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Abstract—According to the Industry 4.0 initiative, industry aims
for total automation and customizability using sensors for data
retrieval, computer systems such as clusters and cloud services
for large-scale processing, and actuators to react in the pro-
duction environment. Additionally, the automotive industry is
focusing increasingly on gathering information from the after-
sales market using sensors and diagnostic mechanisms. All this
information enables more accurate classification of faults when
cars malfunction or exhibit undesired behaviour. Since finding
systematic faults as quickly as possible is key to maintaining a
good reputation and reducing warranty costs, techniques must be
established that recognize increasing occurrences of fault types at
the earliest possible point in time. Several sources of information
exist that store heterogeneous datasets of varying quality and
at various stages of approval. Using as much data as possible is
fundamental for accurately detecting critical developing faults. In
order to appropriately support the combination of these different
datasets, information should be treated differently depending on
its data quality. To this end, a concept to optimizing early fault
detection consisting of four components is proposed, each of them
with a particular goal; (i) determination of data quality metrics of
different datasets storing warranty data, (ii) analysis of univariate
time series to generate forecasts and the application of linear
regression, (iii) weighted combination of course parameters that
are calculated using different predictions, and (iv) improvement
of the system accuracy by integrating prediction errors. This
concept can be employed in various application areas where
multiple datasets are to be analyzed using data quality metrics
and forecasts in order to identify negative courses as early as
possible.

Keywords–data mining; time series analysis; data quality met-
rics; automotive industry.

I. INTRODUCTION

In recent years the capabilities of storing large data vol-
umes that originate in various industries, ranging from the
manufacturing industry to social web companies lie beyond
the possibilities of analyzing them. From the management
perspective, information hidden in raw data from various data
sources provides decision support and guidance, and is there-
fore gaining importance. In order to draw reliable conclusions,
new sophisticated ways of processing these large datasets are
required.

In cooperation with the industrial partner BMW Motoren
GmbH (engine manufacturing plant), located in Steyr, Austria,
the Quality - abnormality and cause analysis (Q-AURA) ap-
plication has been developed and is currently being improved
and optimized. The core functionality of Q-AURA is to shorten
the problem-solving time for finding causes of automobile
engine faults in the after-sales market. The system consists
of several components that support the quality management
experts in their daily work. The first step in the Q-AURA

analysis process is to find significant faults (i.e., those with
negative consequences) to determine which fault types are
occurring increasingly in the after-sales market. The result
is a set of significant faults, which are analyzed further by
calculating histograms and attribute distributions of engines
that are affected by the same fault type in order to identify
similarities between them. The last step is to analyze bills of
materials (BOM) consisting of engine parts, components, and
technical modifications from the development department to
determine a set of modifications, that is the most likely cause
of a particular fault. Q-AURA was evaluated positively and
is already being used by quality management experts in their
daily work. Although it delivers good results, improvements
are being considered to further enhance Q-AURA’s function-
ality. Currently, the application uses only one dataset from one
warranty information system to determine critical developing
(significant) faults. Since datasets residing in other information
sources store warranty and after-sales information at various
stages of approval, an extension is needed that integrates them
into Q-AURA. This would provide an improved overall view
of real-world situations and allow techniques to be used that
help to find significant faults earlier, but must be thoroughly
validated to achieve robust results [1].

This paper focuses on a concept that uses data quality
metrics to determine dataset quality, time series analysis in-
cluding forecasting methods to reveal trends and predict future
values, and weighting mechanisms for optimized combination
of multiple datasets. The structure of this paper is as follows:
Section II describes the requirements for such a concept and
the associated research issues and challenges. Section III gives
an overview of related approaches and describes different
methods and mechanisms that are addressed and used by
the proposed concept. Subsequently, Section IV introduces
Q-AURA, details the proposed improvement, and presents
its integration into the Q-AURA analysis process. Finally,
Section V concludes the paper, providing an outlook on future
improvements.

II. RESEARCH ISSUES AND CHALLENGES

As mentioned in Section I, the overall goal of the pro-
posed concept is to earlier identify significant faults, which
required rethinking the Q-AURA concept. Currently, only
historic customer claims (from the last six weeks) are used to
determine whether faults are significant. However, improving
the approach requires not only data from previous weeks,
but also predicting future values. Calculating future values
based on past observations is challenging, because it introduces
some degree of uncertainty. Therefore, we propose using
multiple datasets to improve the prediction process. In detail
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the proposed approach consists of four tasks, each of which
addresses a particular challenge.

The first task is to validate each dataset, which stores
partially contradictory, complementary, and/or redundant in-
formation. The business process addressed by Q-AURA begins
in the early development phase and comprises the development
of new, and the improvement of existing, benzine and diesel
engine generations. The process ends in the after-sales market,
where information about warranty claims and data generated
during a car’s usage is stored. If a customer experiences a
particular fault, the car must be checked at a dealer’s workshop.
There, information about the car and the fault are retrieved and
sent to the car manufacturer. Since BMW sells cars in many
countries partly different classifications of faults exist, which
may lead to discrepancies. These must be addressed and a
solution found to obtain a correct and consistent overall view of
the fault data. Additionally, datasets exist that store information
at different stages of approval. Data quality metrics must be
defined to determine numeric criteria that can be interpreted
and used in further processing steps.

The second task deals with the challenge of detecting crit-
ically developing faults as early as possible using time series
and regression analysis. This is important because each week a
critical developing fault is identified earlier reduces warranty
costs and simultaneously enhances customer satisfaction. In
the current Q-AURA implementation regression analysis is
performed on data from the latest six weeks, and thresholds
are then applied to regression parameters to determine whether
the fault is significant. This time period (of six weeks) proved
to provide the best trade-off between early detection (using as
few recent weeks as possible) and robustness. The only way to
improve the concept was therefore to incorporate predictions.
Forecasting methods are used to compute the most likely future
performance, which is then used as input to regression analysis.
The most suitable time series and prediction methods were
evaluated and selected.

The third task concerns the development of a verification
and weighting mechanism to determine how different datasets
should be treated in the analysis process. Since multiple
datasets are used to obtain more robust results, the best way
of combining them must be found. Two types of weighting
factors are central to the proposed concept: those based on
the overall data quality metric of each dataset and those based
on the prediction accuracy of a particular fault’s course. The
prediction accuracy can be calculated using the prediction of
the previous week and the observation of the current week.
The proposed concept also defines how the weighting factors
are used to combine the data from these different datasets to
finally determine whether an analyzed fault is significant or
not.

The last task is the integration of the invented concept into
the Q-AURA application and its verification. Therefore, the
new Q-AURA concept is described to demonstrate the benefit
of the improved approach.

The resulting approach consists of a set of methods that
enables earlier detection of badly developing fault courses.
First, data quality metrics of different datasets are calculated,
which are then used for weighting. Time series analysis using
forecasting mechanisms is applied to predict future values
based on historical data from these different information

systems. The prediction accuracy is determined on the basis
of the following week’s observation, which is also used as
a weighting factor for the datasets. Finally, the calculated
weighting factors and the regression parameters are used to
determine the significance of a particular fault.

III. RELATED WORK

This section presents related approaches, information about
the methods applied and an overview of the concepts on which
the proposed approach is based under three different headings:
(i) data quality metrics including their assessment, (ii) analysis
of univariate time series, and (iii) determination of forecasting
accuracy.

A. Related Approaches
The proposed concept is tailored to the particular needs re-

lated to identifying significant faults using time series analysis,
forecasts, and regression analysis based on data from multiple
information systems. Other approaches exist that focus on
similar topics.

Chan et al. [2] presented a case study of predicting
future demands in inventory management. They focused on
combining different forecasts to improve prediction accuracy
compared to only using one forecast. Their approach differs
from the presented approach in several aspects: it seems to use
only one information source as dataset, applies different time
series forecasting methods and calculates weighting factors
based on the results of those different methods. A major
difference between the introduced concept and the approach
used by Chan et al. is that the presented concept is based on
different data sources. Thus, different time series are generated
leading to different predictions. Further, the combination step
of the proposed approach is not carried out at the level of the
forecast result, but later after the data has been evaluated. The
results are then weighted based not only on accuracy metrics
of the forecasts, but also on the data quality of the particular
information source.

