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Abstract—Since several decades, the pressure on organiza-
tions to swiftly adapt to their environment has been increasing.
At the same time, the complexity of products and services
has been growing. One of the consequences is the increas-
ing importance of the evolvability of software, whether this
software supports production control systems in industry or
business information systems. Over the past decades, finite
state machines have become an increasingly popular tool
for modelling behavioural aspects of software. This paper
presents an explorative attempt to define design rules and
constraints that should be applied to state machines to enable
evolvability. Our design of an evolvable state machine is based
on Normalized Systems Theory. This design is discussed in
the context of automation systems as well as more general
information processing applications.

Keywords-Normalized Systems; Evolvability; Finite State Ma-
chines; Automation Systems; Information Technology.

I. INTRODUCTION

Current organizations need to be able to cope with
increasing change and increasing complexity in most of
their aspects and dimensions [1]. We shall call a system
evolving when changes in terms of the system’s capabilities
occur. The effort or cost required for adding or changing a
specific capability is a property of a system – the property
of evolvability. Evolvability is increasingly important for
organizations to allow them to swiftly adapt to an agile and
complex environment. The evolvability of production control
and information systems is the primary focus of this paper.
We will present a design for evolvable state machines, based
on Normalized Systems Theory (NST). Its concepts can be
applied to all state machines; examples will be discussed
for control systems, kiosk software and business process
automation.

Evolvability is a critical non-functional requirement on
software. Better evolvability favourably impacts the chal-
lenging task of software maintenance, where adding a six-
lane automobile expressway to a railroad bridge is con-
sidered maintenance [2]. In their review of evolvability as
a characteristic of software architectures, Ciraci and van
den Broek [3] define it as “a system’s ability to survive
changes in its environment, requirements and implementa-
tion technologies.” However, evolvability is hard to measure,

and existing software development methodologies focus on
functional requirements almost exclusively.

Maintenance activities often disrupt normal (produc-
tive) system operation. If dynamic reconfiguration can be
achieved, downtimes of systems can be reduced: a change
which can be performed without a complete shutdown is
called a ‘dynamic reconfiguration’ – in contrast to a ‘static
reconfiguration’, which requires the complete shutdown of
a system [4]. The ability of an evolving system to introduce
a change by dynamic reconfiguration is a special property
of the system and the type of change.

Having to stop production for maintenance can be es-
pecially costly for continuous production systems or 24/7
production operations. Consequently, production loss or de-
lay of production due to an update of the system must be
considered an indirect maintenance cost. In fact, there is a
similar cost in information systems, but this cost is often
neglected because it is less visible – for example, because it
only indirectly affects customer satisfaction. System restarts
and maintenance windows have become a generally accepted
practice, even for business critical applications. For example,
Microsoft Servers require restarting after certain updates
of the operating system. But even payment systems are
shut down several times per year ‘for maintenance’, which
typically takes place between 00:15 and 02:15 at night in
Belgium. On the site of Atos Worldline this is called a
‘system stop’, and during these interventions, the payment
network is not available and it is not possible to carry out
electronic payments [5]. This can be very inconvenient for
the user if the restaurant bill has to be payed while the
cards do not work, and neither does the ATM (automatic
teller machine). Customer service could be improved if
dynamic reconfiguration was made a design requirement for
the payment system.

A. Maintainability improvements

Efforts to improve the flexibility and maintainability of
automation systems go back decades. The first approach
to implement automation control logic was based on hard-
wired relay systems. In the late 1960s, GM Hydramatic
issued a request for proposal for an electronic replacement.
The result was a Programmable Logic Controller (PLC),
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built by Bedford Associates. One of the main advantages was
that changes in control logic could now be made by changing
the program rather than changing wiring and bypassing or
adding relays. In addition, programs could be reused for
another application [6]. The technology shift from hardware
to software provided more flexibility and an improvement
of maintainability.

Around the same time, dynamic reconfiguration was intro-
duced as a feature of the Multics operating system. Multics
is an acronym for Multiplexed Information and Computing
Service. It was a mainframe operating system for which the
design and planning started in 1964 [7]. It was commer-
cialized by Honeywell and used till 2000. The goal was
to ensure continuous availability of the mainframe running
the Multics computing service, even when maintenance of
physical components was required [8]. It was possible to
switch between different hardware configurations, allowing
for the replacement of CPUs (central processing units)
and memory modules without switching off the system –
resulting in dynamic reconfiguration.

While these certainly were improvements, the characteris-
tic of true evolvability was (and is still) not totally reached.
For example, many serious maintenance operations in the
Multics operation system did still require a complete restart
of the machine [9], and while changing or debugging a few
lines of software code is easier than rewiring relay circuits,
the number of software problems and bugs does not grow
proportionally with the software size. Instead, they grow
out of proportion. After reaching a certain size, software
becomes a problem in its own right [10].

B. Standardized programming languages

For the reusability and portability of features from one
(sub)system to another, a common programming language
which is shared between these systems is an improve-
ment over proprietary approaches. If possible, the use of
standardized programming languages is most appropriate.
The IEC 61131-3 standard [11] introduced standardized
programming languages for PLCs. However, development
environments which include compilers for these program-
ming languages are typically proprietary systems and contain
vendor-dependent differences.

In the world of information systems development, the
impact of standardization is limited. There are thousands
of programming languages. According to [12] more than
115 languages were implemented by 1968, while there
were already over 1000 that had been used somewhere
by 1999. Only a limited number of these have become
relevant, but none can be considered as a global de-facto
standard. This is confirmed by the different indices that
measure programming language popularity, such as Tiobe
[13]. According to Tiobe, the most used languages in August
2013 are Java and C, each having a market share of close to
16%, followed by C++ with a 9.4% market share. Several of

these programming languages are defined in an associated
(international) standard. As an example, there is ISO/IEC
14882:2011 on the programming language C++ [14]. For the
Java language, no international standard is available, even if
it is currently the most popular programming language. It
also should be noted that only few compilers implement an
entire language standard and nothing but this standard. An
overview of the support for the C++ standard in different
popular compilers is given in [15]. A similar situation exists
in the world of relational databases. While an SQL standard
is defined in ISO/IEC 9075-1:2008, multiple incompatible
SQL dialects exist.

These implementation differences are a first obstacle to
evolvability. In most cases it is not possible to simply replace
a compiler with a new version from another vendor. Unless
special middleware or libraries are used for decoupling (for
example, Hibernate), database management systems cannot
easily be replaced. Sometimes even the upgrade from an old
version to the new version from the same vendor may cause
run time errors. Similar issues arise when, for example, a
web application framework like Apache Struts needs to be
replaced by another framework.

C. Standardized approaches to organizing programs and
data

The way how data and functionality are organized within
the constructs provided by the chosen development environ-
ment is a design decision which is often left to the individual
developer. However, in order to be able to share these
constructs with other developers, common models can be
useful: Not only programming languages, but also the way
how data and programs are structured can be standardized.

At the design level, a number of standards are available.
Their acceptance amongst practitioners is rather low, how-
ever. One of the few standards that stand out in terms of
use is the Object Management Group’s Unified Modeling
Language (UML, ISO/IEC 19505). UML is a graphical
modeling language for software engineering. The UML
specification contains 14 types of diagrams, seven of which
are (static) structure diagrams and seven are used to describe
dynamic behavior.

