
Sustainable Multiprocessor Real-Time Scheduling with Exact Preemption Cost

Falou Ndoye
INRIA Paris-Rocquencourt

Domaine de Voluceau BP 105
78153 Le Chesnay Cedex - France

falou.ndoye@inria.fr

Yves Sorel
INRIA Paris-Rocquencourt

Domaine de Voluceau BP 105
78153 Le Chesnay Cedex - France

yves.sorel@inria.fr

Abstract—In this paper, we address for safety critical ap-
plications the problem of multiprocessor real-time scheduling
while taking into account the exact preemption cost. In the
framework of multiprocessor real-time partitioned scheduling,
we propose a greedy heuristic, which balances the load of
the tasks on all the processors and minimizes the response
time of the applications. That heuristic uses a schedulability
condition, which is based on the ⊕ operation. That operation
performs a schedulability analysis while taking into account
the exact preemption cost. In this paper, the WCETs (Worst
Case Execution Time) of tasks are considered rather than its
EETs (Exact Execution Time). In this case, we prove that the
schedulability analysis is sustainable. We also highlight the
impact of the preemption cost in the schedulability analysis. A
performance analysis is achieved, which compares the proposed
heuristic to a branch and bound exact algorithm and to worst-
fit and best-fit heuristics.

Keywords-multiprocessor real-time scheduling; partitioned
scheduling; exact preemption cost; sustainable; load balancing.

I. INTRODUCTION

For computation power and modularity issues, multipro-
cessor architectures are necessary to tackle complex appli-
cations found in domains such as avionics, automotive, rail,
mobile robotics, etc. Some of these applications are safety
critical [1], leading to hard real-time task systems whose
number of resources are fixed and constraints must be nec-
essarily satisfied in order to avoid catastrophic consequences.
Although fixed priority preemptive real-time scheduling al-
lows a better success ratio than non-preemptive real-time
scheduling, preemption has a cost. That cost is usually
approximated in the WCET (Worst Case Execution Time) as
assumed, explicitly, by Liu and Layland in their pioneering
article [2]. However, such approximation is dangerous in a
safety critical context since an application could miss some
deadlines during its real-time execution even though schedu-
lability conditions have been satisfied. This is the reason
why it is necessary to be aware of the exact preemption
cost. In this paper, we address the problem of multiprocessor
real-time scheduling while taking into account the exact
preemption cost in the case of safety critical applications.
In the framework of multiprocessor real-time partitioned
scheduling, we propose a greedy heuristic [3], which bal-
ances the load of the tasks on all the processors and tends

to minimize the response time of the tasks. That heuristic
uses a schedulability condition based on the algebraic ⊕
operation, which performs a schedulability analysis taking
into account the exact preemption cost.

The remainder of the paper is organized as follows:
Section II presents related work about preemption cost and
multiprocessor real-time scheduling. Section III describes
the model and the schedulability analysis we use. Section
IV presents the sustainability of this schedulability analysis.
Section V presents the impact of the preemption cost in
the schedulability analysis. Section VI presents the proposed
multiprocessor scheduling heuristic as well as its complexity.
Section VII presents a performance analysis that compares
the heuristic with the Branch and Bound (B&B) exact algo-
rithm and the Worst-Fit (WF) and Best-Fit (BF) heuristics.
Finally, Section VIII concludes and gives some directions
for future work.

II. RELATED WORK

A. Exact preemption cost in real-time scheduling

There have been very few studies addressing the exact
number of preemptions. Among them, the most relevant are
the following. A. Burns, K. Tindell and A. Wellings in [4]
presented an analysis that enables the global cost due to
preemptions to be factored into the standard equations for
calculating the worst case response time of any task, but
they achieved that by considering the maximum number of
preemptions rather than the exact number. Juan Echagüe,
I. Ripoll and A. Crespo also tried to solve the problem
of the exact number of preemptions in [5] by computing
the schedule using idle times and counting the number of
preemptions. They did not take into account the cost of
each preemption during the analysis. Hence, this amounts
to considering only the minimum number of preemptions
because some preemptions are not considered: those due to
the increase in the execution time of the task because of the
cost of preemptions themselves.

In order to reduce the preemption cost and improve the
schedulability of tasks, a lot of work has focused on limited-
preemption policies; among these we can cite fixed priority
scheduling with deferred preemption (FPSDP) also called
cooperative scheduling [6] and fixed priority scheduling

353

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



with a preemption threshold (FPSPT) [7], [8]. According to
FPSDP, each job of a task is a sequence of sub-jobs, where
sub-jobs are not preemptive. When a job is being executed,
it can only be preempted between two consecutive sub-jobs.
For FPSPT, each task is assigned a nominal and a threshold
priority. A preemption will take place only if the preempting
task has a nominal priority greater than the preemption
threshold of the executing task. None of the previous works
considers the exact number of preemptions. Nonetheless,
that can affect the correct behavior of the system at run-time,
or in any case leads to resources being wasted in terms of
time and memory. It is not difficult to determine the constant
cost of every preemption, which includes the context switch
necessary to make the preemption possible together with the
choice of the task with the highest priority. However, the
exact number of preemptions is difficult to determine since
it may vary according to every instance of a task. To our best
knowledge there are only few studies that take into account
the exact preemption cost in the schedulability conditions,
except those presented in [9], [10]. The authors proposed a
scheduling operation named ⊕ that performs a schedulability
analysis while computing the exact number of preemptions.
Since the principle of this operation is not usual we give a
detailed presentation in Section III-B.

B. Multiprocessor real-time scheduling

The scheduling of real-time tasks on multiprocessor ar-
chitectures can be achieved according to three main ap-
proaches: partitioned scheduling, global scheduling, and
semi-partitioned scheduling.

