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Abstract—Radar is an attractive technology for long term
monitoring of human movement as it operates remotely, can be
placed behind walls and is able to monitor a large area depending
on its operating parameters. A radar signal reflected off a moving
person carries rich information on his or her activity pattern
in the form of a set of Doppler frequency signatures produced
by the specific combination of limbs and torso movements. To
enable classification and efficient storage and transmission of
movement data, unique parameters have to be extracted from
the Doppler signatures. Two of the most important human
movement parameters for activity identification and classification
are the velocity profile and the fundamental cadence frequency
of the movement pattern. However, the complicated pattern of
limbs and torso movement worsened by multipath propagation
in indoor environment poses a challenge for the extraction of
these human movement parameters. In this paper, three new
approaches for the estimation of human walking velocity profile
in indoor environment are proposed and discussed. The first two
methods are based on spectrogram estimates whereas the third
method is based on phase difference computation. In addition,
a method to estimate the fundamental cadence frequency of the
gait is suggested and discussed. The accuracy of the methods
are evaluated and compared in an indoor experiment using a
flexible and low-cost software defined radar platform. The results
obtained indicate that the velocity estimation methods are able to
estimate the velocity profile of the person’s translational motion
with an error of less than 10%. The results also showed that the
fundamental cadence is estimated with an error of 7%.

Index Terms—Human motion, Human gait, Velocity profile,
Cadence frequency, Radar, GNU Radio

I. INTRODUCTION

Automatic classification of human activity is an enabler of
relevant applications in the healthcare and wellness domains
given the strong empirical relation between a person’s health
and his or her activity profile. As a rule of thumb, the ability of
a person to engage independently in strenuous and complex
activities entails better fitness and health status, the reverse
relation being also generally true. This implication has inspired
the design of activity monitoring systems that range from
fitness training [3] to early discharge support of postoperative
patients [4]. Seniors living independently by wish or circum-
stances may also benefit from remote activity classification as
a means of assessing their health status or identifying accidents
and unusual behaviour [5]. This information can be fed to
companies specialized in providing swift help in case of need,
healthcare providers or concerned family members.

On-body or off-body sensors can be used for human activity
monitoring in indoor environment. In the former category,
triaxial accelerometers have been widely investigated for
quantifying and classifying human activities [6]. The main
drawback of on-body sensors is that these must be carried by
the monitored subject at all times. In elderly care applications,
where long monitoring periods are expected, subjects can
be forgetful or uncooperative thus hampering the monitoring
process. In the latter category, off-body sensing for movement
analysis can be performed using technologies such as cameras
[7], ultrasound [8] or pyroelectric infrared (PIR) sensors [9].
These approaches suffer however from limited range indoors
as line of sight is usually constrained to a single room. The
range limitation of these technologies means that many sensors
are required to cover a single building. Furthermore, these
multiple sensing units must be networked for data collection
thus increasing the deployment and maintenance complexity of
the system. Radar on the other hand is an attractive technology
for long term monitoring of human movement because it does
not need to be carried by the user, can be placed behind walls
and is able to cover a large area depending on its operating
parameters. Furthermore, the coarseness of the information
provided by radars is less prone to raise privacy concerns when
compared to cameras. Depending on the operating parameters,
radars can also be used for through-the-wall sensing [10].

Deploying radars in health and wellness applications at
the user’s home will be facilitated if such systems are low
cost, easy to deploy and safe. The possibility to adapt simple
wireless LAN transceivers into indoor radars keeps the radar
cost low and makes it flexible. Low radiation emission ensures
safety for the user while multiple room coverage per radar
unit eases deployment at home. However, extracting useful
information from radars deployed in an indoor environment,
where subjects may spend most or all their time, poses a
challenge due to multipath propagation, presence of walls
and other big objects, presence of interfering motions, etc.
These properties of an indoor environment make it difficult
to identify patterns of human movement from an indoor radar
signal. Though these issues are addressed in this paper, the
presence of interfering motions is not considered. In this work,
a low-cost radar is designed that extracts human movement
parameters in the presence of indoor multipath and clutter.
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A radar signal reflected of a moving person carries rich
information on his or her activity in the form a set of Doppler
frequency patterns produced by the specific combination of
limbs and torso movements. The Doppler frequency pattern
that results from such a complex movement sequence is called
“micro-Doppler signature” and the movement pattern is called
”gait”. If for a given activity, these Doppler signatures can
be categorized into unambiguous profiles or “footprints”, then
radar signals can be used to identify the occurrence of specific
activities over time. The evolution of these micro-Doppler
patterns over time can be viewed in a spectrogram which is a
time versus Doppler frequency plot of the micro-Doppler sig-
natures. Spectrogram patterns obtained from human movement
contain rich information on different parameters of movement
including direction of motion, velocity, acceleration, displace-
ment, cadence frequency, etc. Therefore, a visual inspection of
spectrogram patterns reveals the occurrence of different types
of human activities. However, to enable automatic human
activity classification, parameters that have a unique range
for the different types of human activities must be extracted
from the micro-Doppler signature. Moreover, data storage and
transmission of an entire spectrogram plot consumes too much
storage and transmission resources. For efficient storage and
transmission of human movement data to care taking centres,
unique parameters that enable classification and require less
transmission resources should be selected.

One of the most important parameters for the classification
of human activities using Doppler signatures is the velocity
profile [11], i.e., the instantaneous velocity of human motion
over time. Moreover, the velocity profile of a walking person
shows different states (accelerate, decelerate, sudden stop,
change in direction, etc.) that are useful to be identified in
various applications. In general, a careful observation of how
a person’s velocity profile develops over time provides insights
that can be used for timely intervention (if and when needed)
in health and elderly care applications. Another important
parameter for human activity classification is the rate of
oscillation of the limbs which is called the “fundamental
cadence frequency”. This is an average rather than instanta-
neous parameter which shows how fast the legs and arms of a
person are oscillating. The fundamental cadence frequency is
an important parameter which can be directly utilized by an
activity classification system [12], [11].