One of the common modelling techniques for function-
ality is the finite state machine (FSM). FSM follow a
straightforward syntax of states and transitions. Their formal
semantics is well defined and based on a simple though
rigorous mathematical model [16]. Generic in nature, FSM
can also be combined with application domain knowledge
for the purpose of standardisation. For example, the ISA-88
standard [17] recommends specifying elementary operations
in batch manufacturing processes (e.g., filling a tank) by way
of state machines. In the simplest case, the state machine
for a so-called “equipment phase” contains the states “Idle”,
“Running” and “Complete”. An equipment phase specifica-
tion will, among other things, describe additional states, the
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conditions for transitions between these states (e.g., after a
specified amount of time has elapsed) and the actions to take
upon such a transition (e.g., close a valve).

While state machines are a valuable tool to increase
system maintainability, they do not automatically guarantee
evolvability. The research presented in this paper focuses
on the design of an evolvable state machine. Such a state
machine could be implemented in one or more of the IEC
61131-3 languages, independent of vendor or CPU type.
It should be possible to base applications in information
systems on this design as well. The design supports dynamic
reconfiguration wherever possible.

The remainder of the paper is structured as follows:
Section II gives an introduction on finite state machines, the
underlying mathematical model and UML state diagrams.
Section III explains the basics of Normalized Systems The-
ory (NST), which offers a formal guideline to system evolv-
ability. This section also introduces an application concept,
derived from Normalized Systems theorems, to support the
co-existence of different versions of a program element in
an evolvable system. Section IV presents three examples of
state machines going through subsequent evolution steps.
Section V develops an inventory of anticipated changes to
state machines, illustrated by these examples. Section VI
proposes a set of design rules for evolvable state machines
in the context of the concept presented. Section VII discusses
implementation considerations, giving special attention to
hierarchical state machines, and Section VIII concludes the
paper.

II. STATE MACHINES

The concept of finite state machines (FSM) has its origins
in work by McCulloch and Pitts in 1943, as part of their
research on human cognition [18]. It was mainly through the
work of George H. Mealy and Edward F. Moore, published
respectively in 1955 and 1956, that FSM became popular as
a design tool for digital systems.

An FSM is an abstract machine that can be used to model
and/or specify sequential logic. A FSM can be in one of a
finite number of states. The machine is in only one state
at a time; the state it is in at any given time is called its
current state. The current state can change upon a triggering
event or condition. This is called a transition. A particular
state machine is defined by the list of its states, the possible
transitions between them, and the triggering condition for
each transition.

This definition can be cleanly expressed by means of a
simple mathematical model. Following [16], a deterministic
finite automaton is represented by the 5-tuple

(Q,Σ, δ, q0, F )

with
• Q = {q0, q1, ...qn}, a finite non-empty set denoting the

states the system can be in;

• Σ, the input alphabet, a set of symbols denoting the
possible inputs;

• δ ∈ Q× Σ→ Q, the state transition function;
• q0, the initial state;
• F , a set of final states.
The input alphabet Σ is the finite set of symbols that

are accepted and can cause a transition. An input symbol
represents an external condition. The state transition function
δ determines the next state, based on the current state and
input symbol. This is a partial function: The function is not
defined for all possible combinations of states and input
symbols. It is assumed that the next state will always be
reached.

As far as system output is concerned, this model is quite
limited: It can only describe an “accept/reject” result. If,
for a particular sequence of input symbols, the automaton
reaches a final state, the sequence is accepted; otherwise, it
is rejected. This is not very useful for modelling the output
of PLCs or most other software systems. For these purposes,
it is helpful to extend the model so that it can describe the
output that the system generates as it transitions between the
states. The term ‘finite state machine’ is typically used to
refer to an automaton with such output capability.

Traditionally, two different designs of state machines are
distinguished: Moore machines and Mealy machines. In a
Moore machine, the output is a function of the current state
only, while in a Mealy machine, the output is a function of
both the current state and current input. Moore and Mealy
machines are special cases of the general model shown
above. A Moore machine is represented by a 7-tuple

(Q,Σ, δ, q0, F,Γ, ω)

with, just as before,
• Q, a finite non-empty set denoting the states;
• Σ, the set of possible inputs;
• δ ∈ Q× Σ→ Q, the state transition function;
• q0, the initial state;
• F , a set of final states;

and, in addition,
• Γ, a finite non-empty set of output symbols;
• ω ∈ Q→ Γ, the output, depending on the current state.
The representation of a Mealy machine is the same 7-tuple

(Q,Σ, δ, q0, F,Γ, ω)

as for the Moore machine, but with
• ω ∈ Q × Σ → Γ, as the output depends on both the

current state and the input.
In practice, FSM are defined either in diagram notation

(typically circles and arrows), or by a state transition table.
In Figure 1, a simple Moore and a simple Mealy machine
are shown as a UML (Unified Modelling Language) state
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Figure 1. Moore and Mealy machine example

diagram. In UML, states are denoted by round-cornered rect-
angles, contrary to the classical graphical notations where
circles are used. The black circle is the initial state, where
‘the machine starts’. The circle with the dot is the final state.
Transitions are denoted by arrows between two states.

For the Moore machine, outputs occur when the machine
enters the new state. The transitions fire when the proper
input is present. Therefore, the output action is shown on
the state itself, and the transition is labelled with the input
only. For a Mealy machine, every transition generates an
output. Hence, every arc is labelled with both the input and
the resulting output.

In a Moore machine, if different transitions take the finite-
state machine to the same state, the same action is performed
for all these transitions (since output is associated with the
state). In a Mealy machine, if multiple transitions that have
the same destination state should cause the same action, this
action must be triggered by every transition on its own.
Still, every Mealy machine can be converted to a Moore
machine and vice versa, i.e., their mathematical models are
functionally equivalent.

A. Implementation

Finite state machines grew popular in the world of digital
circuit design. Both the next state and the outputs are calcu-
lated by means of a collection of logical gates (combinatorial
logic). Figure 2 shows the respective designs for a Moore
and a Mealy machine.

In a Moore machine implementation, the output must be
calculated when entering the state. In a Mealy machine, the
states are just ‘resting points’. No more calculations are
needed when the new state is entered. All actions occur
during the state transition. In the mathematical models, it is
not relevant when the output is calculated, since it is assumed
that this calculation is instantaneous. However, the resulting
hardware design will be different for a Moore machine and
its Mealy equivalent. Typically Mealy machines have fewer
states and are faster than Moore machines. Moore machines
on the other hand are easier to program and require less
output logic. Moore machines are often used for the design
of controllers in digital circuits, while most software imple-

Figure 2. Moore and Mealy machines

mentations use the Mealy model or a combined/extended
model.

State machine implementations must consider how the
‘real world’ compares to the idealized model. For digital cir-
cuits, this is relatively straightforward: It is only required that
a stable electrical output is obtained within a single clock
cycle. If this is the case, in normal operating conditions, the
implementation matches its underlying mathematical model.
The properties derived from the model also apply to the dig-
ital circuit. Drawing the same conclusion for state machines
in a software system in general will likely be more difficult.
For example, the model assumes that no error occurs when
calculating the next state in response to a trigger. To make
the software system reflect the model accurately, either the
state machine has to be made more complex to reflect
these exceptional conditions, or a number of restrictions
need to be imposed on the software system (for example,
that calculations should not fail; or, in a Moore machine
implementation, a new output should not be produced if the
next state is not reached). Either way, a consistent software
implementation of the simple mathematical models may turn
out to be quite complex.
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Figure 3. Motor control state machine, version 1

B. State space size and complexity

In automated production installations, the behaviour of a
large portion of the control equipment (such as valves, light
curtains, pumps, mixers or conveyers) can be – and is –
modelled using state machines. Figure 3 shows a very simple
model of motor control system, which could be implemented
on a PLC. The motor has two states, ‘On’ and ‘Off’ and an
initial state. Two conditions affect the state of the motor: the
‘Start’ and the ‘Stop’ command. The output (whether the
motor runs or not) is fully determined by the state, hence
this is a Moore machine.

