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Abstract—We discuss the security of quantum key distribution
protocols based on entanglement swapping against collective
attacks. Therefore, we apply a generic version of a collective
attack strategy on the most general entanglement swapping
scenario used for key distribution. Further, we focus on basis
transformations, which are the most common operations per-
formed by the legitimate parties to secure the communication. In
this context, we show that the angles, which describe these basis
transformations can be optimized compared to an application
of the Hadamard operation. As a main result, we show that
the adversary’s information is reduced to a new minimum of
about 0.45, which is about 10% lower than in other protocols.
To become a better overview how and on which protocols this
generic version of a collective attack is applicable, the security of
different quantum key distribution and quantum secret sharing
protocols is discussed. Here we show that applying two basis
transformations using different angles the security of a particular
protocol can be increased by about 25%.

Keywords—quantum key distribution; entanglement swapping;
security analysis; optimal basis transformations.

I. I NTRODUCTION

The security of quantum key distribution (QKD) protocols
based on entanglement swapping has been discussed on the
surface so far. In a recent article [1], a novel attack strategy
and its implications on the security of entanglement swapping
based protocols was discussed. This attack strategy will be
referred to assimulation attack since the major idea is to
simulate the correlation between Alice’s and Bob’s measure-
ment results [2]. In this article, we want to take a closer look
at the application of the simulation attack on different QKD
and quantum secret sharing (QSS) protocols together with the
necessary improvements on the security of these protocols.

QKD is an important application of quantum mechanics
and QKD protocols have been studied at length in theory
and in practical implementations [3], [4], [5], [6], [7], [8],
[9], [10]. Most of these protocols focus on prepare and
measure schemes, where single qubits are in transit between
the communication parties Alice and Bob. The security of these
protocols has been discussed in depth and security proofs have
been given for example in [11], [12], [13]. In addition to these
prepare and measure protocols, several protocols based on the

phenomenon of entanglement swapping have been introduced
[14], [15], [16], [17], [18]. In these protocols, entanglement
swapping is used to obtain correlated measurement results
between the legitimate communication parties. In other words,
each party performs a Bell state measurement and due to
entanglement swapping their results are correlated and further
on used to establish a secret key.

Entanglement swapping has been introduced by Bennett et
al. [19], Zukowski et al. [20] as well as Yurke and Stolen
[21], respectively. It provides the unique possibility to generate
entanglement from particles that never interacted in the past.
In detail, Alice and Bob exchange two Bell states of the form
|Φ+〉12 and|Φ+〉34 such that afterwards Alice is in possession
of qubits 1 and 3 and Bob of qubits 2 and 4 (cf. (2) in Figure
1). The overall state can now be written as

|Φ+〉12 ⊗ |Φ+〉34 =
1

2

(

|Φ+〉|Φ+〉+ |Φ−〉|Φ−〉

+|Ψ+〉|Ψ+〉+ |Ψ−〉|Ψ−〉
)

1324

(1)

Then, Alice performs a complete Bell state measurement
on the two qubits 1 and 3 in her possession, and at the
same time the qubits 2 and 4 at Bob’s side collapse into
a Bell state although they originated at completely different
sources. Moreover, the state of Bob’s qubits depends on Alice’s
measurement result (cf. (4) in Figure 1). As presented in
eq. (1), Bob always obtains the same result as Alice when
performing a Bell state measurement on his qubits.

So far, it has only been shown that QKD protocols based
on entanglement swapping are secure against intercept-resend
attacks and basic collective attacks (cf. for example [14],[15],
[17]). Therefore, we analyze a general version of a collective
attack where the adversary tries to simulate the correlations
between Alice and Bob [2]. A basic technique to secure these
protocols is to use a basis transformation, usually a Hadamard
operation, similar to the prepare and measure schemes men-
tioned above, to make it easier to detect an adversary. In
[1], the application of general basis transformations about
the anglesθA and θB has been discussed and it has been
shown that the information of an adversary can be reduced
to a minimum of≃ 0.45. Based on these results we analyze
the security of three different protocols with respect to the
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simulation attack. In the course of that, we are going to
identify, which values forθA and θB are optimal for these
protocols such that an adversary has only a minimum amount
of information on the secret key.

In the next section, we are going to shortly review the
simulation attack, a generic collective attack strategy where
an adversary applies a six-qubit state to eavesdrop Bob’s mea-
surement result. A detailed discussion of this attack strategy
can be found in [2]. In Section III, we discuss the security
of entanglement swapping based QKD protocols against the
simulation attack in general. Here, we are focusing on the
application of one and two basis transformations and review
the optimal angles for these transformations. In the following
sections, we discuss the application of the simulation attack
on three different protocols: on the prepare & measure QKD
protocol by Bennett, Brassard, and Mermin [5] in Section IV,
on the entanglement swapping based QKD protocol by Song
[17] in Section V and on the QSS protocol by Cabello [16]
in Section VI. We will shortly review each of these protocols
and provide a detailed security analysis with respect to an
application of the simulation attack. At the end, we summarize
the results and give a short outlook on the next steps into this
topic.

II. T HE SIMULATION ATTACK STRATEGY

In entanglement swapping based QKD protocols like [14],
[15], [16], [17], [18] Alice and Bob rest their security check on
the correlations between their respective measurement results
coming from the entanglement swapping (cf. eq. (1)). If these
correlations are violated to a certain amount, Alice and Bob
have to assume that an eavesdropper is present. In 2000,
Zhang, Li, and Guo presented an attack strategy, where Eve
entangles herself with both parties and manages to obtain full
information about the shared key [23]. This collective attack
was improved in a previous article [2] to thesimulation attack
and extended to a specific protocol [18] following this basic
idea: the adversary Eve tries to find a multi-qubit state, which
preserves the correlation between the two legitimate parties.
Further, she introduces additional qubits to distinguish between
Alice’s and Bob’s respective measurement results. If she isable
to find such a state, Eve stays undetected during her interven-
tion and is able to obtain a certain amount of information
about the key. The simulation attack can be generalized to
arbitrary entanglement swapping based QKD protocols in a
straight forward way, as described in the following paragraphs.

It has been pointed out in detail in [2] that Eve uses
four qubits to simulate the correlations between Alice and
Bob and she further introduces additional systems, i.e.,|ϕi〉,
to distinguish between Alice’s different measurement results.
This leads to the state

|δ〉 = 1

2

(

|Φ+〉|Φ+〉|ϕ1〉+ |Φ−〉|Φ−〉|ϕ2〉

|Ψ+〉|Ψ+〉|ϕ3〉+ |Ψ−〉|Ψ−〉|ϕ4〉
)

PRQSTU

(2)

which is a more general version than described in [2]. This
state preserves the correlation of Alice’s and Bob’s measure-
ment results coming from the entanglement swapping (cf. eq.

Alice Bob

|Φ+〉|Φ+〉

1

2

3

4

(1)

Alice Bob

Tθ

(2)

Alice Bob

Tθ

(3)

Alice Bob

3

1

4

2

|Ψ+〉 |Ψ+〉

(4)

Fig. 1. Illustration of a standard setup for an entanglementswapping based
QKD protocol using a basis transformationTx.

