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Abstract between input variables [29]. Numerous studies have shown

that this interpolating model provides a powerful statisti

Complex computer codes, for instance simulating physi¢@inpmena, - framework to compute an efficient predictor of code response
are often too time expensive to be directly used to perforroertainty,

sensitivity, optimization and robustness analyses. A lwidecepted method [301- [19]-

to circumvent thi; problem consists in rgplacing cpu timgeasive computer From a practical standpoint fitting aGp model implies esti-
models by cpu inexpensive mathematical functions, calletammodels. In . ’ . : .
this paper, we focus on the Gaussian process metamodel anessential Mation of several hyperparameters involved in the covagan
_Stepf of ‘iti|deﬁnitri19?1 pfl}ase- tFirlftt,trt]he iﬂittial ddeslig?] Oéttdfo_mput(;ér CO?e function. This optimization problem is particularly diféikt in
input variables (which allows to fit the metamodel) has tovjgte adequate ;

sp[;ce filling prc()perties. We adopt a numerical ;pproachmizwparetzq the the case of a large number of Inputs [5]’ [19]' Several a@thor
performance of different types of space filling designs,hia tlass of the (for example [31] and [5]) have shown that the space filling
optimal Latin hypercube samples, in terms of the predigtivf the subsequent designs are well suited to metamodel fitting. However, this

fitted metamodel. We conclude that such samples with minimag-around ; ; : P,
discrepancy are particularly well-suited for the Gaussjanocess metamodel class of deSIQn' which aims at obtalnlng the better coverage

fitting. Second, the metamodel validation process consistevaluating Of the points in the space of the input variables, is paridyl

the metam%del predictilvity_\r/]vith rehS_pﬁct to the inigal dqmnm code. VXe large, ranging from the well known Latin Hypercube Samples
propose and test an algorithm, which optimizes the distanesveen the ; _
validation points and the metamodel learning points in orte estimate .tO low dlscrgpancy Sequenc,es_ [5] At t,he moment, no theoret
the true metamodel predictivity with a minimum number ofdegion points.  ical result gives the type of initial design, which leads he t

Comparisons with classical validation algorithms and apafion to a nuclear pest fitted Gp metamodel in terms of metamodel predictivity.
safety computer code show the relevance of this new seglenatidation In this work. we propose to give some numerical results in

design. . .
) ) order to answer to this fundamental question.
Keywords - Metamodel, Gaussian process, discrepancy, op-

timal design, Latin hypercube sampling, computer expemtme Another important issue we propose to address concerns the

optimal choice of the test sample, i.e., the set of simufatio
design, which allows the most accurate metamodel validatio
using the minimal number of additional test observatiore T

With the advent of computing technology and numericé(l"jllidation O,f a metamodel is an essen.tia_l _step in prqctice
methods, investigation of computer code experiments nesnal1°]: By estimating the metamodel predictivity, we obtain a
an important challenge. Complex computer models calculgignfidence degree associated with the use of the metamodel
several output values (scalars or functions), which caredep instead of the initial numerical model. Two validation madis

on a high number of input parameters and physical variabl@€ ordinarily used: the test sample approach [11] and the

These computer models are used to make simulations as Jp&gss validation method [23], [27]. In this paper, we prapos

as predictions, uncertainty analyses or sensitivity ssiqi]. to_ perform numerical stL_Jdie_s of the metamodel predictivity
However, complex computer codes are often too time e®ith respect to these validation methods.
pensive to be directly used to conduct uncertainty propagat In the following section, we present the Gp model. In the
studies or global sensitivity analysis based on Monte Carbird section, we present several criteria to optimize thaice
methods. To avoid the problem of huge calculation time, @ the initial input design. On two analytical examples, we
can be useful to replace the complex computer code byegaluate the numerical performance of this optimal design i
mathematical approximation, called a metamodel [29], .[15erms of Gp metamodel predictivity. In the fourth section,
Several metamodels are classically used: polynomialsiespl we look at the metamodel validation problem. Our solution
generalized linear models, or learning statistical modikés consists in minimizing the number of test observations by
neural networks, regression trees, support vector mashinsing the recent algorithm of [6], called the sequential val
[5]. One particular class of metamodels, the Gaussian psoc@lation design. We illustrate the relevance of this new giesi
(Gp) model, extends the kriging principles of geostatistit by performing intensive simulation on two analytical fuoats
computer experiments by considering the correlation betweand an industrial example. Finally, a conclusion summarize
two responses of a computer code depending on the distanoe results and gives some perspectives for this work.