Typically, a factory contains more than one motor. In case
this state machine is extended to control multiple motors
with a single controller, its ‘state space’ increases. The ‘state
space’ is defined as the collection of all possible states the
controller or system can be in. The state space of Figure 3
contains two states. In case this state machine is extended to
control two motors, there are four states (On—On, On—Off,
Off—On, Off—Off); a third motor would yield a state
space of eight states. An installation with 100 items to
be controlled, each for example having 10 states, yields
10x10x. . . x10=10100 different states, an installation with
1000 items 101000 states. The fact that the number of states
grows exponentially with the size of the installation is called
state space explosion. It clearly is not practical to model a
large system this way.

State space explosion is often used as an argument against
the use of state machines by software designers who are
not familiar with the concept. However, nobody would ever
design a ‘flat’ controller with 101000 states. The solution to
this problem is twofold. First, the overall design can be split
into a collection of communicating state machines; in our
example, a separate instance of the original state machine
for each motor. Second, states can be grouped hierarchically.

However, careful design of the communication between
the state machines is required: Wagner and Wolstenholme
[19] point out that sending unconstrained messages to an-
other state machine is like a jump to another program part
using a ‘goto’. As state machines run concurrently, issues
such as deadlocks may arise. In order to create maintainable
state machines, the messaging between the state machines
needs to be restricted.

C. UML statecharts

In 1987, Harel [20] introduced ‘statecharts’ as an ex-
tension to classical state machines, supporting hierarchy

and concurrency in a single graphical formalism. Harel’s
statecharts form the basis for state machine diagrams in
the UML standard, which includes them as a means to
specify the behaviour of a software based system. Statecharts
introduced hierarchical or composite states to enhance the
readability of complex state diagrams. A system is regarded
as an abstract state machine with a limited number of states.
Every state can be further refined by defining another state
machine within that state, supporting a top-down design
approach. The UML standard does not specify up to which
level the states must be refined. Thus, in a UML statechart,
‘not all states are equal’. Some states can be modelled down
to the level of boolean logic, other states may be a black box
implemented by an entire business application.

In UML statecharts, transitions are caused by ‘triggers’.
The trigger corresponds to the input symbol in the FSM
model, but can be any signal, event or change in a condition.
The transition can be conditional to a ‘guard’. The result
of the transition can be twofold. First, the transition can
have an ‘effect’, an action that is executed conditional to
the firing of the transition. Second, the transition results
in a state transition which can also cause a number of
actions to be performed. An exit action can occur when
the current state is left; an entry action may be executed
when entering the new state. In UML, the order in which
these actions are performed is well defined (exit action first,
then transition effect, then entry action). Likewise, when
hierarchical states are used, the order in which all actions
need to be performed is well defined. A basic assumption is
that a state machine can only start processing an event if it
has finished processing the previous event.

Apart from the hierarchical definition of states, UML
statecharts have a much richer syntax than classical state
machines have, such as constructs to model concurrency
through forks, joins and regions. Through the use of ‘pseudo
states’ such as a junction, an entry and exit state and even
a ‘history state’, the communication between the different
state machines in a design can be specified.

Because of this added complexity, a formal definition of
the semantics of UML state diagrams is much less straight-
forward than the simple mathematical model defining the
semantics of finite state machines. This almost necessarily
results in a number of ambiguities in the specification. Re-
garding the latter, [21] reports that 29 new unclarities were
introduced in the UML 2.0 state machine specifications.
In [22], an axiomatic semantics of these UML 2.0 state
machines is provided by giving solutions outside the UML
standard. According to [23], the current UML standard 2.4
introduced 6 aditional ambiguities.

In this paper, we study design rules for evolvable state
machines. Even though we make use of UML, it is not our
intention to analyse and discuss all the syntactical features
available in UML statecharts. Our use of UML is limited
to the capabilities of a classic FSM extended with simple
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composite states. UML statechart constructs dealing with
concurrency and complex communication will be the subject
of future research.

III. NORMALIZED SYSTEMS THEORY

Software undergoes an ageing process, as recognized by
Parnas [24]. Since there are indications that this ageing
process is also happening with business processes [25], we
must consider the possibility that this phenomenon may
actually apply to all non-physical systems in general, which
undergo an evolution in our society and economy.

Earlier work pertaining this subject matter was done by
M. Lehman, resulting in his ‘Laws of software evolution’.
He formulated the law of increasing complexity, expressing
the degradation of a system’s structure over time [26]:

“As an evolving program is continually changed,
its complexity, reflecting deteriorating structure,
increases unless work is done to maintain or
reduce it.”

Based on his work for IBM on the design and imple-
mentation of the OS of IBM mainframes in the late 1960s,
Frederic Brooks [27] made the observation that

“Program maintenance is an entropy-increasing
process, and even its most skilful execution only
delays the subsidence of the system into unfixable
obsolescence.”

Ever since, a myriad of software engineering method-
ologies were invented, new programming languages were
created, paradigms developed from ‘structured’ over ‘object
oriented’ to ‘aspect oriented’ programming. This did not,
however, fundamentally change the issues related to software
evolvability. Brooks stated that because of the very nature
of software no inventions will do for software productivity,
reliability, and simplicity what electronics, transistors and
large-scale integration did for computer hardware [28]. Part
of the complexity is caused by constant pressure for change,
imposed by continuous change of the environment in which
the software system is embedded.

In software development, every change causes a further
deterioration that progresses with each update or hotfix.
Over time, the deficiency of the structure renders the system
unworkable. To mitigate this problem, a re-write of the
whole system can help (Figure 4 [29]).

The theory of Normalized Systems was introduced to
challenge Lehman’s law [30]. Other than most previous ef-
forts to achieve maintainability of software, the contribution
of the Normalized Systems Theory goes beyond heuristics;
instead of only advocating guidelines such as “low coupling
and high cohesion” (these are are widely accepted heuristics,
e.g., [31]), it provides theorems to derive yes/no answers to
questions about evolvability.

In the context of Normalized Systems, an action entity
shall be defined as a module which contains functionality,

Time (amount of added requirements)

Cumulative change impact

Normalized System

"Lehman" systems

Max 1

Max 2

Re-write 1 Re-write 2

Max 3

Re-write 3 ...

... Version 1.x
Version 2.x

Version 3.x

Version 4.x

Figure 4. Improving software structure with a re-write [29]

and a data entity shall be defined as a set of tags (fields).
Action entities and data entities are the two main elements
from which a system can be constructed. Action entities
use data entities as input and output parameters. States,
conditions, commands or events can be stored in a data
entity. The four core theorems of Normalized Systems are:

1) Separation of concerns: An action entity can only
contain a single task.
A task is functionality which can evolve indepen-
dently. If the system’s developer anticipates that two or
more parts of the core functionality can change inde-
pendently, these parts must be separated. Therefore,
Normalized Systems shall be constructed of action
entities dedicated to one core activity.

2) Data version transparency: Data entities that are re-
ceived as input or produced as output by action
entities must exhibit version transparency.

It must be possible to update one or more data
entities which are passed between action entities and
let multiple versions co-exist without affecting other
versions of action entities.

3) Action version transparency: Action entities that are
called by other action entities must exhibit version
transparency.

It must be possible to update an action entity, which
is coupled with another action entity, while multiple
versions of both modules can co-exist. In other words,
introducing a new version of an action entity shall not
require changes to any other action entity.

