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Abstract—Efficient state space reconstruction is necessary to
carry out on-line model checking, a variant of model checking
where parameters of a model are continually adjusted to remedy
possible modeling faults. On-line model checking is, for example,
useful in the medical domain where models of patient states
and reactions are always inaccurate, but ensuring patient safety
with model checking techniques is still desirable. In this paper,
we propose a transformation reduction method based on use-
definition chains to efficiently carry out the required state space
reconstruction. We provide a formal specification of the general
algorithm and proofs for its correctness. For evaluation we
applied our reduction approach to the state space of the model
checker UPPAAL. The experiments resulted in a reduction of the
number of transformations necessary to reach a certain state by
42% on average.

Keywords—State Space Reconstruction; On-line Model Check-
ing; UPPAAL; Reference Counting; Use-Definition Chain.

I. INTRODUCTION

Medical treatment facilities have grown to rely significantly
on medical devices for monitoring and treatment. Most devices
are still operated manually today and need to be configured,
maintained, and supervised by medical staff. Recently, closed-
loop monitoring and treatment of patients became a research
topic as experience shows that human errors are prevalent.
Patient-in-the-loop systems try to autonomously assess the
patient’s state using a monitoring device and if necessary treat
the patient automatically, e.g., via a remote infusion pump.
Clearly, such a system must be shown to cause no harm to
the patient. Safety must be ensured to prevent harm from
the patient not only during normal operation but also in case
emergency situations arise.

Model checking is a well developed technique for verifying
that a system model conforms to its specification and thus
may be applied to show the safety of such systems. However,
to make meaningful conclusions about the system’s behavior
it is necessary to have detailed and accurate models of the
individual components of the system. In the medical domain,
model checking is therefore severely hampered if the patient
needs to be modeled accurately, e.g., to make estimates on a
drug concentration in the patient. Generally, a patient model
is likely to be inaccurate as the physiology of the human body
is complex and varies between individuals, e.g., blood oxygen
and heart rate depend on the patient’s condition. A generalized
model will always miss individual characteristics. Patient-in-
the-loop systems thus could be proved safe with such models
but might still put patients at risk.

On-line model checking is a recent model-checking variant
that relaxes the need for models to be accurate far into the
future. On-line model checking provides safety assurances for
short time frames only and renews these assurances continually
during operation. Appropriate models for the system thus only
need to be correct for the short time frame they are used in.
The renewal of safety assurances then is carried out on models
adapted to the current system state to ensure the system’s safety
for the next time window. This on-line approach thus allows
safety assessment at all times and provides means to react
before safety violations occur.

Because parts of the previous state should be maintained
and cross-correlations between state variables could be de-
stroyed inadvertently a model adaptation step may first create
an initialization sequence that recreates the previous model
state before adjusting single values. The reconstruction is
necessary to allow the simulation of the model to continue
from the state it was interrupted in. This paper presents an
automated state reconstruction approach for the Uppsala and
Aalborg model checker (UPPAAL) that eliminates the need for
custom reconstruction procedures for every application. The
developed reconstruction method serves as a base for an on-
line model checking interface with UPPAAL as the underlying
verification engine.

Naively, the state space can be reconstructed by executing
the same transition sequence that was used to create the state
in the beginning. However, if the simulation has already run a
significant time the executed transition sequence is likely to be
long and only continues to grow over time. A more direct way
to the desired state space is needed to keep the reconstruction
process fast and on-line model checking feasible. For our
reconstruction approach we adopted use-definition chains, a
data flow analysis capturing relations of data sources and sinks,
to eliminate transformations that have no effect on the final
state space. Such transformations occur when their results are
overwritten before they are read. Our reconstruction method
has been applied to seven different test models. The method
always reconstructed the original state space while yielding a
reduction of the executed transformations in the range from
23% to 84%.

To summarize, in this paper we, first, contribute to the
field of on-line model checking by presenting a transformation
reduction algorithm together with its proof that may be used
to reconstruct a particular model-checking state space, and,
second, also contribute to the applicability of the UPPAAL
model checker by providing a specialization of the algorithm
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together with its implementation evaluation.

The rest of the paper is organized as follows: Section II
gives an overview on related literature. Section III briefly intro-
duces model checking, on-line model checking, and the model
checker UPPAAL. Section IV provides necessary information
on UPPAAL’s state space and its transformations. Section V
then explains our reconstruction approach with a focus on the
reduction algorithm using use-definition chains. Section VI
presents our evaluation results and, lastly, Section VII sum-
marizes the paper and suggests further research.

This paper is an extended version of the paper published at
VALID 2013 [1]. In contrast to the explanation of the reduction
approach by way of a running example, this paper provides
detailed information on the reduction by formalizing the ap-
proach and providing correctness proofs for the algorithm.

II. RELATED WORK

The on-line model checking approach our reconstruction
method is complementing and thus is closest to has recently
been proposed by Li et al. [2][3]. They employ a hybrid
automata model to ensure correct usage of a laser scalpel
during laser tracheotomy to prevent burns to the patient. Yet,
the necessary model initialization and reconstruction step is
a custom solution and is not presented in detail. To our
knowledge there are no other reconstruction methods for a
particular UPPAAL state in the context of on-line model
checking. However, the UPPAAL variant UPPAAL Tron, an
on-line testing tool that can generate and execute test cases
on-the-fly based on a timed automata system model, has
been developed [4]. While the tool focus lies on input/output
testing using a static system model the fact that the underlying
model is an UPPAAL model means that our reconstruction
approach might be beneficial for tests when the system model
is inaccurate or still needs to be developed. Other related work
falls in two categories: different ways to use or implement on-
line model checking, and different ways to optimize state space
exploration and representation in model checkers.

Qi et al. propose an on-line model checking approach
to evaluate safety and liveness properties in C/C++ web
service systems [5]. Their focus lies on consistency checks
for distributed states to debug a system from known source
code. Reconstruction is not an issue because the source code is
static during execution. Easwaran et al. use a control-theoretic
approach to the general runtime verification problem [6]. They
introduce a steering component featuring a model to predict
execution traces. Their approach uses a fixed prediction model
while our reconstruction is for adapting inaccurate models.
Sauter et al. address the prediction of system properties using
previously gathered time series of measurements, e.g., taken
by sensors [7]. They propose a split into an on-line and an
off-line computation and to precompute expensive parts of
the prediction step to reduce on-line work load. While their
scenario of adapting using sensor measurements is applicable
to our medical scenario with inaccurate patient models they
focus on the verification load problem while we address model
inaccuracy. Harel et al. propose usage of model checking
during the behavior and requirement specification step during
development. Instead of interactively guiding the system to
derive requirements a model checker executes the model

and generally finds more adequate requirements. While their
approach employs on-line model checking their goal thus lies
on early requirement development. In contrast, our approach
is useful in adaptation of deployed systems to ensure safety.
Arney et al. present a recent patient-in-the-loop case study
for automatic monitoring and treatment where UPPAAL and
Simulink models were developed to verify safety questions
beforehand [8]. They monitor heart rate and blood oxygen
levels of the patient and automatically control drug infusion
via a remote pump. On-line model-checking could benefit this
scenario as currently a generalized patient model is employed
and drug absorption rates may vary per patient.

