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Abstract—In this article, we discuss the optimality of basis
transformations as a security measure for quantum key distri-
bution protocols based on entanglement swapping as well as
the robustness of these basis transformations considering an
imperfect physical apparatus. To estimate the security, we focus
on the information an adversary obtains on the raw key bits
from a generic version of a collective attack strategy. In the
scenario described in this article, the application of general basis
transformations serving as a counter measure by one or both
legitimate parties is analyzed. In this context, we show that
the angles, which describe these basis transformations, can be
optimized compared to the application of a Hadamard operation,
which is the standard basis transformation recurrently found
in literature. Nevertheless, these optimal angles for the basis
transformations have to be precisely configured in the laboratory
to achieve the minimum amount for the adversary’s information.
Since we can not be sure that the physical apparatus is perfect,
we will look at the robustness of the optimal choice for the angles.
As a main result, we show that the adversary’s information
can be reduced to an amount of IAE ' 0.20752 when using
a single basis transformation and to an amount of IAE ' 0.0548
when combining two different basis transformations. This is less
than half the information compared to other protocols using a
Hadamard operation and thus represents an advantage regarding
the security of entanglement swapping based protocols. Further,
we will show that the optimal angles to achieve these results are
very robust such that an imperfect configuration does only have
an insignificant effect on the security of the protocol.

Keywords–quantum key distribution; optimal basis transforma-
tions; imperfect apparatus; Gaussian distribution of angles; security
analysis; entanglement swapping

I. INTRODUCTION
In a recent article [1], the authors have shown that in a

quantum key distribution (QKD) protocol based on entangle-
ment swapping the Hadamard operation is not the optimal
choice to secure the protocol against an adversary. Moreover,
a combination of basis transformations will reduce the amount
of the adversary’s information drastically when using general
basis transformations. Additionally, we want to show in this
article that these general basis transformations are also robust
against an imperfect configuration of the physical apparatus.

QKD is one of the major applications of quantum mechan-
ics and, in the last three decades, QKD protocols have been
studied at length in theory and in practical implementations
[2]–[9]. Most of these protocols focus on prepare and mea-
sure schemes, where single qubits are in transit between the
communication parties Alice and Bob. The security of these
protocols has been discussed in depth and security proofs

have been given, for example, in [10]–[12]. In addition to
these prepare and measure protocols, several protocols based
on the phenomenon of entanglement swapping have been
introduced [13]–[18], where entanglement swapping is used to
obtain correlated measurement results between the legitimate
communication parties, Alice and Bob.

Entanglement swapping has been introduced by Bennett
et al. [19], Zukowski et al. [20] as well as Yurke and Stolen
[21], respectively. It provides the unique possibility to generate
entanglement from particles that never interacted in the past.
In detail, Alice and Bob share two Bell states of the form
|Φ+〉12 and |Φ+〉34 (cf. picture (1) in Figure 1) in such a way
that Alice sends qubit 2 to Bob and Bob sends qubit 3 to Alice.
Hence, afterwards Alice is in possession of qubits 1 and 3 and
Bob of qubits 2 and 4 (cf. picture (2) in Figure 1). The state
of the overall system can thus be described as

|Φ+〉12 ⊗ |Φ+〉34 =
1

2

(
|Φ+〉|Φ+〉+ |Φ−〉|Φ−〉

+|Ψ+〉|Ψ+〉+ |Ψ−〉|Ψ−〉
)

1324

(1)

Next, Alice performs a complete Bell state measurement on
the two qubits in her possession. After this measurement, the
qubits 2 and 4 at Bob’s side collapse into a Bell state although
both qubits originated at completely different sources (cf. pic-
ture (4) in Figure 1). Moreover, the state of Bob’s qubits fully
depends on Alice’s measurement result. As presented in (1),
Bob always obtains the same result as Alice when performing
a Bell state measurement on his qubits. In the aforementioned
QKD protocols based on entanglement swapping, Alice and
Bob use these correlated measurement results to establish a
secret key among them.

A basic technique to secure a QKD protocol is to use a
basis transformation, usually a Hadamard operation, to make it
easier to detect an adversary. This is implemented, for example,
in the prepare and measure schemes described in [2] and [4]
but also in QKD schemes based on entanglement swapping
(e.g., [14] [17] [22]). Nevertheless, this security measure has
just been discussed on the surface so far when it comes to
QKD protocols based on entanglement swapping. It has only
been shown that these protocols are secure against intercept-
resend attacks and basic collective attacks (cf. for example,
[13] [14] [17]).

In this article, we will analyze the security of QKD pro-
tocols based on entanglement swapping against the simulation
attack, a general version of a collective attack [23]. As a
security measure we will analyze the application of a general
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Figure 1. Illustration of entanglement swapping where Alice and Bob share
two Bell states each of the form |Φ+〉. The dashed line indicates a

measurement in the Bell basis.

basis transformation Tx, defined by the angles θ and φ (cf. (4)
and picture (2) in Figure 2). In the course of that, we are going
to identify, which values for θ and φ are optimal such that an
adversary has only a minimum amount of information on the
secret raw key. Furthermore, we will look at the robustness of
these optimal values for θ and φ, i.e., how much the expected
error probability and the adversary’s information change if
Alice and Bob are not able to precisely adjust their apparatus
to the optimal values for θ and φ.

In the following section, the simulation attack is described
in detail and it is explained how an adversary is able to per-
fectly eavesdrop on a protocol where no basis transformations
are applied. In Section III, we look in detail at the general
definition of basis transformations and their effect onto Bell
states and entanglement swapping. Using these definitions, we
discuss in the following sections the effects on the security
of entanglement swapping based QKD protocols. Therefore,
we look at the application of a general basis transformation
by one communication party in Section IV and at the appli-
cation of two different basis transformations by each of the
communication parties in Section V. In Section VI, we will
analyze how these results change if the physical apparatus
is not configured precisely and the choice of angles can be
described by a Gaussian distribution. In the end, we sum up
the implications of the results on the security of entanglement
based QKD protocols.