In the partitioned scheduling approach [11], [12] the
system of tasks is divided into a number of disjoint subsys-
tems less than or equal to the number of processors in the
multiprocessor architecture, and each of these subsystems is
allocated to one processor. All the instances, or jobs, of a
task are executed on the same processor and no migration
is permitted. In this approach, it is necessary to choose a
scheduling algorithm for every processor, possibly the same
algorithm, and also an allocation algorithm. On the other
hand, the allocation problem has been demonstrated to be
NP-Hard [13]. This complexity is the main drawback of the
partitioned scheduling approach.

Heuristics are considered to be the best suited solutions
when the execution time is crucial as in the rapid prototyping
phase of the design process. In the case of fixed priority
scheduling and independent tasks, Davari and Dhall were
the first to propose in [14] two preemptive scheduling
algorithms RM-FF (Rate Monotonic First Fit) and RM-NF
(Rate Monotonic Next Fit) to solve the multiprocessor real-
time scheduling problem. In the proposed algorithms, the
uniprocessor RM algorithm [2] is used to verify if a task is
schedulable on a processor with respectively First-Fit (FF)
and Next-Fit (NF) to solve the allocation problem. Another
heuristic, RM-BF (Rate Monotonic Best Fit) was proposed

in [15]. It makes it possible to minimize the remaining
processor load (1−Upj ), called the unutilized capacity of the
processor pj [16], where Upj is the load of the tasks on pj .
In contrast to RM-BF, RM-WF [15] (Rate Monotonic Worst
Fit) maximizes the remaining processor load. All these
approaches uses the classical Liu and Layland [2] model
of tasks that assumes the preemption cost is approximated
in the WCET. In order to tackle this problem [17] presents a
first solution to take into account the exact preemption cost
in multiprocessor real-time scheduling.

In the global scheduling approach [11], [12], a unique
scheduling algorithm is applied globally for every processor
of the multiprocessor architecture. All the ready tasks are
in a unique queue shared by all the processors. In this
queue, the m tasks with the highest priorities are selected
to be executed on the m available processors. Besides
preemptions, task migrations are permitted. The advantage
of the global scheduling approach, is that it allows a better
use of the processors. The main drawback of the global
scheduling approach, is that each migration nowadays has a
prohibitive cost.

In the semi-partitioned scheduling approach [18], [19],
derived from the partitioned scheduling approach, each task
is allocated to a specific processor as long as the total
utilization of the processor does not exceed its schedulable
bound. In this approach, some tasks can be portioned for
their executions among multiple processors. During run-
time scheduling, a portioned task is permitted to migrate
among the allocated processors, while the partitioned tasks
are executed on specific processors without any migration.
The semi-partitioned scheduling approach allows a reduction
of the number in migrations. But again, it is necessary to be
aware that every migration has a cost.

C. Our choices

The cost of migrations in the global and semi-partitioned
scheduling approaches leads us to choose the partitioned
scheduling approach. In addition, since the partitioned
scheduling approach amounts to transform the multiproces-
sor scheduling problem into several uniprocessor scheduling
problems, we can take advantage of the numerous research
results obtained for the uniprocessor scheduling problem. In
order to achieve rapid prototyping, we propose an alloca-
tion heuristic rather than a metaheuristic [20] or an exact
algorithm [21], and a schedulability condition to verify if
a task is schedulable on a specific processor. Next-fit (NF)
and first-fit (FF) heuristics cannot optimize the load of the
tasks on the processors, their choice is only based on the
first processor, which satisfies the schedulability condition.
The BF heuristic using the load as a cost function, tries
to fill a processor as much as possible before using another
one. This technique does not allow load balancing. The only
heuristic among the bin-packing heuristics which permits
load balancing is WF. But, as with all the other bin-packing

354

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



heuristics, WF tries to reduce the number of processors and
that limits the balancing while multiprocessor architectures
used in industrial applications, which we are interested in,
have a fixed number of processors. That is the reason why
we propose a greedy heuristic similar to the WF heuristic,
but which uses all the available processors. This heuristic
aims at minimizing the load on each processor. That allows
in turn the balance of the load on all the processors.

Preemptive scheduling algorithms are able to successfully
schedule some task systems that cannot be scheduled by
non-preemptive scheduling algorithms, but the preemption
has a cost. Indeed, Liu and Layland [2] assume that the
preemption cost is approximated in the WCET. Thus, there
are two possible cases: the approximation in time and
memory space is high enough and thus will probably lead
to wasting resources, or the approximation is low and thus a
task system declared schedulable may miss some deadlines
during its execution at runtime. In order to take into account
the exact preemption cost, we propose to use the ⊕ operation
[9], [10]. This is an algebraic operation verifies if two tasks
are schedulable, or not, while taking into account the exact
preemption cost.

III. MODEL AND SCHEDULABILITY ANALYSIS

A. Model

Let Γn = {τ1, τ2, · · · , τn} be a system of n preemptive,
independent and periodic real-time tasks. Every task is
denoted by τi = (r1i , Ci, Di, Ti) where r1i , Ci, Di and Ti
are the characteristics of the task. r1i is the first activation
date, Ci is the WCET without any approximation of the
preemption cost, Di is the relative deadline, and Ti the
period of the task τi. We assume that Ci ≤ Di ≤ Ti. Here
we use the WCET rather than the EET (Exact Execution
Time) used in [1] and we will prove that the schedulabity
analysis is sustainable. We assume that Γn is scheduled off-
line on m identical processors (all the processors have the
same computation power). We assume the tasks have fixe
priorities. Eventually, we assume that the processors have
neither cache nor pipeline, or complex internal architecture.
The latter assumption is usually made in safety critical
applications where determinism is a key issue.

