
Sick But Not Dead Failures -
Adaptive Testing, Evaluation and Design Methodologies

Tara Astigarraga
1
, Michael Browne

2
,

Lou Dickens

3
, and Ian MacQuarrie

4

Systems and Technology Group

IBM
1
 Rochester, NY 14626

2
 Poughkeepsie, NY 12601

3
 Tucson, AZ 85744

4
 San Jose, CA 95134

{asti, browne, dickens, imacq}@us.ibm.com

Abstract- Enterprise data center implementations make

significant investments in high availability configurations,

redundant hardware, software and Input / Output (I/O) paths

that are in many failure scenarios quite successful. However, in

spite of all that investment clients are still facing unexpected

outages and performance impacts related to a phenomenon

referred to as Sick but not Dead (SBND) errors. SBND errors

are sometimes lumped together in a category with other related

errors including transient errors, partial failure scenarios and

soft errors. While SBND errors do have many common

characteristics with the errors described above, there are key

differences and environment impacts which we will explore

further in this paper. We will also present new proactive

techniques, inject scenarios and methods to identify, characterize

and address SBND failures including cross-component impacts

and failures.

Keywords- Software Testing, Sick but not Dead, Software

Engineering, Partial Failure, Transient Error, Soft Failure, SAN

Test, Storage Area Network Test, System Test.

I. INTRODUCTION AND MOTIVATION

Despite high availability (HA) configurations, failures are

still occurring that are impacting customer environments.

Impacts range from varying degrees of performance

degradation to complete multi-system outages that often cause

enterprise level business outages for extended periods of time.

When these types of failures escalate to enterprise level loss of

data access events the data verification time for these events

can be lengthy and involve numerous business and

information technology staff long after the error condition is

resolved [1].

 The type of failure leading to these impacts is one that

exhibits a temporary and reoccurring behavior. Meaning errors

are being recovered at various points within the system,

however, the errors continue to occur at varying rates. We

classify these errors as Sick but not Dead (SBND) failures.

These errors are often the hardest failures to identify and can

have sporadic but lasting impacts on the environment as a

whole. SBND failures currently represent 80% of business

impact, but only about 20% of the problems [2].

SBND errors are sometimes lumped together in a category

with other related errors including transient errors, partial

failure scenarios and soft errors. While SBND errors do have

many common characteristics with the errors described above,

there are key differences as well. SBND errors by definition

derive from a component within the I/O path that is ‘sick’

meaning behaving in an unorthodox or partially failed fashion

but not completely ‘dead’ or hard failed. Depending on the

component exhibiting the SBND characteristics, the symptoms

can vary, come and go at different intervals and persist for an

extended period before the component eventually reaches a

hard fail state or would otherwise persist indefinitely if not for

manual intervention. It is this in-between time when the

component is defined as SBND.

While there have been examples of the industry trying to

address this problem proactively with technologies like IBM’s

Predictive Failure Analysis and S.M.A.R.T monitoring which

has been incorporated in ANSI INCITS T13 Technical

Committee, the problems still persist at both the device and

system level [3]. Many of the predictive technologies in place

today have some obvious constraints. Inherent in a new

technology is the lack of experience in being able to correlate

performance and calibration data with a reasonable

expectation of a failure. It takes technology providers a fair

amount of time and maturing of a technology to be able to

make reasonable correlations. This increases the opportunity

for SBND failures during this maturing time frame. The

S.M.A.R.T monitoring standard has a requirement to reset all

counters to zero after a firmware modification which may or

may not address a component that has or is about to exhibit

SBND behavior. The prediction of a failure is in opposition to

the economic needs of vendors to not replace components too

early under vendor warranty periods. Vendor warranty costs

can be increased if the prediction is too opportunistic. These

and similar factors and constraints at the component level

make it very difficult to design away the SBND failures. At a

system level, the holistic environment needs to be able to

encounter these conditions with reasonable robustness such

that the environment does not degrade to an outage situation.

To adequately system test a complex environment SBND

errors and scenarios need to be designed and injected into

complex environment testing and holistic test observations and

evaluations need to be made to determine if the complex

environment is robust enough for its intended use.

324

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Complex customer solutions and environments utilizing

mixed vendor products and technologies create textbook

scenarios for SBND failures to occur. Many products are

intolerant of errors from other devices, and although most

products respond promptly to hard failure conditions they are

much slower to respond to SBND conditions and often do not

deploy logic necessary to even detect SBND conditions. With

current field solutions, problem determination related to

SBND failure scenarios is complex, time consuming and often

requires special problem determination lab trace tools and a

team of cross-vendor product and solution experts. Current

resolutions to SBND failure scenarios are almost always

reactive vs. proactive.

One of the common areas for this reactive approach to

SBND errors in the I/O path are in the area of multi-pathing

function inside or in the I/O code stack for devices. It is

typical for a situation to arise in the field that was ultimately

caused by a particular SBND failure resulting in an

undesirable system level behavior. Almost all multipath

software providers have provided documented fixes for these

types of failures. An example of a very common multipath

driver scenario involving a SBND scenario is having multiple

paths across two Storage Area Network (SAN) fabrics where a

SBND failure is occurring in one fabric and the multipath

software detects a timeout in that fabric. The driver then

resends the transaction on another path. The driver then tests

the first path finds it available and sends the next transaction

down that path which then results in a delayed I/O response

which then times out and the multipath software resends the

transaction down the good path. When this happens repeatedly

the upper level applications like a database start showing

severe performance degradations. Fixes were made to the

specific Novell SUSE-2011:7794 recommended update with a

fix description of 679309: repeated use of flaky paths in

multipath module causing performance issue. While this

specific example is on a particular product it is the experience

of the authors that most multipath software products or

functions have had similar fixes generated due to problems

encountered in the field. Vendors are working at design time

to try an address these situations. For example some vendors

have added policy parameters to their multipath software that

use a MRU (most recently used) policy to prevent port

flapping but eventually have to put the offending path back

online if the most recently used path hard fails and then the

bad path becomes the most recently used path and the situation

can accelerate to a data loss of access event. If the real

problem is downstream in an inter-switch link (ISL) the

problem will appear to move around making it more difficult

to detect correctly and for a multipath software function to

behave as needed.