Alur and Dill introduced timed automata and the under-
lying theory in 1994 [9] and Yi et al. developed the first
implementation of the model-checker UPPAAL shortly after
[10]. Many improvements have been made to the model-
checking approach over the years. Larsen et al. proposed
symbolic and compositional approaches to reduce the state-
space explosion problem [11]. Partial order reduction on the
state space was employed by Bengtsson [12]. Larsen et al.
reduced memory usage on-the-fly using an algorithm that
exploits the control structure of models [13][14]. Further
memory reductions were achieved by Bengtsson et al. with
efficient state inclusion checks and compressed state-space
representations [15]. Behrmann et al. provide an overview on
current functionality and the usage of UPPAAL [16]. They also
provide a more detailed presentation of UPPAAL’s internal
representations [17]. For a summary on timed automata, the
semantics, used algorithms, data structures, and tools see [18].
Bengtsson’s PhD thesis provides more in-detail information on
difference bounded matrices [19].

III. ON-LINE MODEL CHECKING

This section introduces model checking and its on-line
variant, on-line model checking. The technique is shown by
way of example using the model checker UPPAAL; for a
formal specification of UPPAAL see [18].

Generally, model checking explores the state space of a
given system model in a symbolic fashion to check whether
the state space satisfies certain properties. Such properties are
mostly derived from a requirement specification for the system,
e.g., one could check whether or not a certain system state
is actually reachable. The modeling and property languages
vary greatly depending on the model-checking tool. Tools
for various programming languages coexist with dedicated
tools that support their own modeling language. Dedicated
tools often use finite state automata as a base formalism for
their models. UPPAAL is such a well-established, dedicated
model checking tool, jointly developed by Uppsala University,
Sweden, and Aalborg University, Denmark [13][16]. It is based
on the formalism of timed automata, an extension of finite
state automata with clock variables to allow modeling of time
constraints. A finite state automaton defines a transition system
by defining locations and edges that connect these locations.
Edges are fired to execute a transition from one location to
another. The system state in this case is the current location
of the automaton and the possible valuations of the clock
variables.

Figure 1 shows the example model that will be used to
demonstrate the proposed state space reconstruction method.
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x <= 2

x = 0,
c = 0

x = 0,
c = (c + 1) % 7InvInit Count

x = 1x >= 3

x >= 3

Figure 1. UPPAAL Model Example

The model consists of three locations, Init, Inv, and Count,
where Init is the initial location indicated by the double
circle. The model uses two variables: x, a clock variable,
and c, a bounded integer variable. Clock variables are special
variables that synchronously advance indefinitely unless they
are bounded by one or more invariants on the current locations.
The location Inv has such an invariant, x <= 2, to bound the
clock x, thus the value of x in Inv can be any value between
its value when it entered the location and 2. The model
has a single transition from the initial location to Inv. This
transition is annotated with a guard, x >= 3, and an update,
x = 0, c = 0. Guards are used to enable and disable edges
depending on the current state. Here, the clock x needs to be
greater or equal to 3 for the edge to be enabled. Only then
can it be fired and a transition occurs. Indeed, as there is no
invariant on x on the initial location the edge is enabled for
values greater or equal to 3. Upon firing of the edge the update
is executed: the clock x and the bounded integer c are both
reset to 0. The edge from Count to Inv is nearly identical to the
previous edge: when x is greater or equal to 3 the edge may be
fired but x is reset to 1 instead of 0 and c is not modified. As
a consequence, the value of x in Inv is between 0 and 2 when
the location is first entered and between 1 and 2 on every
subsequent visit. The transition between Init and Count has
no guard and shows that an update may consist of a complex
expression: the update c = (c + 1) % 7 increases c by 1
modulo 7.

As explained in the introduction, model checking relies on
accurate long term models. On-line model checking is a variant
of classic model-checking that eliminates the need for such
models and thus may be applied when they are unavailable.
It reduces the modeling error by periodically adjusting the
current state to the observed real state, e.g., by setting a model
value to the exact value measured by a sensor attached to a
patient. For example, if we consider the model in Figure 1 one
could assume that the counter variable c is modeling some
patient’s parameter. If that parameter in reality occasionally
jumps the model is inaccurate and needs to be adjusted by
setting c to the correct value. On-line model checking performs
the adjustments and thus the jumps do not need to be modeled
accurately. Note that errors may still be present in the system
under on-line model checking but the method predicts them in
advance to react to them.

On-line model checking requires the model analysis to
finish before the next update interval to give meaningful
results. Although generally the main work is done by the
model checker the reconstruction still consumes some time,
which our method reduces compared to the naive automatic
reconstruction approach.

IV. UPPAAL’S STATE SPACE

UPPAAL’s state space can be divided into three parts: the
time state, the location state, and the data state. The location
and the data state are straightforward: every data variable is
assigned exactly one value for the data state and the location
state consists of the current location vector, i.e., a vector that
contains the current location for every automaton instance.
The time state is more complicated as it needs to capture all
possible valuations for every clock in the model as well as
all relations between the clocks. Difference bound matrices
(DBM) are a common and simple representation method for
such time states [18][19]. By introducing a static zero clock in
addition to all the clocks in the model (C0 = C ∪ 0, C the set of
all clocks) all necessary clock constraints can be written in the
form x − y � n where x and y are clocks (x, y ∈ C0), � is a
comparator (� ∈ {<,≤}), and n is an integer (n ∈ Z). A value
in a difference bound matrix then is a tuple of an integer and a
comparator (n, �), n ∈ Z, � ∈ {<,≤} or the special symbol
∞, which indicates no bound. We denote the set of such entries
by K = ({Z × {<,≤}} ∪ ∞). An order on the entries is
given by (n,�) < ∞, (n1,�1) < (n2,�2) if n1 < n2, and
(n,<) < (n,≤). Furthermore, addition is defined as follows:
(n,�) + ∞ = ∞, (m,≤) + (n,≤) = (m + n,≤), and
(m,<)+(n,�) = (m+ n,<). A difference bound matrix thus
contains one bound, either including or excluding, for every
pair of clocks: M ∈ K|C0|×|C0|.