4) Separation of states: The calling of an action entity by
another action entity must exhibit state keeping.

Every action entity must keep track of its requests to
other action entities. If the response to a request is not
as expected, the calling action entity must not block
indefinitely; rather, it shall handle the exceptional
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situation as appropriate for its own state.

Two additional theorems have recently been introduced
as extensions of the theorems on data and action version
transparency [32]. They address the challenge of managing
the diversity of run-time instances of data and action entities
in an evolving system.

5) Data instance transparency: A data instance has to
keep its own instance ID and the version ID on which
it is based or constructed.

If the type definition (source code) of a data entity
is updated to a new version, instances based on the
previous version continue to exist in the system. If an
action entity receives a data instance for processing,
the action entity must have a way of knowing the ver-
sion of this data instance to be able to handle the data
instance in a version-compliant way. Therefore, every
data instance must contain a version ID reflecting the
version of the data entity it is an instance of. The
instance ID serves to tell apart multiple instances of
the same version.

6) Action instance transparency: An action instance has
to keep its own instance ID and the version ID on
which it is based or constructed.

When run-time instances of action entities interact,
they must consider the fact that the other action entity
can be based on one of various versions of its type
definition. A version ID is necessary to give the calling
action instance information about which interactions
are possible. Again, the instance ID serves to tell apart
multiple instances of the same version.

A. Applying instance version diversity

In order to create an evolvable software system, the above-
mentioned rules must be respected throughout the entire
design and implementation. In the following, we introduce
an architecture supporting version diversity in PLC systems
as an application case study. It is designed to support
the implementation of cross-vendor PLC systems, allowing
for the co-existence of multiple versions of all hardware
and software components, and to support true dynamic
reconfiguration. Version diversity is supported with respect
to:

• Application functionality
• Vendor dependencies in PLC programming
• Vendor dependencies regarding the control of field

devices (e.g., a motor).
When an update of a PLC project includes the intro-

duction of a new CPU type, or even a conversion of the
software to another brand, software developers often re-
engineer the whole project. Also, when a motor is replaced
with a different one – or the update includes the introduction
of a frequency drive, which requires a vendor dependent

Generic code 
(all versions) 

V Vendor mapping 

PLC  
(brand 1) 

Motor 1 
 

Instance v. 1 
Instance ID: 1 

PLC  
(brand 2) 

PLC  
(brand 3) 

Motor 2 
 

Instance v. 2 
Instance ID: 2 

Motor 3 
 

Instance v. 3 
Instance ID: 3 

Motor 5 
 

Instance v. 2 
Instance ID: 5 

Motor 4 
 

Instance v. 3 
Instance ID: 4 

CE 1 CE 5 CE 2 CE 4 CE 3 

Class  v. 1, v. 2 Class  v. 2, v. 3 Class  v. 3 

Figure 5. A generic software module with heterogeneous instances

system function block –, engineers tend to re-write the
module which is controlling the motor.

The architecture presented intends to reduce the amount
of these re-writes. A new motor should no longer require
a new software module; neither should the entire project
require re-engineering because of changing to a new brand or
PLC family. To achieve this, we propose that programming
is based on generic modules. There shall only be one
module for every core function (e.g., motor control), with the
variations between physical motors and their control being
addressed by multiple, co-existing, versions of this module.

In this concept, the vendor independence brought about
by the IEC 61131-3 standard is an important element.
Nowadays, most common brands support at least some of
the IEC 61131-3 languages. However, the standard does
not include hardware configuration. Consequently, the con-
nection to process hardware (process I/O) remains vendor-
dependent. In addition, the standard allows some liberties
(e.g., implementation-dependent parameters in Annex D
[11]). Commercial IEC 61131-3 programming environments
show some differences. Therefore, developers still often re-
write a whole software project in case another brand of PLC
is required.

Our approach to truly generic, vendor-independent PLC
programming is shown by way of an example in Figure 5.
A generic module, which strictly sticks to IEC 61131-
3 code, contains the core functionality of a device, for
example controlling a motor. Instances of this module rep-
resent individual motors. Before the generic module can be
downloaded to a specific brand of PLC in order to control
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Figure 6. Motor control state machine, version 2

a specific motor, it undergoes an automatic vendor-mapping
procedure, which converts part of the module code according
to what is required by the vendor’s specific environment.
In addition, the vendor-mapping procedure adds an extra
module to the (mapped) core module: a connection entity
(CE). This connection entity is dedicated for a specific motor
(instance), and includes all the details needed to connect the
(mapped) core functionality with the process hardware (I/O).
If necessary, this connection entity can also include vendor-
specific function blocks (e.g., a scaling block for analog
values, or a system block dedicated to control a specific
frequency drive).

Each new version of the functionality is referred to as
a class version, and each individual physical motor as
an instance. Class versions correspond to the functionality
available in the PLC (potentially in several co-existing
versions), while instance versions correspond to the instan-
tiated functionality for controlling a specific type of motor.
Instance IDs refer to one single, specific physical motor;
they tell the connection entity which hardware addresses
an individual motor control module instance has to be
connected to.

IV. STATE MACHINES AND EVOLUTION

In this section, we discuss examples for how state ma-
chines could evolve in response to new requirements and
hardware capabilities, leading to new versions of the state
machine.

A. Motor control

The state machine in Figure 3 is a very idealized and sim-
plistic view. In an actual industrial environment, additional
conditions such as failure conditions or interlocks must be
taken into account. As an example for such an additional
condition, the second version of the state machine considers
the condition of a fuse.

In version 2, the start condition becomes ‘Start and
FuseOK’ (Figure 6). In UML syntax, we model this by
extending the ‘Start’ trigger with the ‘FuseOK’ guard,
making the transition conditional on the state of the fuse.

Figure 7. Motor control state machine, version 3

The additional state ‘Failure’ is introduced. The condition
for transitioning from the ‘Off’ state to the ‘Failure’ state
is ‘Start and not FuseOK’, i.e., the transition is triggered
by the ‘Start’ event, also conditional to the state of the
fuse. If the fuse blows during the ‘On’ state, a transition
to the ‘Failure’ state results. To detect the state of the
fuse, a ‘CheckFuse’ function is needed, being the trigger
for the transition from the ‘On’ state to the ‘Failure’ state.
In addition, when entering the failure state, a notification is
made to trigger an operator to solve the issue, represented
by the action ‘Alert Operator’. The condition to go from the
‘Failure’ state to the ‘Off’ state is ‘FuseOK’, the trigger
is ‘CheckFuse’. This implies that the engine will restart
automatically when the fuse is repaired.

The third version considers the situation that the motor can
stop due to a thermal cut out in the ‘On’ state (Figure 7).
This is modelled with a new version of the transition to the
‘Failure’ state. In addition, the operator must push a reset
button before the ‘Off’ state can be entered again after a
failure. Hence, an additional ‘Reset’ trigger is introduced
resulting in a new version of this transition.

In version 2, only the state of the fuse needed to be
checked, by means of a function ‘CheckFuse’ triggering the
transitions from the ‘On’ state to the ‘Failure’ state and from
the ‘Failure’ state to the ‘Off’ state. In the third version,
two conditions need to be checked: the state of the fuse
and a heat sensor connected to the motor. Depending on
the implementation, this may require the creation of a new
version of the trigger that can deal with multiple sensors.

B. ATM example

This example introduces the use of hierarchical states
in UML state machine diagrams. It shows a high level
specification of an ATM from a user perspective, limited to
the withdrawal of money (Figure 8). As in the motor control
example, two alternative versions of the initial design will
be discussed, each resulting from changing requirements.