In our system test and SAN labs we have been developing

new proactive techniques, protocol inject scenarios and

methods to identify, characterize and address SBND failures

including cross-component impacts and failures across the I/O

path.

A thoughtful and holistic approach is needed in designing

these tests. A test engineer can easily create failure scenarios

that will never happen or that nothing will be reasonably able

to recover from. If the test design does not take these factors

into account the test engineer will create scenarios that no

development group would agree to develop fixes for. It is

therefore critical that test engineers have a very good

understanding of multiple components and when things like

speed changes occur in the hardware or firmware that may

alter the amount of time in either direction for a SBND

scenario to occur. Most of the time, these changes and their

potential impacts are not explicitly called out in a typical

design document. An innocent statement like changed

scanning frequency in the firmware to reduce latency could

significantly change an error detection rate or behavior

somewhere else in the stack of software and firmware.

Our current research related to SBND defects reported

shows that the highest number of SBND problems exists along

the I/O path. While related problems do occasionally exist

within specific internal sever paths they are significantly less

frequent, easier to debug and typically contained to a single

server and handled via embedded HA mechanism.

Systems generally behave properly when failures are solid

or hard failures. It is when components act SBND that system

availability is often at risk. In these scenarios failover or

recovery mechanisms often do not behave as we should expect

them to. Often times the problems are corner cases where they

are not easily reproducible and hard to trouble shoot, but

continue to plague customer environments. It should also be

noted that SBND problems are not something that occur in a

particular vendor or product set, but rather a system level

event that occurs when one (or more) component(s) in the

environment does not always behave consistently. Since the

problem does not relate to a particular vendor or component

issue it is not a simple fix but rather a system level event that

must be fully understood, tested and addressed by all vendors

in a distributed systems SAN environment.

The focus of this paper will be on SBND failures related to

the I/O path in distributed systems Fibre Channel (FC) SAN

and Fibre Channel over Ethernet (FCoE) environments. In

this paper we will better define and characterize SBND

failures, explain the impacts they can have on complex

customer environments and introduce new testing techniques

and injections we have deployed in our system test labs. We

will also explain the methods used to evaluate the

effectiveness of error recovery related to SBND conditions.

II. FAILURE TYPES AND CLASSIFICATIONS [4]

Traditionally, network path failures are viewed as falling

into one of two categories, “permanent” and “temporary”.

Perhaps the most well understood and easiest to manage are

the permanent failures which result from a catastrophic failure

of a network component. These failures are typically persistent

failures where all commands routed to the failing path(s) will

fail. Commands are recovered through retry down alternate

paths and the failing paths are permanently removed from

service.

325

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The second category of failure is temporary and transient in

nature. These failures can arise from numerous sources

including bit flips in electronics due to alpha particle or

cosmic rays, as well as electrical noise from intermittent

contacts and code defects to name a few. These can produce

temporary command failures which are recovered through a

single retry operation. These tend to be isolated events,

handles via low level recovery and thus most often go

completely undetected.

Both of these traditional failure categories are handled well

by existing multipath drivers available in the industry today

and in fact rarely result in any adverse effects on the operation

of the system.

Unfortunately, as the speed and complexity of high speed

networks has and continues to increase over time a third

category of SBND failures has emerged. These failures are

also temporary like the second category; however, in addition

to being temporary they are also recurring at varying rates.

These SBND failures can arise from marginal components or

components and network routes that are insufficiently sized or

over subscribed for the volume of network traffic present.

Often times these failures are provoked by secondary

conditions such as an instantaneous increase in network traffic

or a convergence of network traffic. These types of conditions

can reduce the quality of a network path(s) resulting in a

propensity for them to produce temporary failures. SBND

failures are very difficult for the server’s multipath driver to

detect and typically require an independent monitoring system,

therefore, for the driver is impeded from taking action to

eradicate the fault and, therefore, the condition to persist for an

extended period of time. In many cases the fault persists

indefinitely or until manual intervention is performed. SBND

failure conditions often drive recursive error recovery by the

attached servers which leads to symptoms ranging anywhere

from moderate performance degradation to complete system

outage.

A further complication of this third category of failure is its

difficulty to isolate and resolve. Since commands from servers

to storage traverse a large number of switches and links the

precise component or conditions responsible for the failures

are difficult to identify. Additionally, the underlying problem

cannot be contained within the network itself and in most

cases the network is not capable producing actionable fault

indications that would enable prompt response and resolution

from the network administrator.

The existing multipath drivers in use today are not capable

of adequately handling this intermittent/recurring failure

condition. For the most part all multipath drivers behave in a

similar fashion in that they detect and take action on what is

seen as individual and disparate events. Path management

functions to remove and return paths to service are determined

based on the outcome of these individual events.

For example, when a command failure is encountered the

recovery action involves a retry operation on the same or

alternate path. If one or more subsequent command operations

fail on the same path, depending on the thresholds in place, the

path will be determined to have failed and the path will be

removed from service (first failure category described above is

assumed). If subsequent commands are successful the error

will often be considered temporary (second failure category

described above is assumed) and the path will remain in

service. Most multipath software also includes a path

reclamation function that periodically tests the availability of

each path through the network. If the path test is successful on

a path that had previously been removed from service that path

will be placed back in service. In response to the

intermittent/recurring failure the multipath driver will either

leave the failing path in service or remove the failing path

from service only to return it to service a short time later

following a successful completion of the path test performed

by the path reclamation function. A behavior often observed as

a result is continuous cycling of paths between offline and

online states. It can be seen that based on the application of

such logic for both removing and returning paths to service

that the implementation of the current multipath drivers are

not capable of responding appropriately to SBND failure

conditions and, therefore, will not be effective at isolating

servers from the negative effects of this condition.