B. Schedulability analysis based on the ⊕ operation

Our schedulability analysis uses the ⊕ scheduling opera-
tion [10] . This operation is applied to a pair of tasks (τi, τj),
such that τi has the highest priority. It gives as a result a
task R, that is R = τi ⊕ τj . The ⊕ takes into account
the exact preemption cost incurred by the task τj . The
schedulability interval, i.e., the interval in which we study
the schedulability of the tasks, comes from the Theorem 1
below, which was given by J. Gossens [22].

Theorem 1: For a system Γn = {τ1, τ2, · · · , τn} of n
periodic tasks arranged by decreasing priorities with respect

to a fixed-priority scheduling policy, let (s
′

i)i∈N∗ be the
sequence defined by:

s
′

1 = r11

s
′

i = r1i +

⌈
(si−1 − r1i )+

Ti

⌉
· Ti, 2 ≤ i ≤ n

(1)

If there exists a valid schedule of Γn until the time s
′

n+Hn

where Hn = lcm{Ti | i = 1, · · · , n}, and x+ = max(x, 0),
then this schedule is valid and periodic of period Hn from
s
′

n.
A direct consequence of the previous theorem is that in the

case of a valid schedule, the result of the schedule of the i
first tasks is periodic of period Hi = lcm{Tj | j = 1, · · · , i}
from s

′

i. Thus, the interval which precedes s
′

i necessarily
contains the transient phase, corresponding to the initial part
of the schedule and the interval starting at time s

′

i with length
Hi is isomorphic to the permanent phase of the schedule of
the i first tasks, which repeats identically from the instant
s
′

i.
In order to compute R = τi ⊕ τj with j = i + 1,

we set ε = min(r1i , r
1
j ). Since ε always exists, the

interval [ε, s
′

j ] defines the transient phase and the interval
[s
′

j , s
′

j + Hj ] defines the permanent phase, sj and Hj

are given by the theorem 1. The schedulability study of
the tasks is performed in the interval [ε, s

′

j + Hj ]. In this
interval, the number of instances of a task τj is given by

nj =
(s
′
j+Hj)−r1j

Tj
.

1) Principle of the ⊕ operation: The principle of ⊕
applied to a pair of tasks (τi, τj) consists in replacing the
available time units of the highest priority task τi with the
time units of the lowest priority task τj . In order to do that,
both tasks are initially referenced to the same time origin
ε. Then, task τi is rewritten according to the number of
instances of task τj in the interval [r1j , s

′

j +Hj ] of both task
periods. This operation allows not only the identification of
the available time units in task τi, but also the verification
that task τj does not miss any deadlines.

When the task τj is preempted by the task τi the exact
number of preemptions must be computed for each instance
of τj by considering all its time units. When τj is preempted,
we increment its number of preemptions and we add the cost
associated with one preemption in the remaining execution
of τj , i.e., the number of time units that τj must execute
in order to complete its execution. That scheme is repeated
to take into account a preemption generated by a previous
preemption, and so on. In contrast to other works presented
in the literature, this principle makes it possible to compute
the exact number of preemptions. The cost associated to
that exact number of preemptions is added to the WCET
of τj to obtain its PET (Preemption Execution Time), i.e.,

355

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



the execution time taking into account the exact preemption
cost.

Figure 1 illustrates the PET. In this figure, the PET of task
τi in the instance k+ 1 is given by Ck+1

i = Ci + 2α due to
two preemptions, with α being the cost of one preemption.
If the amount of PET unit of times fits in the available time
units of task τi, the task τj is schedulable, giving as a result
task R, otherwise it is not schedulable. ⊕ is an internal
operation, i.e., the result given by ⊕ is also a task, that
result may be in turn used as the highest priority task in
another ⊕ operation. Thanks to this property it is possible
to consider more than two tasks.

In order to perform the schedulability analysis of the task
system Γn = {τ1, τ2, · · · , τn}, ordered according to the
decreasing priorities of the tasks, the ⊕ operation is applied
from the task with the highest priority to the task with the
lowest priority. Consequently, if Rn is the scheduling task
result of Γn, then Rn is obtained by successive iterations:{

R1 = τ1
Ri+1 = Ri ⊕ τi+1, 1 ≤ i < n

As such we have Rn = ((τ1 ⊕ τ2)⊕ · · · ⊕ τn−1)⊕ τn. The
system Γn will be said schedulable if and only if all the
tasks are schedulable. If this is not the case, then the system
Γn is said to be not schedulable.

The complexity of ⊕ applied to a pair of tasks τi and τj
is O(l) with l is the LCM between the period of τi and the
period of τj .

We denote by Hj = lcm{Tl : τl ∈ hp(τj)} where
Tl represents the period of task τl and hp(τj) denotes the
subsystem of tasks with a priority higher than the priority
of τj . The number of instances of task τi in the permanent
phase is given by:

σpermj
=
Hj

Tj
=
lcm{Tl : τl ∈ hp(τj)}

Tj
(2)

The exact permanent load of a task τj , i.e., the load of the
task τj , while taking into account the exact preemption cost,
is given by:

U∗j =
C∗j
Tj

with C∗j =
1

σpermj

σpermj∑
l=1

Clj (3)

Figure 1. PET of a task

In (3), Clj corresponds to the PET of the lth instance in
the permanent phase. As such, the exact permanent load of
the system Γn composed of n periodic tasks scheduled on
a processor pi is given by:

U∗pi =

n∑
j=1

U∗j (4)

2) Example: We apply the ⊕ operation to a system of
periodic preemptive real-time tasks while taking into account
the exact preemption cost. Let us consider such a system
Γ3 = {τ1, τ2, τ3} of 3 tasks where τ1 is the task with the
highest priority, and τ3 is the task with the lowest priority.
We consider the cost of one preemption to be one time unit
for all tasks. The characteristics of the tasks are summarized
in Table I.

