
LUT Saving in Embedded FPGAs for Cache
Locking in Real-Time Systems

Antonio Martı́ Campoy, Francisco Rodrı́guez-Ballester, and Rafael Ors Carot
Departamento de Informática de Sistemas y Computadores

Universitat Politècnica de València
46022, València, Spain

e-mail: {amarti, prodrig, rors}@disca.upv.es

Abstract—In recent years, cache locking have appeared as a
solution to ease the schedulability analysis of real-time systems
using cache memories maintaining, at the same time, similar
performance improvements than regular cache memories. New
devices for the embedded market couple a processor and a
programmable logic device designed to enhance system flexibility
and increase the possibilities of customisation in the field. This
arrangement may help to improve the use of cache locking in
real-time systems. This work proposes the use of this embedded
programmable logic device to implement a logic function that
provides the cache controller the information it needs in order to
determine if a referenced main memory block has to be loaded
and locked into the cache; we have called this circuit a Locking
State Generator. Experiments show the requirements in terms of
number of hardware resources and a way to reduce them and
the circuit complexity. This reduction ranges from 50% up to
80% of the number of hardware resources originally needed to
build the Locking State Generator circuit.

Keywords—Real-Time Systems; Cache Locking; FPGA; Memory
Hierarchy

I. INTRODUCTION

In a previous work [1], the authors proposed and evaluated
the use of an embedded Field-Programmable Gate Array
(FPGA) to implement a lockable cache. The FPGA was used
to build a logic circuit that signals to the cache controller if
a main memory block should be loaded and locked in cache.
This paper extends previous work presenting a way to reduce
hardware resources when implementing the logic circuit by
means of an FPGA.

Cache memories are an important advance in computer
architecture, offering a significant performance improvement.
However, in the area of real-time systems, the use of cache
memories introduces serious problems regarding predictability.
The dynamic and adaptive behaviour of a cache memory
reduces the average access time to main memory, but presents
a non deterministic fetching time [2]. This way, estimating
execution time of tasks is complicated. Furthermore, in pre-
emptive multi-tasking systems, estimating the response time
of each task in the system becomes a problem with a solution
hard to find due to the interference on the cache contents pro-
duced among the tasks. Thus, schedulability analysis requires
complicated procedures and/or produces overestimated results.

In recent years, cache locking have appeared as a solution
to ease the schedulability analysis of real-time systems using

cache memories maintaining, at the same time, similar perfor-
mance improvements of systems populated with regular cache
memories. Several works have been presented to apply cache
locking in real-time, multi-task, preemptive systems, both for
instructions [3][4][5][6] and data [7]. In this work, we focus
on instruction caches only, because 75% of accesses to main
memory are to fetch instructions [2].

A locked cache is a cache memory without replacement of
contents, or with contents replacement in a priori and well
known moments. When and how contents are replaced define
different uses of the cache locking mechanism.

One of the ways to use cache locking in preemptive real-
time systems is called dynamic use [3]. In the dynamic use
cache contents change only when a task starts or resumes
its execution. From that moment on cache contents remain
unchanged until a new task switch happens. The goal is that
every task may use the full size of the cache memory for its
own instructions.

The other possible use of cache locking is called static use
[8][9]. When a cache is locked in this way the cache contents
are pre-loaded on system power up and remain constant while
the system runs. For example, a simple software solution may
be used to issue processor instructions to explicitly load and
lock the cache contents. How the cache contents are pre-loaded
is irrelevant; what is important is that the cache behaviour is
now completely deterministic. The drawback of this approach
is that the cache must be shared among the code of all tasks
so the performance improvement is diminished.

This paper focuses on the dynamic use of locked cache
and is organized as follows. Section II describes previous
implementation proposals for dynamic use of cache locking
in real-time systems, and the pursued goals of this proposal
to improve previous works. Section III presents a detailed
implementation of the Locking State Generator (LSG), a logic
function that signals the cache controller whether to load a
referenced main memory block in cache or not. Section IV
presents some analysis about the complexity of the proposal,
and then Section V shows results from experiments carried out
to analyse resource requirements in the LSG implementation
in terms of number of LUTs (Look-Up Tables) needed to build
the circuit. Section VI presents a way to reduce the complexity
of the LSG by means of reusing LUTs when implementing the
mini-terms of the LSG logic function. Finally, this paper ends
with the ongoing work and conclusions.

190

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 1: The LSG architecture.

II. STATE OF THE ART

Two ways of implementing dynamic use of cache locking
can be found in the bibliography. First of them, [3], uses
a software solution, without hardware additions and using
processor instructions to explicitly load and lock the cache
contents. This way, every time a task switch happens, the
operating system scheduler runs a loop to read, load and lock
the selected set of main memory blocks into the cache memory
for the next task to run. The list of main memory blocks
selected to be loaded and locked in cache is stored in main
memory.