In this paper, different approaches to estimate these two
important parameters of human motion, namely velocity pro-
file and fundamental cadence frequency, are proposed and
evaluated. The main contributions of this paper to the area
of unobtrusive monitoring in health and wellness applications
are as follows:

o Two different methods to estimate the velocity profile of
human translational motion from the Doppler signature
obtained in a form of time-frequency spectrogram are
proposed and evaluated. The possibility of using high
resolution Doppler spectrum estimation techniques is also
introduced.

o A third simple method to estimate the velocity profile of
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human motion based on phase difference computation is
suggested and evaluated.

e An experimental radar platform based on low-cost
software-defined radio hardware and open source soft-
ware is implemented and its use for indoor monitoring
of human movement is validated. The platform offers
the opportunity of realizing low-cost experiments at an
expedited pace and low budget.

The remainder of this paper is organized as follows: Section
II reviews related work in the area of using radars for human
activity monitoring, characterization and classification. Section
IIT describes a human movement model that is crucial for
the identification of the major Doppler components in the
radar signal. Section IV introduces basic radar concepts in
human sensing such as human radar cross-section and the
radar signal model. Section V discusses the pre-processing
and spectral estimation techniques that are relevant to obtain
the micro-Doppler signatures. The proposed velocity profile
and cadence frequency estimation methods are discussed in
Sections VI and VII respectively. Section VIII describes the
software defined radar platform and the experimental setup
used in the validation experiments. The estimation results are
presented and evaluated in Section IX. Finally, Section X
summarizes and concludes the paper.

II. RELATED WORK

Human detection using radars has been extensively re-
searched for military surveillance and rescue applications
[13][14][10][15]. The use of radars for human activity moni-
toring and classification has also been intensively investigated.
Anderson [16] used multiple frequency continuous wave radar
for classification of humans, animals and vehicles. Otero [12]
used a 10 GH z CW radar using micro-path antennas to collect
data and to attempt classification. In addition [12] introduced a
technique to estimate the cadence frequency of motion. Gurbuz
et al. proposed a simulation based gender discrimination using
spectrogram of radar signals [17]. Hornsteiner et al. applied
radars to identify human motion [18]. Kim et al. used artificial
neural network for classifying human activities based on
micro-Doppler signatures [11]. All these papers used Fast
Fourier Transform based frequency estimation.

There is also previous work on using other transforms for
Doppler pattern estimation. Geisheimer et al. [19] introduced
the chirplet transform as spectral analysis tool. The Hilbert-
Haung Transform for non-linear and non-stationary signals in
wide band noise radars is also suggested by Lay et al. [20]. A
complex but more accurate iterative way to obtain each pixel
in the spectrogram in a bid to improve the frequency resolution
and suppress the side lobes of the Fast Fourier Transform is
also suggested by Du et al. [21].

Even though the above authors have treated different aspects
in human activity classification in general, the estimation of
velocity profile in indoor environment where the received sig-
nal is plagued with multipath propagation was not specifically
treated. Recently, spectrogram based methods to estimate the
velocity profile of human walking were proposed in [1]. A
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displacement estimation method based on computing phase
difference is also proposed in [2].

In this paper, the spectrogram estimation methods in [1]
are compared with another velocity profile estimation method
derived from the the phase difference principle in [2]. The
use of sliding window high resolution parametric spectral
estimator (MUSIC) is introduced and its performance for
velocity profile estimation is compared with the commonly
used Fast Fourier Transform. Moreover, a cadence frequency
spectrogram is estimated and a simple method to estimate
the fundamental cadence frequency from the spectrogram is
suggested and evaluated.

III. HUMAN MOVEMENT MODEL

Our starting point for human activity characterization is the
definition of a movement model. After studying the relation-
ship between the different parts of the body during locomotion,
features that have unique values in different activities can be
identified. In this regard, the person’s velocity profile is one
of the important features that can be used to achieve activity
classification.

The velocity profile refers to the instantaneous temporal
displacement that the different parts of the human body attain
during movement. Most of the human movement models
available rely on dividing the non-rigid human body into the
most significant rigid body parts and modelling the velocity
profile of these rigid components. One of the most used human
movement models [22] decomposes the body into 12 parts
consisting of the torso, lower and upper part of each leg, lower
and upper part of each arm, the head and each of the right
and left foot. The torso is the main component or trunk of
the body. This model also describes the kinematics of each of
these body parts as a person walks with a particular velocity.
Another known model was based on 3-D position analysis
of reflective markers worn on the body using high resolution
camera [23]. This model states that the velocity profile of each
body part can be represented using low-order Fourier series.
Using this model as a basis, we have described a modified
human movement velocity profile as follows.

Assume a person is moving at a constant velocity V in
a certain direction and that the human body consists of M
rigid parts. The velocity profile of each part, V,,,(¢), can be
represented as a sum of sinusoids given by:

Vin(t) V 4+ A{kp sin(wet + ) +

Ko cos(wet 4 Pm) + ks sin(2wet + pp,) +
kma cos(2wet + pm) } (D)

where 1 < m < M. Note that the velocity profile of each body
part V,,, is characterized by amplitude constants: k1, ..., Kina
and a phase constant: p,, (0 < p,, < 180°). The oscillation
amplitudes k1, ..., kna are largest for legs and smallest for
the torso. The phase p,, reflects the locomotion mechanism of
the body. For instance, the right leg and left arm combination
move 180° out of phase with respect to the left leg and right

Velocity

Figure 1. Human walking velocity profile model [18]

arm. A is a constant that has a specific value for different
types of human activities, w, is the frequency of oscillation of
the body parts which is also called the fundamental cadence
frequency of motion.

A simulation of the velocity profile of a walking person
based on a model similar to the one stated above is shown in
Figure 1. As the Figure shows, the amplitude of oscillation
of each body part is different; however, all the body parts
oscillate at the same fundamental frequency w,. and its second
harmonics 2w,.

The translational velocity of the body is normally time-
varying. Therefore, the oscillations of the body parts in (1)
will be superimposed on the time varying velocity profile of
the body. The torso has the smallest oscillation amplitudes,
km1, ..., kma and therefore the translational velocity profile V/
of the body can be approximated by the velocity of the torso.
The translational velocity can thus be obtained by estimating
the velocity of the torso. Therefore, the two terms: velocity
profile of the body and velocity profile of the torso are assumed
to be the same and used interchangeably from now on.