Research by Widodo and Budi [3] focused on predicting
the yearly passenger number for six consecutive years using
11 time series. Their approach uses the mean squared error
(MSE) to compare prediction accuracy. In their research work
the comparison of forecasts is done using the same dataset.
The following points distinguish the proposed approach from
theirs: More than one dataset is used in the presented concept.
The forecasts are calculated separately for each data source
with the same forecasting method and are combined after
evaluation. In the proposed concept the different forecasts are
combined using two types of weighting factors, (i) weights
based on the prediction error, and (ii) weights based on data
quality.

In [4], the authors described a method for analyzing the
lifetime of products using Weibull distributions. Their applica-
tion area is focused on electronic components in the automotive
industry. The approach employs a day-in-service metric to
identify the potential lifetime of the products analyzed. Day-in-
service specifies how long a product has already been in use.
In the automotive industry the day-in-service metric usually
begins with the delivery of the car to the customer. The bathtub
reliability curve is used, representing lower reliability at the
beginning and the end of product life. Their approach has a
different objective than the proposed one: They want to know
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how long the majority of components will survive before they
fail. Hence, they are not interested in what (fault type) occurred
and how it developed in recent weeks, but how reliable the
products are across all fault types.

Montgomery et al. [5] published a detailed paper about
combining forecasts from different methods, and particularly
how they can be weighted for the best results in social sciences.
They proposed an enhancement to the ensemble Bayesian
model averaging (EBMA) method that improves accuracy and
performance for social science applications. They evaluated
their approach in two use cases: prediction of (i) the 2012 US
election and (ii) the development of the US unemployment
rate. EBMA is mentioned in various research papers and has
proved useful in combining different prediction methods. Since
the proposed concept in this research work integrates different
datasets, data quality metrics must be used, as the quality of
those different sources may vary. Also, it has to be outlined that
the combination task is performed on the regression analysis
parameters of each dataset, which is necessary to identify
whether a particular fault is significant or not.

Armstrong [6] published an overview of requirements and
the possible ways of combining forecasting methods. Vari-
ous approaches were analyzed, and it was emphasized that
the combination can be achieved using different forecasting
methods, different datasets or both. When multiple datasets
are analyzed, their heterogeneity may require that more than
one forecasting method is used. The approaches investigated
address similar use cases, since they seek to improve prediction
accuracy using multiple datasets or methods. However, unlike
the proposed one, none of these approaches implements a two-
step method that uses weighting factors based on data quality
evaluation for each dataset and regression analysis (including
computed predictions) to determine a significant course.

B. Data Quality
Previously, the data quality of information stored in

databases or data warehouses had often been neglected. Red-
man [7] described the impact of poor data quality at different
levels of decision-making and the ensuing problems. Consid-
erable effort has since been put into enhancing data quality
and quality assurance, but there remains room for improve-
ment; information derived from data in information systems
continues to be of lower quality than expected. Heinrich et al.
[8] presented statistics that show various problems due to poor
data quality, and mentioned that awareness must be raised.

In many cases decision-makers do not know that the data
from a particular information source is of poor quality [7].
Thus, not only must the quality of the stored data be improved
as much as possible, but users of this data must be made
aware that it is not completely reliable. In modern businesses,
many automated procedures and processes exist that transform
and aggregate stored data, and compute new values which
are then used by other processes to derive and generate new
information, decision parameters, and other content. Clearly, if
the original data is of poor quality, all the workflows and subse-
quent processes that use this information generate even poorer
results, which may lead to problems, incorrect decisions, or
other negative consequences. Hence, it would be advisable that
these workflows should not rely solely on the data assuming it
is completely correct, but to use quality metrics that determine
the level of uncertainty. If multiple information systems exist

that store partially redundant information originating from dif-
ferent processes, subsequent processes can use all data from all
systems to achieve a better overall view. In order to know how
to treat information from these information systems, methods
are required that consider and measure the quality of stored
data. In the scientific literature, a variety of data quality metrics
and dimensions have been defined and specified, each of them
tackling a particular aspect of data quality [9][10]. Wang and
Strong [11] defined the term data quality dimension as a set of
data quality attributes that define a single aspect or construct
of data quality. They aimed to categorize data quality metrics
in terms of accuracy of data, relevancy of data, representation
of data, and accessibility of data, while in [12] and [13]
the classes were labeled intrinsic data quality, accessibility
data quality, contextual data quality, and representation data
quality. Naumann and Rolker [14] based their distinction on
the usage and retrieval process of information, dividing data
quality metrics into subject-criteria scores, process-criteria
scores, and object-criteria scores. Other publications, among
them [15] and [16], investigated dependencies and tradeoffs
between data quality metrics. Note that data quality metrics
can be determined in a task-dependent and a task-independent
manner, depending respectively on whether they are computed
with or without the contextual knowledge of their usage
[17]. Such context can be included, for instance, by applying
business rules or government regulations. Bobrowski et al. [18]
distinguished between direct and indirect metrics, where the
former are determined directly from the data, and the latter are
computed from the former, taking the dependencies between
them into account.

In accordance with these classifications, those data quality
metrics that are important in the context of the proposed
approach are identified and described below. In the application
area of the proposed approach data is processed automatically,
using a reliable connection. Consequently, data quality metrics
concerning the representation or the accessibility of data are
not relevant, since they do not describe the data itself. The
intrinsic and contextual categories, however, are important
in the addressed context. The subject criteria and process
criteria classes according to Naumann and Rolker [14] are
not relevant to the proposed concept, because they seal with
how the user perceives the information or how the query
processing is treated. In [16], a distinction was made between
quality metrics related to a particular user’s view and data-
related quality metrics. Since the user’s view is not important
in the presented concept, only metrics that have an impact
on the data itself are applied. The remaining data quality
metrics that are relevant in the particular application scenario
are Completeness, Consistency, and Correctness.

Completeness has been addressed in various research pa-
pers, with - in some cases - different interpretations of the
definition depending on application area and point of view.
Table I lists various contributions with different definitions
of completeness. While some concentrate on the presence or
absence of entries, others - such as Kahn et al. [19] and Ballou
et al. [15] - take a closer look by evaluating whether the
amount of information represented by the content is sufficient.
Generally, a system is complete if it includes the whole truth.
The completeness quality metric is often related to NULL
values in databases and information systems. The general
understanding is that a NULL value must be treated like a
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missing value, but it may also be that it is not known whether
it exists or that it does not exist at all, which describes a
considerably different perspective on completeness [9]. This
means that the conceptual organization of an information
system can be seen from two different points of view called
closed world assumption (CWA) and open world assumption
(OWA). Under the CWA, all information captured by the
information system represents facts of the real world and
anything that is not described is assumed to be false. Under
the OWA, it cannot be stated whether a fact not stored in
the information system is false or whether it does not exist
at all. In an OWA-based system that does not store NULL
values, identifying the completeness of an information system
requires the introduction of a new concept called reference
relation. This concept stores all real-world facts with respect
to the structure of the particular relation. In comparison to
a relation of an information system storing all facts of the
real world except one object, the reference relation would
contain all information of the relation plus the missing object
not captured by the relation. The metric completeness can
be defined formally as follows. For a database scheme D,
we assume a hypothetical database instance d0 that perfectly
represents all information of the real world that is modeled
by D. Furthermore, we assume that one or more instances di
(i ≥ 1) exist, each of them is an approximation of d0. Next,
we consider some views, where v0 is an ideal extension of d0
and vi (i ≥ 1) are extensions of the instances di. Equation (1)
represents this concept, where the absolute values represent
the number of tuples [20][21].

|vi ∩ v0|
|v0|

(1)

Under the CWA, completeness is defined differently, be-
cause NULL values indicate entries that do not exist in the real
world. Completeness can therefore be seen from the granularity
perspective [10]. The following four types of completeness can
be distinguished according to their granularity:

• Value completeness: When this type is applied, com-
pleteness is determined at the finest-grained level,
and the ratio between existing values of particular
fields and the total number of fields (including NULL
values) is calculated.