The ⊕ operation is applied to a pair of operands. The left
operand called the “executed task” corresponds to the result
of the tasks previously scheduled, and the right operand
called the “executable task” corresponds to the task to be
scheduled. We represent an instance of the executable task
by a unique sequence of symbols ”e”, in bold, followed by
a sequence of symbols ”a”. Each symbol ”e”, in bold, in
the executable task represents an executable time unit, i.e.,
the time unit that the task to be scheduled, must execute.
Each symbol ”a” represents an available time unit. Actually,
such representation is repeated indefinitely since the task is
periodic. We represent an instance of an executed task by a
sequence of symbols ”e” followed by a sequence of symbols
”a”, possibly repeated several times. Each symbol ”e” in
the executed task represents one executed time unit, i.e., the
time unit executed by all the tasks previously scheduled.
From the end of the transient phase, given by theorem 1,
such representation is repeated according to the LCM of the
tasks already scheduled.

The ⊕ operation aims at replacing all the available time
units of the executed task (left operand) by the executable
time units of the executable task (right operand). In order
to make both tasks comparable, first the executable task is
repeated according to the number of its instances in the
schedulabity interval. Second, the executed task is rewritten
according to the number of instances of the executable task
in the schedulability interval. Therefore, the task resulting
of the ⊕ operation applied to a pair of tasks, is an executed
task represented by a sequence of symbols ”e” followed by
a sequence of symbols ”a”, possibly repeated several times.

Table I
TASKS’ CHARACTERISTICS

Tasks r1i Ci Di Ti

τ1 0 3 7 15
τ2 5 2 6 6
τ3 3 4 10 10

356

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



According to these definitions, each task instance of the
system Γ3 is represented as: τ1 = {e, e, e, a, a, a, a, a, a, a, a, a, a, a, a}

τ2 = {e, e, a, a, a, a}
τ3 = {e, e, e, e, a, a, a, a, a, a}

The scheduling task result R3 that describes the schedule
of the task system is obtained by the following successive
iterations: {

R1 = Λ⊕ τ1
Ri = Ri−1 ⊕ τi, i = 2, 3

Λ represents a task only composed with symbols ”a” since
there are no executed time units.R1 = Λ⊕τ1 is computed as
follows: according to equation (1) we have s

′

1 = 0 and H1 =
T1 = 15. Thus, the result of ⊕ applied to the pair (Λ, τ1)
is periodic of period H1 = T1 and is repeated indefinitely
from s

′

1. We obtain R1 by replacing the 3 first available
time units of Λ by the 3 executable time units of τ1. Then,
we have:
R1 = {e, e, e, a, a, a, a, a, a, a, a, a, a, a, a}[0,15]

First iteration: Computation of R2 = R1 ⊕ τ2.
Thanks to equation (1), we have:

s
′

1 = 0

s
′

2 = 5 +

⌈
(0− 5)+

6

⌉
· 6 = 5

We have H2 = lcm(15, 6) = 30, thus the transient phase
belongs to the interval [0, 5] and the permanent phase
belongs to the interval [5, 35]. In the schedulability interval
[0, 35], R1 is rewritten as follows:

R1 = {e, e, e, a, a}[0,5]{a, a, a, a, a, a, a, a, a, a,
e, e, e, a, a, a, a, a, a, a, a, a, a, a, a, e, e, e, a, a}[5,35]

Task τ2 begins its execution at t = 5 corresponding
to the beginning of the permanent phase. Its
number of instances in the schedulability interval is

n2 =
(s
′
2+H2)−r12

T2
= (5+30)−5

6 = 30
6 = 5. According to the

number of instances of τ2 in the schedulability interval, R1

is rewritten as follows:

R1 = {e, e, e, a, a}[0,5]{a, a, a, a, a, a}
{a, a, a, a, e, e, }{e, a, a, a, a, a}
{a, a, a, a, a, a}{a, e, e, e, a, a}

(5)

R2 = R1 ⊕ τ2 is obtained by replacing in the equation (5)
for each corresponding instance of τ2 in R1, the available
time units ”a” of R1 with the executable time units ”e”,
in bold, of τ2. During this replacement a preemption of
τ2 by τ1 corresponds to the transition (”a” → ”e”). The
preemption of τ2 by τ1 is denoted by the time unit ”p”
called preemption time unit. When τ2 is preempted, the

next available time unit of R1 after this preemption is
replaced by a preemption time unit ”p”. After replacing all
the available time units of τ1 with the executable time units
of τ2 and after adding the preemption time unit ”p” in R1,
we obtain:

R2 = {e, e, e, a, a}(0,5){e, e, a, a, a, a}
{e, e, a, a, e, e}{e, e, e, a, a, a}
{e, e, a, a, a, a}{e, e, e, e,p, e}

For each corresponding instance of τ2 in R2, its PET is
given by the sum of the number of its executable time units
e, in bold, and the number of its preemptions time unit ”p”.
In the 4 first corresponding instances of τ2 in R2, the PETs
are the same and equal to 2 (PET=WCET) because τ2 is
not preempted in these instances, but in its 5th instance, it
is preempted once. That is the reason why its PET is equal
to 3. In any corresponding instance of τ2 in R2, the PET
fits in the available time units left by R1 in this instance.
Thus, the task τ2 is schedulable while taking into account
the exact preemption cost. Actually, we have:

R2 = {e, e, e, a, a}[0,5]{e, e, a, a, a, a, e, e, a, a, e, e,
e, e, e, a, a, a, e, e, a, a, a, a, e, e, e, e, p, e}[5,35]

The differences with the previous expression of R2 is
that the executable time units ”e”, in bold, become executed
time units ”e”, and R2 does not exhibit the corresponding
instances of τ2.

