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Abstract—Mathematical modeling and numerical simulation ~ studied examplesE. coli responds to the chemical stimulus

of quasi-one dimensional spatiotemporal pattern formatim  py alternating the rotational direction of their flagelld,[2
along the three phase contact line in the fluid cultures of lux 13].

gene engineeredescherichia coli is investigated in this paper. . .
The numerical simulation is based on a one-dimensional-in- Various mathematical models based on the Patlak-Keller-

space mathematical model of a bacterial self-organizatioms ~ S€gel model have been successfully used as important tools
detected by quasi-one-dimensional bioluminescence imagj.  to study the mechanisms of the chemotaxis [5]. An excellent

The pattern formation in a luminous E. coli colony was  review on the mathematical modeling of the chemotaxis has

mathematically modeled by the nonlinear reaction-diffuson- been presented by Hillen and Painter [6].

chemotaxis equations. The numerical simulation was carrig Bacterial ies includi iih b b dt
out using the finite difference technique. Regular oscillabns acterial species including. coli have been observed to

as well as chaotic fluctuations similar to the experimental pes ~ form various patterns under different environmental cendi
were computationally simulated. The influence of the signal  tions [4], [7], [8]. Bacterial populations are capable offse
dependent as well as density-dependent chemotactic sensty,  organization into states exhibiting strong inhomogeasiti
the non-local sampling and the diffusion nonlinearity on the in density [9], [10]. Recently, the spatiotemporal pateern

pattern formation was investigated. The computational sinu- . . .
lations showed that a constant chemotactic sensitivity, aotal in the fluid cultures ofE. coli have been observed by

sampling and a linear diffusion can be applied for modeling ~ €Mmploying lux-gene engineered cells and a bioluminescence
the formation of the bioluminescence patterns in a colony of imaging technique [11], [12]. However, the mechanisms

luminous E. coli. governing the formation of bioluminescence patterns still
Keywords-chemotaxis; reaction-diffusion; pattern formation; remain unclear.
simulation; whole-cell biosensor Over the last two decades, lux-gene engineered bacteria
have been successfully used to develop whole cell-based
l. INTRODUCTION biosensors [13]. A whole-cell biosensor is an analyte probe

This paper is an extension of work originally reported in consisting of a biological element, such as a genetically en
The Third International Conference on Advances in Systengineered bacteria, integrated with an electronic comptioen
Simulation [1]. yield a measurable signal [14]. Whole-cell biosensors have

Various microorganisms respond to certain chemicaldbeen successfully used for the detection of environmental
found in their environment by migrating towards higher pollutant bioavailability, various stressors, includitigxins,
(chemoattraction) or lower (chemorepulsion) concertreti  endocrine-disrupting chemicals, and ionizing radiatibs]|
of the substance. The directed movement of microorganismgo solve the problems currently limiting the practical use o
in response to chemical gradients is called chemotaxis [2)whole-cell biosensors, the bacterial self-organizatidtiw
Chemotaxis plays a crucial role in a wide range of biologicalthe biosensors have to be comprehensively investigated.
phenomena, e.g., within the embryo, the chemotaxis affects In this paper, the bacterial self-organization in a small
avian gastrulation and patterning of the nervous system [3circular container near the three phase contact line is in-
Often, microorganisms not only move up chemical gradientvestigated [11], [12]. A computational model for efficient
towards a chemoattractant, but they are also able to produsmulating the formation of the spatiotemporal patterns
more of the chemoattractant. This is the effect that prosluceexperimentally detected by quasi-one-dimensional biélum
the aggregation of the motile microorganisms into localnescence imaging in the fluid cultures Bf coli has re-
clusters with high density and hence results in a pattercently been developed [16], [17]. The pattern formation in
formation [4]. a luminousE. coli colony was modeled by the nonlinear

Although the chemotaxis has been observed in manyeaction-diffusion-chemotaxis equations. The matherahti
bacterial speciesEscherichia coliis one of the mostly model was formulated in a one-dimensional space. Several
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different model variations were analyzed, and a minimalgrowth and deathi(n, ¢) stands for the chemotactic sensi-

model was obtained for simulating the formation of thetivity, g, andg, describe the production and degradation of

bioluminescence patterns representing the self-orgamiza the chemoattractant [5], [21].

