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Electricité de France - EDF R&D

Chatou, France
bertrand.iooss@edf.fr

Loı̈c Boussouf
Altran

Toulouse, France
loic.boussouf@gmail.com

Vincent Feuillard
EADS IW

Suresnes, France
vincent.feuillard@eads.net

Amandine Marrel
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Abstract

Complex computer codes, for instance simulating physical phenomena,
are often too time expensive to be directly used to perform uncertainty,
sensitivity, optimization and robustness analyses. A widely accepted method
to circumvent this problem consists in replacing cpu time expensive computer
models by cpu inexpensive mathematical functions, called metamodels. In
this paper, we focus on the Gaussian process metamodel and two essential
steps of its definition phase. First, the initial design of the computer code
input variables (which allows to fit the metamodel) has to provide adequate
space filling properties. We adopt a numerical approach to compare the
performance of different types of space filling designs, in the class of the
optimal Latin hypercube samples, in terms of the predictivity of the subsequent
fitted metamodel. We conclude that such samples with minimalwrap-around
discrepancy are particularly well-suited for the Gaussianprocess metamodel
fitting. Second, the metamodel validation process consistsin evaluating
the metamodel predictivity with respect to the initial computer code. We
propose and test an algorithm, which optimizes the distancebetween the
validation points and the metamodel learning points in order to estimate
the true metamodel predictivity with a minimum number of validation points.
Comparisons with classical validation algorithms and application to a nuclear
safety computer code show the relevance of this new sequential validation
design.

Keywords - Metamodel, Gaussian process, discrepancy, op-
timal design, Latin hypercube sampling, computer experiment.

1. Introduction

With the advent of computing technology and numerical
methods, investigation of computer code experiments remains
an important challenge. Complex computer models calculate
several output values (scalars or functions), which can depend
on a high number of input parameters and physical variables.
These computer models are used to make simulations as well
as predictions, uncertainty analyses or sensitivity studies [3].

However, complex computer codes are often too time ex-
pensive to be directly used to conduct uncertainty propagation
studies or global sensitivity analysis based on Monte Carlo
methods. To avoid the problem of huge calculation time, it
can be useful to replace the complex computer code by a
mathematical approximation, called a metamodel [29], [15].
Several metamodels are classically used: polynomials, splines,
generalized linear models, or learning statistical modelslike
neural networks, regression trees, support vector machines
[5]. One particular class of metamodels, the Gaussian process
(Gp) model, extends the kriging principles of geostatistics to
computer experiments by considering the correlation between
two responses of a computer code depending on the distance

between input variables [29]. Numerous studies have shown
that this interpolating model provides a powerful statistical
framework to compute an efficient predictor of code response
[30], [19].

From a practical standpoint, fitting a Gp model implies esti-
mation of several hyperparameters involved in the covariance
function. This optimization problem is particularly difficult in
the case of a large number of inputs [5], [19]. Several authors
(for example [31] and [5]) have shown that the space filling
designs are well suited to metamodel fitting. However, this
class of design, which aims at obtaining the better coverage
of the points in the space of the input variables, is particularly
large, ranging from the well known Latin Hypercube Samples
to low discrepancy sequences [5]. At the moment, no theoret-
ical result gives the type of initial design, which leads to the
best fitted Gp metamodel in terms of metamodel predictivity.
In this work, we propose to give some numerical results in
order to answer to this fundamental question.

Another important issue we propose to address concerns the
optimal choice of the test sample, i.e., the set of simulation
design, which allows the most accurate metamodel validation
using the minimal number of additional test observations. The
validation of a metamodel is an essential step in practice
[15]. By estimating the metamodel predictivity, we obtain a
confidence degree associated with the use of the metamodel
instead of the initial numerical model. Two validation methods
are ordinarily used: the test sample approach [11] and the
cross validation method [23], [27]. In this paper, we propose
to perform numerical studies of the metamodel predictivity
with respect to these validation methods.