Second iteration: Computation of R3 = R2 ⊕ τ3.
Thanks to equation (1), we have:

s
′

2 = 5

s
′

3 = 3 +

⌈
(5− 3)+

10

⌉
· 10 = 13

We have H3 = lcm(lcm(15, 6), 10) = lcm(30, 10) = 30,
thus the transient phase belongs to the interval [0, 13] and
the permanent phase belongs to the interval [13, 43]. In
the schedulability interval [0, 43], R2 is rewritten as follows:

R2 = {e, e, e, a, a, e, e, a, a, a, a, e, e}[0,13]{a, a, e,
e, e, e, e, a, a, a, e, e, a, a, a, a, e, e, e, e, p, e, e, e, a,
a, a, a, e, e}[13,43]

Task τ3 begins its execution during the transient phase at
t = 3 . Its number of instances in the schedulability interval

is n3 =
(s
′
3+H3)−r13

T3
= (13+30)−3

10 = 40
10 = 4. According to

the number of instances of τ3 in the schedulability interval,
R2 is rewritten as follows:

R2 = {e, e, e}{a, a, e, e, a, a, a, a, e, e}[3,13]
{a, a, e, e, e, e, e, a, a, a} {e, e, a, a, a, a, e, e,
e, e}{p, e, e, e, a, a, a, a, e, e}

(6)

R3 = R2 ⊕ τ3 is obtained by replacing in the equation (6)
for each corresponding instance of τ3 in R2, the available

357

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



time units ”a” of R2 with the executable time units ”e”, in
bold, of τ3. During this replacement, a preemption of the
task τ3 by τ1 or by τ2 corresponds to a transition (”a” →
”e”). When τ3 is preempted, the next available time unit
of R2 is replaced by a preemption time unit ”p”. After
replacing the available time units of R2 with the executable
time units of τ3 and after adding the preemption time units
”p” in R2, we obtain:

R3 = {e, e, e}{e, e, e, e,p, e, e, a, e, e}[3,13]
{e, e, e, e, e, e, e,p, e, e}{e, e, e, e, e, e, e, e, e, e}
{p, e, e, e, e, e, e, e, e, e}

For each corresponding instance of τ3 in R3, its PET
is given by the sum of the number of its executable time
units ”e”, in bold, and the number of its preemptions time
units ”p”. In the 2 first corresponding instances of τ3 in
R3, the task τ3 suffers one preemption. Its PETs in every
instance are the same and equal to 5. In its other instances
there is no preemption of τ3 and the PETs of τ3 in these
instances are the same and equal to 4 (PET=WCET). In
any corresponding instance of τ3 in R3, the PET fits in
the available time units of R2 in this instance. Thus, the
task τ3 is schedulable while taking into account the exact
preemption cost. Finally, we have:

R3 = {e, e, e, e, e, e, e, p, e, e, a, e, e}[0,13]{, e, e, e,
e, e, e, e, p, e, e, e, e, e, e, e, e, e, e, e, e, p, e, e, e, e, e,
e, e, e, e}[13,43]

The differences with the previous expression of R3 is
that the executable time units ”e”, in bold, become executed
time units ”e”, and R3 does not exhibit the corresponding
instances of τ3.

Since all the tasks are schedulable then the system Γ3 =
{τ1, τ2, τ3} is schedulable.

Figure 2 presents the result of the schedule of Γ3. In this
figure, the permanent phase corresponds to the highlighted
zone of the schedule and the transient phase corresponds to
the interval preceding that zone. The disk represents only
the permanent phase in a more compact form. This double
representation of the schedule is obtained from the SAS
software [23].

IV. SUSTAINABILITY

We consider the WCETs of the tasks instead of its EETs
used in [1]. Thus, we have to show that if the execution
time of a task at runtime is smaller than its WCET, the
tasks system remains schedulable.

Definition 1: A schedulability analysis is sustainable [24]
if any system considered to be schedulable according to
this schedulability analysis remains schedulable when the
parameters of one or more tasks change in any, some, or all
the following way: 1) decreased execution time, 2) increased
period, 3) increased deadline.

In this paper, we consider for the sustainability only the
first property since we assume that the periods and the
deadlines of the tasks are fixed.

Theorem 2: Γn = {τ1, · · · , τi, · · · , τn}, a system of
independent periodic tasks arranged by decreasing priorities
with respect to the RM fixed-priority scheduling policy, with
τi = (r1i , Ci, Di, Ti).

If Γn is schedulable according to ⊕ operation, then
Γ
′

n = {τ1, · · · , τ
′

i , · · · , τn}, with τ
′

i = (r1i , C
′

i , Di, Ti) and
C
′

i < Ci, is also schedulable according to ⊕.