1. Introduction
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2. Gaussian process metamodeling with Ygp, denoting(Y'|Ys, X, 3,0, 6, p),
* _ (1) * (n) *\\1t

Let us consider realizations of a computer code. Each real- k() B [CQO]\é(y ’}agw P""’%O\/(y (’73/('%* ))]t
izationy(x) € R of the computer code output corresponds to = o 0=P(w SN ‘971?(:13 z%))]
ad-dimensional input vectar = (z1,...,z4) € X, whereX and the covariance matrix
is a bounded domain dk?. Then points corresponding to the ‘ ‘
code runs are called the experimental design and are denoted X5 = o’ (Rg_’p (:B(l) - :B(J)) i ) .
as X, = (z™,...,2(™). The outputs will be denoted as e
Yy = (y®, ... y™)with y@ = y(z®)Vi=1..n. Gaussian The conditional mean (Eq. (2)) is used as a predictor. The

process (Gp) modeling treats the deterministic respgiisg¢ Variance formula (Eq. (3) corresponds to the mean squared
as a realization of a random functioxi(z), including a €rror (MSE) of this predictor and is also known as the

regression part and a centered stochastic process. Thigl m&#ging variance. This analytical formula for MSE gives aab
can be written as: indicator of the prediction accuracy. More generally, Gpdelo

provides an analytical formula for the distribution of theput
Y(z) = f(z) + Z(z). (1) variable at any arbitrary new point. This distribution fara

The deterministic functiorf (z) provides the mean approxi-can be used for sensitivity and uncertainty analysis [20].

mation of the computer code. In our study, we use a one-degregeg?ss'on and dcct))rrelatlo_n _pgransizt?r,hsm dofand p a§re
polynomial model wher¢f () can be written as follows: orainarily e?“”.‘ate y maximizing fikelinoo un_c;t|on I
This optimization problem can be badly conditioned and

d difficult to solve in high dimensional cased (> 5) [19].
f(@) = Bo+ Zﬁjxa‘ ; Moreover, the estimation algorithms are particularly germs
g=1 to the input design. The following section proposes to deal
where 3 = [fo,...,Bx]' is the regression parameter vectoivith this input design problem.

It has been shown, for example in [21] and [19], that such a
function is sufficient, and sometimes necessary, to caphere 3. Initial design for the metamodel fitting
global trend of the computer code.

The stochastic partZ(xz) is a Gaussian centered For computer experiments, selecting an experimental desig
process fully characterized by its covariance functiofis a key issue in building an efficient and informative meta-
Cov(Z(x),Z(u)) = o*R(x,u), whereo? denotes the vari- model. In this section, we describe the different propsttian
ance of Z and R is the correlation function that providesa computer experimental design has to reach. Some numerical
interpolation and spatial correlation properties. To difpp tests support our discussion.

a stationary procesf(x) is considered, which means that

correlation betweerZ(z) and Z(u) is a function of the 3.1. Latin hypercube sampling

distance betweesm andu. Our study is focused on a particular

family of correlation functions that can be written as a pretd ~ Contrary to the Simple Random Sample (SRS, also called

of one-dimensional correlation functiody: crude Monte Carlo sample), which consistsudhdependently
d and identically distributed samples, the well known Latin
Cov(Z(z), Z(u)) = 0*R(x — u) = o> HRl(wz — ). Hypercube Sample (LHS) consists in dividing the domain of
e each input variable im equiprobable strata, and in sampling

This form of correlation functions is particularly well gutad once from each stratum [22]. The LHS of a random vector
P y X = (X1,...,Xq), denoted XV ... X)) gives a sam-

to get some S|_n_1p_)llf|cat|ons of integrals in a_nalytlcal uncebIe meanm = 132"y for the outputy’ = y(X) with a
tainty and sensitivity analyses [20]. More precisely, weate iy .
. : : .7 smaller variance than the sample mean of a SRS [32]. Figure
to use the generalized exponential correlation function: .
1 shows10 samples of two random variableX;; and X,

d obtained with SRS and LHS schemes. We can see that the
Ry pl@—u) = [T exp(=6ular — w|™), result of LHS is more spread out and does not display the
=1 clustering effects found in SRS.
wheref = [, ...,6,4]" andp = [p1,...,pa|" are the correla- However, LHS does not reach the smallest possible variance

tion parameters (also called hyperparameters) with 0 and for the sample mean. Since it is only a form of stratified
0 <p <2 V1=1.d. This choice is motivated by the widerandom sampling and it is not directly related to any cri-

spectrum of shapes that such a function offers. terion, it may also perform poorly in metamodel estimation
If a new pointz* = (x%,...,2%) € X is considered, we and prediction of the model output. Therefore, some authors
obtain the predictor and variance formulas: have proposed to enhance LHS not only to fill space in