The main drawback of this approach is the long time
needed to execute the loop, which needs several main memory
accesses for each block to be loaded and locked.

In order to improve the performance of the dynamic use of
cache locking, a Locking State Memory (LSM) is introduced in
[4]. This is a hardware solution where the locking of memory
blocks in cache is controlled by a one-bit signal coming from
a specialized memory added to the system. When a task switch
happens, the scheduler simply flushes the cache contents and
a new task starts execution, fetching instructions from main
memory. But not all referenced blocks during task execution
are loaded in cache, only those blocks selected to be loaded
and locked are loaded in cache. In order to indicate whether a
block has to be loaded or not the LSM stores one bit per
main memory block. When the cache controller fetches a
block of instructions from main memory, the LSM provides
the corresponding bit to the cache controller. The bit is set to
one to indicate that the block has to be loaded and locked in
cache, and the cache controller stores this block in cache. If
the bit is set to zero, indicates that the block was not selected
to be loaded and locked in cache, so the cache controller
will preclude the store of this block in cache, thus change
in cache contents are under the control of the LSM contents
and therefore under the control of system designer.

The main advantage of the LSM architecture is the reduction
of the time needed to reload the cache contents after a
preemption compared against the previous, software solution.

The main drawback of the LSM is its poor scalability. The
size of the LSM is directly proportional to main memory and
cache-line sizes (one bit per each main memory block, where
the main memory block size is equal to the cache line size).

This size is irrespective of the size of the tasks, or the number
of memory blocks selected to be loaded and locked into the
cache. Moreover, the LSM size is not related to the cache size.
This way, if the system has a small cache and a very large main
memory, a large LSM will be necessary to select only a tiny
fraction of main memory blocks.

In this work, a new hardware solution is proposed, where
novel devices found in the market are used. These devices
couples a standard processor with an FPGA, a programmable
logic device designed to enhance system flexibility and in-
crease the possibilities of customisation in the field. A logic
function implemented by means of this FPGA substitutes the
work previously performed by the LSM. For the solution
presented here hardware complexity is proportional to the size
of system, both software-size and hardware-size. Not only the
circuit required to dynamically lock the cache contents may
be reduced but also those parts of the FPGA not used for the
control of the locked cache may be used for other purposes.
We have called this logic function a Locking State Generator
(LSG) and think our proposal simplifies and adds flexibility to
the implementation of a real-time system with cache locking.

III. THE PROPOSAL: LOCKING STATE GENERATOR

Recent devices for the embedded market [10][11] couple a
processor and an FPGA, a programmable logic device designed
to enhance system flexibility and increase the possibilities
of customisation in the field. This FPGA is coupled to an
embedded processor in a single package (like the Intel’s Atom
E6x5C series [10]) or even in a single die (like the Xilinx’s
Zynq-7000 series [11]) and may help to improve the use of
cache locking in real-time systems.

Deciding whether a main memory block has to be loaded
in cache is the result of a logic function with the memory
address bits as its input. This work proposes the substitution
of the Locking State Memory from previous works by a logic
function implemented by means of this processor-coupled
FPGA; we have called this element a Locking State Generator
(LSG).

Two are the main advantages of using a logic function
instead of the LSM. First, the LSG may adjust its complexity
and circuit-related size to both the hardware and software
characteristics of the system. While the LSM size depends only
on the main memory and cache-line sizes, the number of circuit
elements needed to implement the LSG depends on the number
of tasks and their sizes, possibly helping to reduce hardware.
Second, the LSM needs to add a new memory and data-bus
lines to the computer structure. Although LSM bits could be
added directly to main memory, voiding the requirement for
a separate memory, in a similar way as extra bits are added
to ECC DRAM, the LSM still requires modifications to main
memory and its interface with the processor. In front of that
the LSG uses a hardware that is now included in the processor
package/die. Regarding modifications to the cache controller,
both LSM and LSG present the same requirements as both
require that the cache controller accepts an incoming bit to
determine whether a referenced memory block has to be loaded
and locked into the cache or not.

191

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 1 shows the proposed architecture, similar to the
LSM architecture, with the LSG logic function replacing the
work of the LSM memory.

A. Implementing logic functions with an FPGA
An FPGA implements a logic function combining a number

of small blocks called logic cells. Each logic cell consists of
a Look-Up Table (LUT) to create combinational functions, a
carry-chain for arithmetic operations and a flip-flop for storage.
The look-up table stores the value of the implemented logic
function for each input combination, and a multiplexer inside
the LUT is used to provide one of these values; the logic
function is implemented simply connecting its inputs as the
selection inputs of this multiplexer.