of luminouseE. coli. Both diffusion coefficients,D,, and D., are usually as-
The aim of this work was to improve the already existingsumed to be constant. However, the nonlinear cell diffusion

computational model by introducing the nonlinear diffusio depending on the chemoattractant concentration or/and the

of cells, the non-local sampling and several kinds of thecell density is also considered [6]. In this work, we conside

chemotactic sensitivity [6]. By extending the model in this the nonlinear diffusion of the form

way, the improvements of the patterns simulated using

extended model were expected. In this paper, the pattern Dp(n) =D (ﬁ)m @)

formation is computationally investigated assuming two " "\ no ’

kinds of the chemotactic sensitivity, the signal-depemden

sensitivity and the density-dependent sensitivity. Tha-no

local sampling and the nonlinear diffusion are investigate N o .
pling d the rate of diffusion increases with increasing the cell

individually and collectively. The numerical simulatiot a . . o )
y y density, while atm > 0 the rate decreases with increasing

transient conditions was carried out using the finite dif—the cell densitv. Accentinan — 0 leads to a constant
ference technique [18]. The computational model was val- Y- ptingn =

idated by experimental data. Regular oscillations as WeI[ate of the cell diffusion. Since the proper form of the
y exp : 9 diffusion coefficientD,, to be used for the simulation of

. . . : ?he spatiotemporal pattern formation in the fluid culturés o
computationally simulated. By varying the input parameter : . . .
lux-gene engineereHl. coli is unknown, the simulation was

the output results were analyzed with a special emphasis on

) . glerformed at different vales ofu.
the influence of the model parameters on the spatiotempor Th I h . I d 1o be a logisti
pattern formation in the luminous. coli colony. e cell growthf(n, c) is usually assumed to be a logistic

The rest of the paper is organized as follows. Sectior}cuncnon'

Il provides a state of the art on the mathematical mod- n

eling of bacterial self-organization. Section Il desesb f(n,c) =kin <1 - —> ; ©))

the mathematical model of the bacterial self-organization 1o

in a circular container. The computational modeling of awhere k; is the constant growth rate of the cell popula-

physical experiment is discussed in Section IV. Section V idion [7].

devoted to the results of the numerical simulation where Various chemoattractant production functions have been

the effects of different chemotactic sensitivity funcon used in chemotactic models [6]. Usually, a saturating func-

the non-local gradient and the diffusion nonlinearity aretion of the cell density is used indicating that, as the cell

investigated. Finally, the main conclusions are summeérize density increases, the chemoattractant production deesea

in Section VI. The Michaelis-Menten function is widely used to express
the production rate, [5], [20], [23],

where and belowng is the maximal density ("carrying
capacity”) of the cell populationn( < ng) [22]. At m < 0

Il. MODELS OFBACTERIAL SELF-ORGANIZATION
ko

/{3—|—TL.

Different mathematical models based on advection- gp(n,c) = (4)

reaction-diffusion equations have already been develtped

computational modeling the pattern formation in bacterialThe degradation or consumptigg of the chemoattractant

colonies [7], [8], [19], [20], [21]. The system of coupled is typically constant,

nonlinear partial differential equations introduced byll&e

and Segel are still among the most widely used [5], [6]. ga(n,c) = ky. (5)
According to the Keller and Segel approach, the main

biological processes can be described by a system of tw¥alues ofks, ks and k4 are not exactly known yet [21].

conservation equations € €2, ¢ > 0), The functionh(n,c) controls the chemotactic response
of the cells to the chemoattractant. The signal-dependent
on sensitivity and the density-dependent sensitivity are two