(1)). From eq. (2) it is easy to see that Alice obtains one of the
four Bell states when performing a Bell state measurement on
qubitsP andR. This measurement leaves Bob’s qubitsQ and
S in a Bell state fully correlated to Alice’s result. Accordingly,
Eve’s qubitsT andU are in one of the auxiliary states|ϕi〉
she prepared.

Eve has to choose the auxiliary systems|ϕi〉 such that

〈ϕi|ϕj〉 = 0 i, j ∈ {1, ..., 4} i 6= j (3)

which allows her to perfectly distinguish between Alice’s and
Bob’s respective measurement results. Thus, she is able to
eavesdrop Alice’s and Bob’s measurement results and obtains
full information about the classical raw key generated out of
them.

In detail, Eve distributes qubitsP , Q, R and S between
Alice and Bob such that Alice is in possession of qubitsP
and R and Bob is in possession of qubitsQ and S. When
Alice performs a Bell state measurement on qubitsP andR
the state of qubitsQ andS collapses into the same Bell state,
which Alice obtained from her measurement (cf. eq. (2)). In
particular, if Alice obtains|Φ+〉PR the state of the remaining
qubits is

|Φ+〉QS |ϕ1〉TU (4)

and similarly for Alice’s other results|Φ−〉 and |Ψ±〉. This
is the exact correlation Alice and Bob would expect from
entanglement swapping if no adversary is present (cf. eq. (1)
from above). Hence, Eve stays undetected when Alice and
Bob compare some of their results in public to check for
eavesdroppers. The auxiliary system|ϕi〉 remains at Eve’s side
and its state is completely determined by Alice’s measurement
result. Therefore, Eve has full information on Alice’s and
Bob’s measurement results and is able to perfectly eavesdrop
the classical raw key.

There are different ways for Eve to distribute the state
|δ〉P−U between Alice and Bob. One possibility is that Eve
is in possession of Alice’s and Bob’s source and generates
|δ〉P−U instead of Bell states. This is a rather strong as-
sumption because the sources are usually located at Alice’sor
Bob’s laboratory, which should be a secure environment. Eve’s
second possibility is to intercept the qubits 2 and 3 flying from
Alice to Bob and vice versa and to use entanglement swapping
to distribute the state|δ〉. This is a straight forward method as
already described in [2].
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We want to stress that the state|δ〉 is generic for all
protocols where 2 qubits are exchanged between Alice and Bob
during one round of key generation as, for example, the QKD
protocols presented by Song [17], Li et al. [18] or Cabello
[14]. As already pointed out in [2], the state|δ〉 can also be
used for different initial Bell states. Regarding protocols with
a higher number of qubits the state|δ〉 has to be extended
accordingly (cf. Section VI).

III. SECURITY AGAINST COLLECTIVE ATTACKS

In the following paragraphs, we discuss Eve’s intervention
on an entanglement swapping QKD protocol performing a
simulation attack, i.e., using the state|δ〉P−U . To detect Eve’s
presence either Alice or Bob or both parties apply a basis
transformation as depicted in Figure 1.

A. General Basis Transformations

Similar to the prepare and measure schemes mentioned in
the introduction, most of the protocols based on entanglement
swapping apply basis transformations to make it easier to de-
tect the presence of an eavesdropper. The basis transformation
most commonly used in this case is the Hadamard operation,
i.e., a transformation from theZ- into theX-basis. In general,
a basis transformation from theZ-Basis into theX-basis can
be described as a combination of rotation operations, i.e.,

Tx

(

θ, φ
)

= eiφRz

(

φ
)

Rx

(

θ
)

Rz

(

φ
)

(5)

whereRx and Rz are the rotation operations about theX-
and Z-axis, respectively. For reasons of simplicity we take
φ = π/2 in our further discussions and therefore denote the
transformation is described solely by the angleθ, i.e., Tx(θ).
From eq. (5) we can directly see that the Hadamard operation
equalsTx(π/2). To keep the security analysis as generic as
possible we discuss a setup where a general basis transforma-
tion about an angleθA is applied by Alice and a transformation
about an angleθB is applied by Bob, respectively (cf. Figure
1).

For our further discussions, we will assume that Alice and
Bob prepared the initial states|Φ+〉12 and|Φ+〉34 as described
above to make calculations easier. As already pointed out
above and in more detail in [2] if Alice and Bob chooseθA =
θB = 0, i.e., they perform no transformation, the protocol is
completely insecure. Hence, we will focus on the scenarios
where eitherTx(θA) or Tx(θB) or both transformations are
applied. For all scenarios we assume that Alice appliesTx(θA)
on qubit 1 and Bob appliesTx(θB) on qubit 4.

B. Application of a Single Transformation

For the first scenario where only Alice applies the basis
transformation the overall state of the system after Eve’s
distribution of the state|δ〉P−U can simply be described as

|δ′〉 = T (1)
x (θA)|δ〉1QR4TU (6)

where the superscript ”(1)” indicates thatTx(θA) is applied on
qubit 1. When Eve sends qubitsR andQ to Alice and Bob,

H

XPe\

0
Π

4

Π

2

3Π

4
Π
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Fig. 2. Alice’s and Bob’s Shannon entropyH and the according average
error probability〈Pe〉 if either Alice or Bob applies a basis transformation.

respectively, the state after Alice’s Bell state measurement on
qubits 1 andR is

cos
θA
2

|Φ−〉Q4|ϕ2〉TU + sin
θA
2

|Ψ+〉Q4|ϕ3〉TU (7)

assuming Alice obtained|Φ+〉1R (for Alice’s other three
possible results the state changes accordingly). This indicates
that in this case Bob’s transformation back into theZ-basis
does not re-establish the correlations between Alice and Bob
properly. Performing the calculations we see that Bob’s oper-
ationTx(θA) brings qubitsQ, 4, T andU into the form

cos2
θA
2

|Φ+〉Q4|ϕ2〉TU + sin2
θA
2

|Φ+〉Q4|ϕ3〉TU

− sin θA
2

|Ψ−〉Q4|ϕ2〉TU +
sin θA

2
|Ψ−〉Q4|ϕ3〉TU

(8)

When Bob performs a Bell state measurement we can directly
see from this expression that Bob obtains either the correlated
result |Φ+〉Q4 with probability

(

cos2
θA
2

)2

+

(

sin2
θA
2

)2

=
3 + cos(2θA)

4
(9)

or an error, i.e., the state|Ψ−〉Q4, otherwise. In detail, Eve
introduces an error with probability(sin2 θA)/2, which yields
an expected error probability

〈Pe〉 =
1

4
sin2 θA (10)

Nevertheless, as long as the results are correlated, Eve obtains
from her Bell state measurement on qubitsT andU the state
|ϕ2〉TU with probability (1 + cos(θA))

2/(3 + cos(2θA)) and
knows that Bob obtained|Φ+〉Q4. Consequently, we obtain the
expected collision probability

〈Pc〉 =
1

8

(

7 + cos 2θA

)