In the following section, we present the Gp model. In the
third section, we present several criteria to optimize the choice
of the initial input design. On two analytical examples, we
evaluate the numerical performance of this optimal design in
terms of Gp metamodel predictivity. In the fourth section,
we look at the metamodel validation problem. Our solution
consists in minimizing the number of test observations by
using the recent algorithm of [6], called the sequential val-
idation design. We illustrate the relevance of this new design
by performing intensive simulation on two analytical functions
and an industrial example. Finally, a conclusion summarizes
our results and gives some perspectives for this work.
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2. Gaussian process metamodeling

Let us considern realizations of a computer code. Each real-
izationy(x) ∈ IR of the computer code output corresponds to
a d-dimensional input vectorx = (x1, . . . , xd) ∈ X , whereX
is a bounded domain ofIRd. Then points corresponding to the
code runs are called the experimental design and are denoted
as Xs = (x(1), . . . ,x(n)). The outputs will be denoted as
Ys = (y(1), . . . , y(n)) with y(i) = y(x(i)) ∀ i = 1..n. Gaussian
process (Gp) modeling treats the deterministic responsey(x)
as a realization of a random functionY (x), including a
regression part and a centered stochastic process. This model
can be written as:

Y (x) = f(x) + Z(x). (1)

The deterministic functionf(x) provides the mean approxi-
mation of the computer code. In our study, we use a one-degree
polynomial model wheref(x) can be written as follows:

f(x) = β0 +
d

∑

j=1

βjxj ,

whereβ = [β0, . . . , βk]
t is the regression parameter vector.

It has been shown, for example in [21] and [19], that such a
function is sufficient, and sometimes necessary, to capturethe
global trend of the computer code.

The stochastic partZ(x) is a Gaussian centered
process fully characterized by its covariance function:
Cov(Z(x), Z(u)) = σ2R(x,u), whereσ2 denotes the vari-
ance ofZ and R is the correlation function that provides
interpolation and spatial correlation properties. To simplify,
a stationary processZ(x) is considered, which means that
correlation betweenZ(x) and Z(u) is a function of the
distance betweenx andu. Our study is focused on a particular
family of correlation functions that can be written as a product
of one-dimensional correlation functionsRl:

Cov(Z(x), Z(u)) = σ2R(x− u) = σ2
d
∏

l=1

Rl(xl − ul).

This form of correlation functions is particularly well adapted
to get some simplifications of integrals in analytical uncer-
tainty and sensitivity analyses [20]. More precisely, we choose
to use the generalized exponential correlation function:

Rθ,p(x− u) =

d
∏

l=1

exp(−θl|xl − ul|
pl),

whereθ = [θ1, . . . , θd]
t andp = [p1, . . . , pd]

t are the correla-
tion parameters (also called hyperparameters) withθl ≥ 0 and
0 < pl ≤ 2 ∀ l = 1..d. This choice is motivated by the wide
spectrum of shapes that such a function offers.

If a new pointx∗ = (x∗
1, . . . , x

∗
d) ∈ X is considered, we

obtain the predictor and variance formulas:

IE[YGp(x
∗)] = f(x∗) + k(x∗)tΣ−1

s (Ys − f(Xs)) , (2)

Var[YGp(x
∗)] = σ2 − k(x∗)tΣ−1

s k(x∗) , (3)

with YGp denoting(Y |Ys,Xs,β, σ, θ,p),

k(x∗) = [Cov(y(1), Y (x∗)), . . . ,Cov(y(n), Y (x∗))]t

= σ2[Rθ,p(x
(1),x∗), . . . , Rθ,p(x

(n),x∗))]t

and the covariance matrix

Σs = σ2

(

Rθ,p

(

x(i) − x(j)
)

i=1..n,j=1..n

)

.

The conditional mean (Eq. (2)) is used as a predictor. The
variance formula (Eq. (3) corresponds to the mean squared
error (MSE) of this predictor and is also known as the
kriging variance. This analytical formula for MSE gives a local
indicator of the prediction accuracy. More generally, Gp model
provides an analytical formula for the distribution of the output
variable at any arbitrary new point. This distribution formula
can be used for sensitivity and uncertainty analysis [20].

Regression and correlation parametersβ, σ, θ and p are
ordinarily estimated by maximizing likelihood functions [5].
This optimization problem can be badly conditioned and
difficult to solve in high dimensional cases (d > 5) [19].
Moreover, the estimation algorithms are particularly sensitive
to the input design. The following section proposes to deal
with this input design problem.