. . e one dimensional projection, but also in higher dimensions
E[Yep(x")] = f(z") + k(=")'E2"(Ys — f(Xs)) ., () [25]. One powerful idea is to adopt some optimality criterio
Var[Yop(z*)] = 02 — k(z*)'S; 'k(z*) , (3) applied to LHS, such as entropy, integrated mean square

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Systems and Measurements, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/systems_and_measurements/

13

« the wrap-around.? discrepancy

n d
a) Simple Random Samplin b) Latin Hypercube Samplin 4\ 1 3 ; i i i
(a) Simp pling (b) yp PiNg 2 x () = (g) TS § :H [5 e — W@ = W)

i,j=1k=1
N N (5)

which allows to suppress bound effects (by wrapping the
unit cube for each coordinate).

. : The optimization of LHS can be done following different
e . e . methods: choice of the best (in terms of the chosen criteria)
° LHS amongst a large number of different LHS, columnwise-
pairwise exchange algorithms, genetic algorithms, sitedla
00 02 04 06 08 10 00 02 04 06 08 10 annealing, etc [12], [17]. In our tests, we have found that th
X1 Xt simulated annealing algorithm (with a geometrical tempeea
Fig. 1. Examples of two ways to generate a sample of descent and with a slight noise on the initial condition)egiv
size n = 10 from two variables X = [X;, X,] where X; the best results for all the criteria [18]. Figure 2 gives som
has a uniform distribution /[0,1] and X, has a normal examples of two-dimensional LHS of size= 16, optimized
distribution AN(0,1). Equprobable stratas are shown in following three different criteria with the simulated amtiag
each dimension. algorithm. We see that uniform repartitions of the points ar
nicely respected.

error, minimax and maximin distances, etc. For instance, th
maximin criterion consists in maximizing the minimal dista
between the points [13]. This leads to avoid situations wil
too close points. The paper [24] examines some optirr
maximin distance designs constructed within the class
Latin hypercube arrangements. The conceptual simplidity
these designs has led to their large popularity in practic
applications [14].

o 2 4 [ ] 10 2 1" 1 ) 2 4 5 ) 10 12 14 1%

3.2. Low-discrepancy Latin hypercube samples Maximin Centered discrepancy

Alternative metamodel-independent criteria, based on dis
crepancy measures, consist in judging the uniformity duali
of the design. Discrepancy can be seen as a measure between .
an initial configuration and an uniform one. It is a compatiso ’ :
between the volume of intervals and the number of points ) .
within these intervals [8]. There exists different kinds of 2
definition using different forms of intervals or differenbrms
in the functional space. Discrepancy measures based.on Wrap-around discrepancy

norms are the most popular in practice because they canr_l?g 2. Visual comparisons of LHS (d = 2, n = 16)

analytically expressed and are easy to comput_e. Among theiﬂ]timized following three different criteria (below each
two measures have shown remarkable properties [12], [#], [%gure)

« the centered.? discrepancy

o 2 4 [ ] 10 2 1" 1

12

n d
D*(X4(n)) = (E)d _ %ZH (1 n %Iui” _ %‘ _ %Iui” _ %‘2) 3.3. Projection properties of space filling designs
i=1 k=1
n d .y S—_—
1 Low 1,1 g 1, 1 & & ) In addition to the space filling property on the sample space,
+— 14 = -=l+= -=l-= - . ; . :
n? Z H( gl Tl gl Tal gl one important property of the initial designs is their rabess
4 to the dimension decrease. A LHS structure for the space
where X ;(n) denotes the input learning sample witHilling design is not sufficient because it only guaranteesdyo

i,j=1k=1

n input vectors and(u,(f) . are the nor- repartitions for one-dimensional projections, and not tfoe

malized values in[0, 1] on:tlﬁgk:dgsdign X.(n) — other o!lmensmr?s of projection. Indee_d, LHS_ ensures thz?h ea
) o of the input variables has all proportion of its range whish i