. (11)

This directly leads to the Shannon entropy

H =
1

2
h
(

cos2
θA
2

)

(12)
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Fig. 3. Eve’s expected error probability〈Pe〉 if both parties apply a basis
transformation with the respective anglesθA andθB .

whereh(x) = −x log2 x − (1 − x) log2(1 − x) is the binary
entropy. Looking at〈Pe〉 andH in Figure 2 we see that the
optimal angle for a single basis transformation isπ/2, i.e.,
the Hadamard operation, for protocols using only one basis
transformation, as it is already known from literature [15], [2],
[1]. In this case, the average error probability as well as the
Shannon entropy are maximal at〈Pe〉 = 0.25 andH = 0.5
(cf. Figure 2). If only Bob applies the basis transformation,
the calculations run analogous and therefore provide the same
results. Further, Eve’s information on the bits of the secret key
is given by the mutual information

IAE = 1−H = 1− 1

2
=

1

2
(13)

which means that Eve has 0.5 bits of information on every
bit of the secret key. Using error correction and privacy
amplification Eve’s information can be brought below 1 bit
of the whole secret key as long as the error rate is below
∼ 11% [13]. This is more or less the standard threshold value
for the prepare and measure QKD protocols.

C. Application of Combined Transformations

When both Alice and Bob apply their respective basis
transformation, the overall state changes to

|δ′〉 = T (1)
x (θA)T

(4)
x (θB)|δ〉1QR4TU (14)

and after Alice’s Bell state measurement on qubits 1 andR
and Bob’s application ofTx(θB) on qubitQ the state of the
remaining qubits is

cos2
θA − θB

2
|Φ+〉Q4|ϕ1〉TU

+sin2
θA − θB

2
|Φ+〉Q4|ϕ4〉TU

− sin
(

θA − θB
)

2
|Ψ−〉Q4

(

|ϕ1〉TU − |ϕ4〉TU

)

(15)

Consequently, Bob obtains a correlated result with probability
(3 + cos(2θA − 2θB))/4 and, following the argumentation
from scenario described in Section III-B above, this yields

ΘA

ΘB

H

0
Π

4 Π

2 3Π

4 Π

0

Π

4

Π

2

3Π

4
Π

0

0.25

0.5

Fig. 4. Alice’s and Bob’s Shannon entropyH if both parties apply a basis
transformation with the respective anglesθA and θB .

an average error probability (cf. Figure 3 for a plot of this
function)

〈Pe〉 =
1

8
sin2 θA +

1

8
sin2 θB

+
1

16
sin2

(

θA + θB
)

+
1

16
sin2

(

θA − θB
)

(16)

When the results are correlated Eve obtains either|ϕ1〉TU

or |ϕ4〉TU , as it is easy to see from eq. (15). Hence, Eve’s
information on the Alice’s and Bob’s result is lower compared
to the first scenario, i.e., Alice’s and Bob’s Shannon entropy
is higher:

H =
1

4
h
(

cos2
θA
2

)

+
1

4
h
(

cos2
θB
2

)

+
1

8
h
(

cos2
θA + θB

2

)

+
1

8
h
(

cos2
θA − θB

2

)

(17)

This is due to the fact that it is more difficult for Eve to react
on two separate basis transformations with different angles
θA and θB. Taking the optimal choice for only one basis
transformation, i.e., the Hadamard operation, we see that if
both parties apply the Hadamard operation at the same time
the operations cancel out each other. Hence, the anglesθA and
θB have to be different. As we can further see from Figure
4, the Shannon entropy for a combined application of basis
transformations is much higher than 0.5 for some regions. In
detail, the maximum of the function plotted in Figure 4 is

H ∼ 0.55 and thus IAE ∼ 0.45 (18)

for θA = π/4 and θB = π/2 or vice versa. Hence, if just
one of the parties applies a Hadamard operation and the other
one a transformation about an angle ofπ/4, Eve’s mutual
information is about 10% lower compared to the application of
a single basis transformation (cf. eq. (13)). At the same time
we see from Figure 3 that for these two values ofθA andθB
the error probability is still maximal with〈Pe〉 = 0.25. This
means Alice and Bob are able to further increase the security
by the combined application of two basis transformations, one
aboutθ = π/2 and the other aboutθ = π/4.
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IV. A PPLICATION ON THEBBM PROTOCOL

In 1992, Bennett, Brassard, and Mermin presented a variant
of the Ekert protocol [4], where they show that a test of the
CHSH-inequalities [22] is not necessary for the security ofthe
protocol [5]. Instead of the CHSH-inequalities, Alice and Bob
use two complementary measurement bases as in the BB84
protocol [3] and randomly apply them on the received qubits.
Due to the entangled state Alice and Bob obtain perfectly
correlated results from their measurement if no adversary is
present.

A. Protocol Description

In detail, Alice and Bob use a source emitting maximally
entangled qubit pairs, e.g., in the Bell-state|Ψ−〉12. This
source is located between Alice and Bob and one qubit of the
state is flying to Alice and the other one to Bob. When looking
at physical implementations of the BBM protocol the source is
usually located at the laboratory of one of the communication
parties. Hence, we will assume that the source is located at
Alice’s lab and she sends the second qubit of each pair to Bob
(cf. Figure 5). After receiving the qubit, both communication
parties randomly and independently choose either theZ- or
theX-basis to measure their qubit. Due to the entanglement of
the qubits in the state|Ψ−〉12 Alice’s measurement completely
determines the state of Bob’s qubit, i.e., if Alice measuresa |1〉,
Bob’s qubit is in the state|0〉, and vice versa. If he measures
in a different basis than Alice, Bob destroys the information
carried by the qubit and thus will not obtain a correlated
result. To identify where they used different bases both parties
publicly compare all of their measurement bases and discard
the results where they had chosen differently. The remaining
results should be perfectly correlated and the communication
parties compare a randomly selected fraction in public. If there
is too much discrepancy between their results they have to
assume that an adversary is present and they start over the
protocol. It has also been shown by Bennett et al. in this paper
that the security of this version of the protocol is equal to the
security of the BB84 scheme [5].

The random measurement in either theZ- andX-basis can
also be interpreted as a random application of the Hadamard
operation by Alice. As pointed out above, the Hadamard
operation is a complete basis transformation from theZ- into
theX-basis, i.e., by an angleθA = π/2. Therefore, it can be
said that both Alice and Bob randomly apply the Hadamard
operation on the qubits they receive and measure it in theZ-
basis afterwards. In the end, both parties compare in public
where they used the Hadamard operation and similar to the
original protocol they discard the results where only one of
them applied the Hadamard operation.

B. Security Analysis

Looking at this interpretation we want to discuss whether
the Hadamard operation is optimal in this scenario. Therefore,
we will discuss the information an eavesdropper Eve is able
to obtain when performing a simulation attack. Further, we
assume that Alice and Bob are not limited to the Hadamard
operation but they use a general basis transformationTx(θA).

b b

Alice Bob Alice Bob

|Ψ−〉 |0〉 |1〉

(1) (2)

Z

Fig. 5. Illustration of the BBM protocol [5]. Here, Alice performs a
measurement in theZ-basis.