3. Initial design for the metamodel fitting

For computer experiments, selecting an experimental design
is a key issue in building an efficient and informative meta-
model. In this section, we describe the different properties than
a computer experimental design has to reach. Some numerical
tests support our discussion.

3.1. Latin hypercube sampling

Contrary to the Simple Random Sample (SRS, also called
crude Monte Carlo sample), which consists ofn independently
and identically distributed samples, the well known Latin
Hypercube Sample (LHS) consists in dividing the domain of
each input variable inn equiprobable strata, and in sampling
once from each stratum [22]. The LHS of a random vector
X = (X1, . . . , Xd), denoted(X(1), . . . ,X(n)), gives a sam-
ple meanm = 1

n

∑n

i=1 Y
(i) for the outputY = y(X) with a

smaller variance than the sample mean of a SRS [32]. Figure
1 shows10 samples of two random variables,X1 and X2,
obtained with SRS and LHS schemes. We can see that the
result of LHS is more spread out and does not display the
clustering effects found in SRS.

However, LHS does not reach the smallest possible variance
for the sample mean. Since it is only a form of stratified
random sampling and it is not directly related to any cri-
terion, it may also perform poorly in metamodel estimation
and prediction of the model output. Therefore, some authors
have proposed to enhance LHS not only to fill space in
one dimensional projection, but also in higher dimensions
[25]. One powerful idea is to adopt some optimality criterion
applied to LHS, such as entropy, integrated mean square
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(a) Simple Random Sampling
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(b) Latin Hypercube Sampling
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Fig. 1. Examples of two ways to generate a sample of
size n = 10 from two variables X = [X1, X2] where X1

has a uniform distribution U [0, 1] and X2 has a normal
distribution N (0, 1). Equprobable stratas are shown in
each dimension.

error, minimax and maximin distances, etc. For instance, the
maximin criterion consists in maximizing the minimal distance
between the points [13]. This leads to avoid situations with
too close points. The paper [24] examines some optimal
maximin distance designs constructed within the class of
Latin hypercube arrangements. The conceptual simplicity of
these designs has led to their large popularity in practical
applications [14].

3.2. Low-discrepancy Latin hypercube samples

Alternative metamodel-independent criteria, based on dis-
crepancy measures, consist in judging the uniformity quality
of the design. Discrepancy can be seen as a measure between
an initial configuration and an uniform one. It is a comparison
between the volume of intervals and the number of points
within these intervals [8]. There exists different kinds of
definition using different forms of intervals or different norms
in the functional space. Discrepancy measures based onL2

norms are the most popular in practice because they can be
analytically expressed and are easy to compute. Among them,
two measures have shown remarkable properties [12], [4], [5]:

• the centeredL2 discrepancy

D
2
(Xs(n)) =

(

13

12

)d

−
2

n

n
∑

i=1

d
∏

k=1

(

1 +
1

2
|u

(i)

k
−

1

2
| −

1

2
|u

(i)

k
−

1

2
|
2

)

+
1

n2

n
∑

i,j=1

d
∏

k=1

(

1 +
1

2
|u

(i)

k
−

1

2
| +

1

2
|u

(j)

k
−

1

2
| −

1

2
|u

(i)

k
− u

(j)

k
|

)

(4)

whereXs(n) denotes the input learning sample with

n input vectors and
(

u
(i)
k

)

i=1..n,k=1..d
are the nor-

malized values in [0, 1] of the design Xs(n) =
(

x
(i)
k

)

i=1..n,k=1..d
;

• the wrap-aroundL2 discrepancy

W
2(Xs(n)) =

(

4

3

)d

+
1

n2

n
∑

i,j=1

d
∏

k=1

[

3

2
− |u

(i)

k
− u

(j)

k
|(1 − |u

(i)

k
− u

(j)

k
|)

]

,

(5)

which allows to suppress bound effects (by wrapping the
unit cube for each coordinate).

The optimization of LHS can be done following different
methods: choice of the best (in terms of the chosen criteria)
LHS amongst a large number of different LHS, columnwise-
pairwise exchange algorithms, genetic algorithms, simulated
annealing, etc [12], [17]. In our tests, we have found that the
simulated annealing algorithm (with a geometrical temperature
descent and with a slight noise on the initial condition) gives
the best results for all the criteria [18]. Figure 2 gives some
examples of two-dimensional LHS of sizen = 16, optimized
following three different criteria with the simulated annealing
algorithm. We see that uniform repartitions of the points are
nicely respected.