(xk )izl..n,kzl..d’ represented (equiprobable stratas are created for each inp
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variable). In contrary, no equiprobable stratas are cdeate -
the various multi-dimensional spaces of the input varigsble @ ] I?l ;l I?l ]
We then argue that the sample points of a space filling ]
design have to be well spread out when projected onto a ]
subspace spanned by a subset of coordinate axes. Thistyroper
is particularly important when the initial design is made in

dimensiond and the metamodel fitting is made in a smaller $
dimension (see an example in [1]). In practice, this is often T
the case because the initial design may reveal with scrgenin . s e s w s
methods the useless (i.e., non influent) input variablesviiea Maximin LHS
can neglect during the metamodel fitting step [26]. Morepver
when a selection of input variables is made during the meta-
model fitting step (as for example in [19]), the new sample,
solely including the retained input variables, has to keepdg
space filling properties.
Figure 3 compares the two-dimensional projections of the
maximin LHS and low wrap-around discrepancy LHS (called
WLHS) with n = 100 points and different initial dimensions Iﬁl
(from d = 3 to 15). The reference criterion values are given — ==
for d = 2. For dimension larger thag, we compute the : s s : TR

new criterion values by considering all the two-dimenslona
projections of the initial design. A robust criterion to the
dimension decrease would lead to a small increase of thgy. 3. Criterion values (up: maximin, bottom: wrap-

criterion value. The criteria behave very diferently betwe around discrepancy) obtained with 2D projections of de-
the two types of design: signs coming from two types of LHS (containing n = 100
« 2D projection criteria of WLHS regularly and slightly points), with different dimensions: d = 2,3,4,5,10,15.
deteriorate. Then, 2D projections of WLHS made iBoxplots are obtained by repeating 100 optimizations
dimensions close t® keep rather good space-fillingusing different initial LHS.
properties.
o 2D projection criteria of maximin LHS sharply and
strongly deteriorate from the first dimension increase 8t4.1. A two-dimensional test caseOur first test involves
d = 3. Then 2D projection criteria of maximin LHS @ two-dimensional analytical function (called the irregul
remain stable at poor values for larger dimensions. ~ function):

Similar tests with different sample sizesand for the three- e o 4 5 TT? 4
dimensional and four-dimensional projections have lechto t/ (%) = === + 5wy —day+ = +ai+
same conclusions. All these results show that a WLHS is the

5 o . .
preferable initial design for fitting a computer code metalelo With @ € [—1,1]°. Figure 4 represents the irregular function.
in high dimensional cases. We have made several comparisons between random LHS

and different space filling designs before fitting a metarhode
[18]. In the following, we show our results concerning the
random LHS and the WLHS, which has provided the best

. . esults. For a sizex of the learning sample and each type

At present, we perform two numerical studies to evalua ; : X )
. . . . .0f design, we repeat00 times the following procedure: we

the impact of an inadequate design on the metamodel fitti

process. For the metamodel, we use the Gp m ggnerate an initial input dg3|gn nfqbservatlons, we obtaim

. . ; . 16} . outputs with the toy function, we fit a Gp metamodel (1), and
described in§2. The quality of the metamodel predictor 'Swe evaluate its predictivit coefficield®, using a test sample
measured by the so-called predictivity coefficigpt (i.e., P y 2 g h

the determination coefficier®?> computed on a test sample) of large size i+ = 10000). Therefore, for each typt_a of LH.S’
. . . “Wwe obtain100 values of@» whose mean and variance give
which gives the percentage of the output variance explaine - o
. us the efficiency and robustness of the design in terms of Gp
by the metamodel:

Low wrap-around discrepancy LHS (WLHS)

3
417% + 417% +1

3.4. Numerical studies on toy functions

quality.
S (@) — Yop(@))? The initial LHS design optimized with the wrap-around
Q2=1- ne o ~()\]2 6) discrepancy (Eqg. (5)) has given us the best results. In Eigur
A 5, we compare the predictivity coefficients obtained with
with (&, ... ™)) the test sample of size, Ysp = non optimized LHS (random LHS) and those obtained with
E(Ysp) the Gp predictor (Eq. (2)) ang the mean of the optimized LHS (WLHS). The size of the design increases
output test sampléy(z™V), ..., y(@™)). from n = 10 to n = 46 (by step of4), which leads to a
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witha; =1,a2=2,a3 =3, a4 =4,a5 =5, € [0,1]5.

We have made several comparisons between random LHS
and different space filling designs before fitting a metarhode
[18]. In the following, we show our results concerning the
random LHS and the WLHS, which has provided the best
results. For a sizer of the learning sample and each type
of design, we repeat00 times the following procedure: we
generate an initial input design afobservations, we obtain
outputs with the toy function, we fit a Gp metamodel (1), and
we evaluate its predictivity coefficier), using a test sample
of large size 4§, = 10000). Therefore, for each type of LHS,
we obtain100 values of @2 whose mean and variance give
us the efficiency and robustness of the design in terms of Gp
quality.