To fit to the setting of the BBM protocol the adversary Eve
has to prepare a slightly different|δ〉 for the simulation attack,
i.e.,

|δ〉RST =
1√
2

(

|0〉|1〉|ϕ1〉+ |1〉|0〉|ϕ2〉
)

RST

(19)

This state perfectly simulates the correlation between Alice’s
and Bob’s result in case they do not apply any operation. As
described above, the auxiliary states|ϕ1〉 and |ϕ2〉 have to be
orthogonal (cf. eq. (3)) such that they can be distinguished
by Eve. For reasons of simplicity, we will assume that Eve
intercepts the qubits coming from Alice and uses entanglement
swapping on qubits 2 andR to establish the state|δ〉1ST

between Alice and Bob, where Bob is now in possession of
qubit S.

Following the protocol Alice and Bob randomly perform the
basis transformationTx(θA) on their respective qubits 1 and
S. Since they discard all results where just one of them applies
Tx(θA) we are only interested in two scenarios: either none
or both of them performTx(θA). In scenario one, it is easy to
see from the structure of the state|δ〉1ST that Eve’s qubits are
in the state|ϕ1〉T whenever Alice obtains|0〉 and in the state
|ϕ2〉T whenever Alice obtains|1〉. In this case Eve is able to
perfectly eavesdrop the respective raw key bits.

In the second scenario, the application of the basis trans-
formationTx(θA) on qubits 1 andS changes the overall state
to

|δ′〉 = Tx(θA)
(1)|δ〉1ST , (20)

where the superscript ”(1)” denotes an application on qubit1.
This results in the state

1√
2

(

sin
θA
2

(

|00〉|ϕ2〉+ |11〉|ϕ1〉
)

+cos
θA
2

(

|01〉|ϕ1〉 − |10〉|ϕ2〉
)

) (21)

before Alice performs her measurement on qubit 1. Assuming
Alice obtains |0〉1 from her measurement and Bob applies
Tx(θA) on qubit S this changes the state described in the
previous equation into

sin θA
2

|0〉S |ϕ1〉T +
sin θA

2
|0〉S |ϕ2〉T

− cos2
θA
2

|1〉S |ϕ1〉T + sin2
θA
2

|1〉S |ϕ2〉T
(22)

From this expression we can directly see that Bob obtains
from his Bell state measurement either the correlated result
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|1〉S with probability
(

cos2
θA
2

)2

+

(

sin2
θA
2

)2

=
3 + cos(2θA)

4
(23)

or an error, i.e., the state|0〉S , otherwise. Hence, Eve intro-
duces an error with probability(sin2 θA)/2, which yields an
expected error probability

〈Pe〉 =
sin2 θA

4
(24)

These are the same results as described in Section III-B above
(cf. eq. (10)). Accordingly, performing the same computations
as above, we obtain the mutual informationIAE , i.e., the
information Eve is able to obtain about the raw key, as

IAE = 1−H = 1− 1

2
h
(

cos2
θA
2

)

(25)

which is equal to the general result in eq. (13) from Section
III-B. Hence, we can conclude that for the BBM protocol the
optimal choice is a basis transformation about an angleθA =
π
2 , i.e., the Hadamard operation.

V. A PPLICATION ON SONG’ S QKD PROTOCOL

In 2004, Song published a QKD scheme based on en-
tanglement swapping, which is supposed to spare alternative
measurements [17]. In this scheme Song uses a rather unusual
basis transformation (compared to the Hadamard operation
most commonly used in other protocols) withθ = 2π/3.
Hence, based on the discussions in the previous sections it
is indicated that the security of the protocol can be further
increased by using a different angleθ.

A. Protocol Description

In each round of the protocol, Alice and Bob prepare two
qubits in their laboratories, which are either in the Bell basis
or in a transformed basis. The transformation is done by the
operationT = Tx(2π/3), which is denoted in matrix form as

T =
1

2

(

1
√
3√

3 −1

)

(26)

Alice and Bob prepare random Bell states and then randomly
choose between applying1 or T onto qubit 2 and 4, respec-
tively, in their possession. The application ofT changes|Φ±〉
to |η±〉 and |Ψ±〉 to |ν±〉, where the state in the alternative
basis are denoted as

|η±〉 = 1

2
|Φ∓〉+

√
3

2
|Ψ±〉

|ν±〉 =
√
3

2
|Φ±〉 − 1

2
|Ψ∓〉.

(27)

For our further discussion suppose that Alice prepares
|Ψ+〉12 and Bob prepares|Φ−〉34. Additionally, Bob applies
T onto qubit 4 such that|Φ−〉34 is changed into|η−〉34 (cf.
(1) and (2) in Figure 6). The two parties exchange qubits 2
and 4 and publicly confirm the arrival of the respective qubit.

Alice Bob

T

|Ψ+〉|Φ−〉

1

2

4

3

(1)

Alice Bob

T

|Ψ+〉

|η−〉

(2)

Alice Bob

|Ψ+〉

|Φ−〉

(3)

Alice Bob

|Φ−〉 |Ψ+〉

(4)

Fig. 6. Illustration of the protocol presented by Song [17].Here, only Bob
applies the basis transformation onto his qubit.

Before measuring, Alice and Bob announce publicly whether
they applied the basis transformationT or not. If one party
performed the basis transformation, the other party reverses
the transformation by applyingT onto the received qubit. In
our case Alice appliesT on qubit 4 (cf. (2) in Figure 6).
Then, both parties perform Bell state measurements on the
qubits in their possession. Based on their own outcome of the
Bell state measurement both parties can compute each other’s
result. Following our example, if Alice obtains|Φ−〉14, Bob
obtains|Ψ+〉23.

B. Security Analysis

Song discussed a basic version of an intercept-resend attack
as well as the ZLG attack [23] in his article [17] and showed
in principle that the protocol is secure against this kind of
attack. Nevertheless, he gave no expected error rate or mutual
information for Eve, which would be of great interest since the
operationT is an unusual basis transformation by an angle of
2π/3 and is different from the more common choice of the
Hadamard operation. Hence, we are going to look at these
values in detail in the next paragraphs.

Due to arguments discussed in Section III above, we can
immediately show that Song’s protocol is completely open to
the simulation attack when Alice does not apply the trans-
formation T . In this case, Alice and Bob just perform the
entanglement swapping and Eve can intercept qubits 2 and
4 in transit. As it is described in detail above, Eve distributes
the state|δ〉 from eq. (2) between Alice, Bob and herself using
entanglement swapping and sends qubitsQ to Bob andS to
Alice, respectively (cf. (1) in Figure 7). When Alice and Bob
perform their Bell state measurements, the correlation between
their results is preserved due to the structure of the state|δ〉.
After Alice and Bob are finished Eve is able to obtain full
information about Alice’s and Bob’s secret measurement based
on the state of qubitsT andU in her possession.