II. THE SIMULATION ATTACK STRATEGY
In entanglement swapping based QKD protocols like [13]–

[15], [17], [18] Alice and Bob rest their security check onto
the correlations between their respective measurement results
coming from the entanglement swapping (cf. (1)). If these
correlations are violated, Alice and Bob have to assume that
an adversary is present. In other words, an adversary stays
undetected if these correlations are not violated. Hence, a
general version of a collective attack has the following basic
idea: the adversary Eve tries to find a multi-qubit state,
which preserves the correlation between the two legitimate
parties. Further, she introduces additional qubits to distinguish
between Alice’s and Bob’s respective measurement results. If
she is able to find such a state, Eve stays undetected during
her intervention and is able to obtain a certain amount of
information about the key (cf. also Figure 3).

In a previous article [23], we already described such a
collective attack called simulation attack for a specific protocol
[18]. The attack implements the strategy described in the
previous paragraph, i.e., the correlations are preserved (or
”simulated”) such that the Eve stays undetected. The gener-

Figure 2. Sketch of a standard setup for an entanglement swapping based
QKD protocol. Qubits 2 and 3 are exchanged (cf. picture (2)) and a basis

transformation Tx is applied on qubit 1 and inverted by using Tx on qubit 2.

alization from the version presented in [23] is straight forward
as described in the following paragraphs.

It has been pointed out in detail in [23] that Eve uses four
qubits in a state similar to (1) to simulate the correlations
between Alice and Bob. Further, she introduces additional sys-
tems |ϕi〉 to distinguish between Alice’s different measurement
results. This leads to the state

|δ〉 =
1

2

(
|Φ+〉|Φ+〉|ϕ1〉+ |Φ−〉|Φ−〉|ϕ2〉

|Ψ+〉|Ψ+〉|ϕ3〉+ |Ψ−〉|Ψ−〉|ϕ4〉
)
PRQSTU

(2)

which is a more general version than described in [23]. From
(2) it is easy to see that after a Bell measurement on qubits P
and R the state of qubits Q and S collapses into a correlated
state. Hence, the state |δ〉 preserves the correlation of Alice’s
and Bob’s measurement results coming from the entanglement
swapping (cf. (1)). To be able to eavesdrop Alice’s and Bob’s
measurement results, Eve has to choose the auxiliary systems
|ϕi〉 such that they are pairwise orthogonal, i.e.,

〈ϕi|ϕj〉 = 0 i, j ∈ {1, ..., 4} i 6= j (3)

This allows her to perfectly distinguish between Alice’s and
Bob’s respective measurement results and thus gives her full
information about the classical raw key generated out of them.

In detail, Eve distributes qubits P , Q, R and S between
Alice and Bob such that Alice is in possession of qubits P
and R and Bob is in possession of qubits Q and S (cf. picture
(1) and (2) in Figure 2). When Alice performs a Bell state
measurement on qubits P and R the state of qubits Q and S
collapses into the same Bell state, which Alice obtained from
her measurement (compare equations (1) and (2) as well as
pictures (3) and (4) in Figure 2). Hence, Eve stays undetected
when Alice and Bob compare some of their results in public
to check for eavesdroppers. The auxiliary system |ϕi〉 remains
at Eve’s side and its state is completely determined by Alice’s
measurement result. Therefore, Eve has full information on
Alice’s and Bob’s measurement results and is able to perfectly
eavesdrop the classical raw key.

There are different ways for Eve to distribute the state
|δ〉P−U between Alice and Bob. One possibility is that Eve
is in possession of Alice’s and Bob’s source and generates
|δ〉P−U instead of the respective Bell states. This is a rather
strong assumption because the sources are usually located at
Alice’s or Bob’s laboratory, which should be a secure environ-
ment. Nevertheless, Eve’s second possibility is to intercept the
qubits 2 and 3 flying from Alice to Bob and vice versa and
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Figure 3. Illustration of the simulation attack for an entanglement swapping
based QKD protocol where no basis transformation is applied. It is assumed

that Eve directly distributes the state |δ〉 between Alice and Bob.

to perform entanglement swapping to distribute the state |δ〉.
This is a straight forward method as already described in [23].

We want to stress that the state |δ〉 is generic for all
protocols where 2 qubits are exchanged between Alice and Bob
during one round of key generation as, for example, the QKD
protocols presented by Song [17], Li et al. [18] or Cabello
[13]. As already pointed out in [23], the state |δ〉 can also be
used for different initial Bell states. For protocols with a higher
number of qubits, the state |δ〉 has to be extended accordingly.

III. BASIS TRANSFORMATIONS
In QKD, the most common way to detect the presence

of an adversary is to use a random application of a basis
transformation by one of the legitimate communication parties.
This method can be recurrently found in prepare and measure
protocols (e.g., in [2] or [4]) as well as entanglement swapping
based protocols (e.g., in [14] [17] or the improved version
of the protocol in [18]). The idea for Alice or Bob (or both
parties) is to choose at random whether to apply a basis
transformation on one of their qubits. This randomly alters
the initial state and makes it impossible for an adversary
to eavesdrop the transmitted information without introducing
a certain error rate, i.e., without being detected. The basis
transformation most commonly used in these protocols is the
Hadamard operation, which is a transformation from the Z-
into the X-basis. In general, a transformation Tx from the Z
basis into the X-basis can be described as a rotation about the
X-axis by some angle θ, combined with two rotations about
the Z-axis by some angle φ, i.e.,

Tx
(
θ, φ
)

= eiφRz
(
φ
)
Rx
(
θ
)
Rz
(
φ
)
. (4)

The rotations about the X- or Z-axis are described in the most
general way by the operators (cf. for example, [24] for further
details on rotation operators)

Rx
(
θ
)

=

(
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

)
Rz
(
θ
)

=

(
e−iθ/2 0

0 eiθ/2

)
.