As an example a clock constraint system with two clocks
a and b and the constraints a ∈ [2, 4), b > 5, and b− a ≥ 3 is
transformed to the canonical constraints a−0 < 4, 0−a ≤ −2,
b − 0 < ∞, 0 − b < −5, a − b ≤ −3, and b − a < ∞. The
corresponding DBM is

0 a b[ ]
0 0 (−2, ≤) (−5, <)
a (4, <) 0 (−3, ≤)
b ∞ ∞ 0

During simulation of an UPPAAL model its transitions are
repeatedly executed. Every transition generally has multiple
effects on the time state and each such effect corresponds to a
transformation of the difference bound matrix that represents
the current time state. The following summary lists the DBM
transformations necessary to traverse the state space [19]:

• Clock Reset A clock reset is performed when an
edge is fired that has an update for a clock variable
(x = n). A clock reset sets the upper and lower
bound on the clock x to the given value and depending
constraints, i.e., constraints on a clock difference in-
volving x are adjusted. This corresponds to modifying
the matrix row and column for the clock x.

• Constraint Introduction A constraint introduction is
performed if either a firing edge has a guard on a
clock or an invariant on a clock is present in a current
location and the bound is more restrictive than the
current constraint on the involved clock. In that case
the relevant matrix entry is set to the new constraint
and for all other entries in the matrix it is checked
whether the new bound induces stricter bounds.
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• Bound Elimination Bound elimination is performed
when a new location is entered. All bounds on clock
constraints of the form c − 0 < n are removed,
i.e., the upper bounds on clocks are removed. Bound
elimination is equivalent to setting the first matrix
column except the top-most value to ∞.

• Urgency Introduction An urgency introduction is per-
formed if an urgent or committed location is entered or
an entered location has an outgoing, enabled transition
that synchronizes on an urgent channel. Unlike the
previous transformations, urgency is a modeling con-
struct specific to UPPAAL to prevent time from pass-
ing. An urgency introduction is semantically equiv-
alent to introducing a fresh clock on the incoming
edge and adding a new invariant on that clock with a
bound of 0 to the location. An urgency introduction
thus can be derived from a clock reset and a constraint
introduction.

Returning to the example model (Figure 1) the individual
transitions can now be broken down into their respective
transformations. The initial location Init induces a bound elim-
ination on the initial state where all clocks are set to zero. The
transition from Init to Inv yields a constraint introduction for
the guard (x >= 3) and a subsequent clock reset (x = 0,
c = 0). The reset of the bounded integer c is ignored here
as c is part of the data state. The location Inv results in a
bound elimination and a following constraint introduction to
accommodate the invariant (x <= 2). The transition from Inv
to Count simply induces a single clock reset transformation
before the location Count eliminates the bound on the state
space again. Lastly, the transition from Count to Inv introduces
the same kind of transformations as the transition from Init to
Inv: both perform a constraint introduction and a clock reset.
The values computed for the clock variable x are as follows:

1) Location Init
a) Initial: x = 0
b) Bound Elimination: x ∈ [0,∞)

2) Transition Init −→ Inv
a) Constraint Introduction: x ∈ [3,∞)
b) Clock Reset: x = 0

3) Location Inv
a) Bound Elimination: x ∈ [0,∞)
b) Constraint Introduction: x ∈ [0, 2]

4) Transition Inv −→ Count
a) Clock Reset: x = 0

5) Location Count
a) Bound Elimination: x ∈ [0,∞)

6) Transition Count −→ Inv
a) Constraint Introduction: x ∈ [3,∞)
b) Clock Reset: x = 1

7) Location Inv
a) Bound Elimination: x ∈ [1,∞)
b) Constraint Introduction: x ∈ [1, 2]

V. STATE SPACE RECONSTRUCTION

In many models a large number of past transitions do not
have an impact on the current state space. In the example

model (Figure 1) this behavior can be observed: in the location
Count the clock x is in the range [0,∞). This valuation was
completely created by the clock reset of the ingoing edge
and the bound elimination of the location itself. Previous
state space transformations do not influence the valuation of
x. Therefore, instead of executing the transition sequence
Init −→ Inv −→ Count totaling 7 transformations only 3
transformations are required to reach the same state space. The
introduction of a new initial state and the direct transition to
Count with an update x = 0 is sufficient to recreate this time
state space. During reconstruction it is thus beneficial to exploit
the fact that effects of certain state space transformations are
overwritten by subsequent transformations.

The remainder of this section first formally defines a
transformation system and conditions for removing transfor-
mations from a sequence (Subsection V-A). Subsection V-B
then presents our reduction algorithm based on use-definition
chains. The application of the algorithm to the reconstruction
problem in UPPAAL is discussed in Subsection V-C. Lastly,
Subsection V-D summarizes the complete reconstruction pro-
cess in UPPAAL.

A. Transformation Elimination Formalized

We now formally derive when transformations may be
removed from a general transformation sequence. Examples
of the individual parts of the formalization can be found
in Subsection V-C, where we specialize the formalization to
UPPAAL. Parts of our formalization and its specialization
to UPPAAL are also published at FM 2014, where a more
recent graph-based state space reconstruction algorithm using
the same transformation abstraction is described [20].

Definition 1. An evaluation function is a mapping

e : V → D

where V is a set of variables and D is the valuation domain
of these variables.

We denote the set of all evaluation functions by E(V,D).
Definition 2. A transformation of the evaluation functions is
a mapping

t : E(V,D) → E(V,D)

Let e1
t1−→ e2

t2−→ . . .
tN−1−−−→ eN be a sequence of

evaluation functions created by the transformations ti where
t−→ indicates the application of a single transformation t. We

denote the transformation sequence t1, t2, . . . , tN−1 by T and
the evaluation function sequence e1, e2, . . . , eN by E.

For the transformation reduction we are interested in find-
ing a subsequence T ′ ⊆ T such that e1

T ′
=⇒ eN where T

=⇒
denotes the ordered application of a sequence of transforma-
tions T . Note that we use set notation for sequences although
sequences are ordered and may contain duplicates. Such a
transformation sequence T ′ then results in the same last eval-
uation function eN but has potentially fewer transformations
than T .

The reduction requires the specification of the transfor-
mations involved to capture their influence on the evaluation
functions.
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Definition 3. An evaluation calculation is a mapping

m : 2V × E(V,D)→ D

where m(V, e) computes a domain value by using exactly the
evaluations e(v) where v ∈ V .

For example, the evaluation calculation

add : ({x, y }, e) 7→ e(x) + e(y)

calculates the sum of the two variables x and y. We denote
the set of all evaluation calculations by C(V,D).
Definition 4. The set of specifications is

S = V × 2V × C(V,D)

We can specify transformations by providing a subset of S
to the specification function:

Definition 5. The specification function is a mapping

s : 2S → (E(V,D)→ E(V,D))
S 7→ (e 7→ e′) where

e′(x′) =

{
m(V, e) if (x, V,m) ∈ S ∧ x′ = x

e(x′) otherwise

where ∀(x, V,m), (x′, V ′,m′) ∈ S [x = x′ =⇒ V = V ′ ∧
m = m′]

Definition 5 states that for each x ∈ V a specification set
S may contain at most one element (x, V,m). The uniqueness
of x in S ensures that the specification function s(S) is well-
defined as otherwise the definition for e′(x′) is ambiguous.
We write (x, Vx,mx) for the single element for x in S if it
exists and further associate the evaluation calculation mx with
a term mx(Vx) that uses the variable symbols in Vx. We call
the term mx(Vx) irreducible if there is no equivalent term in
the underlying term algebra that uses fewer subterms, e.g., due
to distributivity or the presence of zeros.