— =V (D, Vn — h(n,c)nVc) + f(n,c),

ot (1) main kinds of the chemotactic sensitivity(n,c) [6]. In

dc v (D.V order to reproduce the experimentally observed bands Kelle
a0 =V (DeVe) + gp(n, c)n — ga(n, c)e, and Segel introduced a chemotactic (signal-dependent) sen
wherez andt¢ stand for space and time(x, t) is the cell sitivity of the following form [24]:
density,c(x, t) is the chemoattractant concentratidn, (n) ks
and D, are the diffusion coefficients,(n, ¢) stands for cell h(n, ) = —. (6)
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Since the bacterial current flow declines at low chemicalA. Governing Equations
concentrations and saturates at high concentrationsduapi Replacing f, g,. g4 Dn and Ve with the concrete

and Schiller derived the "receptor” chemotactic (signal-expressions above, the governing equations (1) reduce to
dependent) sensitivity foE. coli [19], a cell kinetics model with the nonlinear signal kineticse th
k nonlinear cell diffusion, the nonlinear chemotactic stvity
6 .
h(n,c) = (CETE (7)  and the non-local sampling,

Assuming that cells carry a certain finite volume, a 5 m
density-dependent chemotactic sensitivity function aff we 9" _ D,V ((ﬂ) Vn) _
as volume-filling model were derived by Hillen and ot 1o

Painter [25], v/ (h(m c)n %p c) + kin (1 — ﬂ) , (12)
no
n
h(n,c) =ks[1— — ). 8 dc kan
(n,c) s( no) (8) E:DCACJrngrn_kw’ z € (0,1), t>0,

Another form for the density-dependent chemotactic sen- . . i
sitivity has been introduced by Velazquez [26], where A is the Laplace operator formulated in the one

dimensional Cartesian coordinate system, aiscthe length
ko of the contact line, i.e., the circumference of the vessel.

hin, e) = kio+n ©) AssumingR as the vessel radius= 27 R, x € (0,27 R).

In the simplest form, the chemotactic sensitivity is as-g. |nitial and Boundary Conditions
sumed to be independent of the chemoattractant concentra-
tion ¢ as well as the cell density, i.e., h(n,c) is constant,
h(n,c) = ks. Since the proper form of the chemotactic
sensitivity functionh(n,c) to be used for the simulation n(xz,0) = nog(z),
of the spatiotemporal pattern formation in the fluid culture .

! . ) c(x,0)=0, ze€]l0,l],
of lux-gene engineereff. coli remains unknown, all these
four forms of the functiom:(n, ¢) were used to find out the whereng,(z) stands for the initial{= 0) spatially-varying
most useful form. cell density.

E. coli is able to detect a gradient by sampling the For the bacterial simulation on a continuous circle of
chemoattractant concentration over the time and adjustinthe lengthl of the circumference, the following periodicity
their movement accordingly. As a result, the signal detecte conditions are applied as the boundary (matching) conditio
by the cell is non-local and the non-local gradient can bgt > 0):
used to model this behaviour [27], [28],

A non-uniform initial distribution of cells and zero con-
centration of the chemoattractant are assumed,

(12)

on on
MO =000 e lee T Brlem (g
° n T= r=
V, c(z,t) = —— / oc(x + po,t)do,  (10) Oc Oc
|Sn 1|p Sn—1 C(Oat) :C(lat)v a_ = a_ .
Oxlz=0 Oz lae=l

where S"~! denotes thén — 1)-dimentional unit sphere in C. Dimensionless Model

R™ andp is the sampling radius. Whem — 0, this model ) . ,
collapses to the ordinary model with local sampling. In order to define the main governing parameters of the

It was recently shown that the Keller-Segel approacr,[‘nathematical model (11)_-(13), a_dimensi_onless mathemat-
can be applied to the simulation of the formation of thelcal model has been derived by introducing the following

spatiotemporal patterns experimentally detected by bioludimensionless parameters [4], [6], [23]:
minescence imaging in the fluid cultures Bf coli [16],

[17]. This work aims to improve the already existing com- L ksksc
putational model by introducing the nonlinear diffusior) (2 ng’ kamg '
of cells, the non-local sampling (10) and different kinds of . kat . k4
the chemotactic sensitivity (6)-(9). The improvement a th P=— T =\p"

: : s c8 (14)
patterns simulated using the extended model was expected. b D, k1 no .