The velocity profile of the other parts of the body, V;,(t) can
thus be expressed as sinusoids superimposed on the velocity
profile of the torso. Therefore, (1) can be expressed as:

Vm(t) ‘/torso (t) + A{kml Sin(wct + pm) +
kma cos(wet + D) + kms sin(2wet + pm,) +
ka4 cos(2wet + pm) } 2)

IV. RADAR IN HUMAN SENSING

Radar is a device that transmits electromagnetic waves,
receives the signal reflected back off the target and extracts
information about the characteristics (range, velocity, shape,
reflectivity, etc.) of the target. The amount of electromagnetic
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energy that a target is capable of reflecting back is measured
in terms of the radar cross section of the target. Doppler radars
are those that measure the velocity of a target based on the
Doppler effect, i.e., an electromagnetic wave hitting a moving
target undergoes a frequency shift proportional to the velocity
of the target. The radar cross section and velocity profile are
constant and easy to determine for a rigid body moving at
a constant speed. However, as discussed in Section III, the
human body locomotion is more complicated. The radar cross
section and the signal model for radar based human movement
monitoring are discussed in the following sections.

A. Human Body Radar Cross Section

Radar cross section (RCS) is a measure of signal reflectivity
of an object and is usually expressed in a unit of area
(e.g., m?). RCS depends on the frequency of the transmitted
signal and parameters of the target such as size, shape and
material [24]. The RCS of a moving person is challenging
to model because the human body is composed of multiple
semi-independent moving parts. A simple additive approach
to create an RCS model by adding up the contribution of each
body part is commonly adopted. The contribution of each part
can be assumed to remain constant during motion without
significant error. In addition, the total RCS can be assumed
to be half of the body surface area which is exposed when the
person is facing the radar; this area is typically listed as 1m?
[25]. Each of the 12 major parts of the human body listed in
Section III contribute to a fraction of the RCS. The torso has
the highest RCS followed by the legs and arms. The head and
feet have the least contribution. Particularly, the percentage
contribution of each body part is listed as: torso 31%, arms
10% each, legs 16.5% each, head 9% and feet 7% [25].

As the torso has the highest RCS of all the moving body
parts, the velocity profile of the torso can in principle be
estimated by picking out the strongest component from the
received Doppler signal.

B. Signal Model

Doppler radars measure the frequency shift of electromag-
netic waves due to motion. The Doppler shift of an object
is directly proportional to the velocity of the object and the
carrier frequency of the transmitted signal as described below.

Assume a narrowband, unmodulated signal a e’(27/t+¢0)
is transmitted where a, f and ¢ are the amplitude, carrier
frequency and initial phase respectively. The signal received
at the receiver antenna being reflected off a person has a time
varying amplitude a(t) and a time varying phase ¢(t); thus it is
given by a(t) e/ (27ft+60+4(1)) Hence, the received baseband
signal after demodulation reduces to:

y(t) = a(t) /™ 3)

The Doppler frequency shift, f; is the rate of change of the
phase of the signal, i.e., f4(t) = — 5= d‘g(tt) and a small change
in phase can be expressed in terms of the change in distance
as %&t) = 4{%@ where R(t) represents the distance. This
implies that the Doppler shift of a rigid target moving at a

velocity V(t) is given by f4(t) = 2@ where A is the
wavelength of the transmitted radio wave and the velocity V (t)
dR(t) o . .
represents —=_—. This is in a mono-static radar configuration
where the transmitter and receiver are co-located. In bi-static
configuration where the transmitter and receiver are located
on opposite sides of the target, the Doppler shift is given by
_ V@
falt) = =~
It is stated in Section III that the different rigid components
of the body have their own time-varying velocity profile
superimposed on the body velocity. Therefore, each of these
body parts have their own time-varying Doppler shift, i.e.,
fa,, () = ZVMT(” where V,,,(t) is the velocity profile of each
body part. It is however generally challenging to extract the
velocity profiles of each body part for the following reasons:

o The received signal is a superposition of signals that con-
sist of Doppler shifts of different moving parts. Moreover,
each body part has different RCS resulting in different
contribution to the aggregate signal.

o There is significant multipath fading in indoor environ-
ment which results in further additive components to the
resulting signal.

e A radar measures only the radial component of the
velocity of the person, and thus only a portion of the
movement can be estimated with signals from a single
radar.

The content that follows emphasizes on how to estimate the
velocity profile of the body from the aggregate received signal.

A typical walking of a person in an indoor environment
is described by non-uniform motion, i.e., the velocity profile
of the body varies with time. However, physical constraints
limit the person from changing velocity during very short
time intervals. Consequently, the person’s velocity can be
assumed to remain constant during short time intervals. In
other words, a non-uniform human motion can be viewed as a
uniform motion over small time or displacement intervals. This
corresponds to the idea that the non-stationary radar signal
received as a reflection from the person can be assumed to be
piece-wise stationary. Based on this argument, the received
signal during a small piece-wise stationary interval can be
assumed to be a summation of a certain number of sinusoids.
If D sinusoids are assumed, the received signal after sampling
can be given by:

4)

D 4v 1T
= X foa- ]

d=1

where y [n] is a sample at time instant nT’, T is the sampling
time and a4, Vz and ¢4 are respectively the amplitude (which
is proportional to the RCS), velocity and initial phase of each
Doppler frequency component. Since the amplitude undergoes
large scale variations as compared to the phase which varies
from sample to sample, here it is assumed that the amplitude
agq is not time varying in the piece-wise stationary interval.
The indoor environment consists of stationary objects such
as walls that have larger RCS than the human body. The
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signal reflected from these stationary objects has zero Doppler
frequency shift. Moreover, there is a strong direct signal
between the transmitter and receiver antennas of the radar. The
resulting effect is a strong DC component in the baseband
radar signal. Therefore, the received radar signal is actually
given by:

D
y[n] =a- eI 4 Z [ad . ej(%V‘i["]T”‘*‘ﬂﬁd)}
d=1

®)

The number of sinusoids D may change between consecutive
intervals, but it is assumed to remain constant to avoid com-
plexity. The value of D can be taken as small as the number
of body parts described in Section III; however, it is generally
better to assign it a larger number to obtain a smooth Doppler
spectrum pattern.

V. DOPPLER SPECTRUM ESTIMATION

The received radar signal consists of many frequency com-
ponents as described in the previous section. If piecewise
stationarity is assumed, a joint time-frequency estimation can
be used to decompose the received signal into these frequency
components. In order to estimate the spectral content of a
signal, non-parametric or parametric spectral estimators can be
applied [26]. In this work, the Short Time Fourier Transform
(STFT) and a high resolution parametric estimator, sliding
window MUItiple Slgnal Classification (MUSIC) are used.
However, as discussed in Section IV-B, the zero-frequency
component which results due to stationary objects in the
environment must be removed before spectrum estimation.