The process modelled in this example starts when a user
inserts a bank card. This user must first authenticate. If
the correct PIN (personal identification number) code is
supplied, money is dispensed (Figure 8). The state machine
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Figure 8. ATM specification using composite states

has two states: ‘Authenticate’ and ‘Dispense Money’. The
transition between the states is triggered by ‘CheckPIN’, a
function which is started for example after having pressed
the ‘OK’ button on the ATM. In this very simple example,
the user is not given the option to select the amount of money
withdrawn.

There is a major difference with the previous state
machine examples. Both states in these examples are not
simple, fully defined states as in the motor control example.
They are in fact state machines themselves. Both states are
therefore modelled as composite states, indicated by the
‘infinity symbol’ in the example. In Figure 9, detail for the
‘Authenticate’ state is provided.

The authentication starts with the processing of the card.
When the machine is in the ‘Read Card’ state, the card is
processed by reading and decoding the chip or magnetic strip
on the card. Once the card is processed, the Authenticate
state machine will automatically transition to the ‘Enter
PIN’ state. Note that no trigger or guard is specified on
this transaction.

When the machine arrives in the ‘Enter PIN’ state, the
entry action of the state is executed. As a result, the machine
will ask the user to enter a PIN code. When the user presses
an ‘OK’ button on the ATM, ‘PIN Entered’ is triggered
and the PIN code will be validated using the ‘check PIN’
action. If the PIN code is not correct, the user must try again,
else the final state of the ‘Authenticate’ super state will be
reached. When this final state is reached, the ‘Authenticate’
state itself is considered as complete and the system can
transition to the ‘Dispense Money’ state. Once the money is
dispensed, the card will be ejected and the final state of the
overall process is reached.

The diamond within the ‘Authenticate’ state machine is a
‘choice pseudostate’. This state machine could also be drawn
with two seperate transitions with the same trigger as in the
motor control examples above.

In this version, the ATM has serious drawbacks. First,

Figure 9. ATM version 1

the user can supply an unlimited number of PIN codes.
Second, the card will only be returned after having supplied
the correct code. To amend the first problem, the concept
of an ‘error counter’ is added. Two actions to increase and
reset this counter are added. If the card is unreadable or
if the maximum number or retries is reached, the card is
ejected. The user is also given the opportunity to cancel
the session and eject the card (Figure 10). In these three
cases, the ‘Authenticate’ state machine transitions to the state
‘Transaction cancelled’, modelled as an exit state. At the
higher level in the state machine hierarchy, this exit state
unconditionally transitions to the final state ‘Ejected’.

In both versions the internals of the states ‘Read Card’
and ‘Enter PIN’ are not specified. To implement the ATM
system, more detailed specifications are required, possibly
resulting in additional levels of state machines and sub-
states. Changing requirements may cause an evolution of
the internals of these states, resulting in a third version of
the ATM example.

As mentioned above, in version 2, ‘PIN Entered’ was
triggered by pressing an ‘OK’ button on the ATM. Assume
that in a third version of the ATM, the use of this button
should be eliminated if the number of digits of the PIN
codes can be derived from the card type, e.g., 4 digits for a
Belgian bank card. The ‘Read Card’ implementation should
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Figure 10. ATM versions 2 and 3

be enhanced to determine the type of card. The ‘Enter PIN’
implementation should be changed such that

• the entry action becomes conditional on the card type
(‘Enter PIN’ or ‘Enter PIN and press OK’);

• for a Belgian card the ‘PIN Entered’ trigger fires once
the fourth character is entered, and

• for any other card, pressing the ‘OK’ button causes this
trigger to fire.

In this new version, the ‘Authenticate’ state machine itself
does not evolve to a new version, only the two sub-states
‘Read Card’ and ‘Enter PIN’ are changed. Also, a new
parameter needs to be passed, since the card type is detected
by ‘Read Card’ and must be used by ‘Enter PIN’. However,
these differences do not lead to a change in the diagram.
Therefore, Figure 10 does not change for version 3 of the
ATM.

As in the motor control example, it is possible that both
versions of the sub states need to co-exist for a certain time.
Assume that the ‘Enter PIN’ process requires a software
update, while the adaptation to ‘Read Card’ requires the
physical installation of new hardware. Ideally, the software
is upgraded on all ATMs, irrespective of the version of the

Figure 11. Telecom process, version 1

card reader.

C. Integration of COTS applications

In a third example, additional requirements on the evolv-
ability of state machines will be illustrated. This example
is based on the experience of one of the authors with
a greenfield software implementation and integration for
a Dutch telecom operator. Some of the outcomes of this
project for the academic community are documented in [33]
and [34].

Running a telecom operation requires the automation of
numerous very complex business processes. Most opera-
tors resort to the installation of Commercial Off-The-Shelf
(COTS) applications instead of implementing everything in-
house ‘from scratch’. Often multiple COTS applications
are installed, such as a Customer Relation Management
(CRM) system, a telecom billing system, fraud detection, a
network inventory system, an ERP system, etc. These COTS
applications are large software systems, the installation of
which requires extensive parametrization and configuration
to implement the desired business processes. Typically, a
multi-million dollar budget is required for the installation
and implementation of a single COTS application.

To create end-to-end workflows supporting the different
business processes, the different COTS applications must
be integrated, this being a bespoke development for the
operator. The integrated workflows can be modelled using
hierarchical state machines. The highest levels of the hier-
archy are part of the bespoke development by the operator.
At a certain level in the hierarchy, a substate will be fully
contained in one of the COTS applications.

Figure 11 shows a simplified order-to-bill process for a
new DSL line, stripped from all triggers, guards and actions.
In this example, an order for a new DSL line is treated first
in the CRM system. Once the order is completed, it needs
to become available in a ‘service provisioning system’. The
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Figure 12. Telecom process, version 2

latter is used to manage the installation of the new line and
ensure that the appropriate services are provisioned. The
provisioning system needs to communicate with a system
of another operator to order raw copper. After delivery
of this line, the DSL line is physically installed at the
customer premises, a process that is managed by means of
a ‘workforce management system’. Next, the IP service is
provisioned using the service provisioning system. Finally,
once, the system must ensure that the appropriate billing
information is created in the telecom billing system.

In Figure 12, a second version of this process is shown. In
this adapted process, the customer must pay the installation
fee before the provisioning starts. Once the service is pro-
visioned, the recurring part of the billing must be activated.
When the state machine arrives in the ‘Install Fee collection’
state, it will hand over the control to the billing system where
an invoice will be created and sent to the customer. Next,
the entire process will halt, waiting for the customer to pay.
Only when the appropriate amount is collected, control will
be handed over again to the higher level state machine.

The evolution of version 1 to version 2 is a complex
process:

• The entire software installation runs on a large number
of servers; the implementation of updates to any of the
COTS systems is complex and time consuming. It is
nearly impossible to shut down and restart everything
at the same time without affecting user experience
and/or operations. Attaining the ability of ‘dynamic
reconfiguration’ would be a significant advantage.

• Every substate in the process requires a considerable
period of time to complete. During the execution of the
overall process for any given order, one or more updates
and new versions may be introduced. Depending on a
number of criteria, existing orders may still need to be
handled according to the the old version. For example,

the installation fee can only be collected before the
installation if this was required during the ordering
phase; if not, the order will need to be processed using
version 1 of the state machine.

V. CHANGES TO STATE MACHINES

Industry usually prefers the Mealy state machine model
over the Moore model, possibly because a Mealy machine
often ends up with a lower amount of states, and is thus more
compact. In contrast, Normalized Systems Theory advocates
a higher granularity of modules. If ’more compact’ results in
a lower amount of (larger) modules in case a Mealy machine
is implemented, this would favour the Moore type.