Maximin Centered discrepancy

Wrap-around discrepancy

Fig. 2. Visual comparisons of LHS (d = 2, n = 16)
optimized following three different criteria (below each
figure).

3.3. Projection properties of space filling designs

In addition to the space filling property on the sample space,
one important property of the initial designs is their robustness
to the dimension decrease. A LHS structure for the space
filling design is not sufficient because it only guarantees good
repartitions for one-dimensional projections, and not forthe
other dimensions of projection. Indeed, LHS ensures that each
of the input variables has all proportion of its range which is
represented (equiprobable stratas are created for each input
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variable). In contrary, no equiprobable stratas are created in
the various multi-dimensional spaces of the input variables.

We then argue that the sample points of a space filling
design have to be well spread out when projected onto a
subspace spanned by a subset of coordinate axes. This property
is particularly important when the initial design is made in
dimensiond and the metamodel fitting is made in a smaller
dimension (see an example in [1]). In practice, this is often
the case because the initial design may reveal with screening
methods the useless (i.e., non influent) input variables that we
can neglect during the metamodel fitting step [26]. Moreover,
when a selection of input variables is made during the meta-
model fitting step (as for example in [19]), the new sample,
solely including the retained input variables, has to keep good
space filling properties.

Figure 3 compares the two-dimensional projections of the
maximin LHS and low wrap-around discrepancy LHS (called
WLHS) with n = 100 points and different initial dimensions
(from d = 3 to 15). The reference criterion values are given
for d = 2. For dimension larger than2, we compute the
new criterion values by considering all the two-dimensional
projections of the initial design. A robust criterion to the
dimension decrease would lead to a small increase of the
criterion value. The criteria behave very diferently between
the two types of design:

• 2D projection criteria of WLHS regularly and slightly
deteriorate. Then, 2D projections of WLHS made in
dimensions close to2 keep rather good space-filling
properties.

• 2D projection criteria of maximin LHS sharply and
strongly deteriorate from the first dimension increase at
d = 3. Then 2D projection criteria of maximin LHS
remain stable at poor values for larger dimensions.

Similar tests with different sample sizesn and for the three-
dimensional and four-dimensional projections have led to the
same conclusions. All these results show that a WLHS is the
preferable initial design for fitting a computer code metamodel
in high dimensional cases.

3.4. Numerical studies on toy functions

At present, we perform two numerical studies to evaluate
the impact of an inadequate design on the metamodel fitting
process. For the metamodel, we use the Gp modelYGp

described in§2. The quality of the metamodel predictor is
measured by the so-called predictivity coefficientQ2 (i.e.,
the determination coefficientR2 computed on a test sample),
which gives the percentage of the output variance explained
by the metamodel:

Q2 = 1−

∑nt

i=1[y(x̃
(i))− ŶGp(x̃

(i))]2
∑nt

i=1[ȳ − y(x̃(i))]2
(6)

with (x̃(1), . . . , x̃(nt)) the test sample of sizent, ŶGp =
IE(YGp) the Gp predictor (Eq. (2)) and̄y the mean of the
output test sample(y(x̃(1)), . . . , y(x̃(1))).

Maximin LHS

Low wrap-around discrepancy LHS (WLHS)

Fig. 3. Criterion values (up: maximin, bottom: wrap-
around discrepancy) obtained with 2D projections of de-
signs coming from two types of LHS (containing n = 100
points), with different dimensions: d = 2, 3, 4, 5, 10, 15.
Boxplots are obtained by repeating 100 optimizations
using different initial LHS.

3.4.1. A two-dimensional test case.Our first test involves
a two-dimensional analytical function (called the irregular
function):

f(x) =
ex1

5
−
x2

5
+
x6
2

3
+4x4

2−4x2
2+

7x2
1

10
+x4

1+
3

4x2
1 + 4x2

2 + 1

with x ∈ [−1, 1]2. Figure 4 represents the irregular function.
We have made several comparisons between random LHS

and different space filling designs before fitting a metamodel
[18]. In the following, we show our results concerning the
random LHS and the WLHS, which has provided the best
results. For a sizen of the learning sample and each type
of design, we repeat100 times the following procedure: we
generate an initial input design ofn observations, we obtainn
outputs with the toy function, we fit a Gp metamodel (1), and
we evaluate its predictivity coefficientQ2 using a test sample
of large size (nt = 10000). Therefore, for each type of LHS,
we obtain100 values ofQ2 whose mean and variance give
us the efficiency and robustness of the design in terms of Gp
quality.