(5)

Based on these operators, we directly obtain the matrix repre-
sentation for Tx(θ, φ) as

Tx
(
θ, φ
)

=

(
cos θ2 −i eiφ sin θ

2

−i eiφ sin θ
2 e2iφ cos θ2

)
(6)

Figure 4. Illustration of the simulation attack for an entanglement swapping
based QKD protocol where the basis transformation Tx is applied by Bob.

Eve’s intervention destroys the correlation between Alice and Bob.

and the effect of Tx(θ, φ) on the computational basis

Tx
(
θ, φ
)
|0〉 = cos

θ

2
|0〉 − i eiφ sin

θ

2
|1〉

Tx
(
θ, φ
)
|1〉 = −i eiφ sin

θ

2
|0〉+ e2iφ cos

θ

2
|1〉.

(7)

From these two equations above we immediately see that the
Hadamard operation is just the special case where θ = φ =
π/2.

In QKD protocols based on entanglement swapping, the
basis transformation is usually applied onto one qubit of a Bell
state. Taking the general transformation Tx(θ, φ) from (4) into
account, the Bell state |Φ+〉 changes into

T (1)
x

(
θ, φ
)
|Φ+〉12 = cos

θ

2

1√
2

(
|00〉+ e2iφ|11〉

)
−i eiφ sin

θ

2

1√
2

(
|01〉+ |10〉

) (8)

and accordingly for the other Bell states. The superscript ”(1)”
in (8) indicates that the transformation Tx

(
θ, φ
)

is applied on
qubit 1. As a consequence, the application of Tx(θ, φ) before
the entanglement swapping is performed changes the results
based on the angles θ and φ. In detail, after the application of
the basis transformation on qubit 1, the overall state of Alice’s
and Bob’s qubits is (cf. picture (2) in Figure 2)

T (1)
x

(
θ, φ
)
|Φ+〉12|Φ+〉34 =

1

2

(
|Φ+〉13T

(2)
x

(
θ, φ
)
|Φ+〉24

+|Φ−〉13T
(2)
x

(
θ, φ
)
|Φ−〉24

+|Ψ+〉13T
(2)
x

(
θ, φ
)
|Ψ+〉24

+|Ψ−〉13T
(2)
x

(
θ, φ
)
|Ψ−〉24

)
(9)

Next, Alice performs her Bell state measurement on qubits 1
and 3 of this state and obtains one of the four Bell states (cf.
picture (3) in Figure 2). The superscripts ”(1)” and ”(2)” in
(9) indicate that after Alice’s Bell state measurement on qubits
1 and 3 the transformation Tx

(
θ, φ
)

swaps from qubit 1 onto
qubit 2. Thus, when Bob performs his Bell state measurement
on qubits 2 and 4, he will not obtain a result correlated to
Alice’s measurement outcome any more. In detail, assuming
that Alice obtained |Φ+〉13 from her measurement we can
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directly see from (8) that Bob will obtain |Φ+〉24 only with
probability (cf. also (9) above)

Pcorr = T (2)
x

(
θ, φ
)
〈Φ+||Φ+〉〈Φ+| T (2)

x

(
θ, φ
)
|Φ+〉

=
1

4
cos2 θ

2

(
2 + e2iφ + e−2iφ

)
= cos2 θ

2
cos2(φ).

(10)

(and similarly for Alice’s other possible results). Otherwise,
he obtains an uncorrelated result, which results in a problem
because Bob is no longer able to compute Alice’s state based
on his result and vice versa.

Fortunately, Bob can resolve this problem by transforming
the state of qubits 2 and 4 back into its original form before
he performs his Bell state measurement. Following (9), where
Alice performs Tx

(
θ, φ
)

on qubit 1, he achieves that by
applying the inverse of the basis transformation, i.e.,

T−1
x

(
θ, φ
)

=

(
cos θ2 i e−iφ sin θ

2

i e−iφ sin θ
2 e−2iφ cos θ2

)
(11)

on qubit 2 in his possession. Afterwards, he will obtain a
correlated result from his measurement on qubits 2 and 4.

As we will see in the following section, if an adversary
interferes with the communication, the effects of Alice’s basis
transformation can not be represented as in (9) any longer.
Thus, even if Bob applies the inverse transformation, Alice’s
and Bob’s results are uncorrelated to a certain amount. This
amount is reflected in an error rate detected by Alice and Bob
during post processing.

IV. SINGLE APPLICATION OF GENERAL BASIS
TRANSFORMATIONS

Previous works [25] [26] already deal with the scenarios
where Alice or Bob or both parties randomly apply a simplified
version of basis transformations. Therein, the simplification
addresses the angle φ, i.e., the rotation about the Z-axis. In
the security discussions in [25], the angle φ is fixed at π/2
for reasons of simplicity. That means, the rotation about the
Z-axis is constant at an angle of π/2 such that only the angle
θ can be chosen freely.

In this section and the next one, we want to extend the re-
sults from [25] [26] by applying general basis transformations,
which means Alice and Bob are able to choose both angles θ
and φ in (4) freely. At first, we are looking only on one party
performing a basis transformation on the respective qubits
and in the next section on two different basis transformations
performed by each of the parties. For each scenario we will
show, which values for θ and φ are optimal to give an adversary
the least information about the raw key bits. In the course of the
two scenarios, we will denote Alice’s operation as Tx

(
θA, φA

)
and, accordingly, Bob’s operation as Tx

(
θB , φB

)
.