Also, a Mealy machine combines transitions with actions,
which can result in violations of the separation of concerns
theorem: When a new version of a transition is implemented
in the same module as the corresponding, resulting action,
both original and new version need to co-exist. When a
new version of the action is introduced afterwards, this
update has an impact on both versions of the co-existing
modules containing both actions and transitions. Moore
machines explicitly separate states and transitions. For the
implementer, it is easier to comply with the separation of
concerns theorem if states and transitions are separated in
the model the software is based on.

The preference of industry for Mealy machines is under-
standable: a lower amount of modules probably results in
a lower implementation effort due to the lower amount of
module definitions and module interfaces. However, changes
to a single transition or to a single action might result
in combinatorial effects when transitions and actions are
implemented in the same module.

In order to expand on these general observations regarding
the evolvability of state machines, this section is dedicated to
a detailed examination of anticipated changes, illustrated by
the examples in the previous section. As already indicated
at the end of Section II, only a subset of the constructs
available in a UML statechart is studied.

A. Identifying singular change drivers

The following changes can be observed for ‘flat’, single
level state machines:

• adding a state (e.g., ‘Failure’ in Figure 6)
• adding a transition (e.g., ‘Card not readable’ in Fig-

ure 9)
• changing a state (e.g., change of ‘Enter PIN’ entry

action from ATM version 2 to 3)
• changing a transition (e.g., the ‘On’ → ‘Failure’ tran-

sitions in Figures 6 and 7).
Neither adding/changing a state nor adding/changing a

transition are singular actions, since they may involve a num-
ber of independent actions. Adding a transition may require
the addition of a trigger, a guard and an action. Adding a
state may require the addition of two transitions, an entry
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and an exit action. Changing a state may require additional
data to be passed between states. According to NST, change
drivers need to be singled out to study evolvability. Hence,
the above-mentioned anticipated changes need to be further
refined.

Likewise, neither changing the direction of a transition
nor changing the target of a transition are independent
actions. Both consist of adding a new transition together
with simultaneously deleting the original transition. As will
be discussed below, deletions are not desirable from an
evolvability viewpoint, which is why they are not included
in the list above.

For reasons of simplicity we will not further take the
‘guard’ of a transition into account. It is assumed that the
trigger event will occur conditional to the value of the guard.
We consider this as a further restriction on the subset of
UML state machine constructs that are within the scope
of our current analysis. A detailed analysis of this subject
matter shall be part of future research.

While triggers and actions can be easily distinguished
as singular change drivers, it is more difficult to define a
‘singular addition of a transition’. In its most basic form,
a transition A → B unconditionally fires when the state A
becomes current, and causes no effect other than putting the
state machine in this next state B. On arrival in state B,
actions related to this state will of course be executed.

The addition of an unconditional transition to an ex-
isting state machine may cause inconsistencies, however.
Assume, for example, that the transition from ‘Read Card’ to
‘Transaction cancelled’ in Figure 10 were unconditional. The
resulting machine would always transition to the final state
‘Ejected’, which is of course, undesirable. There are many
solutions to this problem. A possible solution, requiring the
introduction of concurrency in the design, is the following:
Immediately after reading the card, execution should split in
two parallel, concurrent paths. A first path goes to an end
state by ejecting the card. In parallel, the process continues
as if the card was read. While this change to the design of
the state machine yields the desired result, it clearly is not
a singular change.

To find a definition for the singular addition of a transition,
we shall resort to the mathematical model underlying the
state machines. In this model, the state transition function

δ ∈ Q× Σ→ Q

maps the combination of a current state and an input to
a next state. Not every combination (current state, input) is
defined. Only a limited number of inputs are accepted in any
given state. Every combination (current state, input) can only
occur once, i.e., the next state is defined unambiguously.

In this model, adding a transition cannot introduce an
inconsistency in the state machine as long as the restriction
is met that the next state is defined unambiguously. We
therefore impose additional restrictions on the UML state

machines we consider in order to replicate this characteristic,
and limit ourselves to state machines without concurrency
that only have conditional transitions. Hence, a singular
change driver can be obtained when the transition has a
trigger and under no circumstances a condition could arise
where two transitions need to fire concurrently. Note that
the same restriction holds for every addition and change of
a trigger.

These are significant constraints on the usual semantics
of UML statecharts. Nonetheless, in the remainder it is
implicitly assumed that these consistency requirements are
respected through every step in the evolution. Hence, they
will not be part of the design rules we will propose.

This results in the following anticipated changes to a flat
state machine:

1) adding a transition (maintaining the consistency re-
quirements) between two states, without effect

2) adding a trigger to a transition (changing/deleting)
3) adding an action to a transition (changing/deleting)
4) adding an empty state, without internal actions
5) adding an entry action (changing/deleting)
6) adding an exit action (changing/deleting)
7) passing additional data between states.
In case of non-flat, hierarchical state machines, the inter-

nal behaviour of the states will become more complex. In
the telecom example, the ‘Billing’ state, comprising a very
complex state machine in a COTS application, was split in
two parts. Part of the actions executed in the state ‘Billing’
will be separated amongst the new states. Part of the action,
such as the creation of the invoice and the collection of the
payment, will need to be supported in both states. A number
of anticipated changes can be derived:

1) adding a state machine to a flat state
2) changing an existing state machine
3) deleting a state machine to return back to a flat state.

For the purpose of our discussion, we only consider a
restricted set of hierarchical state machines which can be
flattened. Therefore, composite states only have a notational
purpose. Since changes to them can be expanded to changes
on the equivalent flattened state machine, they are not further
considered as anticipated changes. If certain restrictions are
lifted, and e.g. concurrency is allowed, however, this will
need to be reconsidered.

Apart from the entry and exit actions of a state, the
UML standard also specifies ‘internal transitions’. These
are transitions that cause an output action but do not cause
a state transition. These transitions fire as a response to
a specific event if the machine is in a given state. This
type of transitions has deliberately been excluded from the
discussions above. We consider them as special cases of
hierarchical state machines. From a semantical point of view,
this is a further restriction we impose. It will, however, not
impact the conclusions listed below.
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B. Changes and version transparency

Deleting a state, transition or any other element usually
is intuitively considered an anticipated change to a design.
However, according to NST, a deletion violates the action
version and data transparency theorems and should therefore
never be allowed. Assume that in the ATM example, the
bank card technology evolves in such a way that the number
of digits to be entered can be read from the card using
a new card reader. This of course requires an update of
the card reader which is used in the ‘Read Card’ state. In
a fourth version of the state machine, ‘Enter PIN’ would
then make use of this number rather than the card type. If,
however, the card type parameter is deleted, versions 3 and
4 cannot coexist any more. Similar reasoning holds for the
deletion of transitions and states. Changing the direction of
a transition is in essence (a) the addition of a new transition
in the opposite direction and (b) the deletion of the original
transition, and should therefore not be allowed either.

To keep systems compact nonetheless, NST proposes
an extended ‘garbage collection’ approach on the design.
The removal of states, transactions, or other constructs can
make it impossible for older versions to exist. Consequently,
deleting a construct should only be allowed if one can
guarantee that no existing module makes use of it. In the
ATM example, this means that the card readers have been
physically upgraded for all ATM machines in the field. Note
that the knowledge whether this has been done or not cannot
be derived from the design itself.