The initial LHS design optimized with the wrap-around
discrepancy (Eq. (5)) has given us the best results. In Figure
5, we compare the predictivity coefficients obtained with
non optimized LHS (random LHS) and those obtained with
optimized LHS (WLHS). The size of the design increases
from n = 10 to n = 46 (by step of4), which leads to a
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Fig. 4. Graphical representation of the irregular function
on [−1; 1]2.

regular increase ofQ2. For each sizen, the boxplot represents
the summary of the100 values ofQ2. In the all range of
n, Q2 of the WLHS are better than the random LHS ones.
Furthermore, much smaller variances (boxplots are smaller)
are shown for WLHS and lead to the conclusion that these
designs are more robust than others. This property is rather
natural because there are much less variability between the
100 different WLHS than between the100 different random
LHS (because of the optimization process). Differences are
particularly important for sizesn = 30 andn = 34: the WHS
lead to very competitive Gp metamodels (Q2 ∼ 0.95 and
boxplot width∼ 0.05) while random LHS give uncompleted
metamodels (Q2 ∼ 0.9 and boxplot width∼ 0.2).

Fig. 5. For the irregular function, Gp Q2 evolution in
function of the learning sample size n and for two types of
LHS (left: random LHS; right: WLHS).

3.4.2. A five-dimensional test case.Our second test involves
a five-dimensional analytical function (called the g-Sobol5d
function):

f(x) =

5
∑

i=1

|4xi − 2|+ ai

1 + ai

with a1 = 1, a2 = 2, a3 = 3, a4 = 4, a5 = 5, x ∈ [0, 1]5.
We have made several comparisons between random LHS

and different space filling designs before fitting a metamodel
[18]. In the following, we show our results concerning the
random LHS and the WLHS, which has provided the best
results. For a sizen of the learning sample and each type
of design, we repeat100 times the following procedure: we
generate an initial input design ofn observations, we obtainn
outputs with the toy function, we fit a Gp metamodel (1), and
we evaluate its predictivity coefficientQ2 using a test sample
of large size (nt = 10000). Therefore, for each type of LHS,
we obtain100 values ofQ2 whose mean and variance give
us the efficiency and robustness of the design in terms of Gp
quality.

As in the previous section, the initial LHS design optimized
with the wrap-around discrepancy (Eq. (5)) has given us
the best results. In Figure 6, we compare the predictivity
coefficients obtained with non optimized LHS (random LHS)
and those obtained with optimized LHS (WLHS). The size of
the design increases fromn = 22 to n = 40 (by step of2),
which leads to a regular increase ofQ2. For each sizen, the
boxplot represents the summary of the100 values ofQ2. In
the all range ofn, Q2 of the WLHS are better than the random
LHS ones. Furthermore, much smaller variances are shown for
WLHS and lead to the conclusion that these designs are more
robust than others. For small sample sizes, theQ2 differences
reach0.2 between the two types of design:Q2(LHS) ∼ 0.6
and Q2(WLHS) ∼ 0.8. In industrial applications, such a
difference makes the distinction between “bad” (unacceptable)
metamodels and good ones. The latter can be used for example
for quantitative sensitivity studies.

Fig. 6. For the g-Sobol 5d function, Gp Q2 evolution in
function of the learning sample size n and for two types of
LHS (left: random LHS; right: WLHS).

3.5. Conclusion of numerical tests

In conclusion of our numerical study, the LHS optimized
with the wrap-around discrepancy has provided efficient re-
sults for the Gp metamodel fitting, even in high dimension.
Furthermore, we have found that this design guarantees correct
repartitions of the points for all the two-dimensional projec-
tions, while other types of LHS (like maximin) have bad
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repartitions for these projections. Other types of LHS can also
provide good results but less systematically [18]. For instance,
[7] has studied quasi-Monte Carlo samples (Sobol suites and
Halton sequences) and has shown that these sequences are less
performant than other space filling designs in terms of the Gp
metamodel fitting.