As in the previous section, the initial LHS design optimized
with the wrap-around discrepancy (Eq. (5)) has given us
the best results. In Figure 6, we compare the predictivity
Fig. 4. Graphical representation of the irregular function coefficients obtained with non optimized LHS (random LHS)

n[—1;1)% and those obtained with optimized LHS (WLHS). The size of

the design increases from = 22 to n = 40 (by step of2),
which leads to a regular increase @f. For each sizer, the
regular increase of),. For each size:, the boxplot represents boxplot represents the summary of th@d values ofQ,. In
the summary of thel00 values of Q,. In the all range of the all range of, )2 of the WLHS are better than the random
n, Qo of the WLHS are better than the random LHS one&HS ones. Furthermore, much smaller variances are shown for
Furthermore, much smaller variances (boxplots are small®/LHS and lead to the conclusion that these designs are more
are shown for WLHS and lead to the conclusion that thesebust than others. For small sample sizes,(fhalifferences
designs are more robust than others. This property is ratieach0.2 between the two types of desig@:(LHS) ~ 0.6
natural because there are much less variability between & Q2(WLHS) ~ 0.8. In industrial applications, such a
100 different WLHS than between th&00 different random difference makes the distinction between “bad” (unacdepja
LHS (because of the optimization process). Differences ametamodels and good ones. The latter can be used for example
particularly important for sizes = 30 andn = 34: the WHS for quantitative sensitivity studies.
lead to very competitive Gp metamodel@y( ~ 0.95 and
boxplot width ~ 0.05) while random LHS give uncompleted | -
metamodels@, ~ 0.9 and boxplot width~ 0.2). s : ﬁ ﬂ E Ei 2 ? u $ BRRH

-1.0-10

08

n7r

L =

03 @ ? ? 03 B i 0e i
08 ‘ 1 08 @ 05 o0s
07 1 o7 $ J 04 04

e 03 03

as 1 0s 02 02

04 1 04 01 0.1

R S L T N B Fig. 6. For the g-Sobol 5d function, Gp @- evolution in
function of the learning sample size n and for two types of

Fig. 5. For the irregular function, Gp Q. evolution in LHS (left: random LHS; right: WLHS).
function of the learning sample size n and for two types of

LHS (left: random LHS; right: WLHS). _ _
3.5. Conclusion of numerical tests

In conclusion of our numerical study, the LHS optimized
with the wrap-around discrepancy has provided efficient re-
sults for the Gp metamodel fitting, even in high dimension.

3.4.2. A five-dimensional test casé€Our second test involves
a five-dimensional analytical function (called the g-Sobdl

function): : .
) Furthermore, we have found that this design guaranteesatorr
Z [4z; — 2|+ ai repartitions of the points for all the two-dimensional @wj
1+a; tions, while other types of LHS (like maximin) have bad
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repartitions for these projections. Other types of LHS dana The second solution to validate a metamodel, the cross
provide good results but less systematically [18]. Foranse, validation method, is extremely popular in practice beeaus
[7] has studied quasi-Monte Carlo samples (Sobol suites ahdvoids new calculations on the computer code. The cross
Halton sequences) and has shown that these sequencesare/ddislation method proposes to divide the initial sample on a
performant than other space filling designs in terms of the Ggarning sample and a test sample. A metamodel is estimated
metamodel fitting. with the points in the new learning sample and prediction
Of course, such designs have to be seen as initial onesrd$iduals are obtained via the new test sample. This prigess
possible, in a second step, adaptive designs can improve metpeated several times by using other divisions of the iegrn
model predictivity in a very efficient way [18], for instanbg sample. Finally all the prediction residuals can be used to
choosing new simulation points in poorly predicted areas. compute the global predictivity measures. The leave-arte-o
procedure is a particular case of the cross validation ntetho
4. Test sample selection for metamodel valida- where just one observation is left out at each step.
tion The first drawback of the cross validation method is its cost,
which can become large due to many metamodel fitting pro-
In practical cases, only a small number of simulations can Besses. Moreover, if the initial design has a specific gegenet
performed with the computer code in order to fit a metamodélructure (which aims at optimizing the metamodel fitting),
Once the metamodel has been built, estimating its predictivthe deletion of points from the learning sample causes the
is an important issue. Indeed, a safe use of this metamoliggakdown of the specific design structure while creatirgg th
to answer to uncertainty or sensitivity problems requires ew learning sample. Indeed, the new learning sample does
precise estimation of its capabilities. In this section,make not have the adequate statistical and geometric propesties