= , =7 =7 =7

[1l. M ODEL FORLUMINOUS E. Coli D, k4 ¢ ks l
~ When modeling the self-organization of luminoBsColi y(u,v) = kk;no h(nou, kanoc/ (ksky)).
in a circular container along the three phase contact libg [1 3halle

[12], the mathematical model can be defined in one spatial Dropping the asterisks, the dimensionless governing equa-
dimension - on the circumference of the vessel [16], [17]. tions then becomet (> 0)
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ou 0 mou 0 °
5 o (Du %) ~ % (X(u,v)u Vo ’U) +

+ sru(l —u), (15)
ov 0% U
E—@+S<1+¢u—’u), .I'E(O,l),

where x and ¢ stand for the dimensionless space and
time, respectivelyu is the dimensionless cell density,
is the dimensionless chemoattractant concentrations
the dimensionless growth rate of the cell populatign,
stands for saturating of the signal productigiiy, v) is the
dimensionless chemotactic sensitivity, angtands for the
spatial and temporal scale.

Assuming the one-dimensional Cartesian coordinate sys-
tem the non-local gradient can be described as

Figure 1. Top view bioluminescence images of the bacteti#tlies in
the cylindrical glass vessel. The images were captured aj},320 (b), 40

0 v(z + p,t) —v(xz — p,t) (c), 60 (d) min [12].

Vo ’U(.’L‘,t) = 2p

For the dimensionless simulation of the spatiotemporal
pattern formation in a luminouk. coli colony, four forms According to the classification of chemotaxis models, the
of the chemotactic sensitivity functiop(u, v) were used to  dimensionless model of the pattern formation is a combi-
find out the best fitting pattern for the experimental datg,[11 nation of the signal-dependent sensitivity (M2), the digrsi
[12], [16], dependent sensitivity (M3), the non-local sampling (M#g t
nonlinear diffusion (M5), the saturating signal produntio
(M6) and the cell kinetics (M8) models [6]. At certain

(16)

X

x(u,v) = ma (17a)  values of the model parameters the dimensionless model

148 (15), (18) and (19) reduces to the minimal model (M1) for
x(u,v) = Xom’ (17b)  the chemotaxis [6].

u

x(,v) = Xo <1 _ _> : (17¢) IV. NUMERICAL SIMULATION

o v The mathematical model (11)-(13), as well as the cor-
x(u,v) = T e’ (17d)  responding dimensionless model (15), (18), (19), has been

defined as an initial boundary value problem based on
The first two forms (17a) and (17b) of the function 3 system of nonlinear partial differential equations. No
x(u, v) correspond to the signal-dependent sensitivity, whileanalytical solution is possible because of the nonlinganfit
the other two (17c) and (17d) - for the density-dependenthe governing equations of the model [4]. Hence the badteria
sensitivity [6]. Acceptinga = 0, 8 — oo, ¥ — 00 OF  self-organization was simulated numerically.
¢ = 0 leads to a constant form of the chemotactic sensitivity, The numerical simulation was carried out using the finite

X(u, v) = Xo- - _ _ . difference technique [18]. To find a numerical solution of
The initial conditions (12) take the following dimension- the problem a uniform discrete grid with 760 points and
less form: the dimensionless step si2¢760 (dimensionless units) in

the space direction was introducetio x 1/760 = 1. A
u(z,0) =1+e(2), (18)  constant dimensionless step sizé x 107 was also used
v(z,0) =0, x€][0,1], in the time direction. An explicit finite difference schemesh
been built as a result of the difference approximation [17],
[18], [29], [30Q]. The digital simulator has been programmed
by the authors in Free Pascal language [31].

The computational model was applied to the simulation

wheree(z) is a random spatial perturbation.
The boundary conditions (13) transform to the following
dimensionless equations  0):

ou ou of bioluminescence patterns observed in a small circular
u(0,8) =u(l,t), | =ao| containers made of glass [12], [16]. Figure 1 shows typi-
B - B - 19 cal top view bioluminescence images of bacterial cultures
v(0,1) = c(1, 1), 92 loeo  OF a1’ illustrating an accumulation of luminous bacteria near the
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Figure 2. Space-time plot of bioluminescence measuredyalos contact
line of the cylindrical vessel [12], [16].