Of course, such designs have to be seen as initial ones. If
possible, in a second step, adaptive designs can improve meta-
model predictivity in a very efficient way [18], for instanceby
choosing new simulation points in poorly predicted areas.

4. Test sample selection for metamodel valida-
tion

In practical cases, only a small number of simulations can be
performed with the computer code in order to fit a metamodel.
Once the metamodel has been built, estimating its predictivity
is an important issue. Indeed, a safe use of this metamodel
to answer to uncertainty or sensitivity problems requires a
precise estimation of its capabilities. In this section, wemake
a discussion on algorithms of predictivity estimation.

4.1. Classical validation methods

Let us consider thed-dimensional input vectorx =
(x1, . . . , xd) ∈ X , where X is a bounded domain
of IRd and y(x) ∈ IR is the computer code output.
We suppose that a metamodelŶ (x) has been fitted us-
ing

(

(x(1), y(x(1))), . . . , (x(N), y(x(N)))
)

, a N -size learning
sample of computer code experiments.

The test sample approach consists in comparing the meta-
model predictions on simulation points not used in the meta-
model fitting process. This gives some prediction residuals
(which can be finely analyzed) and global quality measures as
the metamodel predictivity coefficientQ2 (Eq. (6)). Such test
points set is called a test sample (or also validation sample
or prediction sample). This method requires new calculations
with the computer code and the first question we have to face
up is the sufficient number of prediction points to obtain the
required accuracy of our global validation measures. For cpu
time expensive code, it can be difficult to provide a sufficient
number of test points. Some convergence visualisation tools
of the global validation measures can be used to answer to
this first question.

Another important question for the test sample approach is
the localization of these test points. The usual practice isto
choose an independent Monte Carlo sample for the test sam-
ple. However, if the sample size is small, the proposed points
can be badly localized, for example near learning points or
leaving large space domain unsampled. A fine strategy could
be to use, as the test sample, a space filling design (which
consists in filling the input variable spaceX as uniformly
as possible). Unfortunately, this solution does not avoid the
possibility of too strong proximity between learning points and
test points. Such proximity would lead to too optimistic quality
measures, and consequently to a biased prectivity estimation.

The second solution to validate a metamodel, the cross
validation method, is extremely popular in practice because
it avoids new calculations on the computer code. The cross
validation method proposes to divide the initial sample on a
learning sample and a test sample. A metamodel is estimated
with the points in the new learning sample and prediction
residuals are obtained via the new test sample. This processis
repeated several times by using other divisions of the learning
sample. Finally all the prediction residuals can be used to
compute the global predictivity measures. The leave-one-out
procedure is a particular case of the cross validation method
where just one observation is left out at each step.

The first drawback of the cross validation method is its cost,
which can become large due to many metamodel fitting pro-
cesses. Moreover, if the initial design has a specific geometric
structure (which aims at optimizing the metamodel fitting),
the deletion of points from the learning sample causes the
breakdown of the specific design structure while creating the
new learning sample. Indeed, the new learning sample does
not have the adequate statistical and geometric propertiesof
the initial design and the metamodel fitting process might fail.
This could lead to too pessimistic quality measures.

To sum up, the test sample method requires too many new
prediction points (to avoid too optimistic validation criteria),
while the cross-validation method can provide too pessimistic
validation criteria. Therefore, to solve this dilemma, an heuris-
tic new solution has been introduced in [10], [9] and is
presented in the next section.

4.2. A new optimized validation design

Retaining the test sample method, we limit its main draw-
back by minimizing the number of necessary points in the
test sample. In this goal, an algorithm allows the specification
of new design points decreasing the discrepancy of an initial
design [6]. This sequential algorithm gives us at each step
the prediction point furthest away from the other points of
the design. The algorithm performs its optimization process in
the spaceX of the input variablesx. By choosing the future
prediction points in the unfilled zone of the learning sample
design, we aim at capturing the right metamodel predictivity
using only a small number of additional points. Note that such
ideas have also been proposed in [28] for different purposes.