Proposition 1. If there is no equality relationship between
the variable symbols, expressed in the term algebra, then
there exists a unique specification set S where all evaluation
calculation terms are irreducible.

Proof: Let S, S′, S 6= S′ be two specification sets with
irreducible evaluation calculation terms such that t = s(S) =
s(S′). Then for all variables x ∈ V [mx(Vx) = m′x(V

′
x)], i.e.,

the terms are equivalent in the term algebra. Assume w.l.o.g.
Vx contains a variable symbol y not contained in V ′x. Then
either the term mx(Vx) can be rewritten in a way that elimi-
nates y and mx(Vx) was not irreducible or the variable symbol
y can not be eliminated. Then mx(Vx) = m′x(V

′
x) constitutes

a non-trivial equality relation between the variable symbols.
Both cases contradict the assumption and thus S = S′.

Definition 6. The specification set of a transformation t is the
unique set

S(t) ⊂ S

with irreducible evaluation calculation terms such that t =
s(S(t)).

The specification set S(t) of a transformation t captures
all modifications to the input evaluation function as every
member (x, V,m) defines which (x) and how (m) a variable
is modified. Thus, providing a specification set for t fully
characterizes t. Furthermore, using the specification set we can
derive the write and read characteristics of the transformation.

Definition 7. The write set of a transformation t is

W(t) =
⋃

(x,V,m)∈S(t)

{x }

Definition 8. The read set of a transformation t is

R(t) =
⋃

(x,V,m)∈S(t)

V

Moreover, to conveniently chain transformations together
we define compound transformations in addition to the simple
transformations.

Definition 9. A compound transformation is a transformation

tc = t1 ◦ t2 ◦ · · · ◦ tn

such that e1
tc−→ en+1 ≡ e1

t1−→ e2
t2−→ . . .

tn−→ en+1.

Note that ◦ denotes concatenation ((a◦b)(x) = b(a(x))) in
contrast to composition ((a ◦ b)(x) = a(b(x))). For compound
transformations the write and read sets can be derived from
the individual transformations ti.

Definition 10. The write set of a compound transformation tc
is

W(tc) =
⋃
i

W(ti)

Definition 11. The read set of a compound transformation tc
is

R(tc) =
⋃
i

(R(ti) \
⋃
j<i

W(tj))

Using these definitions two cases exist where a transfor-
mation ti may be removed from the transformation sequence
T without changing eN . The cases can be described in the
following way:

1) no write
W(ti) = ∅
The transformation ti may be removed if the write
set W(ti) is empty.

Proof: As W(ti) = ∅ =⇒ S(ti) = ∅ =⇒
ti = I by definition we find ei

ti−→ ei+1 =⇒ ei =

ei+1 and thus ei
ti−→ ei+1

ti+1−−→ ei+2 = ei
ti+1−−→ ei+2.

2) no read overwritten
∀x ∈ W(ti) [j > i ∧ x ∈ R(tj) =⇒ ∃k [i < k <
j ∧ x ∈ W(tk)]]
The transformation ti may be removed if for all fol-
lowing transformations tj that read a variable written
by ti there is a transformation tk between ti and tj
that writes that variable.

Proof: Let e′i
I−→ e′i+1 → · · · → e′M be the tran-

sition sequence E′ that replaces ti with the identity
transformation I in ei

ti−→ ei+1 → · · · → eM . Note
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that the new transformation sequence is equivalent
to removing ti in the old one. Now if we assume
eM 6= e′M then there must be a variable x such that
eM (x) 6= e′M (x). It follows that there must be a
transformation tj , j < M , such that ej(x) = e′j(x)
and ej+1(x) 6= e′j+1(x) because ei = e′i. Hence, the
variable x is written by tj , i.e., x ∈ W(tj). As x ∈
W(tj), ej+1(x) = m(V, ej) for (x, V,m) ∈ S(tj)
and there must be a variable v ∈ R(tj) such that
ej(v) 6= e′j(v) to satisfy m(V, ej) 6= m(V, e′j). If
j = i, we have a contradiction to the assumption
ei = e′i and are finished. Otherwise, we apply the
same argument to the variable v and would get
another transformation tk, k < j, and a variable
w ∈ R(tk) such that ek(w) 6= e′k(w). This process
leads to a contradiction to our assumption in at most
M − i iterations.

B. Use-Definition Chain Reduction

The key idea of our approach is the construction of use-
definition chains to identify transformations satisfying the
requirements presented in Subsection V-A. A use-definition
chain is a data structure that provides information about the
origins of variable values: for every use of a variable the
chain contains definitions that have influenced the variable and
ultimately lead to the current value. Our idea is to adapt the
definition-use chain technique from static data flow analysis
on a program’s source code to the state space reconstruction:
every entry in the model’s difference bound matrix is treated
as variable and thus is observed for uses and modifications.
DBM entries are only modified by applying a state space
transformation on the DBM. We thus analyzed the read and
write access to matrix entries for every transformation to derive
the use-definition chains where the transformations are the
basic operations.

We now propose an algorithm that removes the transforma-
tions in question. Our algorithm consists of two smaller algo-
rithms: the APPLY algorithm and the ELIMINATE algorithm.
The APPLY algorithm is used to perform a transformation
and the ELIMINATE algorithm removes unnecessary trans-
formations in a sequence of applied transformations. Usage
of the algorithms is assumed as follows: for a sequence of
transformations T first the APPLY algorithm is called on all
transformations in order, then the ELIMINATE algorithm is
executed to obtain the reduced transformation sequence. Note
that a transformation sequence T could be split into two
subsequent sequences T1 and T2 and the ELIMINATE algorithm
could be run on the sequence T1 as soon as all transformations
in T1 have been applied. Thus, the ELIMINATE algorithm
can be run with an appropriate transformation sequence after
every execution of APPLY , which achieves on-the-fly removal.
However, for formalization purposes, we assume the algorithm
execution sequence given in Figure 2 where the initial map-
pings c1, r1 and u1 satisfy ∀t ∈ T [c1(t) = 0 ∧ u1(t) =
∅]∧∀x ∈ V [r1(x) = ⊥]∧c1(⊥) = |V|. The algorithm generates
the following sequences:

• Transformation sequence T = t1, t2, . . . , tN−1

• Evaluation function sequence E = e1, e2, . . . , eN

• Reference counter sequence C = c1, c2, . . . , cN

t1

APPLY

t2

APPLY

t3

APPLY

tN−1

APPLY
ELIMINATE

e1
c1

u1

r1

e2
c2

u2

r2

e3
c3

u3

r3

eN
cN

uN

rN

Figure 2. Algorithm Execution Sequence

• Responsibility sequence R = r1, r2, . . . , rN

• Use-definition sequence U = u1, u2, . . . , uN

where a reference counter is a mapping c : T ∪ {⊥} → N0,
a responsibility mapping is a mapping r : V → T ∪{⊥}, and
an use-definition mapping is a mapping u : T → 2T .