Because specific components and/or conditions associated

with these types of SBND failures in the network are often

difficult to isolate, the ability to automatically detect and

respond to these failures from within the multipath driver is

critically important and in fact essential to maintaining a high

quality of service.

III. COMMON CHARACTERISTICS OF SBND FAILURES

Most SBND failures are not obvious product failures.

Often when problem determination begins all individual

products in the environment appear ‘healthy’ and existing

internal diagnostics are not reporting any serviceable events.

Even error log reviews often come up clean, making problem

determination very difficult. SBND problems by definition

are transient errors, meaning network component or a product

is temporarily misbehaving, making the side-effects or

symptoms in an environment often appear and disappear.

SBND failures are frequently first noticed at the application

and/or database layer and are most often initially reported by

the customer. The tables below lists the most common impact

symptoms and characteristics displayed when SBND failures

are encountered.

 TABLE I. COMMON SBND IMPACT SYMPTOMS

Moderate to severe performance degradation

occurring at sporadic intervals or sustained

Transaction queuing and timeouts

Application abends

HA node failovers

Jobs running longer than usual

Mirror or replication times exceeding Service Level

Agreements

326

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. COMMON SBND CHARACTERISTICS

Not an obvious product failure, individual products in

the environment appear ‘healthy’ even after detailed

internal dump analysis at highest levels of product

support

Fault tolerance mechanisms not seeing errors and

don’t react.

Hard for software and monitoring products to detect,

internal diagnostics often do not find anything

Symptoms often appear and disappear

Symptoms often amplify over time

Note: the two tables above were compiled using defect data

from problems that were encountered in the IBM system test

labs and the IBM field support group from 2010 through

2013.

One might fail to realize the size and/or scope of a SBND

failure, by examining the symptoms alone. This is because

SBND failures commonly create a sympathy sickness

throughout the entire network. Sympathy sickness is when a

single device or condition in one part of a network impairs the

performance of other devices or other parts of the network.

The list below details the most common contributors to SBND

failures:

A. Flaky adapter cards and interface modules

Adapter cards and interface modules often do not hard

fail. Instead they degrade over an extended period of time

producing 1000’s of bit errors in the process.

Thus a single bad SFP or adapter card in an E-port, can

affect the performance of 100’s or 1000’s of initiators that

have their frames transported over the inter-switch link (ISL).

A recent study by researchers at the University of Illinois at

Urbana Champaign and NetApp Inc. suggests that the majority

of failures in data storage system/sub-system are not caused by

disk failures, but are being caused by link errors

[5]. The study

asserts that up to 80% of the storage system failures are not in

the disks at all. The authors surveyed approximately 39,000

storage systems with 155,000 enclosures containing roughly

1.8 million disks over a period of 44 months. During that

period only between 20% and 50% of the disk system failures

were due to the disk drives. The rest came from other causes,

most notably SAN component interconnection problems [5].

B. Dirty connections and cables

Contaminated connectors and/or interface modules

introduce bit errors as traffic rates increase. A link may

operate with an acceptable bit error rate until such time as it is

loaded down. This anomaly makes dirty connections/cables

especially difficult to isolate and identify. In an article written

by Steve Lytle from JDSU entitled “Fiber Connector

Cleanliness Overcoming a 'Dirty Little Secret',” Steve says,

“More than 75 percent of troubleshooting in optical networks

results from dirty fiber connectors, a stunning fact first learned

by high data rate equipment manufacturers, and later by

transport installation teams in the telecom sector. Many in the

cable industry may find this surprising, but the problem exists

and is quickly becoming intolerable as fiber networks expand”

[6].

In 1990 equipment manufacturers were experiencing a

plague of dirty fiber connectors, which lead to the

establishment of a team of industry experts who performed

practical research within a group called iNEMI. This research

is now one pillar of a pending international standard that

prescribes inspection procedures and pass/fail criteria for

manufacturers and operators of fiber-optic networks (IEC-

61300-3-35) [7].

Figures 1 and 2 show the light loss and back reflections

that occur when there is contamination in a connector. These

two figures were created by iNEMI as part of their

investigation.

Figure 1. How contamination affect light loss [7]

When contamination is present light levels can be

dramatically reduced, as seen in Figure 1. Contamination

produces two undesirable side effects, 1) loss of light, 2)

reflections. The loss of light reduces the distance that two

ports can reliable communicate. Back reflections cause optical

resonance in the laser, which creates optical noise further

reducing the distance for reliable communication.

Figure 2. How contamination affects light signals [7]

Cisco, a leading network equipment manufacture, also

recognizes that contamination is a problem; they created an

Inspection and Cleaning Procedures for Fiber-Optic

Connections document in which they state “Any

contamination in the fiber connection can cause failure of the

component or failure of the whole system. Even microscopic

327

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

dust particles can cause a variety of problems for optical

connections. A particle that partially or completely blocks the

core generates strong back reflections, which can cause

instability in the laser system. Dust particles trapped between

two fiber faces can scratch the glass surfaces. Even if a

particle is only situated on the cladding or the edge of the

endface, it can cause an air gap or misalignment between the

fiber cores which significantly degrades the optical signal.

 A 1-micrometer dust particle on a single-mode core

can block up to 1% of the light (a 0.05dB loss).

 A 9-micrometer speck is still too small to see without

a microscope, but it can completely block the fiber

core. These contaminants can be more difficult to

remove than dust particles” [8].

Figure 3 shows JDSU’s recommendation for acceptable levels

of contamination, which is based on iNMEMI investigation

and years of experience in the test and measurement world.

Figure 3. JDSU’s Recommendation for Contamination [6]

C. Temporally exceeding the capacity limits of a port/device

Part of a SAN administrator’s job is to insure that network

capacity is never exceeded. Normally this is not a problem;

ports and/or devices that are communally operating at or near

their capacity are easily identified. Transient loads however

are different, they can only be detected while they are

occurring, which makes them very elusive.