A. Pre-processing

As shown in (5), there is a strong DC component in the
aggregate received signal. This component contains no infor-
mation and makes the spectral magnitudes of the other relevant
frequencies almost invisible in the spectrogram. Moreover, it
affects estimation of the relevant Doppler frequency patterns
which have small amplitudes. Therefore, this component must
be removed for better estimation.

There are different techniques to eliminate a DC component
from a signal. The simplest method available is adopted here,
i.e., averaging. The average value of the signal is computed
and subtracted from the aggregate signal as follows:

Naw

Nl(w > yln]

n=1

(6)

where N, is a large number. The remaining signal ¢ [n] can
be thus assumed to consist of the useful Doppler frequency
pattern from moving objects only.

B. Spectrum Estimation
The short time Fourier transform (STFT) applied on the
signal, ¢ [n] is given by:

n'+L
Yikn']= ) gln]-e sy

n=n'

)

where L is the number of signal samples taken in each
consecutive computation which is called “window size” in
spectral estimation; n’, which is set to multiples of (1 —«) L,
represents the starting points of the moving window transform
and « is the overlap factor between windows. k represents the
k" frequency component of the signal, and N is the size of
the FFT. The window size L is set based on the duration over
which the signal is assumed stationary. This form of short time
FFT computation is also called sliding window FFT.

For the sake of comparison, a MUSIC [26] based spectral
estimation is also applied to the received signal. MUSIC is a
parametric spectral estimator based on eigenvalue decomposi-
tion. Sliding window MUSIC based spectral estimation is not
commonly used; however, it is intuitive that it can be applied
similar to the sliding window FFT. In the STFT, the window
size is a trade-off between stationarity and spectral resolution.
The major advantage of parametric spectral estimators like
MUSIC is that the spectral resolution is independent of the
window size L. However, the MUSIC method requires a priori
knowledge of two parameters: the auto-correlation lag param-
eter and the number of sinusoids D [26]. The performance of
the MUSIC method can be better or worse than STFT based
on the setting of these two parameters.

The joint time-frequency spectral estimation is repre-
sented using the spectrogram, a color plot of the magni-
tude of frequency components as a function of time and
frequency. The pixels in the spectrogram represent the power
at a particular frequency and time, which is computed as:
P k0] = [Y [k, 0]

VI. VELOCITY PROFILE ESTIMATION METHODS

As discussed in Section III, each body part has its own ve-
locity profile superimposed on the velocity profile of the torso.
The instantaneous torso velocity v:orso [7'] can be obtained
from the instantaneous torso Doppler frequency fiorso [1]
using:

A

Vtorso [n/] = §ftorso [’I’L/]

®)

Three methods to estimate the velocity profile of human
walking are suggested. The first two methods are based on
the the joint time-frequency estimation discussed in Section V.
The torso Doppler frequency profile is estimated using these
two methods and the corresponding velocity profile is obtained
using (8). The third method is different from the two methods.
It is a simple but approximation-based method based on phase
difference computation.

A. Maximum Power Method

As described in Section III, the torso has the largest RCS of
all the body parts. Thus, the frequency component which has
the highest power must be the Doppler frequency component
of the torso since the strongest DC component is already re-
moved. The maximum power method selects the frequency of
maximum power from each spectral window in the computed
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spectrogram, i.e., fiorso (V'] = [ [ktorso, '], Where kiopso is
the frequency index at which P [k, n/] is maximum.
However, selecting the maximum frequency component
returns the torso frequency component only when there is
motion. If there is no motion, the received signal §[n] in
(6) consists of only background noise and therefore selecting
the strongest frequency component gives a wrong estimate
of the torso frequency (which is actually zero). A threshold
parameter must thus be selected to distinguish motion and
no-motion intervals (for instance, in Figure 4, the interval
of no-motion is 0-3 s). This parameter will be computed
from the signal received when there is no motion and used
as a threshold. The total signal power in the spectrogram
column is one of the suitable parameters that can be used
to distinguish these intervals. The parameter is computed
and averaged over the duration of no-motion to determine a
threshold, i.e., Py, = averagen/{ZkN:l Plk,n']}. Therefore,

, flktorsosn’] i Son_, Plk,n’] > Piny
ftorso [Tl } =
0 else

B. Weighted Power Method

The maximum power method requires a threshold which
may fail to distinguish the motion and no-motion intervals
correctly. This can result in a non-zero velocity estimate in
absence of motion or zero velocity even though there is
motion. Thus a method that pulls the velocity to zero when
there is no or little motion without using a threshold is
desirable. This method should also pull the resulting velocity
estimate to torso velocity when there is motion.

One possible way to do this is to estimate fiorso [12'] as
a power-weighted average frequency in each spectrogram
column, n’, i.e.,

_ Sy k] Pk, n]

Yot Pl
This is based on the assumption that the frequency index range
considered in the spectrogram is [—Fs/2: Fs/2] (where
Fs = % is the sampling frequency) or the zero frequency
is the central point in the spectrogram.

The major problem of the weighted power method is that
it results in a biased estimate when image frequencies are
present. Image frequencies are those Doppler frequencies that
occur on the opposite side of the actual Doppler frequency
pattern in the spectrogram. These occur due to multipath
effect in indoor environments. For instance, when a person
is moving towards the radar, the Doppler frequencies are
positive. However, there are also signals that reflect on the
back of the person and received in the aggregate signal. As the
person is moving away from the radar with respect to these
signal paths, the signal components create negative (image)
frequencies. The presence of image frequencies makes the
weighted power estimate biased with respect to the actual
torso frequency. However, the rays that reflect off the back
of the person travel longer distances as compared to the rays
that reflect off the front of the person and therefore, these

ftorso [n/]

(10)

©))

components have lower power levels. The low power level of
image frequencies reduces their impact on the weighted power.

The maximum power method is not affected by the pres-
ence of image frequencies as it simply selects the strongest
frequency component. The weighted power method however
performs well even in static conditions and is easier to apply
as there is no need for a threshold.