• Tuple completeness: On a more general level tuple
completeness represents the completeness of a partic-
ular tuple represented by the tuple’s ID. For example,
if a relation has four attributes and a particular tuple
contains one NULL value, the completeness for this
tuple would be 75%.

• Attribute completeness: Similar to tuple completeness,
this describes the completeness value of a particular
attribute. It is calculated as the ratio of existing values
and the total number of tuples (containing NULL
values).

• Relation completeness: This type of completeness is
based on the number of NULL values and the total
number of values in a whole relation.

It is important to analyze a particular application in detail to
determine how NULL values are treated correctly, because they
can have different meanings. For example, when the relational

TABLE I. Completeness definitions in scientific papers.

Reference Definition

extent to which the value is present for that specific data element [7]

breadth, depth, and scope of information contained in the data [11]

presence of all defined content on both data element and dataset
levels

[15]

schema completeness is the degree to which entities and attributes
are not missing from the schema; column completeness is a function
of missing values in a column of a table

[17]

every fact of the real world is represented; it is possible to consider
two different aspects of completeness; (i) certain values may not
be present at the time, and (ii) certain attributes cannot be stored

[18]

extent to which information is not missing and is of sufficient
breadth and depth for the task at hand

[19]

related to the Closed World Assumption (CWA); the information
stores the whole truth

[22]

ability of an information system to represent every meaningful state
of a real-world system

[23]

degree to which data values are included in a data collection [24] (via [9])

percentage of real-world information entered in data sources and/or
data warehouses

[25] (via [9])

information having all required parts of an entity’s description [26]

ratio between the number of non-NULL values in a source and the
size of the universal relation

[27] (via [9])

all values that are supposed to be collected as per a collection theory [28]

model is used there is often a primary key defined for a
relation. Since members of the primary key cannot be NULL,
missing objects cannot be expressed using NULL entries for
these attributes. If a particular attribute is not member of the
primary key, it can be NULL (assuming there are no NOT
NULL constraints), and therefore it is possible to represent
missing objects as NULL values. In the application area of
the proposed concept, the scenario is similar, as unknown or
non-existent features are represented as NULL values if the
particular attribute is not in the set of primary key attributes.
If an object exists in the real world but is not represented in the
dataset, then no tuple is stored in the database, since primary
key attributes cannot be set to NULL.

Consistency is a data quality metric whose definition is
very similar across different research papers: multiple entries
with the same meaning should be represented identically or in
a similar way. Interestingly, consistency is often closely related
to integrity and integrity constraints. Batini et al. [9] defined
consistency as the ratio of values that do not violate specific
rules and the overall information set. They stated that these
rules can be either integrity constraints (referring to relational
theory) or consistency checks in the field of statistics. Integrity
constraints can be further subdivided into inter-relational con-
straints and intra-relational constraints, depending on whether
the constraint relates to one or more tables. Pipino et al.
[17] also defined consistency as closely connected to integrity
constraints (e.g., Codd’s Referential Integrity constraint). They
proposed that consistency can be calculated as a ratio using the
number of violations of a specific consistency check and the
total number of consistency checks. Bovee et al. [26] defined
consistency as a sub-metric of integrity dealing with different
representations of the same information in multiple entries. A
summary of the different definitions is listed in Table II.

In the context of the presented approach, consistency is
considered as the entries’ violation of - or, more specifically,
their compliance with - rules that represent consistency checks.
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TABLE II. Consistency definitions in scientific papers.

Reference Definition

refer to the violation of semantic rules over a set of items [9]

format and definitional uniformity within and across all comparable
datasets

[15]

consistency of the same (redundant) data values across tables (e.g.,
Codd’s referential integrity constraint); ratio of violations of a
specific consistency type to the total number of consistency checks
subtracted from 1

[17]

there is no contradiction in the data stored [18]

requires that multiple recordings of the value(s) for an entry’s
attribute(s) be the same or closely similar across time or space

[26]

different data in a database are logically compatible [28]

TABLE III. Correctness definitions in scientific papers.

Reference Definition

[accuracy] data are certified error-free, accurate, correct, flawless,
reliable, errors can be easily identified, the integrity of the data
precisely

[11]

[free-of-error] number of data units in error divided by the total
number of data units subtracted from 1

[17]

every set of data stored represents a real-world situation [18]

[free-of-error] extent to which information is correct and reliable [19]

[validity] the data sources store nothing but the truth [22]

[accuracy] refers to information being true or error free with respect
to some known, designated, or measured values

[26]

[accuracy] extent to which collected data are free of measurement
errors

[28]

[accuracy] data are accurate when the data values stored in the
database correspond to real-world values

[29]

It is calculated as the ratio of entries satisfying all consistency
checks and the total number of entries. An example of such a
consistency check is the proof of duplicates in the dataset.

Correctness is a metric that indicates whether the stored
information is valid. A summary of different definitions from
scientific papers is listed in Table III. Since different terms
are often used for the same concept, the original attributes
are given in brackets. Pipino et al. [17] provided a very
technical definition that explains how the metric is calculated.
In [18], the definition was very general, defining correctness
of a particular dataset as the presence of a corresponding
real-world subject. In this contribution, correctness is also
seen as a valid representation of real-world entities. Semantic
rules are required to determine whether a particular entry is
correct or in the correct range. Since functional requirements
can change over time, it is important to modify these rules if
necessary [23].

It is very difficult to verify the correctness of data, since
tacit information from domain experts is required in most
cases. Hence, expert knowledge must be represented as a set
of semantic rules, which are applied to the data in information
systems to determine whether the content satisfies these condi-
tions. Note that correctness heavily depends on the application
area, which means that, even if a particular entry in a dataset
complies with all rules of one application area, it might still
fail checks of another.

C. Analysis of Univariate Time Series
The proposed approach uses time series analysis to estimate

a model that fits the observed data and computes forecasts
to determine future values. For this purpose, models must be
compared in order to find the most suitable one. Since the
application area is based on a single observed variable, we
focused on methods that address univariate time series.

Time series analysis is a very popular research field and
dates back to 1906, where Schuster recorded sunspot numbers
in a monthly schedule, which was one of the first recorded time
series. Nowadays, a wide variety of applications exists, ranging
from stock analysis and calculations concerning demography
to sunspot observations. The basic purpose of a time series is
to capture a set of sequential observations over a time period.
Methods are needed to compute a model for generating a time
series with minimal differences between the observations and
the model-generated data points [30]. Time series analysis
has two major goals: (i) to express the underlying process
that leads to the observations as accurately as possible, and
(ii) to obtain a model that predicts future values based on
the course of the time series. The smaller the difference
between the generated course and the data points the better the
model supposedly describes the underlying process. However,
this statement is not entirely correct, since a model can also
be fitted too closely to the curve (called overfitting), which
means that it expresses the observations in too much detail,
and also models outliers that might not have a systematic
impact. Overfitting results in poorer out-of-sample prediction
performance (calculating forecasts) than a model that is fitted
less exactly. Time series analysis is closely connected to
forecasts, since it focuses on the prediction of future values for
a known time series. Weather forecasts are a popular example,
where former observations are known and future values are
predicted on their basis (considering the laws of physics) [30].
A very basic classification of time series distinguishes between
univariate and multivariate types, depending on whether they
focus on one or multiple target variables, respectively. Thus,
different courses (variables) are analyzed for the same time
period, which means that different features are observed at a
single point in time (represented as vectors) [31]. The proposed
approach focuses on univariate time series and the following
time series models were compared to find the most suitable
one for the application area.