When a port/device reaches its capacity one of two things

occur, 1) frames are dropped or, 2) frames are buffered until

such time as they can be delivered, which can produce

undesirable side effects including latency and bottlenecks.

When frames are dropped or discarded in the network it

often results in damaged SCSI exchanges which need to be

timed out, and subsequently aborted and re-driven by the host

device driver. This type of error recovery is very costly given

the read/write timeout interval for SCSI retry is in the 20 to 60

second range depending on operating system. Error recovery

for command timeouts is generally tolerated at the application

and database layers as long as they are transient events;

however, recursive recovery for command time-outs is rarely

sustainable even when occurring at what seem to be relatively

low rates.

Latency and bottlenecks both create back pressure on

other devices throughout the SAN. These devices are forced to

wait until the condition is resolved before they can resume

sending and/or receiving frames. If the wait is long enough

(typically 500ms) the switch will begin discarding frames in

an attempt to limit the scope of the impact and command time-

out recovery will be required on all damaged SCSI exchanges.

D. Buffer to buffer credit problems

A port must have buffer-to-buffer credit in order to

originate a frame. Ports without buffer-to-buffer credit are

forced to wait until such time as they receive a credit, which

creates latency, bottlenecks, and/or opportunity for time-out

conditions. There are a number of different circumstances that

can lead to buffer-to-buffer credit shortages, these

circumstances are listed below:

1) Long Links or High Latency Links:

All ports start out with an initial buffer-to-buffer credit

that is established during the login process. The default initial

buffer-to-buffer credit value is a median value that is adequate

under normal conditions. However, if the links are long or the

link has a high latency then the default initial buffer-to-buffer

credit values will not be adequate for this environment.

2) Lossy Links:

When a link is experiencing errors it corrupts the traffic

flowing over it (frames and primitives). When a Receiver

Ready (R_Rdy) or a Virtual Circuit Ready (VC_Rdy) is

corrupted in flight they are discarded by the recipient, which

result in a loss of credit. Over time these credit losses can slow

a link to a crawl and severely impact its performance.

3) Low Speed Device in a Critical position:

When higher speed devices are communicating with lower

speed devices buffer-to-buffer credit is used to throttle the

frame origination of the high speed device. Normally,

networks are configured such that low speed devices are not in

critical paths. However, in the event of a link failure a device

could be placed in a critical path by a routing protocol such as

Fabric Shortest Path First (FPFS).

E. Compatibility issues

All Fibre Channel equipment vendors have a support

matrix where they document tested and supported

configurations. Most vendors do a good job of keeping this

information current within the first several years of a products

life cycle, however, in time the information becomes

incomplete and even misleading, which can result in

interoperability issues that can negatively impact performance

and/or availability. Additionally, vendor provided migration

paths from aging legacy hardware to newer offerings can also

introduce some risk. Many of the methods and functions used

to provide a migration path such as "switch interoperability

mode" do not receive the same level of testing across the full

range of configurations and conditions as best of bread

environments and therefore are at higher risk of encountering

defects. Moreover, configurations intended primarily to be

328

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

used to facilitate migrations often end up being a permanent

part of the environment which can further compromise

availability.

IV. EMERGING FACTORS

The incident rate for the SBND category of conditions has

been on the rise since SANs were initially introduced in the

early 1990s. This has occurred as a result of a multitude of

influencing factors: (1) Incremental increases in the speed of

network ports and devices have placed a higher demand on the

quality of the transport layer. Higher speed networks have a

higher sensitivity to degradations in link and device quality

which can result in transmission failures. (2) Incremental

increases in server capacity to drive IOPs made possible by

advancements in processor and bus speeds increases the

potential to drive port and device utilization beyond their

reliable limits. (3) Increases in port and device utilization have

also occurred due to increases in I/O density brought about by

the increasing use of virtualization of both servers and storage.

(4) Added complexity of SAN topologies associated to speed

matching required for maintaining legacy hardware, multi-site

replication architectures, as well as the sheer scale of networks

resulting from growth.

Additionally, the impact rate associated with SBND

conditions has also been on the rise due in large part to the

increased demand on transaction based workloads. In the past,

degradation in performance caused by SBND could often be

tolerated to some extent while the problem was being

diagnosed and resolved. This is rarely the case any longer

where any degradation in performance impeding the system’s

ability to sustain transaction volume and quality of service are

likely have negative consequences for the business and will

therefore be considered an outage.

As we move to new computing models such as integrated

infrastructure, software defined, and cloud it will become even

more imperative that these SBND conditions are dealt with

quickly and autonomously. Enabling system design and

development to meet these objectives requires a testing

approach and methodology that allows these systems to be

measured and evaluated on how they perform when subjected

to SBND conditions.

V. TEST APPROACH

In a proactive attempt to better address and improve test

and design around SBND customer failures, IBM introduced

an internal quality improvement effort to better define,

categorize and test SBND failures. As part of this ongoing

effort, the IBM Systems and Technology Group labs have

started introducing a variety of SBND symptoms into complex

system test environments using a four-pronged approach. 1.

Build a center of competency around identifying,

characterizing and debugging SBND failures in the I/O path.

2. Target modified reliability, availability and serviceability

(RAS) microcode to better identify and flag SBND failures for

troubled areas. 3. Targeted test case coverage related to SBND

failures, symptoms and characteristics. 4. Redefine the criteria

for success and failure of the new test cases to better reflect

the symptoms impacting data centers today. It is no longer

sufficient to measure success of error recovery based solely on

permanent vs. recoverable error conditions. It is common with

SBND conditions for service interruptions to occur yet all I/O

be recovered at various layers of the I/O stack, therefore, it is

clear that additional criteria that incorporates performance

attributes is required to effectively test for this condition.

Recursive error recovery while it may be successful has a

significant impact on throughput. Although error recovery will

always have a measurable impact on performance, error

recovery needs to be able to not only recover I/O but also

determine and execute actions necessary to remove failing

resources/paths from the I/O path. The speed and accuracy at

which error recovery is able to accomplish this is the critical

measurement of success in handing SBND conditions.