C. Phase Difference Method

The third instantaneous velocity estimation method is de-
rived from the total displacement estimation method suggested
in [2] which was based on phase difference computation. In
narrowband signals, the change in phase can be directly related
to the propagation delay. Therefore, the change in phase can
be directly related to the change in distance or the change in
distance per unit time which is the instantaneous velocity.

After removing the DC component using (6), the received
signal in (5) can be expressed as:

D 4wV [n]T
gln =3 a5
d=1

n+da)

(1)

Lets make a crude approximation that there is only one
strong reflection in the received signal and all the other
reflections are very weak. It is mentioned that if there is one
strong component in the reflection from the human body, that
strong component is the reflection from the torso. Using this
assumption, (11) reduces to:
g[n} = Qtorso * 6j(4ﬂworso[n]%n+¢d) (12)
The instantaneous torso velocity can be easily be obtained
from (12) by computing the phase difference between con-
secutive samples. The phase difference between consecutive
samples A¢[n] can be computed by:
r1a T
Adln) = £ (§l)g"* In — 1)) ~ 47 Viorsoln] 5
This change in phase A¢[n] should be very small here
(A¢[n] < 27) to avoid phase ambiguity. However, this is not
a problem for typical sampling rates of a few hundred Hz and
radar transmission frequencies less than 10 GHz which is also
the case in our software radio-based radar.
Therefore, the torso velocity can be obtained as:
N A
‘/torso[n] ~ A¢[n]m
It is discussed that human motion is piece-wise stationary;
thus, a resolution more than a fraction of a second is not
necessary. The motion is assumed to be stationary over L
samples for spectrum estimation in Section V-B. Using a
similar piece-wise stationarity range of L, the velocity profile
of the torso is thus given by:

13)

(14)

n'+L

> Ag[n]

n=n’

V;orso [7’1/ (1 5)

|~ A
T ArLT
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Besides estimating the velocity profile at an appropriate
interval, the averaging in (15) has the advantage of averaging
out the noise when there is no motion. Assuming that the noise
is additive white noise when there is no motion (when the ve-
locity is zero), the summation in (15) tends to zero. Therefore,
a near zero torso velocity (Viorso[n'] = 0) is obtained.

The phase difference method is therefore a very simple
method that can be used to estimate the velocity profile of
human motion with less complexity. It is a simple method
because the complexity associated with spectrogram estima-
tion and the task of extracting the velocity profile from the
spectrogram are avoided.

However, the phase difference method has its own draw-
backs. The first drawback is its accuracy. As already men-
tioned, the phase difference method is dependent on the crude
assumption that the reflection from the torso is the only signif-
icant reflection in the received signal. Therefore, the accuracy
of this method is dependent on the ratio of the magnitude
of the signal reflection from the torso to the magnitude of
the aggregate received signal. The smaller this ratio, the less
accurate the method will be. A detailed illustration on the
accuracy of this phase difference computation is given in [2].
The second drawback of this method is that it gives inaccurate
results when the background noise (the signal received when
there is no motion) is not white. Such a coloured background
signal may result from harmonics and other frequency com-
ponents generated by imperfect transceivers. In presence of a
coloured noise, the phase difference method gives a velocity
estimate corresponding to the strongest background noise
frequency. Therefore, unless background subtraction methods
as suggested in [2] are used, the phase difference method does
not estimate the velocity profile correctly in the absence of
motion.

VII. CADENCE FREQUENCY ESTIMATION

Cadence frequency is an important parameter of motion that
shows how fast the appendages (legs and arms) of the body
are oscillating. A cadence frequency spectrum shows the rate
of change of each Doppler frequency: whether the magnitude
of a particular Doppler frequency has a constant strength over
time or has a certain rate of change. For instance, the torso
has near to constant velocity (does not oscillate) as compared
to the hands and legs whose velocity changes continuously in
an oscillatory pattern. Such a pattern can be obtained from a
cadence frequency spectrogram.

A cadence frequency spectrogram can be obtained by taking
the FFT of the Doppler frequency versus time spectrogram
over time at each Doppler frequency. Thus, the Doppler
frequency versus time plot will be transformed into Doppler
frequency versus cadence frequency plot. That is, the power of
the signal P.[k, c] at a Doppler frequency index k and cadence
frequency index c is given by:

N, 2
Pelk,d = | 3 [V k'] 7%

n'=1

(16)

where Y[k, n'] is given by (7). The number of time windows
involved in the FFT, N,,, should be short enough to estimate
the change in cadence frequency pattern, i.e. to have enough
time resolution, and it should be long enough to get enough
cadence frequency resolution. Thus, an optimal window size
should be taken considering these factors. The maximum
cadence frequency to be considered depends on the time
interval between consecutive windows.

Once the cadence frequency spectrogram is obtained, a
simple method of summing the total power at each cadence
frequency can be used to obtain the fundamental cadence
frequency of the gait. Summing the powers at each cadence
frequency over the Doppler bins gives a total power versus ca-
dence frequency plot. The total power at a cadence frequency
index ¢, P;[c], is thus given by:

N
Pld = Plk,c|

k=1

a7

Based on the velocity profile model in (1), three peaks are
expected on the cadence frequency plot. The first and strongest
peak will be at a cadence frequency of O due to the near
constant velocity of the torso, the second peak will be at
the fundamental frequency w. and the third at the second
harmonics 2w.. More harmonics orders might also be visible
from the spectrogram. Therefore, the second peak from the
cadence frequency plot is taken as the fundamental cadence
of the gait.

VIII. SOFTWARE RADIO-BASED RADAR

The velocity profile and cadence frequency estimation meth-
ods discussed were evaluated in a set of experiments done
using a GNU Radio-based active radar.

GNU Radio is an open source and free programming
toolkit used for realizing software defined radios using readily-
available, low-cost RF hardware and general purpose proces-
sors [27], [28]. The toolkit consists of a variety of signal
processing blocks implemented in C++ that can be connected
together using Python programming language. Some of the
nice features of GNU Radio include the fact that it is free,
open-source, re-configurable, can tune parameters in real-time
and provides data flow abstraction. The Universal Software
Radio Peripheral (USRP) is a general purpose programmable
hardware that is commonly used as a front-end for GNU Radio
[29].