If either Alice or Bob performs the transformationT , we
have the scenario described in Section III. Eve is not able
to compensate the random application of the transformation
while still preserving the correlation whenT is not applied.
Hence, Eve’s intervention introduces an error, i.e., the parties
do not obtain correlated results all the time. Taking the example
from Section III above, Bob appliesT onto qubit 4 and
therefore Alice also appliesT onto qubitS she receives from
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Eve (cf. (2) in Figure 7). When Alice obtains|Φ−〉1S from
her measurement Bob obtains the correlated result|Ψ+〉23
only with probability5/8. In other words, Eve introduces an
error with probability3/8, which leads to an expected error
probability for this scenario of

〈Pe〉 =
1

4
sin2

2π

3
=

3

16
(28)

which is significantly lower than1/4. Hence, Eve has a better
opportunity to eavesdrop the key in this protocol than, for
example, in the revised version of the Cabello protocol [15]
or the protocol by Li et al [18]. Due to the fact that the
transformationT maps onto an unbiased superposition of states
(cf. eq. (27) above) Eve is able to extract more information
than usual from her attack strategy. The Shannon entropy for
the simulation attack on Song’s protocol is

H =
1

2
h
(

cos2
π

3

)

=
1

8

(

2 + 3 log
4

3

)

(29)

which further leads to Eve’s mutual information

IAE = 1−H
(

S|M
)

≃ 0.594 (30)

Assuming that both parties perform the basis transformation
T the protocol becomes insecure again. Due to Eve’s entan-
glement swapping the operationT is brought from qubits 2
and 4 onto qubits 1 and 3, which leads to the state

T (1)T (3)|δ〉1Q3STU (31)

When Alice and Bob apply the basis transformationT on
qubitsQ andS they receive from Eve, the state changes again
into

T (1)T (Q)T (3)T (S)|δ〉1Q3STU (32)

When Alice performs her Bell state measurement onto qubits
1 andS, it has the effect that the operationsT (1) and T (S)

are swapped onto qubitsQ and 3 thus reverting the effect
of T at Bob’s side and re-establishing the state|δ〉. Hence,
Bob’s measurement on qubitsQ and 3 results into a state
completely correlated to Alice’s result. Further, Eve’s qubits
T andU are also correlated to Bob’s result such that she has
full information about the key when Alice and Bob announce
their initial states.

The expected error probability from eq. (28) as well as
the mutual information from eq. (30) indicate that the choice
of T = Tx(2π/3) is not optimal. Looking at Section III-B
and eq. (10) and eq. (13) therein, we see that a basis ro-
tation about an angleπ/2, i.e., the Hadamard, instead of
the operationT increases the expected error probability by
≃ 33% to 〈Pe〉 = 0.25 and at the same time decreases the
mutual information by≃ 16% to IAE = 0.5. Alternatively,
a combined application of two basis transformationsTx(π/2)
andTx(π/4) by Alice and Bob further decreases the mutual
informationIAE . As described in Section III-C two different
basis rotations, randomly applied by Alice and Bob, leave
the expected error probability〈Pe〉 = 0.25 but reduces Eve’s
information about the raw key by almost 25% toIAE =≃ 0.45
compared to the single application ofT .

Alice Eve Bob

T

|δ〉

T
1 Q

S 4
U

(1)

Alice Eve Bob

T

(2)

Alice Eve Bob

(3)

Alice Eve Bob

|Φ−〉

|Ψ+〉

|Φ−〉

(4)

Fig. 7. Illustration of the simulation attack strategy on the protocol presented
in [17]. Here, only Bob applies the basis transformationT onto qubitQ in
his possession.

VI. A PPLICATION ON CABELLO ’ S QSS PROTOCOL

In the year 2000, Cabello described a QSS protocol based
on entanglement swapping [16]. The idea is to share a classical
key between two parties, Bob and Charlie, such that they can
communicate with Alice only if they collaborate and bring
their shares together. The entanglement between the three
parties is realized using a maximally entangled 3-qubit state,
i.e., a GHZ state [24]. In our further discussions we will denote
the GHZ states as

|P±
00〉 =

1√
2

(

|000〉 ± |111〉
)

|P±
01〉 =

1√
2

(

|001〉 ± |110〉
)

|P±
10〉 =

1√
2

(

|010〉 ± |110〉
)

|P±
11〉 =

1√
2

(

|011〉 ± |100〉
)

(33)

The security of this protocol against the ZLG attack [23]
has already been discussed by Lee, Lee, Kim, and Oh in
[25]. They presented an adaption of the ZLG attack strategy,
where the adversary Eve entangles herself with both Bob
and Charlie using two Bell states. By intercepting the qubits
coming from Alice and forwarding qubits from her Bell states,
Eve is able to obtain Bob’s and Charlie’s secret measurement
results. According to these results Eve is able to alter Alice’s
intercepted qubits such that her intervention is not detected.

In addition to their security analysis, Lee, Lee, Kim, and
Oh presented a revised version of the protocol in [25], which
includes the random application of Hadamard operation at
Bob’s and Charlie’s laboratory. In the following paragraphs
we are going to describe, how the simulation attack works on
this protocol and whether the Hadamard operation is optimal
in this context. We are going to show that using the simulation
attack strategy the protocol is open to an attack to stress the
fact that it is also applicable on QSS protocols.
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TABLE I. A LICE’ S GHZ STATE AFTERBOB’ S AND CHARLIE ’ S

MEASUREMENT.

|Φ+〉4A |Φ−〉4A |Ψ+〉4A |Ψ−〉4A
|Φ+〉5B |P+

00
〉1CD |P−

00
〉1CD |P+

10
〉1CD |P−

10
〉1CD

|Φ−〉5B |P−
00

〉1CD |P+

00
〉1CD |P−

10
〉1CD |P+

10
〉1CD

|Ψ+〉5B |P+

01
〉1CD |P−

01
〉1CD |P+

11
〉1CD |P−

11
〉1CD

|Ψ−〉5B |P−
01

〉1CD |P+

01
〉1CD |P−

11
〉1CD |P+

11
〉1CD

A. Protocol Description

As already pointed out in the previous paragraph the original
protocol by Cabello [16] is not secure and thus we will discuss
the revised version given in [25] here. The revised version
in general uses the Quantum Fourier Transformation (QFT)
defined as

|j〉 QFT7−→ 1√
N

N−1
∑

k=0

e2Πijk/N |k〉 (34)

to secure the qubits in transit (cf. for example [26] for details
on the QFT). Since we are using qubits, the dimensionN = 2
and the QFT reduces to the Hadamard operation for this special
case. Therefore, we will use the Hadamard operation in the
following considerations.