As already pointed out above, the application of the basis
transformation occurs at random and, due to the structure of
the state |δ〉, Eve is able to obtain full information about
Alice’s and Bob’s secret, if the two parties do not apply
any basis transformation at all (cf. [25] [26]). Therefore, we
look at first at the effects of a basis transformation at Alice’s
side. Her initial application of the general basis transformation
Tx
(
θA, φA

)
does alter the state |δ〉1QR4TU introduced by Eve

such that it is changed to

|δ′〉1QR4TU = T (1)
x

(
θA, φA

)
|δ〉1QR4TU (12)

After a little algebra, we see that Alice obtains all four Bell
states with equal probability and after her measurement the
state of the remaining qubits is

eiφA cos
θA
2

cosφA |Φ+〉Q4|ϕ1〉TU

−ieiφA cos
θA
2

sinφA |Φ−〉Q4|ϕ2〉TU

−ieiφA sin
θA
2
|Ψ+〉Q4|ϕ3〉TU

(13)

assuming Alice obtained |Φ+〉1R. We are presenting just the
state for this particular result in detail because it would be
simply too complex to describe the representation of the whole
state for all possible outcomes here. Nevertheless, for the other
three possible results the remaining qubits end up in a similar
state, where only Bob’s Bell states of the qubits Q and 4 as
well as Eve’s auxiliary states of the qubits T and U change
accordingly to Alice’s measurement result.

Before Bob performs his Bell state measurement, he has
to reverse Alice’s basis transformation. As already pointed
out in the previous section, this can be achieved by applying
T−1
x

(
θA, φA

)
on qubit Q in his possession. Whereas this

would reverse the effect of Alice’s basis transformation if no
adversary is present, the structure of Eve’s state |δ〉 makes this
reversion impossible. Hence, the application of T−1

x

(
θA, φA

)
on qubit Q changes the state in (13) into

eiφA cos
θA
2

cosφA

[
cos

θA
2

1√
2

(
|00〉Q4 + e−2iφA |11〉Q4

)
+ie−iφA sin

θA
2

1√
2

(
|01〉Q4 + |10〉Q4

)]
|ϕ1〉TU

−ieiφA cos
θA
2

sinφA

[
cos

θA
2

1√
2

(
|00〉Q4 − e−2iφA |11〉Q4

)
+ie−iφA sin

θA
2

1√
2

(
|01〉Q4 + |10〉Q4

)]
|ϕ2〉TU

−ieiφA sin
θA
2

[
cos

θA
2

1√
2

(
|01〉Q4 + e−2iφA |10〉Q4

)
+ie−iφA sin

θA
2

1√
2

(
|00〉Q4 + |11〉Q4

)]
|ϕ3〉TU

(14)
Therefore, Bob obtains the correlated state |Φ+〉Q4 only with
probability

PΦ+ =
1

4

(
3 + cos

(
4φA

))
cos4 θA

2
+ sin4 θA

2
(15)

and the other results with the respective probabilities

PΦ− = 2 cos4 θA
2

cos2 φA sin2 φA

PΨ+ =
1

2
sin2 θA cos2 φA

PΨ− =
1

2
sin2 θA sin2 φA.

(16)

Hence, due to Eve’s intervention Bob obtains a result uncor-
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Figure 5. Error probability 〈Pe〉 depending on θA and φA

related to Alice’s outcome with probability

Pe = PΦ− + PΨ+ + PΨ−

=
1

2

(
sin2 θA + cos4 θA

2
sin2

(
2φA

))
.

(17)

Assuming that Bob obtains |Φ+〉Q4, i.e., the expected result
based on Alice’s measurement outcome, Eve obtains either
|ϕ1〉, |ϕ2〉 or |ϕ3〉 from her measurement on qubits T and U
with the respective probabilities

Pϕ1
=

cos4 θA
2 cos4 φA

1
4 (3 + cos 4φA) cos4 θA

2 + sin4 θA
2

Pϕ2 =
cos4 θA

2 sin4 φA
1
4 (3 + cos 4φA) cos4 θA

2 + sin4 θA
2

Pϕ3
=

− sin2 θA
2

(3 + cos 4φA) cos4 θA
2 + 4 sin4 θA

2

(18)

Furthermore, in case Bob measures an uncorrelated result, Eve
obtains two out of the four auxiliary states |ϕi〉 at random.
Hence, due to the basis transformation Tx

(
θA, φA

)
, Eve’s

auxiliary systems are less correlated to Bob’s result compared
to the application of a simple basis transformation as described
in [25] [26]. In other words, Eve’s information on Alice’s
and Bob’s result is further reduced compared to the scenarios
described therein.

Since Alice applies the basis transformation at random, i.e.,
with probability 1/2, the average error probability 〈Pe〉A can
be directly computed using (17) and its variations based on
Alice’s measurement result as

〈Pe〉A =
1

4

[
sin2 θA + cos4 θA

2
sin2

(
2φA

)]
. (19)

Keeping in mind that Eve does not introduce any error when
Alice does not use the basis transformation Tx

(
θA, φA

)
, the

average collision probability 〈Pc〉 can be computed as (cf. also
(18))

〈Pc〉A =
1

64

(
53− 4 cos θA + 7 cos

(
2θA

)
+ 8 cos4 θA

2
cos
(
4φA

))
.