Several LUTs may be combined to create large logic func-
tions, functions with input arity larger than the size of a single
LUT. This is a classical way of implementing logic functions,
but it is not a good option for the LSG: the total number of
bits stored in the set of combined LUTs would be the same as
the number of bits stored in the original LSM proposal, just
distributing the storage among the LUTs.

1) Implementing mini-terms: In order to reduce the number
of logic cells required to implement the LSG, instead of
using the LUTs in a conventional way this work proposes to
implement the LSG logic function as the sum of its mini-terms
(the sum of the input combinations giving a result of 1).

This strategy is not used for regular logic functions because
the number of logic cells required for the implementation
heavily depends on the logic function itself, and may be even
larger than with the classical implementation. However, the
arity of the LSG is quite large (the number of inputs is the
number of memory address bits) and the number of cases
giving a result of one is very small compared with the total
number of cases, so the LSG is a perfect candidate for this
implementation strategy.

A mini-term is the logic conjunction (AND) of the input
variables. As a logic function, this AND may be built using
the LUTs of the FPGA. In this case, the look-up table will
store a set of zero values and a unique one value. This one
value is stored at position j in order to implement mini-term
j. Figure 2 shows an example for mini-term 5 for a function
of arity 3, with input variables called C, B and A, where A is
the lowest significant input.

For the following discussion we will use 6-input LUTs, as
this is the size of the LUTs found in [11]. Combining LUTs to
create a large mini-term is quite easy; an example of a 32-input
mini-term is depicted in Figure 3 using a two-level associative
network of LUTs. Each LUT of the first level (on the left
side) implements a 1/6 part of the mini-term (as described in
the previous section). At the second level (on the right side), a
LUT implements the AND function to complete the associative
property.

2) Sum of mini-terms: For now, we have used 7 LUTs to
implement one mini-term. To implement the LSG function
we have to sum all mini-terms that belong to the function;
a mini-term k belongs to a given logic function if the output
of the function is one for the input case k. In this regard,

Fig. 2: Implementing mini-term 5 of arity 3 (C, B, A are the
function inputs).

Fig. 3: Implementing a 32-input mini-term using 6-input LUTs.

two questions arise: first, how many mini-terms belong to the
function, and second, how to obtain the logic sum of all of
them.

The first question is related to the software parameters of
the real-time system we are dealing with. If the real-time
system comprises only one task, the maximum number of main
memory blocks that can be selected to load and lock in cache
is the number of cache lines (L). If the real-time system is
comprised of N tasks this value is L × N because, in the
dynamic use of cache locking, each task can use the whole
cache for its own instructions.

A typical L1 instruction cache size in a modern processor is
32KB; assuming each cache line contains four instructions and
that each instructions is 4B in size, we get L = (32KB/4B)/4
instructions = 2K lines.

This means that, for every task in the system, the maximum
number of main memory blocks that can be selected is around

192

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 4: Implementing the LSG function.

2000. Supposing a real-time system with ten tasks, we get a
total maximum of 20 000 selectable main memory blocks. That
is, the LSG function will have 20 000 mini-terms. Summing all
these mini-terms by means of a network of LUTs to implement
the logic OR function with 20 000 inputs would require around
4000 additional LUTs in an associative network of 6 levels.

The solution to reduce the complexity of this part of the
LSG is to use the carry chain included in the logic cells for
arithmetic operations. Instead of a logic sum of the mini-terms,
an arithmetic sum is performed: if a binary number in which
each bit position is the result of one of the mini-terms is
added with the maximum possible value (a binary sequence
consisting of ones), the result will be: i) the maximum possible
value and the final carry will be set to zero (if the outputs of
all mini-terms are zero for the memory address used as input
to the LSG), or ii) the result will be M −1 and the final carry
will be set to one (being M > 0 the number of mini-terms
producing a one for the memory address). Strictly speaking,
mini-terms are mutually exclusive, so one is the maximum
value for M . In the end, the arithmetic output of the sum is
of no use, but the final carry indicates if the referenced main
memory block has to be loaded and locked in cache. Figure
4 shows a block diagram of this sum applied to an example
of 32 mini-terms, each one nominated MTk.

Using the carry chain included into the LUTs which are
already used to calculate the LSG function mini-terms produce
a very compact design. However, a carry chain adder of 20 000
bits (one bit per mini-term) is impractical, both for perfor-
mance and routing reasons. In order to maintain a compact
design with a fast response time, a combination of LUTs and
carry-chains are used, as described below.