Proof: Assume that Γn = {τ1, · · · , τi, · · · , τn} is
schedulable while taking into account the exact preemp-
tion cost. We will show by contradiction that Γ

′

n =
{τ1, · · · , τ

′

i , · · · , τn} is also schedulable. For that, we as-
sume that Γ

′

n is not schedulable while taking into account
the exact preemption preemption. That means that ∃τl ∈ Γ

′

n

such that τl is not schedulable. Since the i− 1 first tasks in
Γ
′

n are the highest priority tasks and are the same as in Γn

Figure 2. Result of the scheduling of Γ3, taking into account the exact
preemption cost

358

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



then their schedule does not change then i ≤ l ≤ n.
Assume that i = l, then task τ

′

i is not schedulable.
That means that there is an instance k of τ

′

i in which task
τ
′

i cannot replace all its C
′k
i executable time units by the

available time units after the execution of the i−1 first tasks.
Since we have independent tasks with static priorities and
the tasks τ

′

i and τi have the same priority so if C
′

i ≤ Ci then
the C

′k
i ≤ Cki ∀k ≥ 1. Thus, there exists also an instance

k of τi in which τi is not schedulable, meaning that Γn is
not schedulable. That is in contradiction according to our
assumption that Γn is schedulable. Similarly if l > i then
Γn is not schedulable. Thus, if Γ

′

n is not schedulable then Γn
is not schedulable. That is equivalent to if Γn is schedulable
then Γ

′

n is schedulable.

V. IMPACT OF THE PREEMPTION COST IN THE
SCHEDULABILITY ANALYSIS

In this section, we present the impact of the preemption
cost in the schedulability analysis presented in the Section
III-B. For that we consider two cases. In the first case,
we assume that the preemption cost is approximated in
the WCET of the tasks (α = 0). In the second case, we
assume that the preemption cost is not approximated into
the WCET with a cost α = 1 for one preemption. In
order to show the impact of the preemption cost in the
schedulability analysis, we compare the success ratio for
these two cases. The success ratio is defined for a set of
task systems, by:

number of task systems schedulable with ⊕
number of task systems in a set of task systems

For that, we generate randomly 15 sets of task systems.
Every set of task systems is composed of 10 task systems.
Every of the latter task systems contains 10 tasks. We
compute the success ratio and the average load of every
set of task systems.

Figure 3 shows that when the average load of the set of
task systems is less than 0.8 then the scheduling, without and
with preemption cost, has the same success ratio. But when
this average load increases to 1 then the success ratio with
preemption cost decreases until to be equal to 0, while the
success ratio without preemption cost is decreases until to
be equal to 0.8. When the average load is greater than 0.93,
the success ratio with preemption cost is equal to 0, that is,
no task system is schedulable whereas in the case without
preemption cost some task sets are schedulable. This is the
reason why preemption cost must be taken into account in
safety critical systems.

VI. MULTIPROCESSOR SCHEDULING HEURISTIC

The heuristic presented in Algorithm1 is a greedy heuris-
tic. The solution is built step by step. In each step a decision
is taken and this decision is never questioned during the
following steps (no backtracking). The effectiveness of such

a greedy heuristic is based on the decision taken to build
a new element of the solution. In our case, the decision is
taken according to a cost function, which aims at minimizing
the load.

A. Cost function

The cost function allows the selection of the best proces-
sor pj to schedule a task τi. In our case, this cost function
is the load U∗pj (equation (4)) of the task τi and all the tasks
already allocated on the processor pj . The processor which
minimizes this cost function for τi among all the processors,
is considered to be the best processor to schedule the task
τi.

In the case of the previous example, according to (4),
the exact permanent load of the system Γ3 scheduled on a
processor p is given by:

U∗p =
3

15
+

1

6
· (2 + 2 + 2 + 2 + 3)

5
+

1

10
· (5 + 4 + 4)

3
= 1

B. Principle of our allocation heuristic

We use a ”list heuristic” [25]. In our case, we initialize
this list, called the “candidate task system”, with the task
system given as input. We use for that candidate task system
the decreasing order of the task priorities (according to RM
fixed-priority scheduling policy [2]). At each step of the
heuristic, the task with the highest priority is selected among
the candidate task system, and we attempt to allocate it to
its best processor according to the cost function presented
previously. The heuristic minimizes the load U∗pj of the
task system on the different processors. It is similar to the
WF bin-packing heuristic except that in the current iteration
all the processors are used rather than only the processors
visited during the previous iteration.

If Γn is the task system with n tasks and m is the number
of processors, the complexity in the worst case of our
heuristic is equal to O(n.m.l), with l = lcm{Ti : τi ∈ Γn}.

Figure 3. Impact of the preemption cost

359

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Algorithm 1 Greedy heuristic
1: Initialize the candidate task system W with the task

system given as input and in the decreasing or-
der of their priorities, initialize the boolean variable
TasksSchedulable to true

2: while W is not empty and TasksSchedulable = true
do

3: Select in W the highest priority task τi
4: % Verify on each processor pj if task τi is schedula-

ble.%
5: for j = 1 to m do
6: if task τi is schedulable on pj with the exact pre-

emption cost (scheduling operation ⊕ [10]) then
7: Compute the cost function of task τi on the

processor pj , i.e., the load of pj using (4) given
in Section III-B

8: end if
9: end for

10: % Using the cost function again, choose the best
processor for τi among all the processors on which
τi is schedulable.%

11: if τi is schedulable on one or several processors then
12: Schedule the task τi on the processor which mini-

mizes the cost function
13: Remove the task τi from W .
14: TasksSchedulable = true
15: else
16: TasksSchedulable = false
17: end if
18: end while

The partitionned scheduling algorithm 1 is sustainable
since we use on each processor a sustainable schedulibity
analysis. That is means that, if the execution time of a
task is smaller than its WCET, the tasks system remains
schedulable.