In this protocol, three parties are involved, which are ableto
distribute a key among them or share a secret between two of
them. The aim is to use the 3-qubit entanglement of the GHZ
state to achieve these tasks. Therefore, Alice, Bob, and Charlie
are in possession of an entangled pair, i.e.,|Φ+〉12, |Φ+〉4C ,
and |Φ+〉5D, respectively. Further, Alice generates the GHZ
state|P+

00〉3AB at her side. She keeps qubit 3 of the GHZ state
and sends qubitsA andB to Bob and Charlie, respectively.
At the same time, Bob and Charlie send their respective qubits
C andD to Alice (cf. (1) in Figure 8). Additionally, Bob and
Charlie randomly apply the Hadamard operation on qubits 4
and 5 still in their possession. After Alice received the qubits
from Bob and Charlie she performs a Bell state measurement
on qubits 2 and 3 and Bob and Charlie act similarly on their
qubits 4 andA as well as 5 andB, respectively (cf. (2) in
Figure 8). If both Bob and Charlie do not apply the Hadamard
operation, the protocol is the same as in the original version by
Cabello [16]. If either of them applies the Hadamard operation
onto his qubit the GHZ state after Bob’s measurement is altered
as

1

2

(

|Φ+〉4A
1√
2

(

|P−
00〉+ |P+

10〉
)

1CB

+|Φ−〉4A
1√
2

(

|P+
00〉+ |P−

10〉
)

1CB

+|Ψ+〉4A
1√
2

(

|P−
00〉 − |P+

10〉
)

1CB

−|Ψ−〉4A
1√
2

(

|P+
00〉 − |P−

10〉
)

1CB

)

(35)

and similarly for Charlie’s measurement (in this case the GHZ
state changes to either|P±

00〉 or |P±
01〉). In case both parties

Alice

Bob Charlie
H

|P
+

00
〉

|Φ+〉

|Φ+〉 |Φ+〉

1

2
3

A B

C

4

D

5

(1)

Alice

Bob Charlie

|ω+〉 |Φ+〉

|Φ+〉

|P
+

00
〉

(2)

Alice

Bob Charlie

H

|Φ+〉

|Φ−〉 |Ψ+〉

(3)

Alice

Bob Charlie

|Φ+〉

|Φ−〉 |Ψ+〉

|P
−
01

〉

(4)

Fig. 8. Illustration of the QSS scheme described in [25].

apply the Hadamard operation the GHZ state changes into

1

2

(

|Φ+〉5B
1

2

(

|P+
00〉+ |P−

01〉+ |P−
10〉+ |P+

11〉
)

1CD

+|Φ−〉5B
1

2

(

|P−
00〉+ |P+

01〉+ |P+
10〉+ |P−

11〉
)

1CD

+|Ψ+〉5B
1

2

(

|P−
00〉 − |P+

01〉+ |P+
10〉 − |P−

11〉
)

1CD

−|Ψ−〉5B
1

2

(

|P+
00〉+ |P−

01〉 − |P−
10〉+ |P+

11〉
)

1CD

)

(36)

if Bob obtained |Φ+〉4A and equivalently for|Φ−〉4A and
|Ψ±〉4A. Then, Bob and Charlie publicly announce their deci-
sion and Alice performs the Hadamard operation on the qubits
she received from Bob and Charlie according to their decision
(cf. (3) and (4) in Figure 8). Alice’s Hadamard operation brings
the GHZ state back to the state corresponding to the correlation
described in Table I.

B. Security Analysis

Also in this case the strategy of the simulation attack is to
find a state, which simulates the correlations given in Table
I and provides Eve with additional information about Bob’s
and Charlie’s measurement results. The version of the state
|δ〉 given in eq. (2) would be a possible choice, but not a very
good one. A better version for|δ〉 is

|δ〉 = 1

2

(

|Φ+〉|ϕ1〉|δ1〉
)

+ |Φ−〉|ϕ2〉|δ2〉
)

+|Ψ+〉|ϕ3〉|δ3〉
)

+ |Ψ−〉|ϕ4〉|δ4〉
)

)

E1−E11

(37)
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where|δ1〉 - |δ4〉 are defined as

|δ1〉 =
1

2

(

|Φ+〉|ϕ5〉|P+
00〉+ |Φ−〉|ϕ6〉|P−

00〉
|Ψ+〉|ϕ7〉|P+

01〉+ |Ψ−〉|ϕ8〉|P−
01〉

)

|δ2〉 =
1

2

(

|Φ+〉|ϕ5〉|P−
00〉+ |Φ−〉|ϕ6〉|P+

00〉
+|Ψ+〉|ϕ7〉|P−

01〉+ |Ψ−〉|ϕ8〉|P+
01〉

)

|δ3〉 =
1

2

(

|Φ+〉|ϕ5〉|P+
10〉+ |Φ−〉|ϕ6〉|P−

10〉
+|Ψ+〉|ϕ7〉|P+

11〉+ |Ψ−〉|ϕ8〉|P−
11〉

)

|δ4〉 =
1

2

(

|Φ+〉|ϕ5〉|P−
10〉+ |Φ−〉|ϕ6〉|P+

10〉
+|Ψ+〉|ϕ7〉|P−

11〉+ |Ψ−〉|ϕ8〉|P+
11〉

)

(38)

Similarly to the auxiliary systems defined in Section II the
states|ϕ1〉 to |ϕ8〉 have to fulfill

〈ϕi|ϕj〉 = 0 i, j ∈ {1, ..., 4} i 6= j and
〈ϕi|ϕj〉 = 0 i, j ∈ {5, ..., 8} i 6= j

(39)

For reasons of simplicity we will assume that the states|ϕi〉
are 2-qubit states, since they are the smallest states fulfilling
the equation above. Based on that, it can be immediately
verified that this state simulates all possible correlations from
Table I and that the qubit pairsE3, E4 and E7, E8 can be
used to obtain full information about Bob’s and Charlie’s
measurement results.

Focusing on an external adversary Eve, we assume again
that she is able to distribute the state|δ〉 between Alice, Bob,
and Charlie using entanglement swapping. This means, Eve
prepares the state|δ〉 from eq. (37) and intercepts qubitsA and
B coming from Alice and performs a GHZ state measurement
on them together with qubitE9 (cf. (1) in Figure 9). Further,
she intercepts qubitsC andD coming from Bob and Charlie,
respectively, and performs a Bell state measurement on the
pairsE1, C as well asE5, D. Eve sends qubitsE2 to Bob,E6

to Charlie and qubitsE10 andE11 to Alice such that the state
|δ〉 is now distributed between all 4 parties. The definition
of |δ〉 indicates that Bob’s and Charlie’s measurements on
the qubits in their possession yield random results but the
respective qubits still in Eve’s possession are in the same state,
afterwards (cf. (3) in Figure 9). Additionally, the three qubits
3,E10 andE11 at Alice’s laboratory are always in a correlated
state to Bob’s and Charlie’s results. Assuming again that Bob
obtained|Ψ+〉4E2

and Charlie obtained|Φ−〉5E6
, qubits 3,E10

andE11 are in the state|P−
10〉, which corresponds to the state

Alice expects to find if she obtains|Φ+〉23 (cf. (4) in Figure 9
and also Table I). Also Alice’s secret measurement on qubits2
and 3 does not leave these three qubits in a state violating the
expected correlation since her measurement changes the GHZ
state accordingly.