a discussion on algorithms of predictivity estimation. the initial design and the metamodel fitting process migiht fa
This could lead to too pessimistic quality measures.
4.1. Classical validation methods To sum up, the test sample method requires too many new
prediction points (to avoid too optimistic validation efiia),
Let us consider thed-dimensional input vectorr = while the cross-validation method can provide too pessimis
(x1,...,2q) € X, where X is a bounded domain validation criteria. Therefore, to solve this dilemma, &ufis-

of RY and y(x) € R is the computer code output.tic new solution has been introduced in [10], [9] and is
We suppose that a metamod¥l(xz) has been fitted us- presented in the next section.
ing (M, y(@®)),..., (@™, y(x®™))), a N-size learning
sample of computer code experiments. 4.2. A new optimized validation design

The test sample approach consists in comparing the meta-
model predictions on simulation points not used in the meta-Retaining the test sample method, we limit its main draw-
model fitting process. This gives some prediction residud)@ck by minimizing the number of necessary points in the
(which can be finely analyzed) and global quality measurest&st sample. In this goal, an algorithm allows the specitioat
the metamodel predictivity coefficieds (Eq. (6)). Such test of new design points decreasing the discrepancy of an linitia
points set is called a test sample (or also validation samglesign [6]. This sequential algorithm gives us at each step
or prediction sample). This method requires new calcutatiothe prediction point furthest away from the other points of
with the computer code and the first question we have to faié design. The algorithm performs its optimization predes
up is the sufficient number of prediction points to obtain théie spacet’ of the input variablesc. By choosing the future
required accuracy of our global validation measures. Far cprediction points in the unfilled zone of the learning sample
time expensive code, it can be difficult to provide a suffitieflesign, we aim at capturing the right metamodel predigtivit
number of test points. Some convergence visualisatiors todising only a small number of additional points. Note thathsuc
of the global validation measures can be used to answeridéas have also been proposed in [28] for different purposes
this first question. We have not theoretically studied the computational effi-

Another important question for the test sample approachdigncy of this algorithm over the computational efficiendy o
the localization of these test points. The usual practice is the traditional methods (introduced in the previous segtio
choose an independent Monte Carlo sample for the test sah@wever, our intuition is that mean square error computed by
ple. However, if the sample size is small, the proposed poirihis algorithm avoids the biases, which could be caused dy to
can be badly localized, for example near learning points 8irong proximities between the test sample points and legtwe
leaving large space domain unsampled. A fine strategy colf$t sample points vs. learning sample points.
be to use, as the test sample, a space filling design (whicH.et us considetX ;(ns) = (m(fZ))i:L.nJc a low discrepancy
consists in filling the input variable spack as uniformly sequence of.; points in[0, 1]¢. A low discrepancy sequence
as possible). Unfortunately, this solution does not avbie tis a deterministic design constructed to uniformly fill the
possibility of too strong proximity between learning paiaihd space with regular patterns. Among all the low discrepancy
test points. Such proximity would lead to too optimistic iya sequence, Halton, Hammersley, Faure and Sobol sequences
measures, and consequently to a biased prectivity estimatiare the most famous [16]. In the following, we will use the

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Systems and Measurements, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/systems_and_measurements/

17

Hammersley sequence which, on a few tests, have shown be ™
properties than the others [6]. The chosen discrepancyureas
is the centered.? discrepancyD?(-) (Eq. (4)).

To obtain an additional point of the initiaV-size sample,
noticed X ;(N), we use the following algorithm:

1) Fori=1,...,ny,

e X (N+1)={zW ... a2™M}uyuz,;

e computeDif; = D*(X (N + 1)) — D*(X 4(N)); Y
2) selecti* such that* = arg min  Dif;;

1=1,...,ny

3) obtain the new poink ("),

This algorithm is repeated sequentially to obtdifys; test
points, by updating the initial design and the low discregyan
sequence. For example, for the second point, we reinitdlize
design by the following:X (N + 1) = {=™,..., 2™} U
:I}f(i*) and Xf(nf — 1) = {.’I:f(l), ceey :Bf(nf)}\:vf(i*).