We have not theoretically studied the computational effi-
ciency of this algorithm over the computational efficiency of
the traditional methods (introduced in the previous section).
However, our intuition is that mean square error computed by
this algorithm avoids the biases, which could be caused by too
strong proximities between the test sample points and between
test sample points vs. learning sample points.

Let us considerXf (nf ) = (x
(i)
f )i=1..nf

a low discrepancy
sequence ofnf points in [0, 1]d. A low discrepancy sequence
is a deterministic design constructed to uniformly fill the
space with regular patterns. Among all the low discrepancy
sequence, Halton, Hammersley, Faure and Sobol sequences
are the most famous [16]. In the following, we will use the
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Hammersley sequence which, on a few tests, have shown better
properties than the others [6]. The chosen discrepancy measure
is the centeredL2 discrepancyD2(·) (Eq. (4)).

To obtain an additional point of the initialN -size sample,
noticedXs(N), we use the following algorithm:

1) For i = 1, . . . , nf ,

• Xs(N + 1) = {x(1), . . . ,x(N)} ∪ xf
(i);

• computeDifi = D2(Xs(N + 1))−D2(Xs(N));

2) selecti∗ such thati∗ = arg min
i=1,...,nf

Difi;

3) obtain the new pointxf
(i∗).

This algorithm is repeated sequentially to obtainNtest test
points, by updating the initial design and the low discrepancy
sequence. For example, for the second point, we reinitalizethe
design by the following:Xs(N + 1) = {x(1), . . . ,x(N)} ∪
xf

(i∗) andXf (nf − 1) = {xf
(1), . . . ,xf

(nf )}\xf
(i∗).

This algorithm just consists in adding to the initial design
some points of a low discrepancy sequence by minimizing the
discrepancy differences between the initial and the new design.
The size of the low discrepancy sequence is required to be as
large as possible, especially ifd is large. Figure 7 gives an
example of the specification with our algorithm ofNtest = 4
new points (the crosses) inside an initial Monte Carlo design
(N = 46, d = 2). One of the advantage of this algorithm is its
size-independence (related to the number of added points):the
sequence of added points is deterministic and will be always
the same for the sameXf (nf ). In the following, the design
obtained using this algorithm is called the sequential validation
design.

Fig. 7. Example of the sequential algorithm: N = 46,
d = 2, Ntest = 4. The bullets are the points of the initial
design while the crosses are the new specified points.

4.3. Numerical studies on toy functions

4.3.1. A two-dimensional test case.To compare the sequen-
tial validation design with other test designs for the metamodel
validation purpose, we first perform an analytical test using a
two-dimensional toy function, called the cosin2 function:

f(x) = cos(10x1) + sin(10x2) + x1x2 , (x1, x2) ∈ [0, 1]2.

Fig. 8. Graphical representation of the cosin2 function on
[0; 1]2.

Figure 8 represents the cosin2 function.
Gp metamodels (1) are fitted using learning samples of

differents sizesNBA: NBA ranges from10 to 40 allowing a
wide variety of metamodel predictivity coefficientsQ2, from
0 (null predictivity) to 1 (perfect predictivity). The initial10-
size design is a maximin LHS. The other learning designs
(of increased size) are obtained by sequentially adding points
to the design, while maintaining the LHS properties of the
design and keeping some optimality properties (maximizing
the mean distance from each design point to all the other points
in the design [17]). Choosing an initial maximin LHS design,
while we have shown in Section 3 that WLHS is better than
maximin LHS for the Gp fitting process, is not in contradiction
with our objectives in this section: our goal is now to study
the Gp metamodel validation. Anyway, we are not able to
keep the properties of maximin LHS or WLHS when gradually
increasing the size of the learning sample.

The black line in Figure 9 shows the evolution ofQ2 in
function of the learning sample size. This reference value
for the predictivity coefficient has been computed for each
metamodel by taking its mean over100 test samples of
size Ntest = 1000. The Q2 estimation by a leave one out
procedure (pink line) strongly underestimates the exactQ2 for
NBA < 30. This is certainly due to the small number of points:
leave one out is pessimistic in this case because each point
deletion has a strong impact on the metamodel fitting process.
The red curve gives theQ2 estimation using the sequential
validation design described in the previous paragraph (with a
Hammersley sequence of sizenf = 10000).
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Fig. 9. For the cosin2 function, Gp predictivity coefficient
(Q2) in function of the learning sample size NBA, estimated
from different test sample sizes Ntest. The dashed curves
(blue and green) give the minimal and maximal values
obtained with 100 repetitions of the random test design
(Monte Carlo and LHS).