(20)

In further consequence, this leads to the Shannon entropy H
of the raw key, i.e.,

HA =
1

2

[
h
(

cos2 θA
2

)
+ cos2 θA

2
h
(

cos2 φA

)]
. (21)

Figure 6. Shannon entropy H of the raw key depending on θA and φA

Here, the function h(x) describes the binary entropy, i.e.,

h
(
x
)

= −x log2 x−
(
1− x

)
log2

(
1− x

)
(22)

with log2 the binary logarithm.
As we can directly see from Figure 5, the average error

probability 〈Pe〉A has its maximum at 1/3 with

θA0 ' 0.39183π φA0 ∈
{π

4
,

3π

4

}
. (23)

For this choice of θA and φA we see from Figure 6 that the
Shannon entropy is also maximal with HA ' 0.79248. Hence,
the adversary Eve is left with a mutual information of

IAE = 1−HA = 0.20752 (24)

This value for the mutual information is less than half of Eve’s
information on the raw key compared to the application of a
Hadamard operation (cf. [2] [4] [22] [14]) or the application
of a simplified basis transformation (cf. [25] [26]).

Unfortunately, the angle for θA0
' 0.39183π to reach the

maximum value is rather odd and might be difficult to realize
in a practical implementation. In this context, difficult to realize
in a physical implementation means that a transformation about
an angle of π/4 or 3π/8 is easier to implement in a laboratory
than an angle of 0.39183π. Therefore, choosing an angle
θA = 3π/8 for this scenario we can compute from (19) an
average error rate of 〈Pe〉A ' 0.33288 and from (21) the
respective Shannon entropy HA ' 0.79148 (cf. also Figure
5 and Figure 6), which are both just insignificantly lower than
their maximum values. Accordingly, Eve’s mutual information
on the raw key is IAE ' 0.20852, which is slightly above the
maximum given in (24). Hence, the security of the protocol
is drastically increased using a general basis transformation
compared to the application of a Hadamard operation.

V. COMBINED APPLICATION OF GENERAL BASIS
TRANSFORMATIONS

In the previous section, we discussed the application of one
general basis transformation Tx

(
θA, φA

)
on Alice’s side. It is

easy to see that the results for the average error probability
〈Pe〉 in (19) as well as the Shannon entropy H in (21) are the
same if only Bob randomly applies the basis transformation
Tx
(
θB , φB

)
on his side.

Hence, a more interesting scenario is the combined ran-
dom application of two different basis transformations, i.e.,
Tx
(
θA, φA

)
on Alice’s side and Tx

(
θB , φB

)
on Bob’s side.
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Figure 7. Error probability 〈Pe〉 depending on θA and θB . The remaining
parameters φA and φB are fixed at π/4.

The application of these two different basis transformations
alters the state introduced by Eve accordingly to

|δ′〉1QR4TU = T (1)
x

(
θA, φA

)
T (4)
x

(
θB , φB

)
|δ〉1QR4TU (25)

where again the superscripts ”(1)” and ”(4)” indicate that
Tx
(
θA, φA

)
is applied on qubit 1 and Tx

(
θB , φB

)
on qubit 4,

respectively. Following the protocol, Alice has to undo Bob’s
transformation using T−1

x

(
θB , φB

)
before she can perform her

Bell state measurement. Similar to the application of one basis
transformation described above, Alice obtains all four Bell
states with equal probability from her measurement. The state
of the remaining qubits changes in a way analogous to (13)
above and Bob has to reverse Alice’s transformation using
T−1
x

(
θA, φA

)
. Hence, when Bob performs his measurement

on qubits Q and 4, he does not obtain a result correlated to
Alice’s outcome, but all four possible Bell states with different
probabilities such that an error is introduced in the protocol.
As already discussed in the previous section, the results from
Eve’s measurement on qubits T and U are not fully correlated
to Alice’s and Bob’s results and therefore Eve’s information on
the raw key bits is further reduced compared to the application
of only one transformation.

Due to the fact that Alice as well as Bob choose at random
whether they apply their respective basis transformation, the
average error probability is calculated over all four scenarios:
no transformation is applied, either Alice or Bob applies
Tx
(
θA, φA

)
or Tx

(
θB , φB

)
, respectively, or both transforma-

tions are applied. Therefore, using the results from (19) above,
the overall error probability can be computed as

〈Pe〉AB =
1

8

[
sin2 θA + cos4 θA

2
sin2

(
2φA

)]
+

1

8

[
sin2 θB + cos4 θB

2
sin2

(
2φB

)]
+

1

16

[
sin2

(
θA + θB

)
+ cos4 θA + θB

2
sin2

(
2
(
φA + φB

))]
+

1

16

[
sin2

(
θA − θB

)
+ cos4 θA − θB

2
sin2

(
2
(
φA − φB

))]

(26)

Figure 8. Shannon entropy H of the raw key depending on θA and θB . The
remaining parameters φA and φB are fixed at π/4.

having its maximum at 〈Pe〉AB ' 0.41071. One possibility to
reach the maximum is to choose the angles

θA = 0 θB ' 0.45437π

φA =
π

4
φB =

π

4
.

(27)

In fact, as long as φA = π/4 or φA = 3π/4 the value of φB
can be chosen freely to reach the maximum. Therefore, the
graph of the average error probability plotted in Figure 7 uses
φA = φB = π/4.

Following the same argumentation and using (21) from
above, the Shannon entropy can be calculated as

HAB =
1

4

[
h
(

cos2 θA
2

)
+ cos2 θA

2
h
(

cos2 φA

)]
+

1

4

[
h
(

cos2 θB
2

)
+ cos2 θB

2
h
(

cos2 φB

)]
+

1

8

[
h
(

cos2 θA + θB
2

)
+ cos2 θA + θB

2
h
(

cos2
(
φA + φB

))]
+

1

8

[
h
(

cos2 θA − θB
2

)
+ cos2 θA − θB

2
h
(

cos2
(
φA − φB

))]

(28)

having its maximum at HAB ' 0.9452 (cf. Figure 8 for a plot
of (28) taking φA = φB = π/4). This maximum is reached,
for example, using

θAB0
' −0.18865π θAB0

' 0.42765π

φAB0
' −0.22405π φAB0

' 0.36218π.
(29)

The maximal Shannon entropy can also be reached using other
values but they are not as nicely distributed as in the case of
the average error probability.