This algorithm just consists in adding to the initial desig.. ) ) ) )
some points of a low discrepancy sequence by minimizing thdg. 8. Graphical representation of the cosin2 function on
discrepancy differences between the initial and the nevgdes [0; 12
The size of the low discrepancy sequence is required to be as
large as possible, especially dfis large. Figure 7 gives an _ . .
example of the specification with our algorithm et = 4 Figure 8 represents the cosu_12 funct_lon. .
new points (the crosses) inside an initial Monte Carlo desi _Gp metamodels (1) are fitted using learning sa_lmples of
(N = 46, d — 2). One of the advantage of this algorithm is itd/ITEeNts SizesNe,: Ne, ranges fromi0 to 40 allowing a
size-independence (related to the number of added poihes): Wide variety of metamodel predictivity coefficient,, from
sequence of added points is deterministic and will be alwag_s(nu” predictivity) to 1 (perfect predictivity). The initiall0-

the same for the sam& ;(n;). In the following, the design ize design is a maximin ITHS. The other_learning_ designs
obtained using this algorithm is called the sequentiatiaion (of increased size) are obtained by sequentially addingtpoi
design to the design, while maintaining the LHS properties of the

design and keeping some optimality properties (maximizing

the mean distance from each design point to all the othetgoin

. . in the design [17]). Choosing an initial maximin LHS design,

+ . while we have shown in Section 3 that WLHS is better than

. maximin LHS for the Gp fitting process, is not in contradiatio

. with our objectives in this section: our goal is now to study

n the Gp metamodel validation. Anyway, we are not able to

. ' . keep the properties of maximin LHS or WLHS when gradually

. . increasing the size of the learning sample.

LN * + The black line in Figure 9 shows the evolution @f in

® L function of the learning sample size. This reference value

. . s for the predictivity coefficient has been computed for each

metamodel by taking its mean ovedi0 test samples of

size Niest = 1000. The @2 estimation by a leave one out

Fig. 7. Example of the sequential algorithm: N = 46, procedure (pink line) strongly underestimates the egactor

d = 2, Nest = 4. The bullets are the points of the initial Nea < 30. This is certainly due to the small number of points:

design while the crosses are the new specified points. leave one out is pessimistic in this case because each point
deletion has a strong impact on the metamodel fitting process
The red curve gives th€), estimation using the sequential

4.3. Numerical studies on toy functions validation design described in the previous paragraphh(ait
Hammersley sequence of sizg = 10000).

oo oo

1.2

CE &
s -
-
L ]
-

0

.0

an 0z 04 oG G 10

4.3.1. A two-dimensional test caselo compare the sequen-
tial validation design with other test designs for the meidei
validation purpose, we first perform an analytical test gsn
two-dimensional toy function, called the cosin2 function:

f(x) = cos(10x1) + sin(10z2) + 2122 , (21,22) € [0,1]%
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Fig. 9. For the cosin2 function, Gp predictivity coefficient
(Q2) in function of the learning sample size N;,, estimated
from different test sample sizes Nst. The dashed curves
(blue and green) give the minimal and maximal values
obtained with 100 repetitions of the random test design
(Monte Carlo and LHS).
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Results are greatly satisfactory fives; > 20: the sequential
validation design gives precig@, estimates in all cases and
outperforms a crude Monte Carlo or LHS design. The green
curves correspond to the minimal and maximal values obdaine
with 100 repetitions using an optimized LHS as the test
design. As expected, these intervals are more reducedhban t
intervals obtained using a crude Monte Carlo sample as the
test design (blue curves). A¥ g increases, these intervals
contract, but always show the superiority of the sequential
validation design, especially for low metamodel preditfiv
(Q2 < 0.9 and N, < 25).

4.3.2. An eight-dimensional test caseWe perform now a
second numerical test using the g-Sobol function in eight-
dimension (called the g—SoboI 8d function):
Z |[dz; — 2| + a;
1+a;
with a1 = as = 3, a; =0 for (i = 3,...,8), = € [0, 1]5.

A Gp metamodel (1) is fitted on a learning sample (maximin
LHS) of size N, = 40. We compute the reference value of
the predictivity coefficient by taking its mean ovéd0 test
samples of sizéViest= 1000 and obtam@rEf 0.83. We then
apply the sequential validation design described prelyous
(with a Hammersley sequence of sizeg = 10000) by
adding Neest = 50 new points to the design, and we obtain
Q3*P° = 0.85, which is close to the true value. We compare
this result with100 crude Monte Carlo samples of the same
size (Vest = 50), which give the 90% confidence interval
[0.79,0.91] for QY. This last result is rather large and shows
the insufficient number of points if we choose a crude Monte
Carlo design.