The major components of the USRP are its FPGA,
ADC/DAC sections and interpolating/decimating filters. The
USRP is designed such that the high sampling rate signal pro-
cessing, such as down conversion, up conversion, decimation,
interpolation and filtering are done in the FPGA. The low
speed signal processing such as symbol modulation/ demodu-
lation, estimation and further signal processing takes place in
the host processor. This lessens computational burden of the
processor and makes signal processing easily manageable. The
new USRP version, USRP2, has a Gigabit Ethernet interface
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Figure 2. Monostatic radar setup using GNU Radio and USRP

allowing 25 M Hz RF bandwidth in and out of the USRP2
[27], [30].

GNU Radio and USRP have been widely used for prototyp-
ing in communication systems research [27]. Their adoption
in a wide range of applications is motivated by the low cost,
relative ease to use and flexibility. However, the use of USRP
as a platform for building active radar is limited due to its
low power and limited bandwidth. A possible design of USRP
based long-range pulse radar is discussed in [31]. We instead
used a USRP based continuous wave radar. To the best of our
knowledge, our work is the first using USRP and GNU Radio
as a short-range (indoor) active radar.

In our experiments, a USRP is used in conjunction with
GNU Radio to implement a monostatic, unmodulated contin-
uous wave radar. The USRP was equipped with a XCVR2450
daughterboard which works as the radar RF front-end in the
24 — 25 and 4.9 — 5.9 GHz bands. Figure 2 shows the
schematics of our radar. The setup uses two separate USRPs,
one for transmission and the other dedicated for reception.
A cable between the boards ensures the two boards are
synchronized to a common clock.

This radar platform is both low-cost and flexible. The
carrier frequency, transmitter power, receiver gain, and other
parameters are easily configurable in software.

IX. EVALUATION

A detailed description of the different types of experiments
done and the results obtained to evaluate the estimation of
human movement parameters such as velocity profile, cadence
frequency, displacement, activity index, direction of motion,
etc., can be found in [32]. In this paper, only one of the
experiments to evaluate the proposed velocity profile and
cadence frequency estimation methods is described.

In the evaluation experiment, a person’s movement in a con-
fined area was measured using radar transmission frequency of
5 GHz and transmission power of 30 dBm (including antenna
gains). The received signals were recorded in a data file and
processed offline using MATLAB. The signal was low-pass
filtered and decimated to a sampling rate F's of 500.5/s.
A window size of 100 samples which corresponds to 0.2 s
(where s represents seconds) is used assuming that the motion
is piece-wise constant for a time duration of 0.2s. An FFT
size (V) of 500 and an overlap of 75% between the sliding
windows are also used in the computation of both STFT

Person
‘_ ___________ B - TV —_
radar 12m .

Figure 3. Walking experiment made in a corridor

and MUSIC spectrograms. In MUSIC, the autocorrelation lag
parameter is set to 0.5L and the number of sinusoids D is set
to 25. Such a value of D was chosen after experimenting on
the received signal and taking into a account the discussion in
Section IV.

Some important parameters of motion that can be easily
observed from the spectrogram are discussed and compared
with the actual motion of the subject. The velocity profile is
estimated using the three methods discussed in Section VI.
These velocity estimation methods are evaluated by comput-
ing the total distance covered based on the velocity profile
estimated and comparing it with the actual distance covered
by the subject which was measured manually. The weighted
mean method is then selected to estimate and compare velocity
estimations from the STFT and MUSIC based spectrograms.
The number of steps taken to complete the motion are also
recorded and used to evaluate the fundamental cadence fre-
quency estimation method discussed in Section VIIL.

The experiment was done in a 2 m wide and 12 m long
corridor as shown in Figure 3. The person stands at a distance
of 12 m in front of the radar for about 3 s and starts walking
towards the radar. Measurements with a timer and manual
counting showed that it takes the person about 10s and 15
walking steps respectively to complete the 12 m by walking.

A. Spectrograms

The STFT and MUSIC based spectrograms obtained from
this experiment are shown in Figure 4 and 5 respectively.
These spectrograms show the micro-Doppler pattern of the
motion of the person over time. The following observations
can be derived from these spectrograms:

e The time duration of motion recorded and the number
of steps counted manually match the spectrogram pat-
tern. The latter, which is counted to be 15 during the
experiment, is equal to the number of spikes in the
spectrogram (which is also 15 as Figure 4 shows more
clearly). These spikes result from the forward swinging of
the legs and arms. The periodic like pattern of the spikes
in the spectrogram corresponds to the oscillation of the
legs and arms that occur in a typical walking sequence.
The spectrogram also shows that the backward swinging
of the legs is small as compared to the forward swinging.
This confirms the asymmetrical human movement model
patterns observed in Figure 1.
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Figure 5. MUSIC based spectrogram estimate

o Even though the person is moving towards the radar

which corresponds to a positive Doppler frequency, the
spectrograms shows that there is an image micro-Doppler
pattern of weaker power level in the negative Doppler
frequencies. This confirms the image frequency problem
discussed in Section VI.

The STFT spectrogram has lower resolution than the
MUSIC spectrogram as expected. On the other hand, the
STFT micro-Doppler pattern is smooth as compared to
a spiky MUSIC spectrogram that resolves the strongest
frequencies as Figure 5 shows. Therefore, it can be
deduced that the MUSIC spectrogram can be used to
resolve the specific Doppler contribution of each of the
rigid parts of the body.

B. Velocity Profile

The torso velocity profile estimated using the two spectro-
gram based velocity estimation methods, namely maximum
power and weighted power methods, is shown in Figure 6.
These estimates are based on the STFT spectrogram in figure
4. The performance of the phase difference method is also
plotted in Figure 7 in comparison to the spectrogram based
methods. The following can be said on the performance of
these velocity profile estimation methods.

One possible measure to evaluate the accuracy of these
methods is the total distance covered. This measure can
only test the accuracy of the velocity profile estimations
in average. To measure the total distance, a part of the
spectrogram when the person is in motion must be consid-
ered (which is between 3s and 11s as shown in Figure
4). The total distance the person moved can then be esti-
mated as the area under the velocity versus time curve. That
is, Total distance = 8 s - :isgs Viorso [t]- A total distance of
13.26 m is obtained from the maximum power method which
gives an error percentage of only 10% as compared to the
manually measured distance of the corridor which is 12m.
Similarly, a total distance of 11.34m is obtained from the
weighted mean method which gives an error percentage of
only 5.5%. The total distance computed from the phase
difference method is about 12.85m which results in an error
percentage of 7%. These results show that all velocity profile
estimation methods estimate the total distance with an error of
less than 10% and the weighted mean method gives the best
estimate.