First, the 20 000 bits adder is split into chunks of reasonable

size; initial experiments carried out indicate this size to be
between 40 and 60 bits in the worst case, resulting into a set of
500 to 330 chunks. All these chunk calculations are performed
in parallel using the carry chains included into the same logic
cells used to calculate the mini-terms, each one providing a
carry out. These carries have to be logically or-ed together to
obtain the final result. A set of 85 to 55 6-input LUTs working
in parallel combine these 330 to 500 carries, whose outputs are
arithmetically added with the maximum value using the same
strategy again, in this case using a single carry chain. The
carry out of this carry chain is the LSG function result.

IV. EVALUATION OF THE LSG

The use of the LSG to lock a cache memory is a flexible
mechanism to balance performance and predictability as it
may have different modes of operation. For real-time systems,
where predictability is of utmost importance, the LSG may
work as described here; for those systems with no temporal
restrictions, where performance is premium, the LSG may be
easily forced to generate a fixed one value, obtaining the same
cache behaviour with a locked cache than with a regular cache.
It can even be used in those systems mixing real-time and non
real-time tasks, as the LSG may select the proper memory
blocks for the former in order to make the tasks execution
predictable and provide a fixed one for the latter to improve
their performance as with a regular cache memory.

Initial experiments show timing is not a problem for the LSG
as its response time has to be on par with the relatively slow
main memory: the locking information is not needed before
the instructions from main memory. Total depth of the LSG
function is three LUTs and two carry chains; register elements
are included into the LSG design to split across several clock
cycles the calculations in order to increase the circuit operating
frequency and to accommodate the latency of main memory
as the LSG has to provide the locking information no later the
instructions from main memory arrive. Specifically, the carry
out of all carry chains are registered in order to increase the
operating frequency.

Regarding the circuit complexity, the following calculations
apply: although the address bus is 32 bits wide, the LSG,
like the cache memory, works with memory blocks. Usually a
memory block contains four instructions and each instruction
is 4B, so main memory blocks addresses are actually 28 bits
wide.

Generating a mini-term with a number of inputs between
25 to 30 requires 6 LUTs in a two-level network. Supposing
a typical cache memory with 2000 lines, 12 000 LUTs are
required. But if the real-time system has ten tasks, the number
of LUTs needed for the LSG grows up to 120 000. It is a
large number, but more LUTs may be found on some devices
currently available [11]. Calculating the logic OR function of
all these mini-terms in a classical way adds 4000 more LUTs
to the circuit, but the described strategy merging LUTs and
carry chains reduce this number to no more than 500 LUTs in
the worst case.

The estimated value of 120 000 LUTs required to build the
LSG function is an upper bound, and there are some ways this

193

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE I: Cache sizes used in experiments

Size Size Size
(lines) (instructions) (bytes)

1 64 256 1K
2 128 512 2K
3 256 1K 4K
4 512 2K 8K
5 1024 4K 16K
6 2048 8K 32K
7 4096 16K 64K

number may be reduced. A real-time system with five tasks
will need just half this value of LUTs. The same is true if the
cache size is divided by two. Following sections show some
experiments and a easy way to reduce the total number of
LUTs.

V. EXPERIMENTS

Previous sections have detailed, in a theoretical way, an
upper bound of the number of LUTs required to implement
the LSG. Experiments conducted in this section provide more
realistic values, and identify both hardware and software
characteristics that affect the number of required LUTs in order
to implement the LSG for a particular system.

Regarding hardware characteristics the size of cache mem-
ory, measured in lines, is the main parameter because this
number of lines is the maximum number of blocks a task may
select to load and lock in cache. And, in a first approach,
every block selected to be locked needs a mini-term in the
LSG implementation in order to identify it when it is fetched
by the processor.

As described previously, it is not possible to build a mini-
term with only one LUT, because the number of inputs of the
latter, ranging from 4 up to 7 inputs [12] in today devices is
not enough to accommodate the inputs of the former.

Mini-terms are then implemented combining several LUTs.
Thus the number of inputs of LUTs is also a main characteris-
tic, because the lower the number of LUT inputs, the higher the
number of LUTs needed to build a mini-term. Finally, width of
address bus (measured in bits) is also a parameter to be taken
into account, because the number of variables in a mini-term
is the number of lines in the address bus.

Regarding software parameters, the number of tasks in the
system presents the larger impact in the number of needed
LUTs. In dynamic use of cache locking, irrespective of the
use of software reload, LSM or the here proposed LSG, every
task in the system may select as many blocks to load and
lock in cache as cache lines are available. So, the number of
LUTs needed to build the LSG circuit will be a multiple of
the number of system tasks.