Figure 10 shows the evolution of the estimated for
test bases with different sizes, ranging fraWes: = 10 to
Nwest = 50. The solid red line shows the results obtained
with the sequential validation design while the dotted blue
lines show thel00 sequentially increased crude Monte Carlo
samples. This figure illustrates the poor estimates we btai
when using small sizeNwst < 50) of Monte Carlo samples
for validation. On the contrary, the sequential validati@sign
allows to obtain a good approximation of the true predittivi
coefficient even for small test sample sizes. Results acsare
for Niest > 25.

4.4. Application to a nuclear safety computer code

In this section we apply our algorithms on a complex
computer model used for nuclear reactor safety. It simslate
hypothetical thermal-hydraulic scenario on Pressurizedew
Reactors: a large-break loss of primary coolant acciderd (s
Fig. 11) for which the output of interest is the peak cladding
temperature. This scenario is part of the Benchmark for nce
tainty Analysis in Best-Estimate Modelling for Design, @g@e
tion and Safety Analysis of Light Water Reactors [2] propbse
by the Nuclear Energy Agency of the Organisation for Eco-
nomic Co-operation and Development (OCDE/NEA). It has
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10 20 30 40 >0 Fig. 12. 100 output curves (cladding temperatures in

Neest function of time) of the CATHARE2 code. The output

Fig. 10. For the g-Sobol 8d function, Gp predictivity variable of interest for the reactor safety is the first peak
coefficient (Q2) in function of the test sample size Nest,  of the cladding temperature.

for two types of validation design: sequential (red) and
crude Monte Carlo (blue). Dotted blue lines correspond to

100 different crude Monte Carlo samples). input variables are considered: physical laws essentially
also initial conditions, material properties and geoncetri

been implemented on the french computer code CATHARAIigOde“ng' Their probability distributions are either n@inor

developed at the Commissariat 4 I'Energie Atomique (CE g-normal, and both are truncated. Such a number of input
i . ) i ) ariables is rather | for th t del fitti blem.
Figure 12 illustrated00 CATHAREZ2 simulations (by varying rabes Is ramer farge for the metamode! iting probem

: ) . . - This difficult fit (due to the high dimensionality and small
input variables of the accidental scenario) giving the diag learning sample size) can be made thanks to the algorithm of
temperature in function of time.

[19], specifically devoted to this situation. The obtained G
metamodel (1) contains a linear regression part (including
input variables) and a centered Gp model with a generalized
exponential covariance function (includisginput variables).
The reference quality of this Gp model is measured via an
additional1000-size test sample, which givegs’ = 0.66.

Figure 13 shows the evolution of the estimatéd for
test bases with different sizes, ranging fraWest = 10 to
Niest= 95. The sequential validation design gives coarse esti-
mations for all the test design sizes and begins to give geeci
results forNest > 40. Some inadequacies, which remain when
Neest € [75,90], have to be finely analyzed in a further work. In
any cases, sequential validation design estimations aeglg!
less hazardous than using a crude Monte Carlo test sample to
validate the metamodel: t8%-confidence intervals obtained
using Monte carlo samples show extremely large variation
ranges (because of the high dimensionality of the inputespac
d = 53). Q5 estimation using a Monte Carlo test sample can
lead to a strongly erroneous result. Same results have been
obtained using optimized LHS for the test design instead of a

In our exercise, a Gp metamodel (1) of the first peaude Monte Carlo sample.
cladding temperature (which is a scalar variable) has to be
estimated withV = 100 simulations of the computer model5. Conclusion and future works
(the input design is a maximin LHS). The cpu time is
twenty minutes for each simulation with a standard computerin this paper, we have proposed to look at two practical
(Pentium IV PC). The complexity of the computer modgbroblems when fitting a metamodel to small-size data samples
lies in the high-dimensional input spacé. = 53 random the initial design and the validation method choices. These

«— Large break

—C
—p)
=

Fig. 11. |lllustration of a large-break loss of primary
coolant accident on a nuclear Pressurized Water Reactor.
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! with a test sample sizéVis: > 25, while for our industrial

application, the minimal bound &g > 40.

12k\ e R Further works are necessary to more deeply study the
| N o S J\— - :/ . | validation designs (other test functions with differerfeefive

dimensionality and complexity). Moreover, it would be udef

to find a criterion to determine when the sequential valatati

- . design can be ended. Finally, the ultimate goal of such etudi

i S =] will be to define a global strategy of allocating simulation

—————— reference
sequential

0.8~

0.6 . e
points between the metamodel fitting step and the metamodel
~\ validation step.
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