Figure 3 shows the APPLY algorithm. The algorithm takes
the to-be-applied transformation t, an evaluation function e,
a reference counter c, a responsibility mapping r, and a use-
definition mapping u as parameters. Except t all the parameters
are stored locally in lines 2 to 5 to allow internal manipulations
and the results are returned in lines 17 to 20. The algorithm
can be divided into two parts, one handling the reads of the
transformation t and one handling its writes. Lines 6 to 11
process the variables read by t. For every variable xi it is
determined if the transformation responsible for its current
valuation r(xi) is already used by t in line 7. If r(xi) was not
marked used yet it is marked used in line 9 and the reference
counter is increased accordingly in line 8. Lines 12 to 16
then handle the writes of t. First the evaluation function is
updated to map xi to the value mi(Vi, e) as specified by the
transformation. Then line 14 reduces the reference counter of
the transformation previously responsible for the value of xi

and line 15 updates the responsibility mapping such that now
the transformation t is responsible for the value of xi. Lastly
in the return section in line 18 the reference counter is set to
|S(t)| to show that t is now responsible for |S(t)| variable
valuations.

Figure 4 shows the ELIMINATE algorithm. The algorithm
takes a sequence of transformations T , a reference counter
c, and a use-definition mapping u as parameters where all
transformations in T must already have been applied with the
APPLY algorithm. In lines 2 to 3 the transformation sequence
and the reference counter are stored locally and the results of
the algorithm are returned in lines 16 to 17. In between, in
lines 4 to 15, a fix point is calculated by removing as many
transformations from T as possible. The algorithm checks
for every transformation t in T if the reference counter c(t)
evaluates to zero in line 7. If a transformation t satisfies
c(t) = 0 the algorithm at first removes t from T in line 8,
then adjusts the reference counter by decreasing all counters of
transformations used by t in lines 9 to 11, and lastly schedules
another iteration of the fix point calculation in line 12 as the
modifications to the reference counters may induce additional
removals.

We now show the correctness of the algorithm. We assume
that there implicitly is a transformation te appended to the
transformation sequence T that satisfies R(te) = V to indicate
that the final calculated values are actually read and need to
be recreated correctly. Otherwise, the whole transformation
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1: procedure APPLY(t, e, c, r, u)
2: el ← e
3: cl ← c
4: rl ← r
5: ul ← u
6: for all xi ∈ R(t) do
7: if r(xi) /∈ ul(t) then
8: cl ← cl[r(xi) 7→ cl(r(xi))+1]
9: ul ← ul[t 7→ ul(t)∪{ r(xi) }]

10: end if
11: end for
12: for all (xi, Vi,mi) ∈ S(t) do
13: el ← el[xi 7→ mi(Vi, el)]
14: cl ← cl[r(xi) 7→ cl(r(xi))− 1]
15: rl ← rl[xi 7→ t]
16: end for
17: e′ ← el
18: c′ ← cl[t 7→ |S(t)|]
19: r′ ← rl
20: u′ ← ul

21: end procedure

Figure 3. APPLY Algorithm

Require: ∀t ∈ T [APPLY(t, ...)]
1: procedure ELIMINATE(T, c, u)
2: Tl ← T
3: cl ← c
4: repeat
5: b← true
6: for all t ∈ Tl do
7: if cl(t) = 0 then
8: Tl ← Tl \ { t }
9: for all s ∈ u(t) do

10: cl ← cl[s 7→ cl(s)−1]
11: end for
12: b← false
13: end if
14: end for
15: until b = true
16: T ′ ← Tl

17: c′ ← cl
18: end procedure

Figure 4. ELIMINATE Algorithm

sequence T could be removed as no data is consumed. As
a transformation t can only be removed in line 8 of the
ELIMINATE algorithm, which is only executed if c(t) = 0,
the following implications need to be shown to prove the
algorithm.

1) W(t) = ∅ =⇒ ∀c ∈ C [c(t) = 0] (⇒)
If a transformation t does not write any variable then
the transformation may be removed at any time.

2) ∀x ∈ W(ti) [∀tj ∈ T [i < j ∧ x ∈ R(tj) =⇒ ∃tk ∈
T [i < k < j ∧ x ∈ W(tk)]]] =⇒ ∀cl ∈ C [l >
max k =⇒ cl(ti) = 0] (⇒)
If every variable written by a transformation ti is
overwritten by transformations tk before it is read
by a transformation tj then the transformation may
be removed as soon as the last overwriting transfor-

mation tk is performed.
3) i < l ∧ cl(ti) = 0 =⇒ W(ti) = ∅ ∨ ∀x ∈

W(ti)[@tj ∈ T [i < j∧x ∈ R(tj)∧cl(tj) 6= 0∧∀tk ∈
T [i < k < j =⇒ x /∈ W(tk)]]] (⇐)
If a transformation ti may be removed the transfor-
mation either does not write any variable or every
variable written by it is overwritten overwritten by
transformations tk without being read beforehand.
Derivation Note: Application of identities yields ∀x ∈
W(ti) [∀tj ∈ T [i < j ∧ x ∈ R(tj) =⇒ ∃tk ∈
T [i < k < j ∧ x ∈ W(tk)]]] ⇔ ∀x ∈ W(ti) [@tj ∈
T [i < j ∧ x ∈ R(tj) ∧ ∀tk ∈ T [i < k < j =⇒
x /∈ W(tk)]]]. Adding cl(tj) 6= 0 only makes sure
the transformation can not be removed, i.e., it really
exists.

We first derive two lemmas that characterize execution depen-
dencies of certain lines in the algorithms to break the proof
down into smaller parts.

Lemma 1. Every execution of line 10 in the ELIMINATE
algorithm is preceded by an execution of line 8 of the APPLY
algorithm where r(x) = s for some variable x, i.e., for every
decrease of cj(s) in line 10 there is an increase of ci(s) in
line 8 where i < j.

Proof: An execution of line 10 in the ELIMINATE al-
gorithm for a transformation s implies s ∈ u(t) for some
transformation t because of line 9. As only line 9 of the APPLY
algorithm modifies u an execution of it is implied where
r(x) = s for some variable x. Additionally, line 10 may not
be executed multiple times with the same transformation s for
a single execution of line 8 because u(t) is a set and therefore
does not contain duplicates of s and the transformation t is
removed from Tl in line 8 rendering a subsequent access to
u(t) impossible. It follows that every execution of line 10 in the
ELIMINATE algorithm is paired with a preceeding execution of
line 8 in the APPLY algorithm.