This paper will focus on the 3
rd

and 4
th

 prongs described

above as they relate to increased SBND testing and early

results.

A. Targeted test case coverage related to SBND failures,

symptoms and characteristics

In late 2010 the SAN test labs within IBM began technical

analysis on SBND errors and targeted ways to not only inject

SBND failures, but to proactively monitor the environment as

a whole for related defects and outages. This was a detailed

and controlled approach consisting of injects in three primary

locations within the I/O path, as outlined in Figure 4 below.

Figure 4. SAN Inject Points

Once the inject areas were established and test tools in

place we began targeted testing covering the most frequent

SBND symptoms and characteristics described in Tables I and

II. Table III below outlines some of the test injects symptoms

and test case examples that were created to inject SBND

symptoms into our SAN environments to monitor for proper

handling and unintended side effects across the environment.

TABLE III. SBND TEST SCENARIO INJECTS

Symptom: Types of Injects

Used:

Test Case

Examples:

329

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Severe

Performance

Degradation

1. Credit starvation

2. Inject Delay

1. Replace R_Rdy

primitives with

IDLE/ARB (FC), inject

PFCs for Class 3 traffic

(FCoE).
2. Hold all frames for x

microseconds

Mirror or

Replication times

exceed Service

Level Agreement

1. port flaps

2. drop frames
3. jitter

1. Port shut/no shut

activity (FC,VFC,Eth)
2. Drop every xth frame

in each direction

3. Corrupt sof, eof, crc
and other header data

I/O redrives or

near redrives

1. drop, corrupt or

re-order data frames
2. short holds of

frames

1. Target data frames

and drop or re-order
2. Hold all data frames

and/or transfer ready

frames for x seconds.

Application

sensitivity to

Recoverable I/O

Events

1. virtual link jams
2. link resets

3. corrupt frames

1. FDISC drops, VFC
jitter, VSAN jams

2. Inject NOS, OLS, LR

and/or LRR onto link
3. Corrupt bits in the FC

or FCoE header and

recalculate CRC

Product behaviors

related to

unforeseen

external trigger

events

1. protocol

violations

2. unexpected data
returns

3. partial recovery

scenarios

1. Inject protocol

deviations from

standard and monitor
destination handling

2. Return Check Cond

to write exchange
3. Drop data frame, then

drop subsequent ABTS,

allow re-driven ABTS

to flow through un-

jammed.

B. Redefine the criteria for success and failure of SBND test

cases to better reflect the symptoms impacting data centers

today

For years the industry has measured the success/failure of

error recovery test cases using permanent I/O error as the

measurement. In today’s client environments the majority of

SAN impacts events are occurring as a result of the

performance degradation associated with the error recovery,

they are not typically caused by permanent I/O errors.

Accordingly, verifying that SCSI and related error inject

scenarios recovered and did not result in a permanent I/O error

is no longer sufficient.

In today's high speed environments the time it took to fully

recover and the impact on other I/O (often times non-related

I/O) is essential. As Server consolidation and virtualization

trends continue, the impacts of non-permanent I/O errors will

continue to plague environments and cause severe

performance impacts until we change the way we test, develop

and measure recovery.

In order to evaluate the effectiveness of error recovery for

SBND conditions we had to redefine the test criteria around

performance attributes. The critical attributes measured and

quantified are 1) the amount of degradation that occurs during

the recovery and 2) the length of the recovery defined by the

time it takes for performance to return to nominal.

VI. RESULTS

Overall, we established a test suite consisting of over 100

unique SBND test cases, which are run in a controlled SAN

environment allowing us the capabilities to inject a single

error (or bucket combinations of errors) and monitor the

environment as a whole. The majority of the problems we

have identified are defects that would have been near

impossible to detect and correlate in a customer environment.

The ability to understand which variables are being injected at

which time and location in the SAN and watching all

associated host, switch and storage logs provides the ability to

correlate and connect events that otherwise would have

appeared to be non-related. Further, having packet level traces

at each point in the SAN allows the ability to deep-dive into

the traces. Figure 5 below illustrates one SBND inject example

where every 5 minutes the Not Operational primitive sequence

(NOS) was injected to simulate a bouncing or partially failed

port in the SAN. Figure 5 below shows the subsequent

behaviors following one of the NOS injects which resulted in

failed link initialization. For link initialization to complete

successfully following our NOS injects the primitive

sequences OLS/LR/LRR/IDLE/IDLE have to be traded

sequentially. In Figure 5, we can see one SAN vendor sent

extra R_RDY primitives and LRRs prior to sending the final

IDLE packets required to complete link initialization. These

extra packets prevented proper link initialization and resulted

in a substantial delay, impacting link recovery by 20 seconds.

Delays of this magnitude produce excessive service times as

seen by the application and may result in transaction timeouts,

as well as potentially expose application layer sensitivities

which could lead to an outage. After the SBND defect was

fixed and verified the recovery time dropped from 20 seconds

to just milliseconds.

Figure 5. Protocol Trace Review

The protocol trace analysis and frame level debug

functionality provides enhanced problem determination

capabilities, that when combined with associated host, switch

and storage logs present a clear picture of the problem and

greatly assists with cross-vendor problem determination.

Typical product system test environments and test plans are

designed to analyze and validate recovery capabilities in a

product or system offering along with potential

implementation architectures and then inject hard errors to

determine if products under test were behaving according to

specification and customer requirements. A high level

example would be a system test environment that had been

330

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

designed and implemented with full redundancy of all

components in order to minimize Service Level Agreement

(SLA) violations [10]. The test engineer would then introduce

failures of the components at injectable points in the

configuration to validate and verify the system offering would

meet SLA requirements. What this technique misses is the

“almost errors” that are not specified or articulated as

customer requirements. Additionally, there is some level of

subjectivity to a SBND event actually occurring and

convincing the designers that such a situation would or could

exist in the real world. A test engineer also has to use

reasonable judgment in designing the injection as any SBND

injection can be pushed to unrealistic limits and then the test

can be declared invalid. For example, when testing credit

starvation one must be cautious in the rate of R_Rdy (frame

buffer credit) drops that are injected as too many will cause

link resets, replenishing credits back to the agreed upon limit

during login. For SBND scenarios, the tester would want to

identify the buffer credits allotted during login and drop

R_Rdys at a rate which slowly impacts the environment

without causing an immediate link reset. It is this careful

balance that must be pursued in the test design and execution.