) 0 0.1 0.2 0.3 0.4 0.5 0.6
C t

. . . . Figure 3. Simulated space-time plots of the dimensionledisdensity «
contact line. The images were captured at different times Ofa) as well as the chemoattractant concentratic) and the dynamics of

the population evolution. the corres_pondi_ng averaged valugsand v (c). Values of the parameters
In general, the dynamic processes in unstirred cultures a/g® 2s defined in (21).

rather complicated and need to be modeled in three dimen-

sional space [2], [11], [12]. Since luminous cells concat&r

near the contact line, the three-dimensional processes wer

simulated in one dimension (quasi-one dimensional rings in D=01, x0=62 p=0, r=1,

Figure 1). Figure 2 shows the corresponding space-time plot ¢=0.73, s=625, m=0.

of quasi-one-dimensional bioluminescence intensity. ) ) ) )
By varying the model parameters the simulation results ~ Spatially-varying random perturbatior(z) of the di-

were analyzed with a special emphasis to achieving gjen_smr_lless cell dens_ltyof 10% was applied for the initial _

spatiotemporal pattern similar to the experimentally itetel d|str|buyon 01_‘ bacteria near the three phase contact line

pattern shown in Figure 2. Figure 3 shows the results of th&/nen simulating the spatiotemporal patterns.

informal pattern fitting, where Figures 3a and 3b present the PUe€ to a relatively great number of model parameters,

simulated space-time plots of the dimensionless cell densi tNere is no guarantee that the values (21) mostly approach th

u and the chemoattractant concentratiomespectively. The pattern shown in Figure 2. Similar patterns were achieved at

corresponding values ands averaged on the circumference different values of the model parameters. The linearipatio
of the vessel are depicted in Figure 3c and the stability analysis of homogenous solutions of the

Keller-Segel model showed similar effects [32], [33]. An

(21)

1 increase in one parameter can be often compensated by

u(t) = / u(z,t) dz, decreasing or increasing another one. Because of this, it is
01 (20)  important to investigate the influence of the model parame-

o(t) = / v(z,t)dr. ters on the pattern formation and to develop a mathematical
0 model containing a minimal number of parameters and

Regular oscillations as well as chaotic fluctuations simila €nsuring a qualitative analysis of bacterial pattern fdiome
to the experimental ones were computationally simulatedin @ liquid medium [6], [10], [17], [21].
Accepting the constant form of the chemotactic sensitivity
(x(u,v) = xo0) and the simple gradient, the dynamics of the
bacterial population was simulated at the following values By varying the input parameters the output results were
of the model parameters [16]: analyzed with a special emphasis on the influence of the

V. RESULTS AND DISCUSSION
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Figure 4. Spatiotemporal plots of the dimensionless cefisig u for Figure 5. Spatiotemporal plots of the dimensionless cefisig v for
two forms of the signal-dependent chemotactic sensitiyity., v): (17a) two forms of the density-dependent chemotactic sensitiyitu, v): (17c)
(e = 0.05) (a), (@ = 0.07) (b) and (17b) B = 2) (c), (3 = 10) (d). (y = 10) (a), &y = 15) (b) and (17d) € = 0.05) (c), (¢ = 0.1) (d). Values
Values of the other parameters are as defined in (21). of the other parameters are as defined in (21).

chemotactic sensitivity, the non-local gradient and thfe di showed that the simulated patterns distinguish from the
fusion nonlinearity on the spatiotemporal pattern formmti experimental one (Figure 2) when increasingparameter
in the luminouskE. coli colony. Figure 3a shows the spa- (Figures 4a and 4b) or decreasinegparameter (Figures 4c
tiotemporal pattern for the constant form of the chemotacti and 4d). Because of this, there is no practical reason for
sensitivity (¢(u,v) = xo0) applying the simple gradient application of a non-constant form of the signal-dependent
(p = 0) and the linear diffusioni, = 0). sensitivity to modeling the formation of the bioluminescen
The effects of the different chemotactic sensitivity func- patterns in a colony of luminou&. coli Consequently,
tions were investigated assuming the linear diffusion-¢  the signal-dependence of the chemotactic sensitivity can
0) and the simple gradienp(— 0). The non-local gradient be ignored when modeling the pattern formation in the
and the nonlinear diffusion was analyzed separately antiminousE. coli colony.