Lemma 2. Before the execution of the APPLY algorithm for
a transformation t there are zero variables xi that satisfy
r(xi) = t. After its execution there are at all times at most
|S(t)| variables xi that satisfy r(xi) = t for a transformation
t.

Proof: Only line 15 of the APPLY algorithm may modify
r(x). A valuation satisfying r(x) = t can only be established
when it is executed for the transformation t. In that case
line 15 is executed |S(t)| times due to line 12 and because
∀(xi, Vi,mi), (xj , Vj ,mj) ∈ S(t) [xi 6= xj ] there are exactly
|S(t)| variables xi that satisfy r(xi) = t after the execution of
the APPLY algorithm for t. Because subsequent executions of
line 15 always result in valuations r(x) 6= t for a variable x it
follows that the amount of variables xi that satisfy r(xi) = t
may only be reduced. The proposition follows by taking into
consideration that initially ∀x ∈ V [r(x) = ⊥].
Corollary 1. Line 14 of the APPLY algorithm may be executed
for a transformation t at most |S(t)| times, i.e., line 14 reduces
c(t) by one at most |S(t)| times.

Proof: An execution of line 14 for a transformation t
implies that r(x) = t for a variable x. Additionally, the
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execution is always followed by an execution of line 15, which
sets r(x) 6= t. It follows that every execution of line 14 for a
transformation t implies a reduction of the amount of variables
that satisfy r(x) = t by one. It follows that line 14 may at
most be executed |S(t)| times for a transformation t due to
Lemma 2.

We now prove the algorithm correct by showing that the
presented requirements hold.

1) W(t) = ∅ =⇒ ∀c ∈ C [c(t) = 0]
Proof: There are four occurrences where refer-

ence counters may be modified: in lines 8, 14 and
18 of the APPLY algorithm and in line 10 of the
ELIMINATE algorithm.

a) APPLY algorithm, line 8
Due to Lemma 2 W(t) = ∅ =⇒ S(t) =
∅ =⇒ ∀r ∈ R [@x ∈ V [r(x) = t]] and thus
line 8 cannot modify c(t).

b) APPLY algorithm, line 14
Due to Lemma 2 W(t) = ∅ =⇒ S(t) =
∅ =⇒ ∀r ∈ R [@x ∈ V [r(x) = t]] and thus
line 14 cannot modify c(t).

c) APPLY algorithm, line 18
As W(t) = ∅ =⇒ S(t) = ∅ line 18 sets
c(t) to |S(t)| = 0 if APPLY is executed for t
and c(t) is not modified otherwise.

d) ELIMINATE algorithm, line 10
As line 8 cannot modify c(t) (see above) line
10 cannot modify c(t) due to Lemma 1.

According to the case analysis it follows that c′(t) =
c(t) or c′(t) = 0 for every application of the APPLY
or ELIMINATE algorithm. Using that c1(t) = 0 it
follows that W(t) = ∅ =⇒ ∀c ∈ C[c(t) = 0]
by induction.

2) ∀x ∈ W(ti) [∀tj ∈ T [i < j ∧ x ∈ R(tj) =⇒ ∃tk ∈
T [i < k < j ∧ x ∈ W(tk)]]] =⇒ ∀cl ∈ C [l >
max k =⇒ cl(ti) = 0]

Proof: There are four occurrences where refer-
ence counters may be modified: in lines 8, 14 and 18
of the APPLY algorithm and in line 10 of the ELIM-
INATE algorithm. We consider the transformation ti.

a) APPLY algorithm, line 8
Assume a transformation tj modifies c(ti) in
line 8. Then due to Lemma 2 it follows that
i < j and ∃x ∈ V [r(x) = ti]. It follows
that ∃x ∈ V [x ∈ R(tj) ∧ x ∈ W(ti)]
must be satisfied. Thus, the inner premise
in the proposition holds and there must be
a transformation tk satisfying i < k < j
and x ∈ W(tk). The execution of the APPLY
algorithm for the transformation tk, however,
then results in r(x) 6= ti (see proof of
Lemma 2) and tj can no longer modify
c(ti). The premise thus prevents line 8 from
modifying c(ti).

b) APPLY algorithm, line 14
As we are only interested in modifications to
c(ti) we only need to consider executions for
transformations tj , j > i due to Lemma 2 as
line 14 requires ∃x ∈ V [r(x) = ti] to modify
c(ti). According to Corollary 1 line 14 may

reduce c(ti) maximally by |S(ti)|. The max-
imum reduction occurs if ∀x ∈ W(ti) [∃tj ∈
T [i < j ∧ x ∈ W(tj)]] (see proof of
Corollary 1). According to the premise of
the proposition this requirement is satisfied
if ∀x ∈ W(ti) [∃tj ∈ T [i < j ∧ x ∈ R(tj)]].
This requirement, however, is always satis-
fied because of the implicit transformation
te at the end of the transformation sequence,
which satisfies R(te) = V . It follows that
the premise of the proposition implies the
existence of a set of transformations Tr ⊆ T ,
which satisfies W(ti) ⊆

⋃
t∈Tr
W(t) and,

thus, line 14 reduces c(ti) by |S(ti)| in total.
c) APPLY algorithm, line 18

As we are only interested in modifications to
c(ti) we only need to consider the execution
for ti. In that case line 18 sets c(ti) to
|W(ti)| as |W(ti)| = |S(ti)|.

d) ELIMINATE algorithm, line 10
Due to Lemma 1 there is no execution of
line 10 that modifies c(ti) as there is no
modification of c(ti) in line 8 in the APPLY
algorithm (see above).

According to the case analysis c(ti) is modified
in the following way: at first line 18 sets c(ti) to
|S(ti)|. Then the transformations from the set Tr

are executed and lead to a monotonously descending
c(ti) value (no reads). The execution of the last
transformation from Tr results in a c(ti) = 0. This
transformation is the transformation with the highest
k of the transformations tk in the proposition as all
transformations tk satisfy W(ti) ∩W(tk) 6= ∅. Thus
∀cl ∈ C [l > max k =⇒ cl(ti) = 0] is satisfied and
the proposition holds.