Looking again at set of values for θ{A,B} and φ{A,B},
which are more suitable for a physical implementation than
the values mentioned above, one possibility for Alice and Bob
is to choose

θA = −3π

16
θB =

7π

16

φA = −π
4

φB =
3π

8

(30)
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Figure 9. Error probability 〈Pe〉 depending on θA and φA. Here, a standard
deviation (δϕ) = π/20 of the angles is taken into account.

leading to an almost optimal Shannon entropy HAB ' 0.9399
and a average respective error probability 〈Pe〉AB ' 0.39288.
Keeping φA and φB fixed – as already discussed in the
previous section – such that

θA =
3π

16
θB =

7π

16

φA =
π

4
φB =

π

4

(31)

the same average error probability 〈Pe〉AB ' 0.39288 and a
slightly smaller Shannon entropy HAB ' 0.91223 compared
to the previous values are achieved. Hence, we see that using a
set of parameters more suitable for a physical implementation
still results in a high error rate and leaves Eve’s mutual
information IAE below 10%.

VI. ROBUSTNESS OF THE OPTIMAL ANGLES
As already pointed out above, the optimal values for the

angles θ{A,B} and φ{A,B} are rather odd and might not be
easy to create in a laboratory. Especially when looking at the
combined application of basis transformations at Alice’s and
Bob’s side, it will be very difficult to implement the exact
angles given in (29) to achieve the optimal values for θ{A,B}
and φ{A,B}. Furthermore, due to physical limitations the ap-
paratus, which is used to adjust the angles θ{A,B} and φ{A,B}
in the laboratory can in general not be considered perfect. To
model an error introduced by this imperfect apparatus, we will
use a Gaussian distribution to describe the angles θ{A,B} and
φ{A,B}. In this context, we will look in detail at two rather
small standard deviations from the optimal angles, i.e., in the
order of 5% and 10% of π, and how this deviation from the
optimal angle affects the security of the protocol.

In detail, a Gaussian distribution for some angle x can be
described as

f
[
x, x0, (δx)

]
=

1√
2π(δx)

e
− (x−x0)2

2(δx)2 (32)

with x0 the expected value (e.g., the optimal angle for some
configuration) and (δx) the standard deviation (the deviation
from that optimal angle). Accordingly, the mean value is
described by the area under the curve, and is computed by
the integral ∫ ∞

−∞
f
[
x, x0, (δx)

]
dx = 1. (33)

Figure 10. Error probability 〈Pe〉 depending on θA and φA. Here, a
standard deviation (δϕ) = π/10 of the angles is taken into account.

Based on this definition, the mean value for the cosine function
cos(λx) of some angle x and a real number λ can be computed
directly as

cos(λx) =

∫ ∞
−∞

f
[
x, x0, (δx)

]
cos(λx)dx

= e−λ
2 (δx)2

2 cos(λx0).

(34)

Taking this approach into account, we can rephrase the calcu-
lations leading to the expected error probability 〈Pe〉A given in
(19) and 〈Pe〉AB given in (26). This leads to a representation
of the expected error probability depending on the deviation
from the optimal value for the angles θ{A,B} and φ{A,B},
respectively. The computation of the Shannon entropy HA

described in (21) and HAB described in (28) using this
approach is more complex due to the application of the binary
logarithm when computing the binary entropy h. Hence, we
will not provide it here.

First, we describe this extension with regards to the ex-
pected error probability 〈Pe〉A in (19). Therefore, we use the
equalities

sin2(x) =
1

2

[
1− cos(2x)

]
and

cos4(x) =
1

8

[
cos(4x) + 4 cos(2x) + 3

] (35)

as well as the definition in (34) above. After a few computa-
tions we see that

〈Pe〉A =
1

4

[
1

2

(
1− cos(2θA)

)
+

1

8

(
cos(2θA) + 4 cos(θA) + 3

)
× 1

2

(
1− cos(4φA)

)]
=

1

4

[
1

2

(
1− e−2(δϕ)2 cos(2θA0)

)
+

1

8

(
e−2(δϕ)2 cos(2θA0

)

+ 4 e−
1
2 (δϕ)2 cos(θA0

) + 3
)

× 1

2

(
1− e−8(δϕ)2 cos(4φA0

)
)]

(36)
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Figure 11. Error probability 〈Pe〉 depending on θA and θB . The remaining
parameters φA and φB are fixed at π/4. Here, a standard deviation

(δϕ) = π/20 of the angles is taken into account.

For reasons of simplicity, we use the same standard deviation
for both angles θA and φA such that (δθA) = (δφA) = (δϕ).

As we can conclude from (36), a deviation from the
optimal angles θA0

and φA0
results in a reduced expected

error probability 〈Pe〉A (cf. also Figure 9 and Figure 10).
Additionally, the expected error probability does not reach 0
any more due to the attenuation by the Gaussian distribution.
Considering, for example, a standard deviation (δϕ) = π/20,
the maximum is slightly reduced by 4% (compared to (19))
from 1/3 to 〈Pe〉A ' 0.3194. This value is achieved using

θA0
' 0.40108π φA0

∈
{π

4
,

3π

4

}
. (37)

Furthermore, taking a bigger standard deviation (δϕ) = π/10,
the maximum is reduced by almost 14% to 〈Pe〉A ' 0.28826.