together assuming the constant chemotactic sensitivity. B. The Effect of the Density-Dependent Sensitivity

A. The Effect of the Signal-Dependent Sensitivity Two forms, (17¢) and (17d), of the chemotactic sensitivity
The signal-dependent sensitivity was computationallyfunctiony(u,v) were employed for computational modeling
modeled by two forms of the chemotactic sensitivity func-of the density-dependent chemotactic sensitivity. The spa
tion y(u,v): (17a) and (17b). The spatiotemporal patternstiotemporal patterns of the cell densitywere simulated at
of the dimensionless cell density were simulated at very various values ofy ande. Figure 5 shows how the density-

different values ofa and 8. Figure 4 shows the effect of dependence affects the pattern formation.

the signal-dependence of the chemotactic sensitivity en th  Acceptingy — oo or ¢ = 0 leads to a density-
pattern formation. independence, i.e., a constant form, of the chemotactic
Acceptinga = 0 or § — oo leads to a signal- sensitivity, x(u,v) = xo. Multiple simulation showed that

independence, i.e., a constant form, of the chemotactithe simulated patterns distinguish from the experimemel o
sensitivity, x (u, v) = xo. Results of the multiple simulations (Figure 2) when decreasingparameter (Figures 5a and 5b)
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Figure 6. Spatiotemporal plots of the dimensionless celisig v when Figure 7. Spatiotemporal plots of the dimensionless catisitg v when
using the non-local samplingo(= 0.008) (a), (p = 0.012) (b), (p = using the nonlinear diffusionn¢ = —0.6) (a), (m = 0.2) (b), (m = 0.6)
0.016) (c). Values of the other parameters are as defined in (21). (c). Values of the other parameters are as defined in (21).

or increasinge-parameter (Figures 5c¢ and 5d). Because ofand the simple gradient, operat&rp approachesv. The
this, similarly to the signal-dependent chemotactic s8Asi computational results showed that the simulated patterns
ity, there is no practical reason for application of a non-get dissimilar from the experimental one (Figure 2) when
constant form also of the density-dependent sensitivitgrwh increasingp-parameter (Figure 6). As it can be seen from
modeling the pattern formation in a colony of luminols Figure 6c, merging of the different "branches” in the patter
coli. is almost gone and this merging behaviour is essential to get
A simple constant formy((u, v) = xo) of the chemotactic patterns similar to experimental ones. Because of thisethe
sensitivity can be successfully applied to modeling theis no practical reason for application of applying the non-
formation of the bioluminescence patterns in a colony oflocal gradient to modeling the formation of the patterns in
luminousE. coli. Oscillations and fluctuations similar to ex- a colony of luminoust. coli
perimental ones can be computationally simulated ignoring
the signal-dependence as well as the density-dependencel@df The Effect of the Nonlinear Diffusion
the chemotactic sensitivity. The nonlinear diffusion was modeled by using the fol-
) lowing form of the diffusion function:D(u) = Du™ [22].
C. The Effect of the Non-Local Sampling The chemotactic sensitivity was assumed to be constant
The non-local sampling was modeled by using non-(x(u,v) = xo) in these simulations. The spatiotemporal
local gradient (16). The constant chemotactic sensitivitypatterns of the dimensionless cell densityvere simulated
(x(u,v) = xo0) was used in these simulations. The spa-at various values ofn-parameter. Figure 7 shows the effect
tiotemporal patterns of the dimensionless cell densiiyere  of the nonlinearity of the diffusion.
simulated at various values of the effective sampling rediu ~ Acceptingm = 0 leads to a model with the linear
p. Figure 6 shows how the non-local sampling affects thediffusion. Results of the simulations at differemt values
pattern formation in the luminous. coli colony. show that patterns tend to drift away from the experimental
Acceptingp = 0 leads to a model with the local sampling one (Figure 2) when increasingn( — oo) (Figure 7c)
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or decreasingrt — —oo) (Figure 7a) them-parameter.
The pattern shown in Figure 7a contains less mergers of
different "branches” (as a result ohh < 0). Figure 7
exhibits the "branch” movements that are distorted congbare
to the experimentally observed ones (as a resutbof- 0).
Therefore, there is no need to use the nonlinear diffusion
for modeling the pattern formation in a colony of luminous
E. coli.