Having a test engineering center of competency for SBND

problems that can provide real world patterns of these

injections is critical to wining the subjective discussions

between test engineers and designers.

Since starting this work in 2010 we have seen a dramatic

spike in internally found SBND related defects being

identified and fixed in system test. In 2010 when we started

this testing only 5% of the defects found in SAN system test

were related to SBND error handling. In 2012-2013 SBND

related defects represent 52% of the overall defects opened by

the SAN system test teams. The defects opened are spread

across multiple vendors and I/O path components including

operating systems, host HBA/CNA firmware and drivers,

multipath drivers, SAN and FCoE switch code and storage

firmware and drivers. Although defect signatures are often

unique, there are common trends that emerge; we will examine

those trends in more detail below.

A. Common SBND defect trends

1) Bit errors from a simulated SBND device often lead to

error recovery escalation

Bit errors from a simulated SBND device often lead to

device driver error recovery escalation and have unintended

impacts on non-related I/O streams. Fibre Channel standards

allow for a single bit error to occur only once in a million bits

(1 in 10
12

) [10]. In a real world example at 16Gbs that would

allow for 56 bit errors per hour. On healthy links bit error

occurrences are typically much less frequent, but in any

environment occasional bit errors will occur and SBND testing

helps to confirm proper handling and recovery. SBND testing

related to bit errors typically consists of corrupting or flipping

bits at a given location in the environment at a predetermined

rate. Inject rates range from multiple errors per second to one

error per hour. The frequencies at which the errors are

injected greatly vary the results and handling practices. When

SBND errors are hit by the same host within a given period of

time (varies by host adapter vendor and multipathing option)

the host device often reacts by escalating recovery methods

and selecting more aggressive task management and error

recovery options. The SCSI protocol has a number of task

management function defined, some of which impact single

initiators tasks and others that affect all commands in the task

set or even all commands running within a SCSI target [11]

For example, in one scenario two errors encountered on the

same path within 10 seconds led the host device to issue a

SCSI Logical Unit (LUN) Reset to the associated storage

target LUN. A LUN reset will abort all in-flight commands

for the associated LUN and take the LUN back to power on

state.

SCSI Target Reset is another task management option which

is even more severe than the LUN Reset given its broader

scope. A Target Reset will abort all in-flight commands for all

LUNs within a given storage target and then take them all

back to power on state. It is typically used after other forms of

error recovery failed or during frequent SBND events. Target

reset was obsoleted by the standard in 2002 due to the harsh

impacts it has on environments and non-related I/O streams,

however, it is still in active use by multiple adapter vendors

today [11].

In our SBND test environments we give special attention to

target resets and review each scenario in which they were

issued. The goal is to reduce the use of target reset when a

different form of task management could be used. In a SBND

environment if one host side link is plagued with errors and

that host aggressively uses task management commands

including Target Reset all other host devices zoned and setup

on the shared storage target will be continually impacted. This

will result in a large scale performance impact and a difficult

to isolate SBND environment impact condition. In the field

these problems are challenging to debug as often symptoms

first show up on non-related hosts and it takes technical

experts and combing through host, switch and storage logs to

ultimately identify a single rogue host device impacting the

overall environment.

Ideally, in the case of a host device that has a link plagued

with SBND errors the multipath driver would identify the

problem and remove the paths from their active selection lists,

thereby preventing further errors and potential impact to non-

related hosts and devices.

In the past year advancements have been made in multipath

handling of SBND errors as a result of SBND testing, design

reviews and client impact events related to SBND errors.

Several multipath drivers are becoming more aggressive at

failing paths and more cautious to continually return those

same paths to service.

2) Error injects on ISLs are harder to detect by multipath

drivers, typically paths are quickly taken offline then put back

online within a few seconds

Many of the classic SBND symptoms are caused by a

partially failed or flaky ISL. Intermittent problems are difficult

to assess, ultimately the fabric must determine if a problem is

critical enough to disable the ISL port [12]. Buffer credit

331

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

depletion, link flapping or marginal cable or SFP components

are most often the cause of SBND symptoms on ISLs. These

symptoms are often detected by frame discards, offline/online

events or cyclic redundancy check (CRC) errors on ISL switch

ports. SBND ISLs can cause intermittent I/O failures,

application layer timeouts and severe performance

degradation.

To understand the impacts on the environment lets first

explore how multipath health checkers typically work. Host

multipath software characteristically uses Test Unit Ready

commands to check health status of a path. After one or two

successful Test Unit Ready commands with good status the

path is assumed to be healthy and brought back online if

previously in an offline state. In the case of SBND ISLs the

errors are intermittent and multipath has no means of

correlating the errors across time and detecting the path as

SBND.

The end result of SBND ISLs combined with a multipath

driver not equipped to handle SBND failures is we see I/O

exchanges fail and the associated paths are marked as failed,

however, shortly after (typically around 2 seconds) the paths

are brought back online. The disproportionately high number

of SCSI I/O commands versus Test Unit Ready commands

makes it likely that an I/O command will fail and a link

maintenance command will succeed. This leads to the

offline/online cycling of paths which could continue until

manual intervention or the path degrades to a hard fail.

3) Virtualization Components have higher defect rates

related to SBND.

Virtualization technologies provide many efficiencies and

capabilities and continue to advance and mature. However,

virtualization also creates new challenges and debug scenarios

for network administrators and technology vendors. The

consolidation of virtual servers and virtual links adds

complexity and can create bottlenecks, sporadic load patterns

and makes it harder to troubleshoot and identify SBND

components in a complex virtualized environment.