3) i < l ∧ cl(ti) = 0 =⇒ W(ti) = ∅ ∨ ∀x ∈
W(ti)[@tj ∈ T [i < j∧x ∈ R(tj)∧cl(tj) 6= 0∧∀tk ∈
T [i < k < j =⇒ x /∈ W(tk)]]]

Proof: There are three occurrences where refer-
ence counters may be set or reduced to zero after ti is
processed. Lines 14 and 18 of the APPLY algorithm
and line 10 of the ELIMINATE algorithm potentially
modify cl(ti) in such a way.

a) APPLY algorithm, line 14
In this case we prove i < l∧ cl(ti) = 0 =⇒
∀x ∈ W(ti) [@tj ∈ T [i < j ∧ x ∈ R(tj) ∧
cl(tj) 6= 0 ∧ ∀tk ∈ T [i < k < j =⇒ x /∈
W(tk)]]] by contraposition. Assume x to be a
variable satisfying x ∈ W(ti) and assume tj
to be a transformation satisfying i < j ∧x ∈
R(tj)∧cl(tj) 6= 0∧∀tk ∈ T [i < k < j =⇒
x /∈ W(tk)]. When executed tj increases
cj(ti) in line 8 as x ∈ R(tj) and no interme-
diate transformation tk invalidates r(x) = ti.
Then for the transformation tl−1 to reduce
cl(ti) to zero in line 14 it is necessary to
revert the increase by an execution of line 10
in the ELIMINATE algorithm before tl−1 is
executed due to Corollary 1. Due to Lemma
1 the reduction must result from c(tj) being
reduced to zero (ELIMINATE algorithm, line
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7) as otherwise additional increases would
have happened in line 8 beforehand. Assume
tm, j < m < l − 1 to be the transformation
that reduced cm+1(tj) to zero to revert the
increase of cj(ti). We find that cm+1(tj) =
0 =⇒ cl(tj) = 0 unless c(tj) is increased
again between the execution of tm and tl−1.
However, a reduction of c(t) to zero implies
@x ∈ V [r(x) = t] and thus such an increase
is impossible. It follows that if tj exists cl(ti)
can not be reduced to zero.

b) APPLY algorithm, line 18
Line 18 may only modify cl(ti) if APPLY
is executed for ti. In that case cl(ti) is
set to zero if |S(ti)| = 0. As |S(ti)| =
0 =⇒ W(ti) = ∅ it follows that in this
case cl(ti) = 0 =⇒ W(ti) = ∅, which is
part of the proposition.

c) ELIMINATE algorithm, line 10
If line 10 reduces cl(ti) to zero then there
must have been a reduction of a different
reference counter to zero beforehand as line
7 requires c(t) = 0. As this argument holds
recursively a reduction in line 10 ultimately
implies a reduction due to either line 14
or line 18 in the APPLY algorithm. Thus, a
reduction in line 10 implies the implications
for those lines found above.

Combining the case analysis results with the premise
i < l ∧ cl(ti) results in all cases in either W(ti) = ∅
or ∀x ∈ W(ti) [@tj ∈ T [i < j∧x ∈ R(tj)∧cl(tj) 6=
0 ∧ ∀tk ∈ T [i < k < j =⇒ x /∈ W(tk)]]] yielding
the proposition.

C. Algorithm Application to UPPAAL

We now specialize the general formalization to UPPAAL’s
state space and transformation system such that we may apply
the presented reduction method to UPPAAL models. The re-
duction is only relevant for the time state of UPPAAL because
the data and location states may be modified directly during
on-line model checking. Only the time state has constraints that
may be invalidated by individual changes to the time state.

Consider an UPPAAL model M with the clock set C. The
time state of M can be represented with a difference bound
matrix containing |C0|2 entries. Therefore, in our specialization
the variable set V contains that many variables: |V| = |C0|2.
The domain of the variables (D) is K because every variable
represents an DBM entry. We refer to the variables by DBMr,c

where r denotes the row number and c denotes the column
number. Next, we define UPPAAL’s DBM transformations for
our formalization. As presented in Section IV, the relevant
transformations are the Clock Reset (RESET(x, v)), the Con-
straint Introduction (CONSTRAINT(x, y, v,�)), and the Bound
Elimination (UP):

RESET(x, v) Sets the clock variable x
to the value v and adjusts
constraints on that clock
accordingly

CONSTRAINT(x, y, v,�) Introduces a new upper
bound on a clock or on
a difference of clocks and
propagates dependencies

UP Removes the upper
bounds on every clock
but not on differences of
clocks

Four specification calculations are necessary to specify these
transformations, where two assign values based on constants
and two calculate minima. The first two are the assign(v) cal-
culation and the add(v) calculation: assign(v) simply assigns
the constant value v to a variable; add(v) calculates the sum
of the constant value v and the current evaluation of a variable
and assigns it:

assign : K → (2V × E(V,D)→ K)
v 7→ ((∅, e) 7→ v)

add : K → (2V × E(V,D)→ K)
v 7→ (({x }, e) 7→ e(x) + v)

The minima calculations are minassign(v) and minadd(). As-
signing a variable with minassign(v) results in an evaluation
equal to the minimum of v and the evaluation of the comparing
variable. minadd() checks whether the sum of two variable
evaluations is smaller than a third evaluation and if so assigns
the sum:

minassign : K → (2V × E(V,D)→ K)
v 7→ (({x }, e) 7→ min(e(x), v))

minadd : 2V × E(V,D)→ K
({x, y, z }, e) 7→ min(e(x), e(y) + e(z))

Providing adequate specification sets S(t) with these specifi-
cation calculates now allows defining the transformations UP,
RESET(x, v), and CONSTRAINT(x, y, v,�). For convenience
we use ix and iy for the indices of the clocks x and y in the
DBMs. The UP transformation begins straight-forward: setting
all values in the first DBM column except the top-most one to
∞ removes the upper bounds on the clocks:

S(UP) = { (DBMi,1, ∅, assign(∞)) | 1 < i ≤ |C0| }

The RESET(x, v) transformation performs two actions. First,
it sets x to v, i.e., it sets both bounds to v. Then constraints
in the clock’s row and column are adjusted. A compound
transformation models this behavior:

RESET(x, v) = ts ◦ tp
S(ts) = { (DBMix,1, ∅, assign((v,≤))),

(DBM1,ix , ∅, assign((−v,≤))) }
S(tp) = { (DBMix,i, {DBM1,i }, add((v,≤))),

(DBMi,ix , {DBMi,1 }, add((−v,≤)))
| 1 < i ≤ |C0| }

At last, the CONSTRAINT(x, y, v,�) transformation first in-
troduces the constraint x − y � v and then propagates
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it to depending constraints. Note that the propagation itself
also is divided into multiple transformations as subsequent
transformations require previous calculations:

CONSTRAINT(x, y, v,�) = tc ◦
t1,1 ◦ · · · ◦ t1,|C0| ◦
t2,1 ◦ · · · ◦ t2,|C0| ◦

...
t|C0|,1 ◦ · · · ◦ t|C0|,|C0|

ti,j = ti,j,1 ◦ ti,j,2
S(tc) = { (DBMix,iy , {DBMix,iy },minassign((v,�))) }

S(ti,j,1) = { (DBMi,j , {DBMi,j ,DBMi,ix ,DBMix,j },
minadd) }

S(ti,j,2) = { (DBMi,j , {DBMi,j ,DBMi,iy ,DBMiy,j },
minadd) }

D. Reconstruction Summarized

The complete state space reconstruction process consists
of three steps:

1) Initialization Canonize model by introducing general
starting points for later model synthesis, extract nec-
essary information from the model, e.g., clock and
variable definitions.