Box-Cox Transformation, ARMA errors, Trend, and Sea-
sonality (BATS) is a method introduced by De Livera et
al. [32]. Since it uses Box-Cox transformations, it does not
focus exclusively on linear homoscedastic time series, but
also supports nonlinear ones. Furthermore, the method also
considers ARMA errors, where ARMA parameters are eval-
uated and determined in a two-step procedure, as this leads
to the best results [33]. Additionally, the trend component is
computed using an adaption to the damped trend. The method
incorporates mechanisms to deal with seasonal influences,
as these often occur in time series. In [32], Trigonometric
BATS (TBATS) was proposed as an extension to the BATS
model, which replaces the seasonal definition of BATS with a
trigonometric formulation. A method that was used very often
in the past is Simple Exponential Smoothing (SES), which
applies weights to the individual observations of the time series
[34]. As the name indicates, these weights are not equally
distributed but decrease exponentially over time giving more
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recent observations a higher impact than previous ones. An
extension to SES was introduced by Hyndman et al. [35]. They
proposed a framework called Exponential Smoothing State
Space Model that makes it possible automatically determining
the best exponential smoothing algorithm and its parameters
using state space models. Since their approach delivered good
results on the M3-data, it was also investigated and tested in
the context of the proposed concept. The quality criteria that
is used by this framework is Akaike’s Information Criterion
(AIC) [35]. Another method that was introduced in the appli-
cation area of demand forecasting is Croston’s Method (CROS-
TON) [36][37], which uses multiple single simple exponential
smoothing forecasts and treats zero observations separately (in
the application area of demand modeling, these are the obser-
vations where the demand is zero). Auto-Regressive Integrated
Moving Average (ARIMA), which belongs to the family of
Auto-Regressive Moving Average ARMA models, is a popular
method for fitting time series and forecasting. ARMA models
consist of two components: the auto-regressive component
(AR) and the moving average component (MA). The AR-
component computes the dependencies between previous val-
ues/observations and their impact on the current observation,
while the MA-component estimates the smoothing function for
the observations in a particular time period. Various modifica-
tions to the ARMA model have been proposed, among them
ARIMA, which considers also non-stationary processes [38].
Neural networks are used more often for time series analysis.
A popular representative is the feed-forward network with
a single hidden layer (NNETAR). Artificial neural networks
are based on inputs and dependent variables; the parameters
are transformed, weighted, and combined using one or more
hidden or intermediate layers in order to determine the output
variable. In [39], the authors presented a comparison of neural
networks in different usage scenarios, and - based on recent
research - concluded that the risk of over-parameterization is
a well-known problem. Hence, they recommended using feed-
forward neural networks with a single hidden layer [39].

D. Determination of the Forecasting Accuracy
In the presented concept, assessment of the quality and

thus the reliability of a prediction is a key task. In order to
determine the reliability of a predicted value, it is important to
know how good the particular prediction is. Hence, predictions
should be evaluated using new observations as soon as they
become available. As this topic is often tightly coupled with
time series analysis, many research papers have addressed it.
Below, we provide an overview of error terms including their
benefits and drawbacks, since these are the terms in which
accuracy measures are often considered.

Hyndman and Koehler [40] distinguished between four
different types of error measures: (i) scale-dependent measures,
(ii) measures based on percentage errors, (iii) measures based
on relative errors, and (iv) relative measures (Table IV). In
addition to these categories they proposed a scale-independent
metric called Mean Absolute Scaled Error (MASE).

The first category of scale-dependent measures includes
Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), and Median Abso-
lute Error (MdAE). The problem with these metrics is that
they cannot be compared easily across various time series
of different scale. A wide range of applications use these

TABLE IV. Overview of forecast accuracy metrics.

Category Metric Definition

scale-dependent measures MSE Mean Squared Error

scale-dependent measures RMSE Root Mean Squared Error

scale-dependent measures MAE Mean Absolute Error

scale-dependent measures MdAE Median Absolute Error

percentage errors MAPE Mean Absolute Percentage Error

percentage errors MdAPE Median Absolute Percentage Error

percentage errors sMAPE Symmetric Mean Percentage Error

percentage errors sMdAPE Symmetric Median Percentage Error

percentage errors RMSPE Root Mean Square Percentage Error

percentage errors RMdSPE Root Median Square Percentage Error

relative errors MRAE Mean Relative Absolute Error

relative errors MdRAE Median Relative Absolute Error

relative errors GMRAE Geometric Mean Relative Absolute Er-
ror

relative measures RMAE Relative Mean Absolute Error

scale-independent
measures

MASE Mean Absolute Scaled Error

metrics to determine the forecast accuracy of univariate time
series [41]. Armstrong and Collopy [42] also addressed the
problem arising from scale dependency. The second category
is about measures based on percentage errors. Commonly used
metrics are Mean Absolute Percentage Error (MAPE), Median
Absolute Percentage Error (MdAPE), Root Mean Square Per-
centage Error (RMSPE), and Root Median Square Percentage
Error (RMdSPE). An advantage of these methods is that they
are scale-independent and therefore suited to comparing the
forecasts of different time series. However, there are also
some disadvantages: Firstly, it is not always guaranteed that
they are finite or defined. MAPE, for example, encounters
problems when a time series is close or equal to zero [39].
Additionally, MAPE and MdAPE come with the drawback
that they treat positive errors worse than negative ones, which
results in asymmetry. Makridakis [43] described extensions
to these metrics in order to find symmetric error metrics,
which are called Symmetric Mean Absolute Percentage Error
(sMAPE) and Symmetric Median Absolute Percentage Error
(sMdAPE) as an attempt to overcome the asymmetry problem.
However, sMAPE and sMdAPE are less symmetrical as their
names might imply: It has been shown that the resulting error
is greater for overpredictions than for underpredictions by the
same amount [39][44]. The third category of forecast accuracy
metrics covers measures based on relative errors. Popular
metrics of this category are Mean Relative Absolute Error
(MRAE), Median Relative Absolute Error (MdRAE), and Geo-
metric Mean Relative Absolute Error (GMRAE) [39][40][42].
The advantage of these methods is that the metrics not only
compare the times series with the corresponding forecasts, but
also compare it with predictions from a different forecasting
method that serves as a benchmark method. In many cases,
random walk is used for this purpose. The fourth category also
defines measures on the basis of a comparison between the
method applied and a benchmark method. The Relative Mean
Absolute Error (RMAE) is defined as the ratio between the
MAE of the applied method and the MAE of the benchmark
method. Similar metrics can be calculated comparing error
metrics of the applied model with those of the benchmark
method (e.g., Relative Mean Squared Error (RMSE)). The im-
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provement provided by the applied method is always expressed
in relation to a benchmark method. The drawback of these
measures is that they do not indicate an absolute goodness of
the forecast itself.

IV. IMPROVING EARLY DETECTION OF SIGNIFICANT
FAULTS IN QUALITY MANAGEMENT

This section covers the Q-AURA analysis process, the in-
vented improvements of it, and their integration into Q-AURA.
Q-AURA is a system that supports quality management experts
in analyzing faults occurring in the after-sales market. Defect
and warranty information is gathered from car dealers who
inspect customers’ cars and detect faults. The business process
relevant for Q-AURA, which ranges from the development of
an engine to the after-sales market, is illustrated in Figure 1.

Problem 
Management

Engine 
ProductionDevelopment After-salesAutomobile

Production

Fault 
Docum.

Product.
IS

Product. 
IS

Warranty 
IS 1

Warranty 
IS 2

Techn. 
Mod. BOM

IS ...  information system
BOM ...  bill of materials

Figure 1. Flow chart of the business process relevant to Q-AURA.

Fault and warranty information is distributed across infor-
mation systems, which contain partially redundant information.
Since partially different data is also stored in the information
systems, integration would result in a more complete, holistic
view of real-world situations. In combination with Q-AURA’s
primary aim of identifying significant faults, this extension
targets more accurate and robust results if the information
is processed and interpreted correctly. Q-AURA’s secondary
aim of analyzing significant faults further in order to deter-
mine technical modifications that might underlie them requires
additional information residing in information systems from
other process steps. Therefore, these data sources must also
be integrated to cover the whole engine lifecycle.

A. Q-AURA Approach
This section describes the Q-AURA approach and its

analysis process, which forms the basis of the invented im-
provement [45]. The underlying analysis process is divided
into different steps, which modify the information such that
(i) data mining methods can be applied and (ii) the most
appropriate representation of the data can be found. These six
process steps are illustrated in Figure 2.