VII. PERFORMANCE ANALYSIS

Our heuristic is compared with the B&B exact algorithm
and the WF and BF heuristics. The B&B enumerates all
the possible solutions in order to find the best solution,
which minimizes the load of the tasks on the processors.
In the B&B, WF and BF heuristics, we use the ⊕ operation
presented in Section III-B as the schedulability condition.
We compare the algorithms according to their execution
time, their success ratio, the response time of the task
systems, i.e., the total execution time of the tasks, and
the unutilized capacity of the processors used during the
allocation.

A. Execution time of the heuristics

We perform two kinds of tests to compare the execution
time of the four algorithms. First, we fix the number of

processors to 10 and we vary the number of tasks between
100 to 1000 tasks. Every task system is scheduled with the
four algorithms and the corresponding execution times are
computed. We obtained the results shown in Figure 4. In
the second test, we use a single task system composed of
1000 tasks randomly generated and we vary the number of
processors. We obtained the results shown in Figure 5.

In both tests, we notice that the exact algorithm explodes
very quickly whereas the heuristics keep a reasonable exe-
cution time. Our heuristic up to 1000 tasks is close to the
WF and BF heuristics in terms of execution time. However,
for higher numbers of tasks less good results are obtained
with our heuristic. In Figure 5 we also notice that when the
number of processors varies, the execution times of WF and
BF are constant, because these heuristics use the minimum
number of processors. Another remark about Figure 5 is
that the execution time of our heuristic does not increase
monotonically with the number of processors, in contrast to
Figure 4. Indeed, in our heuristic, increasing the number of
processors leads to better balance the load of the tasks on
all the processors. That increase in terms of processors, can
decrease locally the LCM of the tasks on some processors,
and consequently can reduce the execution time of the ⊕
operation.

B. Success ratio

In these tests, we compare the success ratio of our
heuristic with the B&B exact algorithm and the WF and
BF heuristics. The success ratio of an algorithm is defined
as follows:

number of task systems schedulable with algorithm 1
number of task systems in a set of task systems

Due to the complexity of the B&B and in order to com-
pare it with the heuristics, we executed each algorithm on 6

Figure 4. Execution time of the algorithms according the number of tasks

360

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 5. Execution time of the algorithms according to the number of
processors

Figure 6. Sucess ratio

task systems. Each task system is composed at most of 10
randomly generated tasks and is executed on 2 processors.
At each execution we determine for each algorithm the
number of schedulable task systems.

As shown in Figure 6, we notice that WF and BF give
better results than our heuristic in terms of success ratio.
This loss in terms of success ratio is largely compensated
by the gain in terms of response time of the task systems and
by the unutilized capacity of the processors, as described in
the Sections VII-C and VII-D.

C. Response time of the task systems

In these tests, we consider 10 task systems. The number of
tasks in the task systems varies between 100 and 1000 ran-
domly generated tasks and each task system is executed on
10 processors. We limit the tests to the WF and BF heuristics

and our proposed heuristic because of the complexity of the
B&B exact algorithm and we know that the B&B already
gives better results than the heuristics. For each task system,
we determine the allocation found by each heuristic and for
this allocation the response time of the task system, i.e.,
the total execution time of all the tasks, is computed. We
compare the response time of the task systems between the
heuristics, as shown in Figure 7.

In this figure, we notice that the allocation found by our
heuristic gives a better response time than those found by
WF and BF. This is due to the fact that the execution of the
tasks is parallelized on all the available processors whereas
WF and BF attempts to reduce the number of processors
rather than parallelize the execution of the tasks.

D. Average of the unutilized capacity of the processors

In these tests, we consider 10 task systems. The number
of tasks in the task systems varies between 100 and 1000
randomly generated tasks and each task system is executed
on 10 processors. We limit the tests to the WF and BF heuris-
tics and our proposed heuristic because of the complexity
of the B&B exact algorithm. In addition, we know that the
B&B already gives better results than the heuristics. For
each task system we determine the allocation found by each
heuristic and for this allocation we compute the average of
the remaining processor load (1 − Upj ), called unutilized
capacity, on the processors pj used in this allocation. We
compare the unutilized capacity of the processors used with
the heuristics as shown in Figure 8.

In this figure, we observe that the allocation found by our
heursitic gives for each processor more flexibility, i.e., more
unutilized capacity, than those found by WF and BF. This
is due to the fact that our heuristic balances the load of the
tasks on all the processors, which ensures an execution time
slack on each processor, whereas the BF heuristic fills the

Figure 7. Execution time of the task systems

361

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 8. Average of (1-load) on the processors used

processors as much as possible. On the other hand, the WF
heuristic, balances the load only on the processors already
used and does not consider all the available processors.

VIII. CONCLUSION AND FUTURE WORK

We have presented a greedy heuristic, which allocates
and schedules, on a multiprocessor architecture, a system
of real-time tasks while balancing the load on the pro-
cessors. In addition, this heuristic takes into account the
exact preemption cost that must be carefully considered in
safety critical applications, which is the focus of our work.
For that, we have used ⊕ operation as scheduling analysis
and we have proved that ⊕ is sustainable, i.e., the task
system remains schedulable at runtime when a task has an
execution time smaller than its worst case execution time.
We have also shown the impact of the preemption cost in
the schedulability analysis of the safety critical systems.

We have carried out a performance analysis showing that,
up to 1000 tasks, the proposed greedy heuristic, has results
close to those of the WF and BF heuristics in terms of
execution time. For higher number of tasks less good results
can be obtained with our heuristic. On the other, hand the
proposed heuristic is better than the WF and BF heuristic in
terms of load balancing and flexibility, i.e., more unutilized
capacity, of tasks at run-time. Also the allocation found with
our heuristic has better response time than those with WF
and BF heuristics.

In future works, we plan to study the multiprocessor real-
time scheduling of dependent tasks, which leads to deal with
data transfers and shared data management.