 Links shared across multiple initiators are harder to debug

and the sporadic nature of SBND events coupled with

virtualized environments makes these errors difficult for

multipath drivers to detect and respond appropriately to.

Additionally, some server virtualization technologies separate

link layer and SCSI layer management responsibilities into

entities that reside on different virtual images. This separation

adds additional complexity and makes it more difficult for the

firmware, driver stack(s) and multipathing software to stay in-

sync and respond properly to SBND events.

Host side virtualization related SBND defects often come

down to the host adapter firmware detecting SBND events but

not passing detailed information up the stack to the SCSI

emulation layer so that the device drivers and multipath

drivers can make informed pathing decisions. The same

concept also holds true for the storage virtualization layer,

SBND defects often result from communication breakdowns

and faulty state management synchronization between the

virtualization layer and backend storage controller(s).

4) Buffer to Buffer Credit Recovery

Buffer to buffer credit recovery is basic and key

functionality in a SAN environment. SBND Credit related

defects typically fell into two categories; devices who did not

handle loss of credit(s) properly and devices that could not

perform credit recovery properly. For devices that did not

handle the loss of credit(s) properly typical symptoms

included large performance impacts or flat lines following the

loss of a single or a few credits. For devices that could not

perform credit recovery properly the typical behavior was

often a credit reset attempt that did not complete properly and

would lead to a link reset. Fig. 6 provides one example of a

target device that could not properly perform credit recovery.

Essentially, anytime the target device port or the connected

switch port ran out of credit it ultimately resulted in a

temporary loss of access event simultaneously for every host

in the fabric zoned to that target port. Due to the devices

inability to properly handle credit resets the port would fail,

loose-sync, then re-initialize and log back in with the fabric.

From the initiator side, paths to that storage port would fail,

multipathing would fail over and all open exchanges would

have to be recovered and redriven. Once the target device was

back online and logged in with the switch the hosts would re-

login with the target device and lost paths would recover. Had

the initial credit recovery attempt worked the credit reset

would have been seamless and unnoticeable to the related

hosts.

Figure 6: Credit Reset Causes Link Reset Trace

B. Closed Loop Process for Field Problems

IBM Systems test engineers are often brought in to help

debug, recreate, analyze or test fixes for client field problems.

Many test engineers are also assigned as customer advocates

to client accounts that match their industry and technical areas

of expertise. These client interactions help the test

organizations form tighter client relationships and provide key

field data to be shared with IBM test and development labs via

closed-loop processes designed to improve test coverage and

client experiences. These models help us to improve test

coverage, analyze test escapes and perform coverage analysis

across the numerous IBM System Test labs worldwide.

As SBND errors are gaining recognition and focus our

client relations help us to better understand the impacts these

events have on various network design layouts.

332

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Understanding the implications of these errors on client

environments help us to test and architect future solutions that

will better handle and coordinate SBND events, ultimately

reducing the impacts they will have on future environments.

Outlined below is one example of SBND handling

enhancements that were submitted as a result of the closed

loop process analysis after client impact events.

1) Multipath Maintenance Improvements

A large client experienced a storm of command

timeouts which escalated to LUN and Target Resets

failure conditions resulting in serious performance

degradation and application failures. The symptoms

stemmed from a SBND ISL that was toggling up/down.

The AIX MPIO and SDDPCM multipath software would

fail when the ISL path went down and recover after health

check commands succeeded on these paths, thus

continually failing and recovering the problematic paths.

After debug involvement and technical review AIX MPIO

and SDDPCM multipath enhancements were made to

coordinate failures across time to better detect and handle

SBND errors and prevent the perpetual failure and rapid

recovery storms of SBND related paths. Starting with

SDDPCM v2.6.3.0 a new feature and timeout_policy

device attribute of disable_path was introduced. The

disable_path attribute will permanently disable a path (not

the last path) if it experiences timeouts above the set

threshold within a given period of time. The path will stay

in the disabled state, until the user manually recovers it

[13].

C. SBND Implications on Design Review Process

Traditional design reviews focused on network path failures

and error recovery based on two traditional category of events;

permanent and temporary. Permanent failures are typically

the easiest failures to design for and have solid coverage in

design reviews. Temporary or transient errors historically

have good design review coverage as well but the number of

possible transient errors is much greater than permanent

failures, making full coverage more challenging to review than

permanent failures.

SBND errors have only recently been added to design

reviews. The nature and unpredictability of SBND failures

makes design reviews for SBND a constant challenge. As we

continue to further understand SBND errors and their

implications on complex environments we often find that a fix

for one situation sometimes further aggravates another. There

is a definite balance to be considered when determining how

aggressive we can be when addressing SBND conditions and

still ensure implemented solutions benefit all environments.

Recent SBND errors have also uncovered additional

temporary or transient error coverage review requirements.

Design and code review processes have been updated to

review for any single try events that may exist in a code path.

A single try event mixed with SBND errors or even a single

transient error impacting the frame could result in an

unexpected failure.

For example, in our SBND testing we have corrupted fabric

login (FLOGI) and fabric discovery (FDISC) extended link

services frames, many devices were able to handle these

corruptions and re-drive login processes, however, we also

discovered initiator and storage targets that were unable to

recover from these injects. The implications of this testing

was if SBND errors impacted extended link service login

frames the devices would not be able to recover and would not

complete fabric login. These SBND defects were opened with

the product vendors and SBND impacts on extended link

services were also added to the closed loop design review

process.