The first step is the identification of significant faults that
occur in the after-sales market, which are then further analyzed
(cf. Figure 2-1). The term significant is used for faults with
negative consequences that have developed in recent weeks.
The information base that is used for this step covers cars that
were manufactured in the last three years. To detect faults that
have occurred recently and indicate current problems, the last
six weeks are considered. These boundaries were set carefully
in order to take those cars into account that influence the
ongoing development process. Since various engine types exist
and since fault types have a different distribution depending
on the car brand (e.g., BMW and MINI), the appropriate level
of granularity for the analysis had to be found: finally, the

27 28 29 30 31 32
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the engine production date

number
of faults

production week

time of increase
in number of faults

fault distribution
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number
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fault distribution
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engines
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XVDR871 1 1.772 100.00 177.2
RTDG762 1 1.946 37.712 73.388
DBSJ842 1 2.018 32.627 65.841
M823945 1 3.256 20.339 66.224
HGDB428 0 1.270 15.254 19.373
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of the fault

number
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Figure 2. Q-AURA process in detail.

result was to classify faults according to fuel type, car brand,
and engine type. Thus, faults that occur in BMW automobiles
are not in the same analysis set as faults in engines that
have the same engine type and fuel type, but are built into
MINI automobiles. Regression analysis is used to determine
significant faults [46]. Three different approaches to regression
analysis based on convex functions, smoothing functions, and
a straight line were tested to find the best method. The
evaluation was done using fault courses from most of the
analysis sets for diesel engines over several weeks. Experts
from the diesel quality management department, who helped
in finding the method that best identifies significant fault
courses were contacted weekly. The evaluation revealed that
the straight-line approach outperformed the others. Different
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metrics of the regression line can be calculated to determine
its characteristics. Q-AURA previously used gradient, mean
value, and coefficient of determination. The coefficient of
determination (indicating how well the regression line fits
the actual course) and the mean value were replaced with a
new metric called gradient ppm (Equation (2)). This value is
calculated as the ratio between the gradient and the number
of faults (regardless of the fault type) of the engine type
(nenginetype).

kppm =
k ∗ 1.000.000

nenginetype
(2)

Those faults that exceed specific thresholds are analyzed in
more detail. These thresholds were investigated and evaluated
carefully together with quality management experts. Faults that
are not classified as significant are not analyzed further.

For each significant fault, the production week histogram is
calculated in the second step (cf. Figure 2-2). The histogram is
based on cars that were produced in the preceding three years
with claims from the last two years. It shows the number of
produced engines with the particular fault in relation to the
total number of produced engines of the same class (according
to fuel type, car brand, and engine type). This is done to take
production fluctuations into account, because an increase in the
number of engines produced will most likely affect the number
of faults, but does not necessarily indicate a systematic failure
during engine development. The course is then normalized
by the highest value in order to identify more clearly the
highest fault peaks in time. A 5-point smoothing function
is applied to eliminate outliers. The resulting course forms
the basis for identifying the critical time periods, which are
bound by an initial significant increase and a decrease. An
increase of the course, which is defined as the ratio between
faulty engines and the total number of engines produced,
indicates that one or more negative effects have occurred that
influence product quality (e.g., a new technical modification
that changed the engines). The identification of significant
increases is illustrated in Figure 2-2.

Afterwards (cf. Figure 2-3), the decreases of the course are
determined. Both steps (finding increases and decreases) are
performed using sliding windows and calculating the slope.
Subsequently, interesting time periods can be identified, each
of which is bound by a significant increase and the subsequent
decrease. Such a time period represents the time when most
of the engines affected by the particular fault were produced.

In the next step (cf. Figure 2-4), the faulty engines identi-
fied for a time period are investigated in more detail. In order to
determine more exactly which subset of them is affected most
by a particular fault, the distribution of the engine material
number is analyzed. The engine material number represents
a particular bill of materials (BOM) and, therefore, defines
an engine in much detail. The bill of materials specifies
all components and parts that are necessary for assembling
an engine. A BOM entry contains information such as part
number, number required, and unit. More interesting for Q-
AURA is that a BOM also stores the technical modification
identifier. A technical modification describes the reason why
a particular part is in the BOM and which former part it
substitutes (if it is a substitution). Possible reasons could be
a new supplier or that the former part lead to a quality issue.

The BOM distribution is put in relation to the engines produced
with the same engine material number to select those material
numbers that have a bad ratio. The ratio is then normalized to
identify the BOMs that must be analyzed further, since they
are affected most by the analyzed fault.

Step 5 in Figure 2 illustrates how the technical modifica-
tions are selected. Not every technical modification that oc-
curred throughout the whole time period analyzed is relevant,
since a technical modification that was implemented months
after the significant increase, cannot be the cause of the fault.
Therefore, the time period from which technical modifications
are selected can be limited, which is important because the
number of technical modifications made over time is vast,
which prevents application of intelligent methods and makes
drawing meaningful conclusions difficult. In order to avoid
being too strict and selecting insufficient modifications (and
possibly missing the causative modification), a three-month
period starting two months before a significant increase is used.
This period was defined and evaluated together with quality
management experts.

In the last step, the number of technical modifications is
limited to those most likely to have provoked the fault (cf.
Figure 2-6). Using the modifications determined in step 5 and
the engine classification according to their engine material
numbers, two alternatives were implemented that determine the
relevant set of technical modifications. The first is a descriptive
approach that identifies modifications that are covered by most
of the significant engine material numbers, while the second
uses association rules. More detailed information about these
two methods can be found in [45].

This analysis concept, which forms the core of Q-AURA, is
already in daily use by quality management experts at different
engine production plants. The evaluation of the tool showed
that it provides a significant benefit. The problem solving time
for engines produced in the plant in Steyr was recorded in two
consecutive years (before Q-AURA was applied and after its
introduction). It showed that the reduction was approximately
2% [45].

B. Optimized Early Detection

This section describes the new improved concept in detail
and shows the advantages over the current Q-AURA imple-
mentation. Clearly, early detection of faults that occur during
development or production is crucial, since in most cases they
result in negative effects for the company. As described in
Section IV-A, Q-AURA is an application that identifies current
problems (represented as engine faults) and automatically ana-
lyzes them in detail to gather more information about possible
causes. This means that early detection is also an important
task for Q-AURA. Since finding the causes of a particular fault
is very time-consuming, improvements by a single day or even
a week are highly beneficial. Thus, an approach was invented,
which optimizes (i.e., accelerates) Q-AURA’s fault detection
method. The improved concept consists of four components,
each fulfilling a different task: (i) assess information systems
based on data quality, (ii) analyze univariate fault time series
and compute forecasts, (iii) determine whether a particular
fault is significant using predictions based on multiple infor-
mation systems, and, (iv) evaluate the prediction accuracy to
determine the quality of the forecasts.
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Figure 3. Concept for optimizing early detection.

The overall concept is illustrated in Figure 3. The Validator
(cf. Figure 3-1) is responsible for determining a specific
information system’s data quality. Different data quality met-
rics are used (completeness, correctness, and consistency) to
calculate the component’s result, which constitutes an overall
data quality metric for the particular information system. The
Predictor (cf. Figure 3-2) analyzes the fault time series for
each fault in each data source. This means that a model must be
generated that describes the process underlying the time series
as well as possible in order to be able to calculate a forecast
(out-of-sample prediction). A single value is forecasted, which
is then used to determine the significance of the particular
fault. Regression analysis is applied considering a six-week
period (containing the forecast value as the most recent one). In
the subsequent step, the Combiner integrates weighting factors
and the regression parameters of each data source’s regression
line to calculate an overall significance metric that indicates
whether a particular fault is significant. Finally, the Controller
determines the accuracy of each forecast. This is achieved by
comparing new entries in the information systems from the
following week. The prediction error is calculated for each
data source using the new value and the predicted value of the
previous week. This prediction error is then used to compute a
weighting factor that is required by the combiner component.