We have proved that the scheduling analysis using the ⊕
operation is sustainable, i.e., the task system remains schedu-
lable at runtime when a task has an execution time smaller
than its worst case execution time. We have also shown the

impact of the preemption cost in the schedulability analysis
of the safety critical systems.

REFERENCES

[1] F. Ndoye and Y. Sorel. Safety critical multiprocessor real-
time scheduling with exact preemption cost. In the 8th
International Conference on Systems, ICONS’13, Seville,
Espain, January 2013.

[2] C. L. Liu and J W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environnment. Journal
of the ACM, vol. 20(1), January 1973.

[3] E.G. Coffman, G. Galambos, S. Martello, and Daniele Vigo.
Bin packing approximation algorithms: Combinatorial analy-
sis. Handbook of combinatorial optimization, 1998.

[4] A. Burns, K. Tindell, and A. Wellings. Effective analysis for
engineering real-time fixed priority schedulers. IEEE Trans.
Softw. Eng., vol. 21, pp. 475-480, May 1995.

[5] J. Echague, I. Ripoll, and A. Crespo. Hard real-time preemp-
tively scheduling with high context switch cost. In Proceed-
ings of 7th Euromicro workshop on Real-Time Systems, Los
Alamitos, CA, USA, 1995. IEEE Computer Society.

[6] Alan Burns. Preemptive priority-based scheduling: An appro-
priate engineering approach. Advances in Real-Time Systems,
chapter 10, pp. 225–248, 1994.

[7] Y. Wang and M. Saksena. Scheduling fixed-priority tasks with
preemption threshold. In Proceedings of the 6 International
Conference on Real-Time Computing Systems and Applica-
tions, RTCSA’99, Washington, DC, USA, 1999.

[8] M. Saksena and Y. Wang. Scalable real-time system design
using preemption thresholds, November 2000.

[9] P. Meumeu Yomsi and Y. Sorel. Extending rate monotonic
analysis with exact cost of preemptions for hard real-time
systems. In Proceedings of 19th Euromicro Conference on
Real-Time Systems, ECRTS’07, Pisa, Italy, July 2007.

[10] P. Meumeu Yomsi and Y. Sorel. An algebraic approach for
fixed-priority scheduling of hard real-time systems with exact
preemption cost. Research Report RR-7702, INRIA, August
2011.

[11] R.I. Davis and A. Burns. A survey of hard real-time
scheduling algorithms and schedulability analysis techniques
for multiprocessor systems. Technical report, University of
York, Department of Computer Science, 2009.

[12] O.U.P. Zapata and P.M. Alvarez. Edf and rm multipro-
cessor scheduling algorithms: Survey and performance eval-
uation. Technical Report No. CINVESTAV-CS-RTG-02,
CINVESTAV-IPN, Seccin de Computacin, Oct 2005.

[13] Garey and Johnson. Computers and intractability: a guide to
the theory of NP-completeness. W.H. Freeman and Company,
New York, NY, USA, 1979.

[14] S.K. Dhall and C.L. Liu. On a real-time scheduling problem.
Operation Research, vol. 26(1), 1978.

362

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[15] Y. Oh and S.H. Son. Tight performance bounds of heuristics
for a real-time scheduling problem. Technical Report CS-
93-24, Univ. of Virginia. Dep. of Computer Science, Char-
lottesville, VA 22903, May 1993.

[16] I. Lupu, P. Courbin, L. George, and J. Goossens. Multi-criteria
evaluation of partitioning schemes for real-time systems. In
The 15th IEEE International Conference on Emerging Tech-
nologies and Factory Automation, ETFA’10, Bilbao, Spain,
September 2010.

[17] F. Ndoye and Y. Sorel. Preemptive multiprocessor real-time
scheduling with exact preemption cost. In Proceedings of
5th Junior Researcher Workshop on Real-Time Computing,
JRWRTC’11, in conjunction with the 18th International con-
ference on Real-Time and Network Systems, RTNS’11, Nantes,
France, September 2011.

[18] S. Katoa and N. Yammasaki. Semi-partitioning technique for
multiprocessor real-time scheduling. In Proceedings of WIP
Session of the 29th Real-Time Systems Symposium (RTSS),
IEEE Computer Society, 2008.

[19] J. H. Anderson, V. Bud, and C. U. Devi. An edf-based
scheduling algorithm for multiprocessor soft real-time sys-
tems. In Proceedings of the 17th Euromicro Conference
on Real-Time Systems, pp. 199–208, Washington, DC, USA,
2005.

[20] E. G Talabi. Metaheuristics. Wiley, 2009.

[21] J. E. Mitchell. Branch-and-cut algorithms for combinatorial
optimization problems. In Handbook of Applied Optimization,
pp. 65-67, Oxford University Press, 2002.

[22] J. Goossens. Scheduling of Hard Real-Time Periodic Systems
with Various Kinds of Deadline and Offset Constraints. PhD
thesis, Universit Libre de Bruxelles, 1999.

[23] P. Meumeu Yomsi, L. George, Y. Sorel, and D. de Rauglaudre.
Improving the quality of control of periodic tasks scheduled
by fp with an asynchronous approach. International Journal
on Advances in Systems and Measurements, 2(2), 2009.

[24] S. Baruah and A. Burns. Sustainable scheduling analysis.
In Proceedings of the 27th IEEE International Real-Time
Systems Symposium, pp. 159-168, Washington, DC, USA,
2006.

[25] L.T. Adams, K. M. Chandy, and J. R. Dickson. A comparison
of list schedules for parallel processing systems. Commun.
ACM, vol. 17, 685–690, December 1974.

363

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