It is also easy to see from (36) that the more precise the
apparatus works, i.e., the smaller (δϕ) becomes, the closer the
values 〈Pe〉A and 〈Pe〉A get. Hence, we reach the limit

lim
(δϕ)→0

〈Pe〉A =
1

4

[
sin2 θA0

+ cos4 θA0

2
sin2

(
2φA0

)]
(38)

which directly corresponds to 〈Pe〉A in (19).
Similarly, looking at the expected error probability 〈Pe〉AB

in (26) when two different basis transformations are applied
at Alice’s and Bob’s side, we can rewrite (26) such that

〈Pe〉AB =
1

2
〈Pe〉A +

1

2
〈Pe〉B

+
1

4
〈Pe〉A+B +

1

4
〈Pe〉A−B

(39)

where

〈Pe〉A+B =
1

4

[
sin2

(
θA + θB

)
+

cos4 θA + θB
2

sin2
(

2(φA + φB)
)] (40)

and 〈Pe〉A−B accordingly. Based on these two equations, we
can directly calculate the expected error probability 〈Pe〉AB as

〈Pe〉AB =
1

2
〈Pe〉A +

1

2
〈Pe〉B

+
1

4
〈Pe〉A+B +

1

4
〈Pe〉A−B .

(41)

Figure 12. Error probability 〈Pe〉 depending on θA and θB . The remaining
parameters φA and φB are fixed at π/4. Here, a standard deviation

(δϕ) = π/10 of the angles is taken into account.

In this case, we again use the same standard deviation for all
angles, such that (δθA) = (δφA) = (δθB) = (δφB) = (δϕ).
An explicit representation (as we have provided it in (36)
for 〈Pe〉A) of the above expression would be rather lengthy
and therefore is not provided here. Nevertheless, the terms are
similar to the result in (36) and we can directly compute the
new maxima of the expected error probability. Considering
again a standard deviation (δϕ) = π/20, the maximum
is slightly reduced by approximately 4% from 0.41071 to
〈Pe〉AB ' 0.39599 compared to (26). This value is achieved
using

θA0
= 0 θB0

' 0.45264π

φA0 =
π

4
φB0 =

π

4
.

(42)

Applying a bigger standard deviation of (δϕ) = π/10, these
values just slightly change, i.e.,

θA0 = 0 θB0 ' 0.44703π

φA0
=
π

4
φB0

=
π

4
.

(43)

and the maximum is further decreased by approximately 11%
to 〈Pe〉AB ' 0.36444.

Analogous to (38), it is easy to see that also the expected
error probability 〈Pe〉AB for the combined application of two
basis transformations reaches a limit when (δϕ) approaches 0,
which corresponds to 〈Pe〉AB from (26) above, i.e.,

lim
(δϕ)→0

〈Pe〉AB = lim
(δϕ)→0

1

2
〈Pe〉A

+ lim
(δϕ)→0

1

2
〈Pe〉B

+ lim
(δϕ)→0

1

4
〈Pe〉A+B

+ lim
(δϕ)→0

1

4
〈Pe〉A−B .

(44)

As already pointed out above, when it comes to the compu-
tation of the Shannon entropy H , the terms are rather complex
to evaluate symbolically due to the application of the binary
entropy. Based on the above computations in (36) and (41) in
context with the expected error probability, we can assume that
also the graphs describing the Shannon entropy will be similar
to Figure 6 and Figure 8. Due to the application of the Gaussian
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TABLE I. OVERVIEW OF THE ERROR RATE 〈PE〉 AND EVE’S
INFORMATION IAE ON THE RAW KEY BITS FOR DIFFERENT

VALUES OF θA,B AND φA,B .

φA = 0 φA = π
2 φA = π

4

φB = 0

θA = 0, θB = 0

〈Pe〉 = 0
IAE = 1

θA = π
2 , θB = 0

〈Pe〉 = 0.25
IAE = 0.5

θA = 3π
8 , θB = 0

〈Pe〉 ' 0.333
IAE ' 0.208

φB = π
2

θA = π
2 , θB = π

4

〈Pe〉 = 0.25
IAE ' 0.45

θA = 0, θB = π
2

〈Pe〉 ' 0.406
IAE = 0.125

φB = π
4

θA = 3π
16 , θB = 7π

16

〈Pe〉 = 0.393
IAE = 0.088

distribution (and the respective standard deviation) for the
angles θ{A,B} and φ{A,B} the graphs will be attenuated like it
is depicted for the error probability in Figure 9 to Figure 12.
Thus, the maximum Shannon entropy will also be decreased,
which means that the maximum of the adversary’s information
IAE will be increased. As we have seen above, even if we
consider a rather large deviation of π/10, the variation of
the Shannon entropy will be around 15%. Hence, we can
assume that the increase of the adversary’s information will
not become critical in such a way that the protocol becomes
insecure.

VII. SECURITY IMPLICATIONS
The results presented in the previous sections have direct

implications on the security of QKD protocols based on
entanglement swapping. Where in some QKD protocols [14]
[17] [18] a random application of a Hadamard operation is used
to detect an eavesdropper and secure the protocol, the above
results indicate that the Hadamard operation is not the optimal
choice. Using the Hadamard operation leaves an adversary
with a mutual information IAE = 0.5 and an expected error
probability 〈Pe〉 = 0.25 (cf. Table I), which is comparable to
standard prepare and measure protocols [2]–[4].

Giving Alice an increased degree of freedom, i.e., choosing
both angles θA and φA of the basis transformation freely, she
is able to further decrease the adversary’s information about
the raw key bits. By shifting φA from π/2 to π/4 and θA from
π/2 or π/4 to 3π/8, the adversary’s information is reduced
to IAE ' 0.208 (cf. (21)). This is a reduction by almost 60%
compared to QKD schemes described in [2]–[4] [14] [18] and
more than 50% compared to the combined application of two
different basis transformations (cf. also [25] [26]). At the same
time, the expected error probability is increased by one third
to 〈Pe〉A ' 0.333 (cf. (19)). Hence, an adversary does not
only obtain fewer information about the raw key bits but also
introduces more errors and therefore is easier to detect.