1) Validator: The validator is responsible for determining
the data quality of a particular information system. Various
quality metrics from the scientific literature were compared
to identify quality metrics that are relevant to the proposed
approach. As described in Section III-B, the completeness,
correctness, and consistency quality metrics are applied to

compute the overall data quality metric.

Completeness is a data quality metric that has different
interpretations in research because it can be seen from different
perspectives. In the proposed concept multiple datasets exist
that store partially redundant warranty and fault information. In
industry, data that is used for intensive analytical processing
is usually stored in an aggregated form in data warehouses
(DWHs). Data warehouses are often designed to store histori-
cal information, while operational information systems capture
only a short time period (to increase performance and through-
put) [47]. In many cases, data marts are developed, which do
not satisfy the third normal form of relational algebra, since
they are organized to improve the performance of analytical
queries and transformations. Figure 4 illustrates the DWH con-
cept. Each intermediate step between the original information
source and the data warehouse is a source of potential errors
that may occur while transforming and cleansing data.

At the bottom-most level, various operational systems store
the data as it is being generated. The data models support a
particular business case, ensure that relevant information about
real-world objects is inserted correctly, and verify the com-
pleteness at a particular level (primary key constraints, foreign
key constraints, and not-NULL constraints are basic options to
ensure this). At the next level, data warehouses are set up to
provide an analytical basis for different business aspects. ETL
processes extract, transform, and load data in preparation for
DWH use cases. During the ETL process, some information
may be filtered or left out due to unrequested transformation
errors. Thus, completeness of the target DWH is reduced.
Since different DWHs that store redundant information exist
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Figure 4. Completeness in data warehouses.

in the addressed application scenario, each of them may have
a different view of the real world. As illustrated in Figure 4,
it may be necessary to combine these views to obtain the best
possible representation of the real world. This concept assumes
that data in the information systems does not represent false
information, since this would lead to a false representation of
the real world. In the addressed application area, the processes
are well supported, and in the past the most likely problem was
data missed rather than false data. The resulting information
base can be seen as a reference dataset (similar to the reference
relation concept explained in Section III-B). The reference
dataset is defined as shown in Equation (3).

dr =

n⋃
i=1

di (3)

di are the instances stored in a particular data source (DWH)
and dr represents the total number of records in the reference
dataset. In this case, DWHs are considered under the OWA,
since it is not exactly known whether information is missing.
If different DWHs store data from the same application area,
a combination of these entries would lead to a better overall
view (reference dataset). In order to calculate the complete-
ness data quality metric for a single information system, the
amount of information must be checked against the reference
dataset. Equation (4) illustrates how the completeness metric
(Qcomp,di

) for a particular data source di can be obtained.

Qcomp,di
=
|di ∩ dr|
|dr|

(4)

The second data quality metric used in the proposed
concept is consistency, which is closely connected with in-
tegrity constraints. A perfectly designed data model would
apply integrity constraints such as unique, primary key, and
referential integrity to prevent inclusion of false data. Some in-
formation systems do not implement constraints and, therefore,
inconsistencies may occur. An important consistency constraint
is referential integrity, which guarantees the existence of a
value in the corresponding database table. The consistency
metric is calculated as illustrated in Equation (5).

Qcons,di =
|di[conspos]|
|di[all]|

(5)

In the mentioned equation the numerator |di[conspos]| is
defined as the absolute value of the entries that passed the
consistency checks, and the denominator is the total number
of entries of the dataset. Like the other quality metrics this
calculation is applied to each information source.

The third and final data quality metric used to evaluate
the data sources is correctness, which is based on semantic
checks in the proposed approach. Semantic checks depend on
the application scenario and the context in which the data is
used. For example, if an attribute is defined as a value between
1 and 5 (e.g., indicating a grade given in Austrian schools) and
a field contains the value 6, it is obvious that this information
is false. Further, consider an attribute that has a strictly defined
structure: the value has six signs, the first one being a letter
between A and D, the next three signs between 1 and 6, and
the last two signs alphanumeric. As another example, consider
an application dealing with dates, where a particular attribute
contains only past dates; if an entry contained a future date, it
would have to be false. A check of two date attributes would
have to verify that they are in sequence, meaning that one
must precede the other. These examples show that considerable
contextual knowledge is necessary to determine whether a
particular entry is correct. More formally, the following check
types can be identified:

• Range check: proves whether a particular value is in
the correct range, e.g., only past dates are allowed or
an integer range between 1 and 5.

• Structure check: evaluates whether entries of a partic-
ular attribute satisfy a given format, e.g., total value
length is six or it must be a numeric value.

These checks need not necessarily to be static for all
instances. It is very important that attributes can also depend
on each other. An example is information about pupils, their
residence, and their grades. If the residence of a pupil is in
Austria, then the grades must be in the range between 1 and
5 (from the set of natural numbers). However, for residents of
Switzerland, the range is 1 to 6 (with steps of 0.5).

Note that contextual or semantic changes (in the business
process) imply that the checks for correctness must also be
adapted to avoid a false correctness metric that would decrease
the overall data quality metric of the data source and lead to
false results of the proposed concept. Equation (6) shows the
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calculation of the correctness quality metric (Qcorr,di
) for a

particular data source di.

Qcorr,di
=
|di[corrpos]|
|di[all]|

(6)

In the presented equation, the numerator |di[corrpos]| rep-
resents the absolute value of the entries that proved correct,
and |di[all]| is the total number of entries in the data source.

Finally, the overall data quality metric of the data source
can be calculated as the multiplication of the three quality
metrics discussed (Equation (7)). The resulting quality metric
of data source di is represented by Qdi

, and the completeness,
consistency, and correctness component quality metrics are
denoted by Qcomp,di

, Qcons,di
, and Qcorr,di

, respectively. This
metric is then used as a weighting factor Wqual,di

for the
combiner component.

Wqual,di
= Qdi

= Qcomp,di
∗Qcons,di

∗Qcorr,di
(7)

An example output of the validator component is shown in
Figure 5.

data source 1
data source 2
data source 3

...

data source
0.85
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...

Qcomp
0.91
0.97
0.89

...

Qcons
1.00
0.98
0.92

...

Qcorr
0.77
0.89
0.80

...

Qd

Figure 5. Example results of the validator component.

2) Predictor: The predictor’s tasks of forecasting future
values based on a particular dataset’s values and of performing
regression analysis are implemented as two steps: (i) deter-
mining the value of the following week for the various fault
types based on their number from the previous weeks and
(ii) regression analysis using the previous five weeks and the
calculated forecast.

In order to generate future values, the contextual require-
ments must be known to investigate and determine which time
series method best suits the use case. In the proposed concept,
the prediction of how many faults will occur in the following
week is performed based on the number of faults in the after-
sales market from an appropriate time period. The specific
fault analysis set is bound by the particular fault type, fuel
type, car brand, engine type, and the period to be used in the
prediction task. In this scenario, the period was set to one year,
a relevant period in the investigation process of the quality
management experts. Different time series analysis methods
which are capable of performing the prediction task are listed
in Section III-C. An evaluation identified the most appropriate
approach, which depends on the underlying process and the
given time series. To this end, two types of quality checks
were applied: one is based on the Diebold-Mariano Test [48],
which compares the prediction quality of two methods, and
the other calculates Goodness-of-Fit measures (e.g., MAPE,
sMAPE, MAE). The test scenario was established as follows:

• Different time series defined as a sets of fault type,
fuel type, car brand, and engine type were evaluated.

• Every possible pairwise combination of time series
methods was used in the Diebold-Mariano test to
obtain a matrix that shows how they perform in
relation to each other. The h value was set to one,
which specifies that only a one-point forecast was
evaluated, since this is also the aim in the application
scenario. The alternative hypothesis method was set
to greater, which means testing whether method two
is more accurate than method one. The loss function
power was set to two, a commonly chosen value.

• To determine how good the different predictions per-
form using the Goodness-of-Fit metrics, in-sample
predictions were computed, where the most recent
week (observation) was left out for the comparison
task. The different quality metrics were then calculated
using the left-out observation and the forecast value.