2) Simulation Select transitions in the model according
to intended behavior, execute and store them. Si-
multaneously break them down into matching state
space transformations and use the APPLY algorithm
to internally construct the use-definition chains of the
transformations. Then use the ELIMINATE algorithm
to remove unnecessary transformations on-the-fly by
evaluating the reference counters.

3) Synthesis Group the sequence of reduced transforma-
tions to form valid transitions and add the transitions
to a newly created model obtained from the original
one. The last transitions connect to the current lo-
cations when the reconstruction was initiated. Those
transitions also update the data state.

Note that the synthesis of the actual UPPAAL model
from the reduced transformation sequence has to take into
consideration that UPPAAL allows a single automaton to be
instantiated multiple times with possibly different parameters.
During initialization of the reconstruction we therefore analyze
the model definitions for automaton instantiation and save
the relevant parameters. Also, as the location space needs to
be correctly reconstructed an automaton that is instantiated
multiple times has multiple initializations transitions for every
instantiation. We use a single bounded integer variable in
conjunction with appropriate guards to correctly order these
transitions. Another important aspect of the synthesis step is
that the model initialization needs to be self-contained, i.e.,
the initialization of multiple automata needs to finish syn-
chronously to prevent parts of the model from advancing pre-
maturely. As the initialization transitions per automaton may
differ in length we employ a broadcast channel to synchronize
the last transition to the original model. We use these final
transitions to initialize the data variables as well. In case global
variables are present an additional init automaton is introduced

TABLE I. EVALUATION RESULTS

Model
Transitions Transformations

Before After Reduction Before After Reduction
2doors 100 65.89 34.1% 364.7 254.46 30.2%
bridge 100 68.21 31.8% 188.39 144.09 23.5%

train-gate 100 66.18 33.8% 320.09 214.17 33.1%
fischer 100 91.27 8.7% 345.33 249.46 27.7%

csmacd2 100 100 0% 709.71 434.19 38.8%
csmacd32 75.58 75.58 0% 1818.6 327.49 79.7%

tdma 100 68.16 31.8% 719.88 240.11 66.6%

2doors 1000 627.9 37.2% 3722.3 2612.9 29.8%
bridge 1000 641.3 35.9% 1882.8 1436.4 23.7%

train-gate 1000 606.1 39.4% 3200.1 2194.1 31.4%
fischer 1000 853 14.7% 3455.3 2486.8 28%

csmacd2 1000 1000 0% 7238.1 4375.5 39.5%
csmacd32 619.6 619.6 0% 22491.1 2540.3 84%

tdma 1000 663.1 33.7% 6446.3 2651.5 58.9%

for their initialization. Figure 5 shows the reconstruction model
for the example model (Figure 1) after 2 transitions on the
right side. The additional initialization automaton is shown
on the left. It sets the global, bounded integer c to 1. The
clock x is set to 0 and the location is correctly initialized to
Count after an initial first transition. The reconstructed model
only needs to execute a single transition in contrast to the
original model, which uses two to reach the correct state.
For DBM transformations the reconstructed model uses three
transformations while the original model needs seven.

VI. EVALUATION

We evaluated our use-definition reconstruction method by
applying it to seven different UPPAAL models and comparing
it to the naive reconstruction approach. The models 2doors,
bridge, train-gate, and fischer are part of the UPPAAL example
model suite. The csmacd models and tdma were taken from
case studies [21][22]. We ran two test sets for every model.
The first test executed 100 times 100 random transitions of
the model before reconstructing the state. The second test set
executed 1000 random transitions 10 times. For the csmacd32
model it was not always possible to execute the maximum
number of transitions during simulation as the model exhibits
deadlock states. Table I shows our evaluation results. In the top
half the results of the first test set and in the bottom half the
results of the second test set are shown. All values are averages
over the respective test runs but their variances are small. In
our experiments the reduction of transformations is between
23% and 84% while the reduction of transitions is between 0%
and 39.4%. This difference mainly stems from the fact that to
delete a single transition all induced transformations need to
be removed. However, our model synthesis algorithm still is
unoptimized and sometimes produces unnecessary transitions.
In cases where the transition reduction is higher than the
transformation reduction the removal of transformations made
it possible to merge multiple transitions. Interestingly, the cs-
macd models contain use-definition chains spanning the whole
simulation, which prevent removal of transitions though many
transformations are irrelevant to the state. Future work will
need to address this issue, e.g., by also evaluating concrete state
values. Regarding total execution time, our adjustments have a
small impact as the model checking procedure consumes most
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Figure 5. Reconstructed example model

of the time. Also, compared to the model checking part our
approach scales well with the complexity of the used models.

VII. CONCLUSION AND FUTURE WORK

In this paper, we addressed the problem of state space
reconstruction of UPPAAL models in the context of on-line
model checking. Our reconstruction method uses use-definition
chains to track influence of individual transformations on
the state space during model simulation. An algorithm for
the chain construction with reference counters was presented.
It is able to identify and remove transformations in the
transformation sequence that do not have an impact on the
final state space. We provided proofs for the algorithm itself
and the requirements for the removal of a transformation
without altering the final state. The reconstruction process was
implemented in a prototype implementation and compared to
the naive reconstruction approach, which does not remove
any transformations. Seven UPPAAL models from different
sources were analyzed and our approach reduced the amount
of transformations necessary for reconstruction by 23% to 84%
and reduced model transitions by up to 39.4%.

The prototype implementation is part of our UPPAAL on-
line model checking interface that is currently in development.
Interestingly, this interface could not only be used to automat-
ically carry out on-line model checking. The interface also
allows generic dynamic adaptation of model parameters. In
the future enhancing on-line model checking by combining
it with parameter learning algorithms and model calibration
methods might broaden the applicability of model checking
even further.

However, the proposed reconstruction method still yields
infeasible reconstruction sequences for real-time on-line model
checking in general as the reconstruction sequence length still
grows over time. A reconstruction sequence of constant length
is desirable to ensure real-time properties. Future research
thus also need to focus on further optimizing the proposed
reconstruction method. For example, the proposed method
currently only relates transformations according to read and
write accesses. Concrete variable values are not taken into ac-
count. Transformations that produce the same values could be
removed, but are currently not. Experience during development
has shown that such transformations occur often especially
in periodic use-definition chains that arise due to cycles in
the model. Removal of them could improve the reconstruction
sequence significantly by breaking such cycles.
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