E. The Effect of the Non-Local Sampling With the Nonlinear
Diffusion

0

From the simulations with the non-local gradient (the a) x
non-local sampling) and the nonlinear diffusion it was seen
that the increasing the non-local gradient paramgtéias
visually opposite effect to the increasing nonlinear diftun
parametern (Figure 6¢ versus Figure 7c). As a result, addi-
tional numerical experiments were carried out to determine
how the non-local sampling combined with the nonlinear..
diffusion affects the pattern formation. Various combioas
of p- and m-parameter values were used to simulate the
spatiotemporal patterns of the dimensionless cell density
along the three phase contact line of the cylindrical vessel
Figure 8 shows the effects of the non-local sampling and the
diffusion nonlinearity.

From Figure 8 it can be seen that the simulated patterng)
(especially Figur? 8a) are more similar to th? ex_perimeﬂtal Figure 8. Spatiotemporal plots of the dimensionless catisitg « when
observed one (Figure 2) than those shown in Figures 6¢ anging the non-local sampling and the nonlinear diffusipn=(0.012, m =
7c. When analyzing the most distorted case (Figure 6¢)-2) (@), (b = 0.012, m = 0.4) (b), (0 = 0.016, m = 0.2) (c), (p =
one can see that the merging behaviour can be regaine0016’ m = 0.6) (d). Values of the other parameters are as defined in (21).
by using the nonlinear diffusion (Figures 8c and 8d), but
the result is not quite similar to the desired one. However,
if the nonlinear diffusion is added to the case shown intheses values leads to a reduction of the governing eqation
Figure 6b, the results (Figures 8a and 8b) become mucfil5) to the following form:
better than those obtained considering the non-local sam-

pling and the diffu.sion nonlinearity sep:_:\rate_ly. This. mean I 92u 9 o
that when increasing, one should consider increasing, — = D5 —xoq- | uz— ) +sru(l —u),
. . . ot Ox dr \ Ox
respectively. On the other hand, the comparison of Figure 8a 9 92
with Figure 3a does not confirm that the model with the <Y _ _12) +s (L _ v) , (22)
non-local sampling and the nonlinear diffusion is capable t o Oz L+ ¢u
produce a result that better matches experimentally obderv r€(0,1), t>0.

one. Because of this, there is no practical need for applying
the non-local sampling as well as the nonlinear diffusion
for the computational modeling of the pattern formation in
a colony of luminousE. coli

The governing equations (22), the initial (18) and the
boundary (19) conditions form together a minimal mathe-
matical model suitable for simulating the pattern formatio
in a colony of luminousE. coli.

According to the classification of the chemotaxis models
introduced by Hillen and Painter [6], the minimal model

In the previous sections it was shown that the patterr(22) is a combination of two models: the nonlinear signal
formation along the contact line in a cellular populatiom ca kinetics model M6 and the cell kinetics model M8. This
be modeled at the following values of the model parameterscombination of the models has comprehensively been ana-
m=0,a=0,08— o0, v — oo, e =0. The simulated lyzed by Maini and others [4], [20], [23].
patterns at these values tend to have the desired propertiesThe governing equations (22) contain five parameters,
similar to the experimental ones (Figure 2) - emergence and, xo, r, ¢ and s. The diffusion parameteD is neces-
merging of the strands are present and regular. Acceptingary because of an inequality of the dimensional diffusion

F. A minimal model
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coefficients D,, and D. [4], [21]. The model parameter [2] M. EisenbachChemotaxis London: Imperial College Press,
s is required to support the spatial and temporal scale  2004.

for simulating systems and processes of the interest. The[3]
essential parameter, controls the chemotactic response of
the cells to the concentrations of the attractant and allows
to reproduce the experimentally observed bands. Eartier, i [4] J. D. Murray, Mathematical Biology: Il. Spatial Models and
was shown that and ¢ are also essential for modeling the Biomedical Applications3rd ed. Berlin: Springer, 2003.

pattern formation in a colony of luminous. coli [17]. [5] E. F. Keller and L. A. Segel, “Model for chemotaxis).
VI. CONCLUSIONS Theor. Biol, vol. 30, no. 2, pp. 225-234, 1971.