Just like a ‘delete’, a ‘change’ can cause a violation
of the version transparency theorems. Note that confusion
can arise with restricting ‘change’, because the area of
concern of NST is ‘change’ of an evolving system without
causing combinatorial effects. In this paper the theory is
applied to state machines. The goal of NST is to determine
how a design and/or implementation can be changed in a
way that a continuous and potentially infinite evolution of
the system can be achieved. To avoid this confusion, we
prefer to use the term ‘modification’ when we refer to an
update of the functionality or data structure of a construct.
To prevent violations of the version transparency theorems,
modifications should be based on the concepts of transparent
coding or version wrapping [35]:

1) Transparent coding: Transparent coding is defined as
inserting internal code in a module which does not affect
the functionality of previous versions. Since Normalized
Systems require high granularity, it is not unexpected that
the individual (small and straightforward) modules or sub-
routines end up to be a simple piece of code, on which
the programmer has a clear overview. In such cases, the
programmer can preview the effect of a functional change
on previous versions, and maintain downward compatibility.
If the change is not contradictory with one of the previous
versions, it might be possible to apply transparent coding.

Calling 
entity 

Wrapping 
module 

Version ID 

Entity 
version 1 

Entity 
version 2 

Entity 
version 3 

Figure 13. The concept of version wrapping

This means that the new functionality can just remain in the
module without affecting the original code, even if a calling
entity is not aware of the new functionality.

2) Version wrapping: There will be lots of cases where
transparent coding is not possible, because the code is too
complex for the programmer to have a reliable overview, or
if the new functionality is contradictory with one or more of
the previous versions. To exhibit action version transparency,
the different versions can be wrapped. The calling action has
to inform the called action which version should be used by
way of a version tag. In addition, following the separation
of states theorem, the called action has to inform the calling
action whether the instance of the called action is recent
enough to perform the requested action version.

An action entity which is designed according to the
concept of version wrapping aggregates functionality for all
the versions as separate action entities. Each of the nested
action entities contains a version of the core functionality.
Following the separation of concerns theorem, the wrapping
action entity should not contain any core functionality, but
limit itself to wrapping the versions as a kind of supporting
task. Following this principle, different versions of a module
co-exist in parallel. Figure 13 illustrates how a wrapping
module selects the desired version based on the version ID.

C. Anticipated changes

In summary, in order to attain the property of evolvability
for a state machine, updates must be confined to the follow-
ing set of anticipated changes:

• An additional state
• An additional transition
• A new version of a state following the principle of

transparent coding
• A new version of a transition following the principle

of transparent coding
• A new version of a state following the principle of

version wrapping
• A new version of a transition following the principle

of version wrapping
• An additional entry/exit action of a state
• A new version of an entry/exit action of state
• A new effect (action) of a transition
• A new version of an effect (action) of a transition.
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As mentioned above, adding a transition or adding a state
may result in state machines behaving inconsistently. The
introduction of a new transition or a new version from a
state ‘A’ may impact all transitions having ‘A’ as current
state, as the conditions on these transitions may need to be
changed for consistency reasons. Hence, new versions of all
these transitions will need to be created. Similarly, adding a
new state ‘N’ requires the addition of a new transition from
a state ‘A’ to ‘N’ and from ‘N’ to some other state, unless if
‘N’ is a final state. This implies that new versions may have
to be created for all transitions that leave from state ‘A’. In
order to arrive at a new, consistent state machine, multiple
of the abovementioned anticipated changes may be required.
If however, the implementation of every single anticipated
change respects the rules of NST, the overall change will as
well.

VI. DERIVED RULES FOR EVOLVABLE STATE MACHINES

The previous sections discussed the benefits of version
transparency and co-existence. In the following, we propose
rules – based on Normalized Systems Theory – that shall
be followed by state machines and the program code imple-
menting them in order to achieve these properties, and, thus,
evolvability.
S1. The functionality of a state machine shall be imple-

mented in an action entity, while the state and transition
trigger information should be stored in a separate entity
– a data entity.

When the functionality of a state machine is updated,
a new class version is introduced. We want to be able to
deploy instances of this new version to the system without
disrupting the operation of instances of previous versions,
which may still be adequate for part of the equipment.
Thus, several instances of devices controlled by different
versions of the state machine should be able to co-exist,
and we require the logic of the state machine to change
independently of these instances. Remember that if two
parts of a module can change independently, they shall
be separated following the separation of concerns principle
(Theorem 1); from this follows the separation called for in
this rule.

Every version of the data entity contains state and condi-
tion fields. In each state, a particular state of the associated
process hardware is effected (e.g., letting the motor run in
the ‘On’ state). This is done by way of a connection entity.
Values for the condition fields are provided by other action
entities (in particular, connection entities); when the condi-
tions for a particular transition are fulfilled, the state machine
action entity changes the current state of the instance.

In UML, a trigger is an action responding to an event
that occurs outside of the state machine. According to rule
S1, the state machine only contains a generic mechanism to
determine what transition to execute based on the contents
of a data element.

S2. The state machine data entity shall include an instance
ID.

The instance ID allows the connection entities to map this
instance to the underlying system. In a PLC, this mapping
would contain the hardware addresses; in a business process
implementation, the mapping could involve the details of
interfacing with a COTS system. The mapping is necessary
so that changes in the underlying system (e.g., on hardware
inputs) are reflected as changes in the transition fields,
which in turn will cause the state machine action entity
to perform the appropriate state transition. Likewise, the
mapping is necessary in order to command the underlying
system to perform the action associated with a state of the
state machine (e.g., setting the required hardware outputs).

S3. The state machine action entity shall include a class
version ID, and the state machine data entity shall
include an instance (data type) version ID.

To comply with the version transparency theorems, the
data entity must contain its own version (the version of
the state machine it is an instance of). This version ID lets
action entities recognize the class version corresponding to
the instance and act accordingly. The action entity should
store its class version on the moment of compilation as a
hard-coded constant.

Following our first rule (S1), the data and the functionality
within the system should be separated. Therefore, we have
a data entity to store the system’s data in one or more
data fields, and an action entity to perform actions based
on the data in this data entity. Several versions of both
data entities and action entities have to be able to co-exist.
When a recent action entity instance encounters an older data
entity instance, it must interpret its data fields in the way the
older action entity instance would have. If necessary, default
values need to be defined for fields not present in the older
data entity instance. When a more recent data entity instance
is processed by an older action entity instance, only old
data fields are used, because the older action entity instance
is not aware of the recently added data field(s). To enable
proper interaction with instances of older versions, or at least
prevent version conflicts, instance version IDs are required
(Theorems 5 and 6).

For example, suppose that in the motor control state
machine example in Figures 3 and 6, we have an action
entity version 2 (class version), which should process a
data entity instance version 1 (data type). After reading the
data entity instance’s version ID, the action entity decides
to never manipulate the ‘FuseOK’ data field, nor allows
any transition to the state ‘Failure’. These actions must be
prevented because these fields do not exist in version 1 of the
data entity; undefined behaviour would result. Instead, any
information on the fuse or thermal cut out (if available) is
ignored, corresponding to the (older) functionality of action
entity version 1. Conversely, consider an instance of action
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entity version 1, which should process a younger instance
of data entity version 2. This action entity instance is not
even aware of the existence of fuse information nor the state
failure, so it will never read nor manipulate these fields.

The potential ‘ThermalCutout’ transition of version 3
(Figure 7) from the ‘On’ state to the ‘Failure’ state will
simply never happen if not both the data entity instance and
action entity are of version 3. In addition, the action entity
must include a selection to decide whether or not a reset
command from the operator is needed for the transition from
the ‘Failure’ state to the ‘Off’ state.

S4. States or transitions shall not be deleted between ver-
sions.