In the revised version of Cabello’s protocol, Bob and Charlie
randomly apply a Hadamard operation on one qubit in their
possession, which is not taken into account in the consider-
ations above. If Bob applies the Hadamard operation on his
qubit 4, the overall state|δ〉 introduced by Eve described in

Alice

Eve

Bob Charlie

|Φ+〉

|δ〉

1

2

3

E10

E4

E3

E2

E11

E8

E7

E6

4 5

(1)

Alice

Eve

Bob Charlie

|Φ+〉

(2)

Alice

Eve

Bob Charlie

|Φ+〉

|Φ−〉 |Ψ+〉

|Φ−〉 |Ψ+〉

|P
+

00
〉

(3)

Alice

Eve

Bob Charlie

|Φ+〉

|Φ−〉 |Ψ+〉

|Φ−〉 |Ψ+〉

|P
−
01

〉

(4)

Fig. 9. Illustration of the simulation attack on the QSS scheme described in
[25]. Here, no basis transformation is applied.

eq. (37) above changes into

1

2
√
2

(

|Φ+〉
(

|ϕ2〉|δ2〉+ |ϕ3〉|δ3〉
)

+|Φ−〉
(

|ϕ1〉|δ1〉 − |ϕ4〉|δ4〉
)

+|Ψ+〉
(

|ϕ1〉|δ1〉+ |ϕ4〉|δ4〉
)

−|Ψ−〉
(

|ϕ2〉|δ2〉 − |ϕ3〉|δ3〉
)

)

E1−E11

(40)

and similarly for Charlie’s Hadamard operation on qubit 5.
This affects Eve’s as well as Alice’s measurement results such
that Eve is not able to stay undetected any more.

To have a more general view on the revised protocol, we
assume that Bob and Charlie are not restricted to the Hadamard
operation but apply a basis transformationTx(θB) andTx(θC).
First, assuming that only Bob appliedTx(θB) operation the
overall state changes into

sin
θB
2
|ϕ1〉 ⊗ |δ1〉+ cos

θB
2
|ϕ4〉 ⊗ |δ4〉 (41)
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if Bob’s result is |Ψ+〉4E2
. Hence, at this time Eve obtains

from a measurement on qubitsE3 andE4 either |ϕ1〉E3E4
or

|ϕ4〉E3E4
but both do not correspond to Bob’s result. Thus,

the best strategy for Eve is to delay her measurement until she
knows whether Bob applied the basis transformationTx(θB)
or not, as described below. Similarly, if just Charlie applies
Tx(θC) the overall state after Bob’s result|Ψ+〉4E2

is

|ϕ3〉 ⊗ Tx(θC)|δ3〉 (42)

with

Tx(θC)|δ3〉 =
1

2

[

|Φ+〉
(

cos
θC
2
|ϕ6〉|P−

10〉+ sin
θC
2
|ϕ7〉|P+

11〉
)

+|Φ−〉
(

cos
θC
2
|ϕ5〉|P+

10〉+ sin
θC
2
|ϕ8〉|P−

11〉
)

+|Ψ+〉
(

cos
θC
2
|ϕ8〉|P−

11〉+ sin
θC
2
|ϕ5〉|P+

10〉
)

+|Ψ−〉
(

cos
θC
2
|ϕ7〉|P+

11〉+ sin
θC
2
|ϕ6〉|P−

10〉
)]

(43)

In this case, Eve obtains the same result as Bob but further on
her measurement on qubitsE7E8 yields a result uncorrelated
to Charlie’s measurement outcome due to his basis transfor-
mation. In the last case where both Bob and Charlie apply
their basis transformationsTx(θB) and Tx(θC), respectively,
the overall state changes to

sin
θB
2
|ϕ1〉 ⊗ Tx(θC)|δ1〉+ cos

θB
2
|ϕ4〉 ⊗ Tx(θC)|δ4〉 (44)

in case Bob obtains|Ψ+〉4E2
from his measurement. From eq.

(43) above we can see that after Charlie’s measurement the
state of the remaining qubits is

sin
θB
2
|ϕ1〉

(

cos
θC
2
|ϕ5〉|P+

00〉+ sin
θC
2
|ϕ8〉|P−

01〉
)

+cos
θB
2
|ϕ4〉

(

cos
θC
2
|ϕ5〉|P−

10〉+ sin
θC
2
|ϕ8〉|P+

11〉
) (45)

assuming Charlie obtains|Φ−〉5E6
. It is described in eq. (45)

that Eve’s results are completely uncorrelated to the two
secret results of Bob and Charlie. Thus, the optimal strategy
for Eve is to delay her measurements on qubitsE3E4 and
E7E8 until Bob and Charlie finished their measurements and
publicly announce their choice regarding the application of the
Hadamard operation. Eve performs the measurement on her
qubit pairs afterwards, obtaining Bob’s and Charlie’s result
only with a certain probability.

In all three cases discussed in the previous paragraphs, Alice
applies the operationTx(θB) on qubitsE10 and operation
Tx(θC) on E11, respectively, to reverse the effect of Bob’s
and Charlie’s operations. This changes the GHZ state into
a superposition of GHZ states. Hence, Alice obtains a GHZ
state corresponding to Bob’s and Charlie’s secrets only to a
certain amount. Following our example where only Bob used
the Hadamard operation as described in eq. (41) we see after

a little calculation that for Charlie’s result|Φ−〉5E6
the state

of the remaining qubits is

sin
θB
2
|ϕ1〉E3E4

|ϕ6〉E7E8
|P−

00〉1E10E11

+cos
θB
2
|ϕ4〉E3E4

|ϕ6〉E7E8
|P+

10〉1E10E11

(46)

Therefore, Alice obtains the GHZ state correlated to Bob’s and
Charlie’s result only with a certain probability. Hence, Eve’s
intervention introduces on average an error rate of

〈

Pe

〉

=
1

4
sin2 θB +

1

4
sin2 θC − 1

16
sin2 θB sin2 θC (47)

Furthermore, Eve’s results are correlated to Bob’s and Charlie’s
results only with a certain probability such that she is not able
to obtain much information about Alice’s secret. In detail,the
Shannon entropy for Alice, Bob, and Charlie is

H =
7

16

(

h
(

cos2 θB
)

+ h
(

cos2 θC
)

)

(48)

When looking at Figure 10 and Figure 11 we see that the
average error probability

〈

Pe

〉

as well as the Shannon entropy
H have their maximum whenθB = θC = π/2, i.e., the optimal
choice for the basis transformation is the Hadamard operation.
In this case,

〈

Pe

〉

=
1

4
+

1

4
− 1

16
=

7

16
(49)

and

H =
7

16

(

h

(

1

2

)

+ h

(

1

2

))

=
7

8
(50)

and thus both values are much larger compared to the results
from previous sections. Accordingly, Eve’s mutual information
is rather low at

IAE = 1−H =
1

8
(51)

compared to the results from above.
A scenario dealing with an adversary from the inside, i.e.,

Charlie as malicious party who wants to obtain Alice’s secret
without the help of Bob, is a more severe threat for a QSS
protocol. Here, Charlie also prepares the state|δ〉 from eq.
(37) instead of his Bell state and intercepts the qubits coming
from Alice and Bob. He performs a GHZ state measurement
onA, B andE9 as well as a Bell state measurement onE1 and
C to entangle himself with Alice and Bob. Then, he forwards
qubitsE10, E11 to Alice andE2 to Bob and jointly measures
his qubitsE5 and E6. We have to remark that in this case
with the adversary coming from the inside, qubitsE7 andE8

of the state|δ〉 can be ignored since Charlie is, of course, fully
aware of his own secret measurement result. Whenever Bob
does not use the basis transformationTx(θB) we have already
seen that qubitsE3 andE4 in Charlie’s possession are perfectly
correlated to Bob’s result giving Charlie full informationabout
Bob’s result. We already showed that based on the structure of
the state|δ〉 the three qubits in Alice’s possession are always
in a GHZ state corresponding to Bob’s and Charlie’s secret
results.
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Fig. 10. Eve’s expected error probability〈Pe〉 if both parties apply a basis
transformation with the respective anglesθB andθC .