Other software parameters like size, periods or structure of
tasks do not affect the number of LUTs needed, or their effect
is negligible.

In order to evaluate the effect of these characteristics,
and to obtain realistic values about the number of required
LUTs, experiments described below have been accomplished.

TABLE II: Main characteristics of systems used in experiments

System Number of tasks Task average size
(blocks)

1 4 849
2 5 158
3 4 429
4 4 641
5 5 424
6 3 855
7 8 205
8 3 1226
9 5 617

10 3 1200
11 3 476
12 3 792

Hardware architecture and software systems are the same, or
a subset of those described and used in [3][13].

The hardware architecture is based on the well-known MIPS
R2000 architecture, added with a direct-mapping instruction
cache memory (i-cache). The data size of this i-cache range
from 64 up to 4096 lines. The size of one cache line is the same
as one main memory block, and it is 16B (four instructions
of four bytes each). Seven cache sizes have been used, as
described in Table I. Although MIPS R2000 address bus is
32 bits wide, it has been reduced to 16 bits in the following
experiments, giving a maximum size of 64KB of code.

Regarding the number of LUT inputs, four cases have been
studied: LUTs with 4, 5, 6, and 7 input variables.

Regarding the software used in experiments, tasks are arti-
ficially created to stress the cache locking mechanism. Main
parameters of tasks are defined, such as the number of loops
and their nesting level, the size of the task, the size of its loops,
the number of if-then-else structures and their respective sizes.
A simple tool is used to create such tasks. The workload of
any task may be a single loop, if-then-else structures, nested
loops, streamline code, or any mix of these. The size of a task
code may be large (close to the 64KB limit) or short (less than
1KB). 12 different sets of tasks are defined, and with these sets
a total of 24 real-time systems have been created modifying
the periods of the tasks. Task periods are hand-defined to make
the system schedulable, and the task deadlines are set to be
equal to the task period. Finally, the priority is assigned using
a Rate Monotonic policy (the shorter the period the higher the
priority). Table II shows the main characteristics of the systems
used for this experimentation.

Using cache locking requires a careful selection of those
instructions to be loaded and locked in cache. It is possible to
make a random selection of instructions: that would provide
predictability to the temporal behaviour of system, but there
would be no warranty about system performance. Several
algorithms have been proposed to select cache contents [14].

For this work, a genetic algorithm is used. The target of the
genetic algorithm is to find the set of main memory blocks that,
loaded and locked in cache, provides the lower utilisation for
the whole system. In order to achieve this objective, the genetic
algorithm gets as inputs the number of tasks, their periods
and temporal expressions [15] that are needed to calculate
Worst Case Execution Time and Worst Case Response Time.

194

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 5: Number of 4-inputs LUTs required.

Fig. 6: Number of 5-inputs LUTs required.

Also the cache parameters like line size, total cache size,
mapping policy and hit and miss times are inputs to the genetic
algorithm.

The solution found by the genetic algorithm, that is, the
set of main memory blocks selected for each task in the
system, has to meet cache requirements like cache size and
mapping policy. As output the genetic algorithm determines if
the system is schedulable, the worst case execution time and
worst response time for all the tasks, and the list of selected
main memory blocks for each task to be loaded and locked in
the cache. This list of blocks has been used in this work to
calculate the number of required LUTs to implement the LSG.

Figure 5 shows the number of LUTs needed to build the
mini-terms of each one of the 24 systems, as a function of the
cache size using 4-input LUTs. Graph shows the maximum
value, the minimum value, and the average number of LUTs
for the 24 systems. Figures 6, 7, and 8 show the same
information than Figure 5, using LUTs of 5, 6, and 7 inputs,
respectively.

Fig. 7: Number of 6-inputs LUTs required.

Fig. 8: Number of 7-inputs LUTs required.

The four figures are identical in shape and tendency, but
present some differences in their values. As expected the most
noticeable is the effect of cache size. There is a clear and
positive relationship between the cache size and the number of
required LUTs. And regarding average values, this increment
is very close to a lineal increase.

But there are two exceptions, both for the same reason. For
the curve of minimum values, it presents a zero slope when
cache size is larger than 256 lines. This is because the tasks
in set 2 have a size lower than 256 main memory blocks (in
average, size of tasks is 158; see Table II), but none of the tasks
is larger than 256 blocks. This means that for each task, the
genetic algorithm will select no more than 158 blocks, so, no
matter the cache size, a maximum of 158 blocks multiplied by
5 (number of tasks in this system) will be selected and, thus,
implemented as mini-terms.