• The results were ranked to see which prediction
method outperforms the others in the particular use
case.

The results revealed that it cannot be clearly determined
which prediction method is the best, since this heavily depends
on the course of the time series. The Goodness-of-Fit metrics
could not establish a clear winner: the best methods were
ARIMA, TBATS, and Croston’s method. The Diebold-Mariano
tests identified ARIMA and TBATS as superior methods;
hence, the two are favored by the proposed concept. ARIMA
is used for the prediction task, since it is also provided by a
tool already in use by the business partner.

The second task of the predictor component is to perform
regression analysis of data from a six-weeks period. As in the
current implementation of Q-AURA, linear regression using a
straight line was chosen, since this yields the best results and
has been applied and evaluated for two years. The period used
for regression analysis includes the most recent five weeks
observed and the value predicted for the next week. The
characteristic values gradient, mean value, and coefficient of
determination are computed. The gradient and the mean value
are calculated using the equation for a straight line (Equation
(8)).

y = k ∗ x + d (8)

The parameters x and y represent a two-dimensional co-
ordinate in the diagram, where x corresponds with being the
time value and y is the observed (or predicted) value of the
focused measure. The characteristic value k is the gradient
and represents the average increase between two subsequent
points in the diagram. d is the offset and describes the initial
or start value y at x = 0. Another characteristic value of
the regression line is the mean value ȳ, which is computed
by averaging the data points over the time period. In the
use case of the proposed concept this period consists of five
observations and the predicted value. A previous version of
this approach also calculated the coefficient of determination
[46]. This value describes the steadiness of the regression line.
In the proposed concept the regression line depends only on
one variable, therefore the coefficient is equal to the square of
Pearson’s Correlation Coefficient r2xy (Equation (9)) [49].

R2 = r2xy =
s2xy
s2xs

2
y

(9)
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Based on the gradient, two new values are calculated,
which provide a more detailed view of the course over six
weeks. The first is an extension of the gradient, since it
determines the relative value based on the mean value of the
six weeks (of the analysis set). The mean value is interpolated
based on the observations from the previous five weeks,
because the most recent week is predicted, and thus has no
underlying number of observed faults (Equation (10)).

n6weeks = n5weeks ∗
6

5
(10)

This value is then used to determine the relative gradient
of the six weeks (Equation (11)).

krel =
k

n6weeks
(11)

The second value is called gradient parts-per-million
(kppm), which is also based on the gradient (k) of the re-
gression line. The idea behind this metric is the identification
of faults with a high value when compared to the particular
engine type. Since the regression line is based on the analysis
set consisting of fault type, fuel type, car brand, and engine
type, it limits data to a fine-grained but appropriate set of
faults. While krel determines the average gradient based on
this analysis set, kppm takes the whole number of faults for
the particular engine type nenginetype into account as given
in Equation (12). Since the result is a very low value, it is
expressed as ppm (multiplied by 1,000,000).

kppm =
k ∗ 1, 000, 000

nenginetype ∗ 6
5

(12)

These computations are performed for each analysis set
(fault type, fuel type, car brand, and engine type) from each
dataset. An example of an output from the resulting data
structure is shown in Figure 6.

data source 1
data source 2
data source 3

...

data source
1.92
2.45
0.64

...

k
12.34
32.91
24.54

...

0.32
0.19
0.98

...

R2

0.69
0.23
0.76

...

krely
123.23
453.21
91.23

...

kppm

Figure 6. Example results of the predictor component.

3) Combiner: The third component of the proposed con-
cept is the combiner, which decides whether the analyzed
fault is significant. As explained above, the predictor uses
regression analysis and calculates the corresponding charac-
teristic metrics, krel and kppm. The combiner uses these two
parameters in addition to weighting factors from the validator
and the controller component. The overall weighting factor
for a particular fault is computed as the product of the data
quality metric (Wqual,i) and the weighting factor based on the
prediction accuracy (Wcont,i,ft) (Equation (13)).

Wi,ft = Wqual,i ∗Wcont,i,ft (13)

In the proposed approach, two concepts have been devel-
oped with different granularities to determine the overall result
that decides whether the fault is significant.

• Parameter-driven approach: In the first step the differ-
ences between defined thresholds and the characteris-
tic parameters (krel and kppm) are calculated, which
are then multiplied by the corresponding weighting
factors and divided by the sum of the weighting factors
over the different information sources (Equation (14)
and Equation (15)). A fault is significant if both
resulting values are greater than 0, and insignificant
otherwise (Equation (16)).

Rrel,ft =

n∑
j=1

Wi,ft ∗ (krel,thr − krel,i,ft)

n∑
i=1

Wi,ft

(14)

Rppm,ft =

n∑
j=1

Wi,ft ∗ (kppm,thr − kppm,i,ft)

n∑
i=1

Wi,ft

(15)

Sft =

{
Rrel,ft > 0 ∩Rppm,ft > 0, 1
Rrel,ft ≤ 0 ∪Rppm,ft ≤ 0, 0

(16)

Figure 7 shows an example database table resulting
from the parameter-driven approach. The result is
defined on the analysis set that consists of fault type,
fuel type, car brand, and engine type.

f1
f2
f1
...

fault
d
b
d
...

fuel
b1
b1
b2

brand
e1
e2
e3

e_type

... ...

0.42
0.18
-0.34

Rppm

...

1
0
0

Sft

...

0.23
-0.12
-0.50

Rrel

...

Figure 7. Example results of the combiner component based on the
parameter-driven approach.

• Result-driven approach: This concept is based on
the significance result of each information source.
First, the fault must be classified as significant or not
depending on the characteristic metrics. The result in-
dicates whether based on the dataset the fault would be
classified as significant (1 = significant, 0 = insignif-
icant) (Equation (17)). Each result is multiplied with
the weighting factor of the corresponding fault/data
source-combination and the results of the data sources
are aggregated. The last step is to divide the value
by the sum of the weights of the data sources. The
fault is significant if the result is greater than 0.5, and
insignificant otherwise (Equation (18)).

Si,ft =

{
krel,i,ft > krel,th ∩ kppm,i,ft > kppm,th, 1
krel,i,ft ≤ krel,th ∪ kppm,i,ft ≤ kppm,th, 0

(17)
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Sft =



n∑
j=1

Wi,ft∗Si,ft

n∑
i=1

Wi,ft

> 0.5, 1

n∑
j=1

Wi,ft∗Si,ft

n∑
i=1

Wi,ft

≤ 0.5, 0

(18)

Figure 8 shows an example output table of the com-
biner component based on the result-driven approach.
As illustrated, the result is defined for the particular
analysis set, which consists of fault type, fuel type,
car brand, and engine type.

f1
f2
f1
...

fault
d
b
d
...

fuel
b1
b1
b2

brand
e1
e2
e3

e_type

... ...

2.02
0.58
0.51

Ssum_w

...

1
0
0

Sft

...

2.53
1.45
2.67

Wsum

...

Figure 8. Example results of the combiner component based on the
result-driven approach.

4) Controller: The controller component calculates the
prediction accuracy of the fault time series’ forecasts for each
information source. This accuracy metric is used to obtain
a weighting factor as required by the combiner component.
In the proposed approach, the prediction method is a one-
step out-of-sample forecast that computes a value for the
following week, the new value can be observed and compared
with the prediction from the previous week. In Section III-D,
different prediction accuracy metrics were discussed. Accord-
ing to the classification proposed there, relative errors and
relative measures do not meet the requirements, because they
represent relative values between the accuracy of the method
applied and a benchmark method. The drawback is that if the
benchmark method leads to poor results, the calculated metric
would possibly indicate a good accuracy. This is even more
serious in the proposed approach, since the goal is to weight
predictions based on different data sources. For example, if the
benchmark method of a data source achieves poor results and
the prediction is relatively good in comparison, the data source
will be weighted more favorably than a data source where
the benchmark method performs very well and the method
used for the prediction is not as good in comparison. Metrics
that belong to the class scale-dependent measures are also
excluded, since they are scale dependent. For example, when a
particular fault occurs more often in one data source than in an-
other, this difference would influence the outcome, because it
is not possible to compare them. Since the MASE metric needs
more than one prediction for computation, it cannot be used in
the proposed approach. Consequently, the remaining errors in
the percentage errors category are MAPE, MdAPE, sMAPE,
sMdAPE, RMSPE, and RMdSPE. Since the error metric in the
proposed concept is calculated for a single forecast, there is no
difference in the results between the versions using the mean
and those using the median. Therefore, for this approach three
different relevant metrics can be distinguished APE, sAPE, and
RSPE.