_ The quasi-one dimensional spau_oter_nporal p_attern forma- 6] T. Hillen and K. J. Painter, “A user's guide to PDE models
tion along the three phase contact line in the fluid cultufes o for chemotaxis,”J. Math. Biol, vol. 58, no. 1-2, pp. 183-217,
lux-gene engineereffscherichia colican be simulated and 20009.
studied on the basis of the Patlak-Keller-Segel model. . ) )
The mathematical model (11)-(13) and the correspondingl?] E- O- Budrene and H. C. Berg, “Dynamics of formation of
dimensionless model (15), (18), (19) of the bacterial self- symmetrical patterns by chemotactic bacteriddture vol.
AV . A=) i , 376, no. 6535, pp. 49-53, 1995.
organization in a circular container as detected by biolumi
nescence imaging may be successfully used to investigat¢8] M. P. Brenner, L. S. Levitov, and E. O. Budrene, “Physical
the pattern formation in a colony of luminous coli mechanisms for chemotactic pattern formation by bacteria,
A constant function ¥ (u,v) as well ash(n,c)) of the Biophys. J.vol. 74, no. 4, pp. 1677-1693, 1998.
c_hemotactlc_ sens_ltlvny can be used f_or modeling the f(_)rma- 9] S. Sasakiet al, “Spatio-temporal control of bacterial-
tion of the bioluminescence patterns in a colony of luminous * * syspension luminescence using a PDMS cell,” Chem.
E. coli (Figures 4 and 5). Oscillations and fluctuations Engineer. Japanvol. 43, no. 11, pp. 960-965, 2010.

similar to experimental ones (Figure 2) can be computa- _ _ _ )
0] K. J. Painter and T. Hillen, “Spatio-temporal chaos in a

. . . . ; ) 1
tionally SImuI_ated ignoring the signal depende_nce as Wel[ chemotactic model,Physica D vol. 240, no. 4-5, pp. 363—
as the density-dependence of the chemotactic sensitivity 375 59711

T. C. Williams, Chemotaxis: Types, Clinical Significance, and
Mathematical Models New York: Nova Science, 2011.

(Figure 3a).
The local sampling and the linear diffusion can be sucq{11] R. Simkus, “Bioluminescent monitoring of turbulent biocon-
cessfully applied to modeling the formation of the biolu- vection,” Luminescengevol. 21, no. 2, pp. 77-80, 2006.

.m]llnescenC? tl;.:)]atternsl n ? Col(jqnthth l;JhmmOE;tSCOl’]; Thet. r][12] R. Simkus, V. Kirejev, R. MeSkieng, and R. Meskys, “Torus
Influence ot the non-local gradient to the pattern formatio generated byEscherichia cofl Exp. Fluids vol. 46, no. 2,

can be partially compensated with the nonlinear diffusion pp. 365-369, 2009.

(Figures 6, 7 and 8). However, the non-local sampling and _ _ _

the nonlinear diffusion do not yield in patterns more simila [13] S. Dauneret a::, “Gt;e'nletha”?/ engineered WP]O'e-CB" sensing

; systems: coupling biological recognition with reportengs,”

to the experlmentally observed ones when compared to the Chem. Reyol. 100, no. 7. pp. 2705-2738, 2000.

patterns obtained by the corresponding model with the local

sampling and the linear diffusion. [14] Y. Lei, W. Chen, and A. Mulchandani, “Microbial biosen-
The more precise and sophisticated two- and three-  sors,”Anal. Chim. Actavol. 568, no. 1-2, pp. 200-210, 2006.

dimensional computational models implying the formation

of structures observed on bioluminescence images are noly® M- B- Gu, R. J. Mitchell, and B. C. Kim, "Whole-cell-base

der d | d . biosensors for environmental biomonitoring and applaati
under development and testing. Adv. Biochem. Eng. Biotechnoliol. 87, pp. 269—305, 2004.
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