As explained in the previous section, it is a general rule
in NST that deletions should not be allowed. Due to its
importance, this is reiterated as a separate rule for state
machines.

S5. State modifications shall apply transparent coding or
version wrapping.

Deletions of states can cause violations of the version
transparency theorems, so only additions and modifications
are allowed. Modifications shall adhere to the principles
of transparent coding or version wrapping as discussed in
Section V-B.

S6.a Entry actions of states will be implemented in a
separate action entity.

S6.b Exit actions of states will be implemented in a separate
action entity.

S6.c Transition effects will be implemented in a separate
action entity.

Entry actions, exit actions and transition effects determine
the output of a state transition. The desired output of a
transition can evolve separately from the design of the
state machine itself. The three different types of actions
resulting from a transition can also evolve independently,
even when resulting from the same transition. According to
the separation of concerns principle, they should therefore
be separated.

VII. IMPLEMENTATION CONSIDERATIONS

The architecture introduced in Section III-A is excel-
lently suited to supporting co-existing, diverse versions of
an evolvable state machine. For example, considering the
scenario shown in Figure 5, motor 1 could be controlled
by an instance of version 1 of the state machine presented
in Section II, since status feedback is not required for it.
Motor 2 is controlled by an instance of version 2 of this
state machine, since for it the fuse condition must be taken
into account. Motor 5 is also controlled by an instance of
version 2 of the state machine; while motor 2 and motor
5 thus share the same instance version, they have different
instance IDs.

ATM User Perspective 

Dispense Money 

Authenticate v1 

Read Card v1 Enter Pin v1 

Authenticate v2 

Read Card v2 Enter Pin v2 

Authenticate 

Card Type v1 Card Type v2 

Use Type v1 Use Type v2 

Figure 14. Non-evolvable implementation of the ATM

ATM User Perspective 

Dispense Money 

Read Card Enter Pin 

Authenticate 

Card Type 

Card Type v2 

Use Type 

Use Type v2 

Card Type v1 

Use Type v1 

Figure 15. Evolvable implementation of the ATM

A similar approach can be used for the creation of
evolvable information systems, which typically have a hi-
erarchical nature. The use of hierarchical state machines
makes the situation more complex, especially with respect
to the implementation of version transparency. According
to NST, changes must remain local. If a single change
requires making changes in multiple places, the system is
not evolvable.

Figure 14 shows the ATM example, with the different
state machines represented in a hierarchy. The top level
state machine contains two state machines ‘Authenticate’
and ‘Dispense Money’, the first of which contains the state
machines ‘Read Card’ and ‘Enter PIN’. To evolve from ver-
sion 1 to version 2, both state machines need to be adapted.
Hence, because of a single change in the requirements, two
state machines need to be adapted. Version 1 of ‘Enter
PIN’ can only be used with version 1 of ‘Read Card’, and
version 2 of ‘Enter PIN’ only with version 2 of ‘Read Card’.
One could therefore decide to create two versions of the
‘Authenticate’ machine, each grouping a consistent pair of
state machines.

This implementation would not yield the desired results.
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The generic implementation of ‘Authenticate’ cannot decide
which version needs to be used. Hence, it cannot be im-
plemented using version wrapping or transparent coding.
Moreover, this implementation is not evolvable according
to NST. Both ‘Read Card’ and ‘Enter PIN’ are hierarchical
state machines themselves, each comprising multiple levels
of state machines. The change in ‘Read Card’ would be
implemented by changing a state machine somewhere deep
in the hierarchy, e.g., the ‘Card Type’ machine. The card
type is consumed by the ‘Use Type’ machine somewhere in
the hierarchy of the ‘Enter PIN’ machine. A single change
would therefore imply the creation of new versions of all
the state machines in the hierarchy, creating a non evolvable
implementation.

Figure 15 shows an evolvable design where the changes
remain local. New versions of the two machines that were
changed are created. All other state machines are not im-
pacted by the change. Assume that in the software imple-
mented on an ATM, both version 1 and version 2 remain
available. In that case ‘Use Type’ must be able to determine
which version of ‘Card Type’ was used, as required by
the version instance transparency law. This version cannot
simply be passed through the hierarchy as this would again
require the creation of new versions of all states machines
in this hierarchy.

This can be solved by adapting the generic design of a
state machine such that every state machine hierarchically
enclosed in a state of a given state machine has access to the
data element that contains the state and trigger information.
The evolution from version 1 to version 2 would thus
involve, apart from the evolution of the state machines
themselves, a change to the data element containing the state
of ‘Authenticate’ by adding a version number or the card
type (or both).

VIII. CONCLUSION

The state machine is a valuable artefact for modelling
systems. In a rapidly changing environment, there is a
need for evolvable state machines. When production sys-
tems evolve, corresponding changes have to be made in
the automation software; similarly, changes in a business
environment may require the introduction of new states,
new transitions or changes to existing transitions in one
or more state machines used in an information system.
However, when systems evolve, it follows from Lehman’s
law of increasing complexity that their further evolution is
restrained when the systems’ size increases over time.

State machines benefit from the introduction of modular-
ity, as can be seen in the popularity of (hierarchical) UML
statecharts. Normalized Systems Theory offers a theoretical
foundation to achieve evolvability in modular structures by
imposing restrictions on the definition of the modules and
their interfaces.

This paper presented a design for evolvable state machines
that can be used in both automation systems software and
in information systems. The design is based on Normalized
Systems Theory. Rules were derived to constrain changes
to state machines in order to achieve the property of evolv-
ability. In addition, case scenarios were discussed showing
how instances of different versions of such an evolvable state
machine can coexist.

The design supports dynamic reconfiguration, as called
for by Kuhl and Fay, to update a system without the need
for a complete system shutdown. In an automation system,
compiling an IEC 61131-3 project includes allocating mem-
ory to variables. A shutdown is only necessary when this
memory must be remapped. Changing the value of a data
field in a data instance can be done without recompilation,
so no shutdown is required. When, for example, a motor
is replaced by a new one, this change is reflected by a
change to the instance version ID of the data entity in our
design. Therefore, dynamic reconfiguration is supported for
such a situation. A similar conclusion holds for information
systems in general if the restrictions imposed in this paper
are adhered to.

Still, creating software that strictly adheres to the design
rules proposed in this paper is a tedious, time consuming
and error prone activity. This is, in fact, a major criticism
often made in relation to Normalized Systems Theory.
Many practitioners claim that it is not possible at all to
create such software, except for small applications used for
demonstration purposes only, i.e., that Lehman’s law applies
to all real world software systems.

From the beginning, this problem has been recognized
as a major research question related to Normalized Sys-
tems Theory. Apart from the development of the theory, it
has extensively been investigated how Normalized Systems
compliant software can be built. For this purpose, a number
of software patterns have been defined [36] [37], together
with a set of pattern expanders that allow expanding a
higher level description into NST compliant software. After
an initial, academic, proof of concept, the development of
the expanders became the core activity of the Normalized
Systems Institute. The latter is a cooperation of the Univer-
sity of Antwerp with a number of industrial partners and
government institutes. By now, the partners in the institute
have developed a number of small and mid-sized information
systems that are being used in a production environment,
proving that it is possible to defeat Lehman’s law in a real
world software system.

Regarding future work, state machine libraries and toolkits
should be improved by adding constraints to follow the
rules presented in this paper, resulting in increased system
evolvability by ensuring compliance with the theorems on
Normalized Systems. The analysis still needs to be expanded
to aspects of concurrency and the related UML constructs.
Either would the rule set need to be revisited, or it needs to
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be demonstrated that real world information systems can be
built based on state machines without these constructs.
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