The other measure that can be used is the performance of
these methods when there is no motion (which is between
0s and 3s as shown in Figure 4). As Figure 7 shows, the
maximum power method is able to perform well (outputs
Viorso[n'] = 0) in absence of motion since it uses a threshold
detector. On the other hand, the weighted power and phase
difference methods have a significant error in the absence of
motion. The figure shows that the phase difference method
has the worst performance in the absence of motion due
to the imperfect transceivers as discussed in Section VI-C.
The background noise frequencies generated by our software
radio-based radar prototype are evident from the horizontal
symmetrical lines at 100 Hz and 200 H z in Figure 4.

One of the nice properties of the weighted power method
is that it is insensitive to symmetrical background noise.
Therefore, the weighted power method has in average better
accuracy than the phase difference and maximum power
methods.

STFT versus MUSIC: The spectrograms in Figure 4 and 5
show that MUSIC is a good spectral estimator to resolve the
contribution of the rigid parts of the body from the overall
micro-Doppler signature. In order to evaluate the accuracy of
velocity estimations computed from STFT and MUSIC spec-
trograms, the weighted power method is used. A comparative
plot of the velocity estimations based on an STFT and MUSIC
spectrogram is shown in Figure 8 for the duration of motion.
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Figure 7. Phase difference method of velocity profile estimation compared
with the spectrogram based estimates

The total distance is computed from these velocity estimations
and is found to be 11.34 m (estimation error of 5.5%) for the
STFT based spectrogram and 12.34 'm (estimation error of
2.83%) for the MUSIC based spectrogram. This result suggests
that the MUSIC based method outperforms the STFT based
method in average. However, there is no significant difference
between the two velocity profiles as Figure 8 shows. This is
because the estimation methods in Section VI are not very
sensitive to frequency resolution.

C. Cadence Frequency

The cadence frequency spectrogram can be obtained from
the STFT or MUSIC spectrograms by applying Fourier trans-
form at each Doppler frequency as discussed in Section VII.
In this case the STFT spectrogram is used.

The cadence frequency spectrum obtained from the STFT
spectrogram is shown in Figure 9. This spectrum shows the

ey
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Figure 8. Velocity profile estimates using STFT and MUSIC based spectro-
grams

Doppler frequencies and their corresponding rate of oscillation
contributed by the parts of the body. Small cadence frequency
corresponds to no oscillation or variation of a Doppler com-
ponent and large cadence shows high rate of oscillation. As
indicated, the strongest Doppler frequency at zero cadence
corresponds to the torso and the other strongest component
at a higher cadence (which is the fundamental cadence of the
gait) corresponds to the legs.

In order to obtain the fundamental cadence of the gait,
the total power at each cadence frequency bin is summed
and plotted as shown in Figure 10. This figure clearly shows
two strongest cadence frequencies. It is evident from the
human movement model in Section III that three strongest
frequencies: 0, w. and 2w, are expected from the cadence
frequency plot. However, the second cadence is found to be
weak here.

The fundamental cadence frequency (the second peak) is
obtained from Figure 10 to be 1.74 steps/s. This parameter
shows how many walking steps the person makes per second
in average. As discussed in Section I, this parameter indicates
the activity level and possibly the health status of a person.
The cadence frequency estimation can be verified based on
the manually recorded data when the experiment is done. It
is stated that the number of steps the person took to cover
the distance is 15 and the duration of motion as observed
from the spectrograms to be 8 s. Therefore, the fundamental
cadence frequency is % = 1.87 steps/s which shows
that the estimation results in an error of 6.9% only.

X. CONCLUSION

In this paper, pre-processing followed by STFT and MU-
SIC spectral estimators are applied to estimate the micro-
Doppler signatures of human movement from a received radar
signal. Elegant approaches to estimate the velocity profile
and fundamental cadence frequency of motion are proposed.
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Maximum power and weighted mean methods are suggested
to extract the velocity profile from the spectrograms as well as
an approximate but simple method based on phase difference
computation. These velocity profile estimation methods are
evaluated and compared against each other. A technique to
extract the cadence frequency spectrum and the fundamental
cadence frequency from the joint time-frequency estimation is
also discussed and evaluated.

The maximum power, weighed mean and phase difference
methods were able to measure the total distance covered with
an error of 10%, 5.5% and 7% respectively. It is found that
the maximum power method is error-prone since it needs a
threshold and its performance depends on the choice and ac-
curate estimation of the threshold value. The phase difference
method is found to be accurate enough in the presence of
motion. However, the sensitivity of this method to background

noise makes it error-prone in the absence of motion. In weak
image frequencies (outdoor environment for instance), the
weighted power method is a suitable method. Its insensitivity
to symmetrical coloured background noise is also another
factor that makes the weighted mean method attractive. It can
be concluded that the weighted power method outperforms
both the maximum power and phase difference methods in
average. However, the maximum power method is preferable
in presence of strong image frequencies.

It is also shown that the MUSIC based spectrogram not
only provides a resolved spectrogram showing the contribution
of each component but also results in a smaller velocity
profile estimation error. It is also found that the fundamental
cadence frequency is estimated with an error of less than 7%.
In general, it can be concluded that all velocity estimation
methods suggested are able to estimate the velocity profile
of human translational motion with an accuracy that is good
enough for the applications concerned.

A major limitation of the velocity estimation methods dis-
cussed so far is that only the radial component of the velocity
is being perceived and estimated by the radar. One way to
achieve a better estimation is by combining information from
two or more radars adjusted to monitor distinct directions.
In addition, the velocity estimation methods discussed in
this paper do not consider the possible presence of other
interfering motions and assume that there is a single mover in
the monitored environment. In applications where this is not
acceptable, it is essential to be able to discriminate and track
the velocity profiles of multi-movers. Research on extracting
the velocity profile of multi-movers in indoor environment is
considered in future work.

REFERENCES

[1] B. Godana, G. Leus, and A. Barroso, “Estimating indoor walking
velocity profile using a software radio-based radar,” in Sensor Device
Technologies and Applications (SENSORDEVICES), 2010 First Interna-
tional Conference on, pp. 44 =51, 2010.