Following these arguments, the best strategy for Alice and
Bob is to apply different basis transformations at random
to reduce the adversary’s information to a minimum. As
already pointed out above, the minimum of IAE ' 0.0548
is reached with a rather odd configuration for θ{A,B} and
φ{A,B} as described Section V. Hence, it is important to look
at configurations more suitable for physical implementations,
i.e., configurations of θ{A,B} and φ{A,B} described by simpler
fractions of π as given in (30) and (31). In this case, we
showed that φ{A,B} can be fixed at φA = φB = π/4 and with
θA = 3π/16 and θB = 7π/16 almost maximal values can be
achieved resulting in IAE ' 0.088 and 〈Pe〉AB ' 0.393 (cf.

TABLE II. OVERVIEW OF THE MEAN VALUE OF THE ERROR RATE
〈PE〉 FOR DIFFERENT STANDARD VARIATIONS (δϕ) AND

DIFFERENT VALUES OF θA,B AND φA,B .

θA = 3π
8 , θB = 0 θA = 0, θB = π

2 θA = 3π
16 , θB = 7π

16

φA = π
4 , φB = 0 φA = π

4 , φB = π
2 φA = π

4 , φB = π
4

(δϕ) = 0 〈Pe〉 ' 0.333 〈Pe〉 ' 0.406 〈Pe〉 ' 0.393

(δϕ) = π
20 〈Pe〉 ' 0.318 〈Pe〉 ' 0.386 〈Pe〉 ' 0.381

(δϕ) = π
10 〈Pe〉 ' 0.286 〈Pe〉 ' 0.359 〈Pe〉 ' 0.355

(31) and also Table I).
Regarding physical implementations, another – even sim-

pler – configuration can be found, involving only π/2 and π/4
rotations (cf. Table I). In this case, θA = 0, φA = π/4 and
θB = φB = π/2, which leaves the expected error probability
at 〈Pe〉AB ' 0.406. The adversary’s information is nowhere
near the minimum but still rather low at IAE = 0.125.

Although the configurations described above are much
simpler with regards to the angles that have to be prepared, we
also pointed out that a potential deviation from these angles
has to be taken into account. This deviation is coming from the
imperfect configuration of the physical apparatus and can be
modeled using a Gaussian distribution. Fortunately, the above
configurations are very robust in withstanding this variance
such that even a large deviation of π/10 does not cause a
large variation in the expected error rate. For example, with
a deviation of (δϕ) = π/10 the error probability 〈Pe〉AB is
decreased only by about 11% compared to the optimal error
probability 〈Pe〉AB . This also holds compared to the simpler
configurations above, as described in Table II. Hence, even if
the angles can not be configured precisely, the expected error
probability is not drastically decreased and the security of the
protocol is not jeopardized.

In terms of security, these results represent a huge ad-
vantage over existing QKD protocols based on entanglement
swapping [14], [17], [18] or standard prepare and measure
protocols [2]–[4]. As pointed out, such protocols usually have
an expected error probability of 〈Pe〉 = 0.25 and a mutual
information IAE = 0.5. Due to the four degrees of freedom,
the error rate is between one third (〈Pe〉AB ' 0.333) and
more than one half (〈Pe〉AB = 0.411) higher in the scenarios
described here than in the standard protocols, which makes it
easier to detect an adversary.

VIII. CONCLUSION
In this article, we discussed the effects of basis transforma-

tions on the security of QKD protocols based on entanglement
swapping. Additionally, we looked at the robustness of these
QKD protocols against an imperfect preparation of these basis
transformations. We showed that the Hadamard operation, a
transformation from the Z- into the X-basis often used in
prepare and measure protocols, is not optimal in connection
with entanglement swapping based protocols. Starting from
a general basis transformation described by two angles θ
and φ, we analyzed the effects on the security when the
adversary follows a collective attack strategy. We showed
that the application of a basis transformation by one of the
communication parties decreases the adversary’s information
to IAE ' 0.2075, which is less than half of the information
compared to an application of the Hadamard operation. At
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the same time, the average error probability introduced by the
presence of the adversary increases to 〈Pe〉 = 1/3. Hence,
the application of one general basis transformation is more
effective, i.e., reveals even less information to the adversary,
than the application of a simplified basis transformation as
given in [25] [26]. A combined application of two different
basis transformations further reduces the adversary’s informa-
tion to about IAE ' 0.0548 at an average error probability of
〈Pe〉 ' 0.4107.

Since the configuration of the angles θ and φ to reach these
maximal values is not very suitable for a physical implementa-
tion, we also showed that values for 〈Pe〉 and IAE , which are
almost maximal, can be reached with more convenient values
for θ and φ. In this case, the adversary’s information is still
IAE < 0.1 with an expected error probability 〈Pe〉 ' 0.393
for a combined application of two basis transformations.

To take the effects of an imperfect preparation of these
angles into account, the angles are described using a Gaussian
distribution. Based on that model, the effects of two certain val-
ues for the standard deviation on the expected error probability
are analyzed. In this context, we showed that the variation
in the expected error probability is with 11% - 14% rather
low even for a large deviation of π/10. With regards to the
application of the Gaussian distribution, we showed that also
for these more practical values of θ and φ the variation of
the expected error probability as well as the increase of the
adversary’s information is rather low. Hence, we can conclude
that the protocol is robust against this kind of error and the
gain of the adversary’s information will not become critical in
such a way that the protocol becomes insecure.

These results have a direct impact on the security of such
protocols. Due to the reduced information of an adversary and
the high error probability introduced during the attack strategy,
Alice and Bob are able to accept higher error thresholds
compared to standard entanglement-based QKD protocols.
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