Whenever Bob chooses to use the basis transformation
Tx(θB) the exact state of the remaining qubits is of the form
described in eq. (41), if he obtained|Ψ+〉4E2

. Since Charlie is
fully aware of his measurement results the scenario is equalto
the attack of an external adversary if only Bob applies the basis
transformation. Therefore, based on the calculations above, we
see that Eve introduces an average error rate

〈

Pe

〉

=
1

4
sin2 θB (52)

similar to the probability in eq. (10) above. Hence,
〈

Pe

〉

becomes maximal withθB = π/2 such that

〈

Pe

〉

=
1

4
(53)

Accordingly, the Shannon entropy for Alice and Bob is

H =
1

2
h
(

cos2
θB
2

)

(54)

also taking its maximum withθB = π/2 such that

H =
1

2
h
(1

2

)

=
1

2
(55)

leaving Eve’s mutual information at

IAE = 1−H = 1− 1

2
=

1

2
(56)

which is equal to the results from the previous sections.

VII. C ONCLUSION AND FURTHER RESEARCH

In this article, we discussed the optimality of basis transfor-
mations to secure entanglement swapping based QKD proto-
cols. Starting from a generic entanglement swapping scenario,
we used a collective attack strategy to analyze the amount
of information an adversary is able to obtain. We showed
that in case only one party applies a basis transformation,
the operationTx(θA) reduces to the Hadamard operation, i.e.,
the angleθA = π/2 allows a maximal mutual information of
IAE = 0.5. Whereas, the main result of this article is the fact
that if both parties apply a transformation, the optimal choice
for the anglesθA andθB describing the basis transformations
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Fig. 11. Eve’s Shannon entropy〈Pe〉 if both parties apply a basis
transformation with the respective anglesθB andθC .

is θA = π/4 andθB = π/2. As a consequence, this decreases
the mutual information of an adversary further toIAE ∼ 0.45,
which improves the security.

Additionally, we discussed 3 different protocols, the BBM
protocol [5], Song’s QKD protocol [17] and Cabello’s QSS
protocol [16] to show how the simulation attack is applied
on various kinds of protocols. We showed that for the BBM
protocol the optimal angle for the basis transformation isπ/2,
i.e., the Hadamard operation, due to the fact that no entangle-
ment swapping is performed and a measurement on only one
entangled state is applied. Nevertheless, the simulation attack
describes the most general collective attack strategy on this
kind of protocol.

Regarding Song’s QKD protocol we were able to show that
the basis transformation by an angle2π/3 is by no means
optimal. Using the results from the simulation attack, the
optimal choice for a basis rotation is to use two different angles
π/2 andπ/4 to reduce Eve’s mutual information about the raw
key by about 25% from 0.594 to≃ 0.45 and thus increasing
the security.

Looking at a QSS protocol instead of a key distribution
protocol we examined the application of the simulation attack
on Cabello’s QSS protocol. In this case, the optimal angle
for the basis transformation is againπ/2, i.e., the Hadamard
operation. This is true for Bob’s and Charlie’s basis transfor-
mation since both operations act separately on the GHZ statein
Alice’s possession. Nevertheless, the average error probability
and Alice’s, Bob’s, and Charlie’s Shannon entropy are rather
high with

〈

Pe

〉

= 7/16 and H = 7/8, respectively, for an
adversary from the outside. Dealing with an adversary form
the inside, i.e., a malicious Charlie,π/2 is still optimal. This
reduces the average error probability and the Shannon entropy
to the more common

〈

Pe

〉

= 1/4 andH = 1/2, respectively,
because Charlie has to cope with Bob’s basis transformation
alone.

The next questions arising directly from these results are
how, if at all, the results change if basis transformations from
the Z- into theY -basis are applied. A first inspection shows
that such basis transformations can not be plugged in directly
into this framework. Hence, besides the transformation from
the Z- into the Y - basis, the effects of the simpler rotation
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operations on the results have to be inspected during further
research. Since basis transformations can be described in terms
of rotation operations it could be easier to apply rotation
operations in this framework. Nevertheless, due to the similar
nature of basis transformations and rotation operations itcan
be assumed that the results will be comparable to the results
presented here.

To keep the setting as general as possible, a further main
goal is to allow Alice and Bob to use arbitrary unitary
operations instead of just basis transformations to securethe
protocol. This should make it even more difficult for Eve to
gain information about the raw key.

ACKNOWLEDGMENTS

We would like to thank Christian Kollmitzer, Oliver Mau-
rhart as well as Beatrix Hiesmayr and Marcus Huber for
fruitful discussions and interesting comments.

REFERENCES

[1] S. Schauer and M. Suda, “Security of Entanglement Swapping QKD
Protocols against Collective Attacks,” inICQNM 2012 , The Sixth
International Conference on Quantum, Nano and Micro Technologies.
IARIA, 2012, pp. 60–64.

[2] ——, “A Novel Attack Strategy on Entanglement Swapping QKD
Protocols,”Int. J. of Quant. Inf., vol. 6, no. 4, pp. 841–858, 2008.

[3] C. H. Bennett and G. Brassard, “Public Key Distribution and Coin
Tossing,” in Proceedings of the IEEE International Conference on
Computers, Systems, and Signal Processing. IEEE Press, 1984, pp.
175–179.

[4] A. Ekert, “Quantum Cryptography Based on Bell’s Theorem,” Phys.
Rev. Lett., vol. 67, no. 6, pp. 661–663, 1991.

[5] C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum Cryptography
without Bell’s Theorem,”Phys. Rev. Lett., vol. 68, no. 5, pp. 557–559,
1992.

[6] D. Bruss, “Optimal Eavesdropping in Quantum Cryptography with Six
States,”Phys. Rev. Lett, vol. 81, no. 14, pp. 3018–3021, 1998.

[7] A. Muller, H. Zbinden, and N. Gisin, “Quantum Cryptography over 23
km in Installed Under-Lake Telecom Fibre,”Europhys. Lett., vol. 33,
no. 5, pp. 335–339, 1996.

[8] A. Poppe, A. Fedrizzi, R. Usin, H. R. Böhm, T. Lorünser,O. Maurhardt,
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