The calculation of the Mean Absolute Percentage Error

(MAPE) is given in Equation (19) [39].

eMAPE =
1

n
∗

n∑
i=1

|Xi − Fi|
Xi

∗ 100 (19)

The symmetric Mean Absolute Error (sMAPE) is defined
as shown in Equation (20) [50].

esMAPE =
1

n
∗

n∑
i=1

|Xi − Fi|
(Xi + Fi)/2

∗ 100 (20)

This equation shows that the sMAPE can take values
between 0 and +200 (or - without the multiplier at the end
- values between 0 and 2). A drawback of the error metric is
that it is not symmetrical: Let us assume that observation Xi

is the same for two information sources and has the value 50.
The first data source predicts a value of 45 and the second
data source predicts 55. Thus, both predictions have the same
difference of 5, but one is too high and one too low. The
sMAPE for the first data source is then 10.5% and for the
second 9.5%. Despite this asymmetry in the results, sMAPE
is used in scientific papers to determine the quality of forecasts
(e.g., in the M3-Competition [50][51]).

The computation of the Root Mean Square Percentage
Error (RMSPE) is given in Equation (21) [40].

eRMSPE =

√√√√ 1

n
∗

n∑
i=1

(
|Xi − Fi|

Xi
)2 ∗ 100 (21)

When dealing with a single future prediction the equation
can be reduced to (M)APE, as the square root and the power
of two can be eliminated.

Since sMAPE constitutes a good measure that can be
transformed to the range between 0 to 1 (by removing the
multiplier in the denominator), it is a good weighting factor
for the proposed approach. Prediction accuracy can thus be
calculated as shown in Equation (22).

PsMAPE = 1− |Xi − Fi|
Xi + Fi

(22)

Alternatively, MAPE could be used for this purpose. How-
ever, it is not ideal as a weighting factor, because it cannot be
accurately transformed to the range between 0 and 1. A way
of using MAPE to determine the prediction accuracy is shown
in Equation (23).

PMAPE =

{
|Xi−Fi|

Xi
≤ 1, |Xi−Fi|

Xi
|Xi−Fi|

Xi
> 1, 0

(23)

Note that not only the prediction accuracy of the current
week should be considered in the calculation of the weighting
factor. The following example explains why: Let us assume
that a specific information source achieved good prediction
accuracy in recent weeks and performs poorly in the current
week. If the accuracy based on a single week were used, the
quality indicator of the data source would decrease drastically.
Conversely, if an information source with very low prediction
accuracy in previous weeks performs well in the current
week, then the weighting should not be based only on this
single (good) result. Therefore, the calculation in the proposed
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concept of the weighting factor takes also previous prediction
accuracies into account as shown in Equation (24).

Wcont,di,fault =
Pt−1 + Pt

2
(24)

Figure 9 illustrates the structure and example instances of
the controller output table. An entry is defined by the dataset
(represented by the data source column) and the analysis
set (the attributes fault, fuel, car brand, and engine type).
The remaining columns define the results of the controller
component, and Wcont stores the final weighting factors used
by the combiner component.

data source 1

data source 2
data source 3

...

data source
f1

f2
f1
...

fault
d

b
d
...

fuel
b1
b1
b1
b2

brand
e1
e2
e2
e3

e_type

data source 1 f2 b

... ...

0.87
0.99
0.69
0.71

Pt-1

...

0.91
0.58
0.78
0.83

Pt

...

0.89
0.79
0.74
0.77

Wcont

...

Figure 9. Example results of the controller component.

C. Q-AURA Integration
This section focuses on the integration of the presented

concept into the Q-AURA application. Q-AURA comprises six
steps: The first identifies which faults are significant and should
be analyzed further. The presented concept optimizes this
task by enabling earlier detection. The interface between this
and the subsequent step is defined on a metric that indicates
whether an analysis set is significant. Since the proposed
concept uses the same representation of results, the original
step can be substituted with the new approach. The improved
approach including the optimization is illustrated in Figure 10.

Using an interface between the first and the second step
eases this substitution. The second step needs only information
about which faults are significant depending on fuel type, car
brand, and engine type.

V. CONCLUSION AND FUTURE WORK

The presented concept, which is currently evaluated, im-
proves Q-AURA by an earlier identification of faults with
negative trends. Q-AURA has been developed in cooperation
with the industrial partner BMW Motoren GmbH (engine
manufacturing plant) and is already in daily use by quality
management experts at different engine manufacturing plants.
It is an application that identifies significant faults, which are
then examined in more detail. Bills of materials containing
information about parts, components, and technical modifica-
tions are analyzed to determine modifications that are most
likely the cause of a particular fault.

In this work, a concept has been proposed that addresses
the challenge of earlier detection of critical faults. At the
heart of the presented approach is the integration of different
datasets that provide different views of warranty data. Data
quality metrics are used to determine how accurate and correct
the information from the different datasets is. Next, the fault
course of each dataset is analyzed to predict the most likely
value for the following week. Regression analysis is applied
to a six-week period (using the predicted value and the last

Predictor

Rating

data source 1

data source 2

...

...

...

...

...

...

...

...

...

...

...

...

...

Validator
1 2

Controller Combiner

∆
 difference
(error term)

4 3

Optimizing early detection approach
1

Determining the fault distribution based on
the engine production date

number
of faults

production week

time of increase
in number of faults

fault distribution

Determining the relevant increases and de-
creases based on the engine production date

number
of faults

production week

time period for
prod. parts lists

fault distribution

Calculating the parts list distribution of faulty
engines

partslistId isDefect ratio_prod ratio_max ratio_weighted
XVDR871 1 1.772 100.00 177.2
RTDG762 1 1.946 37.712 73.388
DBSJ842 1 2.018 32.627 65.841
M823945 1 3.256 20.339 66.224
HGDB428 0 1.270 15.254 19.373
TDBA220 0 1.746 13.559 23.674

Identifying the technical modifications based
on a pre-defined time period (increase)

number
of faults

production week

fault distribution

Preparing data for application of a Data
Mining method

time period for
techn. mod.

2

3

4

5

6

Figure 10. Integration of the proposed approach into Q-AURA.

five observations), which yields the characteristic values of the
resulting regression line. The prediction accuracy is determined
using predictions from the previous week and observations
from the current week. In order to decide whether a fault
is significant, weighting factors based on the calculated data
quality metric and the prediction accuracy are used in addition
to the results of the regression analysis. The approach is
applied on warranty information in the automotive industry,
but the concept could also be used in other application areas
where time series and forecasts from different datasets must
be combined to determine whether a particular course is
significant. The definition of significance must be evaluated
and determined in each application area. Depending on the use
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case, other data quality metrics are potentially interesting for
integration in the overall data quality metric. The three metrics
used in this concept were chosen with care to be data-centric
and to not take data representation or feature availability into
account.

A further possible improvement would be the integration
of an additional weighting factor depending on expert input.
In some cases, domain experts have additional information
about the datasets and would prefer an additional weighting
factor that represents their view. This means that three factors
would be used to determine the weighting: (i) the overall data
quality metric of the dataset, (ii) the prediction accuracy of the
dataset’s time series analysis, and (iii) the preference metric
based on expert input.

Another possible enhancement is to investigate whether
applying different time series and forecasting methods for
each dataset and subsequent combination of the forecasts
yields more robust predictions and thus better results. Various
research papers ([3][6][52][53]) have addressed such combina-
tion approaches, which are already used in the field of machine
learning [54].
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