Since the largest task in all systems is close to 2000 blocks,
when the cache reaches a size of 2048 lines or larger, it

195

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 9: Average LUTs required for LUTs of 4, 5, 6, and 7
inputs.

does not affect the number of LUTs needed, because the
number of blocks selected, and thus the number of mini-terms
to be implemented, cannot be larger. Numerical differences
between maximum and minimum values maybe explained by
differences in tasks structures or genetic algorithm executions,
but most probably differences come from the number of tasks
in each system. However, the effect of cache size and the
existence of tasks with sizes smaller than the largest caches
prevent to clearly state this idea. Regarding the effect of the
number of LUT inputs, there are significant differences in the
number of needed LUTs to implement the LSG when using
LUTs of 4, 5, 6, and 7 inputs.

This effect is more important as cache size increases. For
small cache sizes, the difference in the number of LUTs related
to the number of LUT inputs is about some hundreds. But for
large cache sizes, this difference is around five thousand LUTs.
This effect is better appreciated in Figure 9, where average of
needed LUTs for all systems and total number of LUT sizes
is shown.

Figure 10 shows the average number of LUTs needed to
implement the LSG, in front of cache size and number of
tasks, for the 24 systems analysed. This figure shows that both
cache size and number of tasks are important characteristics
regarding the number of LUTs needed, but no one is more
important than the other. When the cache size is small, and
thus individual task sizes are larger than the cache size, the
number of tasks in the system becomes a significant parameter
regarding the number of needed LUTs, as shown for cache
sizes of 64, 128, and 256 lines. However, when the cache
becomes larger, the effect of the number of tasks seems to
be the inverse. This is not completely true. Curves arrange in
inverse order for small cache sizes than for large cache sizes,
but this is because all systems must fit into the limit of 64KB
of code, so systems with more tasks have smaller tasks while
systems with fewer tasks have larger tasks. The conclusion is
that the most important factor is neither the cache size nor the
number of tasks, but the relationship between cache size and

Fig. 10: Average LUTs required for number of system tasks
(3, 4, 5 and 8 tasks).

size of the tasks in the system. This factor, called System Size
Ratio (SSR), was identified as one of the main factors deciding
cache locking performance in [16].

VI. REDUCING COMPLEXITY

There is a way of reducing LSG circuit complexity without
affecting the number of tasks in the system or the cache size.
This simplification comes from the way each mini-term is
implemented. As explained before, the number of inputs of
a LUT is not enough to implement a whole mini-term, so the
associative property is used to decompose the mini-term in
smaller parts, each implemented using a LUT that are then
combined using again a LUT performing the function of an
AND gate, as shown in Figure 3.

As an example, consider two mini-terms of six variables
implemented with 3-input LUTs. In order to implement the two
mini-terms each one is decomposed in two parts, and each part
is implemented by a LUT, using four LUTs to build what may
be called half-mini-terms. Finally, two LUTs implementing an
independent AND logic function each are used to combine
these parts to finally implement both mini-terms. Consider
now that both mini-terms have one of its part equal. In this
case, implementing the same half-mini-term twice it is not
mandatory, because the output of a LUT may be routed to
two different AND gates, so mini-terms with some parts equal
may share the implementation of that part. Figure 11 shows
an example with two mini-terms sharing one of their parts.

Profiting from the limited number of inputs of the LUTs
previous experiments have been repeated, but in this case an
exhaustive search have been carried out to count the number
of mini-terms that share some of their parts. The number of
parts a mini-term is divided into depends on the number of
LUT inputs, and four sizes have been used like in previous
experiments: 4, 5, 6, and 7 inputs. This way, and considering
a 16 bits address bus, a mini-term may be divided in three
or four parts. In some cases, some inputs of some LUTs will

196

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 11: Example of reducing LUTs needed to implement mini-
terms.

not be used, being the worst case when using 7-inputs LUTs,
because each mini-term requires 3 LUTs so there are 21 inputs
available to implement mini-terms of arity 16.

A simple algorithm divides mini-terms in parts as a function
of LUT size, and detects common parts between mini-terms.
This exhaustive search is performed for the whole system, that
is, it is not applied to mini-terms of the selected blocks of
individual tasks but applied for all selected blocks of all tasks
in the system.

Figure 12 shows the number of LUTs needed to build the
mini-terms of each one of the 24 systems as a function of the
cache size and using LUTs with 4 inputs, after applying the
algorithm to search and reduce the LUTs needed due to the
fact the implementation of common parts may be shared by the
corresponding mini-terms. Graph shows the maximum value,
the minimum value, and the average number of LUTs for the
24 systems. Figures 13, 14, and 15 show the same information
than Figure 12 when the number of LUT inputs are 5, 6, and
7, respectively.