VII. CONCLUSION AND FUTURE WORK

As complexity, virtualization, business criticality and mixed

vendor solutions continue to grow in the IT industry and

customer solutions, the need for highly-skilled SBND low-

level testing will also continue to increase. In an industry

where quality is expected and customer defects can cause

costly outages it is no longer sufficient to test products for

correct recovery only in hard failure scenarios. We need to

continue to put increased focus on solution testing, and further

on solution injects and handling of hard failures and SBND

failures on any component within the environment. We also

need to reevaluate our test pass criteria and design points for

complex SAN environments and update them to not only

evaluate and design for recovery, but to also evaluate the

impact SBND error(s) have on the environment and

performance. We need to continue to focus on solutions that

can rapidly detect, isolate and address SBND components in

an environment. Good progress has been made since we first

started this focus in 2010; however, there is still considerable

work to be done.

 As we continue to expand SBND testing scope described

in this paper, we are concurrently pursuing plans to continue

this effort with a second phase targeting new inject methods

and focus on spreading SBND test capabilities and awareness

across IBM test and partner test labs worldwide. Given the

economic costs of the tools to inject SBND scenarios and the

skill required we are also innovating in economically scalable

methods to do this type of testing in more diverse testing and

test skill environments. We also continue to drive a close-loop

feedback process between IBM test, development and support

teams and across OEM partners, ensuring that the SBND

defects that have been found are fixed and lessons learned are

applied to future product development and monitoring

capabilities.

 It is our hope and vision that impacts of SBND failures be

understood across the industry and that more SBND testing

and proactive measures are taken to help minimize the impacts

these failures have on the environments of the future.

VIII. ACKNOWLEDGMENTS

The authors would like to thank their employer,

International Business Machines (IBM) for supporting their

333

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

efforts to produce educational content. We would also like to

thank those parties who provided quotations and background

art for use in this paper.

REFERENCES

[1] Tara Astigarraga, Michael Browne, and Lou Dickens “Sick But

Not Dead Testing – A New Approach to System Test”, VALID

2012, ISBN: 978-1-61208-233-2

http://www.thinkmind.org/index.php?view=article&articleid=vali

d_2012_1_30_40098 (last accessed 12/09/2013)

[2] A. Hanemann, D. Schmitz, and M. Sailer "A framework for

failure impact analysis and recovery with respect to service level

agreements", Services Computing, 2005 IEEE International

Conference, Content resides on, vol. 2, no., pp. 49- 56 vol. 2, 11-

15 July 2005 doi: 10.1109/SCC.2005.10

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=15244

23&isnumber=32587 (last accessed 12/09/2013)
[3] ATA8-ACS, ANSI Draft Standard T13 Project 1699D, 2004.

http://www.t13.org/documents/UploadedDocuments/docs2007/D
1699r4a-ATA8-ACS.pdf (last accessed 12/09/2013)

[4] Ian MacQuarrie, William Carlson, Jim O’Connor, Limei Shaw

and Shawn Wright, “Configuring SDDPCM for High
Availability”, IBM Redpaper, October 2012.
http://www.redbooks.ibm.com/redpapers/pdfs/redp4928.pdf

(last accessed 12/09/2013)

[5] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and Arkady

Kanevsky “Are Disks the Dominant Contributor for Storage

Failures – A Comprehensive Study of Storage Subsystem Failure

Characteristics”, USENIX Conference, Storage Technologies

2008 (FAST’08),

https://www.usenix.org/legacy/event/fast08/tech/full_papers/jiang

/jiang_html/paper.html (last accessed 12/09/2013)
[6] Steve Lytle, “Fiber Connector Cleanliness – Overcoming a Dirty

Little Secret”, October 2008.

http://www.cablefax.com/tech/operations/bestpractices/31826.ht

ml (last accessed 12/09/2013).

[7] IEC-61300-3-35, IEC Standard, 2009, avalable for purchase at

http://kandk-fi-

bin.directo.fi/@Bin/f1c7665a67b79ef92a25406cc614ff18/138667

3907/application/pdf/101256/IEC_61300-3-35_Standard.pdf (last

accessed 12/09/2013)

[8] Cisco Corporation, “Inspection and Cleaning Procedures for

Fiber-Optic Connections”, September, 2006.

http://www.cisco.com/en/US/tech/tk482/tk876/technologies_whit

e_paper09186a0080254eba.shtml (last accessed 12/09/2013),
[9] B. Rogers, “z/OS 1.11 Sysprog Goody Bag”, SHARE Session

2228, March 2010.

http://mobile.share.org/client_files/SHARE_in
Seattle/S2228RR092920.pdf (last accessed 12/09/2013).

[10] Jon Tate, Pall Beck, Hector Hugo Ibarra, Shanmuganathan

Kumaravel and Libor Miklas “Introduction to Storage Area
Networks and System Networking”, November 2012, ISBN
0738437131.
http://www.redbooks.ibm.com/redbooks/pdfs/sg245470.pdf (last
accessed 12/09/2013).

[11] Lou Dickens, “Fibre Channel for the 21st Century” February,

2013, ISBN 978-1-939883-00-1 pp. 219-223

www.yahweheducation.com] (last accessed 12/09/2013).

[12] Brocade Corporation, “SAN Fabric Resiliency Best Practice

v2.0”, July 2013.

http://www.brocade.com/downloads/documents/best_practice_gui

des/san-fabric-resiliency-bp.pdf (last accessed 12/09/2013).

[13] IBM Multipath Subsystem Device Driver Path Control
Module,(PCM) Version 2.6.3.0 Readme for AIX, April 2013.
ftp://ftp.software.ibm.com/storage/subsystem/aix/2.6.3.0/sddpc
m.readme.2.6.3.0.txt (last accessed 12/09/2013).

[14] FC-FS-3, ANSI Standard 5.2.4-5.2.5, 2008.
http://www.t11.org/t11/stat.nsf/1158203694fa939f852566dc004
9e810/a7bf7ee8c25bd7b9852572e50079eed4?OpenDocument
(last accessed 12/09/2013).

[15] FC-MI, ANSI Standard 3.2.14-3.2.34, 2001.
http://www.t11.org/t11/stat.nsf/1158203694fa939f852566dc004
9e810/86a95105bd279d148525772000567d1d?OpenDocument
(last accessed 12/09/2013).

334

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

