosen that is 
considerably smaller than F in order to achieve the 
appropriate level of smoothing and also to ensure numerical 
stability. Theoretically, the smaller k is in comparison to F, 
the greater smoothing is achieved. For our purpose, a balance 
needs to be made between k and F that results in a signal that 
preserves the raw signal’s profile but also sufficiently 
smooths the spectra. Additionally, we require single values 
for k and for F that give good smoothing results across all 
five sensor devices. 

Fig. 12 shows the influence of polynomial order k on the 
smoothing of the ॺ device’s gas response signal with a frame 
size of 25. Visual inspection shows that an order of 3, cubic, 
gives the best result. This confirms earlier work suggesting 
that optimal results are obtained with a cubic polynomial [8]. 
The remaining experiments therefore use a polynomial order 
of 3 for the SG filter. Fig. 13 shows the results of altering the 
frame size while keeping k constant. The smoothed signal 
obtained using a frame size of 25 results in a smoothed 
signal that still contains some perturbations, therefore, it was 
concluded that as reported earlier a frame size of 55 was 
optimal [8] as it provides a smoother signal but still 
maintains the profile and features of the signal. 

 
Figure 12.  The effect of polynomial order on the degree of SG smoothing 

of the ॺ device response signal (si). Signals are offset for visibility. 

 
Figure 13.  The effect of frame size (F) on the level of smoothing for the ॺ 

signal using a cubic polynomial. Signals are offset for visibility. 

 
Fig. 14 depicts the SG smoothed curves for the ॺℤ and ॺ1ℤ3 devices using the optimal tuning parameter values (k = 

3, F = 55) showing that this method is suitable for all five of 
the MOX sensors. 

 
Figure 14. Plot of raw signal vs. SG smoothed signals (k =3, F = 55) with 

pointwise 95% confidence bands: (a) ॺℤ device, (b) ॺ1ℤ3 device. 

 (a) 

(b)

(a) (b)
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E. Wavelet denoising 

Visual inspection of the perturbations in the signal show 
that similar perturbations can be seen in the Daubechies, 
Symlet, and Coiflet biorthogonal families of wavelets and, 
therefore, they are all potential mother wavelet candidates. 
The cross correlation between the ॺ gas sensor signal and the 
selected wavelet filter was calculated for selected wavelets 
from these four wavelet families (Fig. 15). 

 
Figure 15. .Comparative plot of cross correlation coefficients with selected 

mother wavelet filters for the ॺ signal. 
 

The optimum wavelet filter is one that maximizes the 
cross correlation coefficient [16]. Based on this cross 
correlation coefficient criterion, for the ॺ gas sensor signal a 
Daubechies filter of order 8 (decomposition level 10) is 
considered to be the optimal filter. Fig. 16 is a plot of the 
RMSE of the denoised signals for all five devices, using a 
Daubechies 8 (db8) basis function with various thresholding 
schemes. 

 

 
Figure 16. .Comparative plot of SURE, heurSURE, universal and minimaxi 

thresholding schemes for all five MOX gas sensor response signals. 
 

With the exception of the ॺ gas sensor response signal 
SURE and heurSURE gave the same RMSE and performed 
the best as a thresholding chooser for wavelet denoising of 
the signals. Fig. 16 shows that for the ॺ signal the SURE 
threshold chooser resulted in less difference between the 
denoised signal and the original signal. Therefore, the 
optimal wavelet denoising method for all five SnO2-ZnO 
composite devices sensing methanol vapor was found to be a 
discrete wavelet denoising approach that employed a 
Daubechies basis function of order 8 at a decomposition 
level of 10. The detail coefficients were thresholded using 
soft thresholding and the SURE threshold chooser with the 
noise scaled using a single estimation of the level of noise 

based on the first-level coefficients. Fig. 17(a) and (b) 
compare the denoised and the original (raw) signals for the ॺ 
and ℤ sensor devices. 

 

 
Figure 17. .Plot of raw vs. wavelet denoised ॺ (a) and ℤ (b) sensor signals 

with optimal mother wavelet (db8) and soft thresholding (with SURE). 
 

VI. EMPIRICAL METHOD EVALUATION 

In order to compare the smoothing performance of the 
signal pre-processing methods evaluated, the coefficient of 
determination (R2) and the RMSE were calculated for each 
method using the near-optimal generalized parameter values 
identified by this research. 

R2 measures the “goodness of fit” or how well the 
smoothed signal approximates the original signal where SSE 
is the sum of squared error, SSR is the sum of squared 
regression, and SST is the sum of squared total (11). 

 R2=
SSR

SST
=1−

SSE

SST
  (11) 

The RMSE measures the differences between values 
estimated by the signal processing method and the values 
actually observed (the original signal). The RMSE represents 
the sample standard deviation of the differences between 
estimated values and the actual values (12). 

 RMSE= ඨ1

n
෍ (s(n)-ŝ(n))2

n

i=1

  (12) 

For all methods and devices over 95% of the variance 
between the original and smoothed signals can be explained 
by the pre-processed model. 

 (a) 

(b)
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Figure 18. . Coefficient of determination for the best signal pre-processing 

methods using the near-optimal generalized tuning parameter values. 

 
Based on the R2 statistic the tuned MA and SG methods 

gave the best processed signals for all devices (Fig. 18) while 
the wavelet denoising approach performed slightly less well. 