Figures 12, 13, 14, and 15 all present the same shape and
the same values for minimum, average, and maximum curves,
respectively. Numerical values show differences, but they are
not significant, so it can be said that the number of LUT inputs
does not affect the number of needed LUTs to implement the
LSG when shared LUTs implementing common parts of mini-
terms are used to reduce the total number of LUTs needed.

Fig. 12: Number of 4-inputs LUTs required after reduction.

Fig. 13: Number of 5-inputs LUTs required after reduction.

This can be explained because when the number of LUT inputs
is small the probability to find common parts among mini-
terms increases. Figure 16 shows the average values of needed
LUTs after reduction for the four LUT sizes considered. No
significant differences appears in this graph. In front of average
values for non-reduced implementation of the LSG, the number
of required LUTs is between a 50% and a 80% when reducing
the LSG implementation using common parts of mini-terms.

Regarding saving LUTs, shapes and tendencies of figures
12 to 15 are very similar to those in figures 5 to 8, so the
effect of cache size, number of tasks in the system, and other
parameters (except the LUT size) are similar for non-reduced
and reduced implementation of the LSG.

Figure 17 shows the percentage of reduction in the number
of LUTs regarding cache size and LUT size. The minimum
reduction is 55% for a 64 lines cache size and 6-input LUTs,
and a maximum reduction is close to 80% for 4-inputs LUTs
and a cache of 512 lines or larger. The effect of cache size
over reduction is more acute when using LUTs with six and

197

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 14: Number of 6-inputs LUTs required after reduction.

Fig. 15: Number of 7-inputs LUTs required after reduction.

seven inputs than when four and five inputs are used. However,
the main effect over the percentage of reduction comes, as
stated before, from the size of the LUTs. In absolute values,
from the worst case of 14 000 LUTs needed to build the LSG
(maximum for a cache size of 1024 lines in Figure 5), the
reduced implementation of LSG lowers this number to 3500
(maximum for a cache size of 1024 lines in Figure 12).

VII. ONGOING WORK

The previous simplification may be improved by the selec-
tion algorithm, e.g., the genetic algorithm used to determine
the main memory blocks that have to be loaded and locked
into the cache. Usually, the goal of these algorithms is to pro-
vide predictable execution times and an overall performance
improvement of the system and its schedulability, for example
reducing global system utilisation or enlarging the slack of
tasks to allow scheduling non-critical tasks. However, new
algorithms may be developed that take into account not only
this main goals, but that also that try to select blocks with

Fig. 16: Average LUTs required after reduction for LUTs of
4, 5, 6, and 7 inputs.

Fig. 17: Percentage of reduction as a function of cache size
and number of LUT inputs.

common parts in their mini-terms, enhancing LUT reusing and
reducing the complexity of the final LSG circuit. This is more
than just wish or hope: for example, considering a loop with
a sequence of forty machine instructions —10 main-memory
blocks— the resulting performance is the same if the selected
blocks are the five first ones or the last five ones, or even
if the selected blocks are alternate blocks. Previous research
show that genetic algorithms applied to this problem may
produce different solutions, that is, different sets of selected
main memory blocks, all with the same results regarding
performance and predictability. So, next step in this research is
the development of a selection algorithm that simultaneously
tries to improve system performance and reduce the LSG
circuit complexity.

What is performance and circuit complexity need to be
carefully defined in order to include both goals in the selec-
tion algorithm. Once the algorithm works, the evaluation of

198

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



implementation complexity will be accomplished.

VIII. CONCLUSION

This work presents a new way of implementing the dynamic
use of a dynamically locked cache for preemptive, real-time
systems. The proposal benefits from recent devices coupling
a processor with an FPGA, a programmable logic device,
allowing the implementation of a logic function to signal the
cache controller whether to load a main memory block in cache
or not. This logic function is called a Locking State Generator
(LSG) and replaces the work performed by the Locking State
Memory (LSM) in previous proposals.

As the FPGA is already included in the same die or package
of the processor, no additional hardware is needed as in the
case of the LSM. Also, regarding circuit complexity, the LSG
adapts better to the actual system as its complexity is related
to both hardware and software characteristics of the system,
an advantage in front of the LSM architecture, where the LSM
size depends on the size of main memory exclusively. Results
from experiments state than final LSG complexity is mainly
related to cache size, and not main memory size as LSM is.

Implementation details described in this work show that it
is possible to build the LSG logic function with commercial
hardware actually found in the market.