B. Godana, G. Leus, and A. Barroso, “Quantifying human indoor activity
using a software radio-based radar,” in Sensor Device Technologies and
Applications (SENSORDEVICES), 2010 First International Conference
on, pp. 38 —43, 2010.

B. de Silva, A. Natarajan, M. Motani, and K.-C. Chua, “A real-time ex-
ercise feedback utility with body sensor networks,” in 5th International
Summer School and Symposium on Medical Devices and Biosensors,
ISSS-MDBS 2008., pp. 49-52, June 2008.

B. Lo, L. Atallah, O. Aziz, M. E. Elhew, A. Darzi, and G. zhong
Yang, “Real-time pervasive monitoring for postoperative care,” in 4th
International Workshop on Wearable and Implantable Body Sensor
Networks, BSN 2007, pp. 122-127, 2007.

S.-W. Lee, Y.-J. Kim, G.-S. Lee, B.-O. Cho, and N.-H. Lee, “A remote
behavioral monitoring system for elders living alone,” in International
Conference on Control, Automation and Systems, ICCAS ’07., pp. 2725—
2730, Oct. 2007.

A. Purwar, D. D. Jeong, and W. Y. Chung, “Activity monitoring
from real-time triaxial accelerometer data using sensor network,” in
International Conference on Control, Automation and Systems, ICCAS
'07., pp. 2402-2406, Oct. 2007.

Z. Zhou, X. Chen, Y.-C. Chung, Z. He, T. Han, and J. Keller, “Video-
based activity monitoring for indoor environments,” in IEEE Interna-
tional Symposium on Circuits and Systems, ISCAS 2009., pp. 1449-1452,
May 2009.

Y. Tsutsui, Y. Sakata, T. Tanaka, S. Kaneko, and M. Feng, “Human joint
movement recognition by using ultrasound echo based on test feature
classifier,” in IEEE Sensors, pp. 1205-1208, Oct. 2007.

[2]

[3]

[4]

[5]

[6]

[7

—

[8

=

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/systems_and_measurements/

30



International Journal on Advances in Systems and Measurements, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/systems_and_measurements/

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

S.-W. Lee, Y.-J. Kim, G.-S. Lee, B.-O. Cho, and N.-H. Lee, “A remote
behavioral monitoring system for elders living alone,” in International
Conference on Control, Automation and Systems, ICCAS "07., pp. 2725—
2730, Oct. 2007.

R. M. Narayanan, “Through wall radar imaging using UWB noise
waveforms,” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing ICASSP 2008, pp. 5185-5188, Mar. 2008.
Y. Kim and H. Ling, “Human activity classification based on micro-
Doppler signatures using an artificial neural network,” in JEEE Antennas
and Propagation Society International Symposium, AP-S 2008, pp. 1-4,
July 2008.

M. Otero, “Application of continuous wave radar for human gait
recognition,” in Proc. SPIE, vol. 5788, pp. 538-548, 2005.

H. Burchett, “Advances in through wall Radar for search, rescue and se-
curity applications,” in Proc. Institution of Engineering and Technology
Conference on Crime and Security, pp. 511-525, June 13-14, 2006.
D. J. Daniels, P. Curtis, and N. Hunt, “A high performance time domain
UWB Radar design,” in Proc. IET Seminar on Wideband Receivers and
Components, pp. 1-4, May 7-7, 2008.

S. S. Ram, Y. Li, A. Lin, and H. Ling, “Doppler-based detection and
tracking of humans in indoor environments,” Journal of the Franklin
Institute, vol. 345, pp. 679-699, 2008.

M. G. Anderson, Design of multiple frequency continuous wave radar
hardware and micro-Doppler based detection and classification algo-
rithms. PhD thesis, University of Texas, Austin, May 2008.

S. Gurbuz, W. Melvin, and D. Williams, “Detection and identification
of human targets in Radar data,” in Proc. of SPIE Defense and Security
Symposium, 2007.

C. Hornsteiner and J. Detlefsen, “Characterisation of human gait using a
continuous-wave Radar at 24 GHz,” Advances in Radio Science, vol. 6,
pp. 67-70, 2008.

J. Geisheimer, W. Marshall, and E. Greneker, “A continuous-wave (CW)

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

(28]

[29]
(30]

(31]

[32]

radar for gait analysis,” in Thirty-Fifth Asilomar Conference on Signals,
Systems and Computers, vol. 1, pp. 834 —838 vol.1, 2001.

C.-P. Lai, Q. Ruan, and R. M. Narayanan, “Hilbert-Huang transform
(HHT) processing of through-wall noise radar data for human activity
characterization,” in /IEEE Workshop on Signal Processing Applications

for Public Security and Forensics, SAFE’07, pp. 1 -6, April 2007.

L. Du, J. Li, P. Stoica, H. Ling, and S. Ram, “Doppler spectrogram
analysis of human gait via iterative adaptive approach,” Electronics
Letters, vol. 45, pp. 186 —188, 29 2009.

R. Boulic, N. Magnenat-thalmann, and D. Thalmann, “A global human
walking model with real-time kinematic personification,” The Visual
Computer, vol. 6, pp. 344-358, 1990.

Z. Zhang and N. Troje, “3D Periodic Human Motion Reconstruction
from 2D Motion Sequences,” in Computer Vision and Pattern Recogni-
tion Workshop, CVPRW *04, pp. 186—186, June 2004.

M. Skolnik, Introduction to Radar Systems. McGraw-Hill, 2002.

J. Geisheimer, E. Greneker, and W. Marshall, “High-resolution Doppler
model of the human gait,” in Proceedings of SPIE, vol. 4744, 2002.

P. Stoica, Introduction to spectral analysis. Prentice Hall, 1997.

“GNU Radio.” http://gnuradio.org/redmine/wiki/gnuradio. Last accessed
on January 2011.

N. Manicka, “GNU radio testbed,” Master’s thesis, University of
Delaware, 2007.

M. Ettus, USRP users and developer’s guide. Ettus Research LLC.
“Universal Software Radio Peripheral.” http://www.ettus.com/. Last
accessed on January 2011.

L. K. Patton, “A GNU radio based software-defined radar,” Master’s
thesis, Wright State University, 2007.

B. Godana, “Human Movement Characterization in Indoor Environment
using GNU Radio Based Radar,” Master’s thesis, Delft University of
Technology, 2009.

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

31