 
Figure 19. . RMSE for the best signal pre-processing methods using the 

near-optimal generalized tuning parameter values. 

 
Fig. 19 shows that for all the methods similar RMSEs 

were observed for each of the devices and methods with the 
exception of the ॺℤ device with wavelet denoising. 
Denoising the ॺℤ sensor using the db8 wavelet method 
resulted in the greatest difference between original and 
processed signal observed of all sensor/method combinations 
evaluated. 

In determining which method holds the most promise as 
a generalised approach for MOX gas response signal pre-
processing a balance must be found between the goodness of 
fit of the processed signal to the actual raw signal, the 
simplicity and practicality of the method, and the degree to 
which the method preserves the features and profile of the 
original signal. As discussed, the best way to determine the 
quality of the signal pre-processing (smoothing or denoising) 
is to use a visual inspection of the processed signal. If we 
used a purely statistical approach (R2 and RMSE) then the 
best approach appears to be either SG smoothing or MA. 
Given that a moving average approach is simpler than SG, it 
is tempting to assume that MA offers the most promising 
generalized approach. However, visual examination of the 
results of smoothing showed that the SG gives a better 
smoothing result than MA because it maintains the features 
and profile of the signal better when considering the 
consistency in the quality of the smoothing regardless of 
device composition (as discussed in Section V). 

While wavelet denoising appears to lack sufficient 
consistency in results across the different sensor devices’ 
MOX compositions, visual inspection of the denoised signals 
suggests that wavelet denoising is a plausible alternative to 
SG smoothing. It should also be noted that even though 
wavelet denoising of the ॺℤ sensor has a lower R2 and a 
higher RMSE, the difference in fit and error between it and 
the other sensors is actually minimal. 

Fig. 20 shows plots for the wavelet denoising of the ॺℤ 
sensor signal (the worst wavelet denoising result) and the ॺ3ℤ1 sensor (the best wavelet denoising result).  

 
Figure 20. Plot of db8 wavelet denoised signals with original response 

signal for: (a) ॺℤ sensor and (b) ॺ3ℤ1 sensor (insets show perturbations), (c) ॺℤ sensor (insets highlight regions where the profile of the original curve is not maintained) and (d) the full ॺ3ℤ1 signal.  

 (a) 

 (b) 

 (c) 

(d)
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The insets provided in Fig. 20(a) and (b) show an 
enlarged view of the perturbations remaining in the denoised 
signals. Fig. 20(c) contains insets that highlight some of the 
regions in the denoised signal where it deviates from the 
profile of the original raw response signal. If the ॺℤ signal is 
compared with the ॺ3ℤ1 signal it can be seen that the 
denoised ॺℤ signal has a poorer fit than the denoised ॺ3ℤ1 
signal. Both denoised signals appear to have a very similar 
degree of smoothing. Less smoothing of the signal is 
observed using the wavelet approach than when using a SG 
filter (Fig. 14) but the wavelet denoised signal preserves the 
features and the profile of the original signal well. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, an optimal wavelet basis function was 
applied to a set of MOX gas sensor response signals 
generated by exposing the sensor devices to methanol. The 
results revealed that a Daubechies mother wavelet of order 8 
gives a reasonable compromise solution across all the sensor 
device compositions, suggesting that this might be a suitable 
method for other metal oxide sensor responses and for 
devices exposed to other gases as a signal pre-processing 
step. In order to establish whether or not such an approach is 
appropriate in practice further study is required to determine 
how generalizable the method is. Even if wavelets proved to 
be suitable there may still be complications in the 
implementation due to the need to select the order of the 
mother wavelet, level of decomposition of the wavelet 
coefficients, and thresholding method because these may 
differ for different MOX sensor compositions and gases. 

While the wavelet denoising approach gives good results, 
it is a more complex process than the other more traditional 
moving average and regression approaches evaluated in this 
paper. 

The alternative methods investigated do not pose the 
same degree of challenge in implementation and tuning that 
denoising using wavelets does. Among these approaches, SG 
smoothing looks to be the most promising as it resulted in a 
smoothed signal that maintained the profile of the original 
signal, and yielded near-optimal tuning parameter values that 
could be used regardless of sensor composition. SG 
smoothing was also found to give more consistent results 
than the wavelet approach, resulting in the removal of more 
of the perturbations in the signal. These perturbations have 
the potential to make subsequent feature extraction and 
pattern recognition difficult. Moreover, because SG is a 
much simpler approach and the tuning of the parameters is 
relatively straightforward it should be possible to automate 
the tuning process. Some work has already been reported in 
the literature towards automating tuning of the smoothing 
parameters [26]. This makes the SG smoothing approach 
(using a frame size of 55 data points/9% of the signal and a 
polynomial of 3) a more pragmatic solution to the pre-
processing of MOX gas sensor response signals than wavelet 
denoising. 

In order to substantiate further the usefulness of the SG 
approach the methods future work should include an 
evaluation of the method using signals produced by MOX 

sensors of different compositions and various gases (e.g., 
ethanol vapor). Finally, the Daubechies wavelet approach is 
also worth investigating further in order to see if an 
automated approach to selecting the mother wavelet and 
tuning of parameters is possible to simplify the practical 
application of the method.  
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