Moreover, a way to reduce hardware requirements by means
of reusing LUTs has been developed and experimented. Shar-
ing LUTs among mini-terms allows a reduction in the number
of LUTs needed to implement the LSG between 50% and 80%,
and makes negligible the effect of LUT size over the number
of LUTs needed.

Ongoing research steps about the selection algorithm of
main memory blocks in order to reduce circuit complexity.

ACKNOWLEDGMENTS

This work has been partially supported by PAID-06-11/2055
of Universitat Politècnica de València and TIN2011-28435-
C03-01 of Ministerio de Ciencia e Innovación.

REFERENCES

[1] A. M. Campoy, F. Rodrı́guez-Ballester, and R. Ors, “Using embedded
fpga for cache locking in real-time systems,” in Proceedings of The
Second International Conference on Advanced Communications and
Computation, INFOCOMP 2012, pp. 26–30, Oct 2012.

[2] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach, 4th Edition. Morgan Kaufmann, 4 ed., 2006.

[3] A. M. Campoy, A. P. Ivars, and J. V. B. Mataix, “Dynamic use of lock-
ing caches in multitask, preemptive real-time systems,” in Proceedings
of the 15th World Congress of the International Federation of Automatic
Control, 2002.

[4] J. B.-M. E. Tamura and A. M. Campoy, “Towards predictable, high-
performance memory hierarchies in fixed-priority preemptive multi-
tasking real-time systems,” in Proceedings of the 15th International
Conference on Real-Time and Network Systems (RTNS-2007), pp. 75–
84, 2007.

[5] J. C. K. Sascha Plazar and P. Marwedel, “Wcet-aware static locking of
instruction caches,” in Proceedings of the 2012 International Sympo-
sium on Code Generation and Optimization, pp. 44–52, 2012.

[6] L. C. Aparicio, J. Segarra, C. Rodrı́guez, and V. Vials, “Improving
the wcet computation in the presence of a lockable instruction cache
in multitasking real-time systems,” Journal of Systems Architecture,
vol. 57, no. 7, pp. 695 – 706, 2011. Special Issue on Worst-Case
Execution-Time Analysis.

[7] X. Vera, B. Lisper, and J. Xue, “Data cache locking for tight timing
calculations,” ACM Trans. Embed. Comput. Syst., vol. 7, pp. 4:1–4:38,
Dec. 2007.

[8] M. Campoy, A. P. Ivars, and J. Busquets-Mataix, “Static use of locking
caches in multitask preemptive real-time systems,” in Proceedings of
IEEE/IEE Real-Time Embedded Systems Workshop (Satellite of the
IEEE Real-Time Systems Symposium), IEEE, 2001.

[9] I. Puaut and D. Decotigny, “Low-complexity algorithms for static cache
locking in multitasking hard real-time systems,” in Real-Time Systems
Symposium, 2002. RTSS 2002. 23rd IEEE, pp. 114–123, IEEE, 2002.

[10] I. Corp., “Intel atom processor e6x5c series-based platform for
embedded computing.” http://download.intel.com/embedded/processors/
prodbrief/324535.pdf, 2013. [Online; accessed 15-March-2013].

[11] X. Inc., “Zynq-7000 extensible processing platform.” http://www.xilinx.
com/products/silicon-devices/epp/zynq-7000/index.htm, 2012. [Online;
accessed 15-March-2013].

[12] M. Kumm, K. Mller, and P. Zipf:, “Partial lut size analysis in distributed
arithmetic fir filters on fpgas,” in Proceedings of the IEEE International
Symposium on Circuits and Systems, 2013.

[13] A. M. Campoy, F. Rodrı́guez-Ballester, R. Ors, and J. Serrano, “Saving
cache memory using a locking cache in real-time systems,” in Pro-
ceedings of the 2009 International Conference on Computer Design,
pp. 184–189, jul 2009.

[14] A. M. Campoy, I. Puaut, A. P. Ivars, and J. V. B. Mataix, “Cache
contents selection for statically-locked instruction caches: An algorithm
comparison,” in Proceedings of the 17th Euromicro Conference on Real-
Time Systems, (Washington, DC, USA), pp. 49–56, IEEE Computer
Society, 2005.

[15] A. Shaw, “Reasoning about time in higher-level language software,”
Software Engineering, IEEE Transactions on, vol. 15, pp. 875–889,
July 1989.

[16] A. Martı́ Campoy, A. Perles, F. Rodrı́guez, and J. V. Busquets-Mataix,
“Static use of locking caches vs. dynamic use of locking caches for real-
time systems,” in Electrical and Computer Engineering, 2003. IEEE
CCECE 2003. Canadian Conference on, vol. 2, pp. 1283–1286 vol.2,
May.

199

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