Results are greatly satisfactory forNtest≥ 20: the sequential
validation design gives preciseQ2 estimates in all cases and
outperforms a crude Monte Carlo or LHS design. The green
curves correspond to the minimal and maximal values obtained
with 100 repetitions using an optimized LHS as the test
design. As expected, these intervals are more reduced than the
intervals obtained using a crude Monte Carlo sample as the
test design (blue curves). AsNtest increases, these intervals
contract, but always show the superiority of the sequential
validation design, especially for low metamodel predictivity
(Q2 < 0.9 andNBA < 25).

4.3.2. An eight-dimensional test case.We perform now a
second numerical test using the g-Sobol function in eight-
dimension (called the g-Sobol 8d function):

f(x) =

8
∑

i=1

|4xi − 2|+ ai

1 + ai

with a1 = a2 = 3, ai = 0 for (i = 3, . . . , 8), x ∈ [0, 1]8.
A Gp metamodel (1) is fitted on a learning sample (maximin

LHS) of sizeNBA = 40. We compute the reference value of
the predictivity coefficient by taking its mean over100 test
samples of sizeNtest= 1000 and obtainQref

2 = 0.83. We then
apply the sequential validation design described previously
(with a Hammersley sequence of sizenf = 10000) by
addingNtest = 50 new points to the design, and we obtain
Q

seq50
2 = 0.85, which is close to the true value. We compare

this result with100 crude Monte Carlo samples of the same
size (Ntest = 50), which give the 90% confidence interval
[0.79, 0.91] for QMC

2 . This last result is rather large and shows
the insufficient number of points if we choose a crude Monte
Carlo design.

Figure 10 shows the evolution of the estimatedQ2 for
test bases with different sizes, ranging fromNtest = 10 to
Ntest = 50. The solid red line shows the results obtained
with the sequential validation design while the dotted blue
lines show the100 sequentially increased crude Monte Carlo
samples. This figure illustrates the poor estimates we obtain
when using small size (Ntest < 50) of Monte Carlo samples
for validation. On the contrary, the sequential validationdesign
allows to obtain a good approximation of the true predictivity
coefficient even for small test sample sizes. Results are precise
for Ntest≥ 25.

4.4. Application to a nuclear safety computer code

In this section we apply our algorithms on a complex
computer model used for nuclear reactor safety. It simulates a
hypothetical thermal-hydraulic scenario on Pressurized Water
Reactors: a large-break loss of primary coolant accident (see
Fig. 11) for which the output of interest is the peak cladding
temperature. This scenario is part of the Benchmark for Uncer-
tainty Analysis in Best-Estimate Modelling for Design, Opera-
tion and Safety Analysis of Light Water Reactors [2] proposed
by the Nuclear Energy Agency of the Organisation for Eco-
nomic Co-operation and Development (OCDE/NEA). It has
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Fig. 10. For the g-Sobol 8d function, Gp predictivity
coefficient (Q2) in function of the test sample size Ntest,
for two types of validation design: sequential (red) and
crude Monte Carlo (blue). Dotted blue lines correspond to
100 different crude Monte Carlo samples).

been implemented on the french computer code CATHARE2
developed at the Commissariat à l’Energie Atomique (CEA).
Figure 12 illustrates100 CATHARE2 simulations (by varying
input variables of the accidental scenario) giving the cladding
temperature in function of time.

Fig. 11. Illustration of a large-break loss of primary
coolant accident on a nuclear Pressurized Water Reactor.

In our exercise, a Gp metamodel (1) of the first peak
cladding temperature (which is a scalar variable) has to be
estimated withN = 100 simulations of the computer model
(the input design is a maximin LHS). The cpu time is
twenty minutes for each simulation with a standard computer
(Pentium IV PC). The complexity of the computer model
lies in the high-dimensional input space.d = 53 random

Fig. 12. 100 output curves (cladding temperatures in
function of time) of the CATHARE2 code. The output
variable of interest for the reactor safety is the first peak
of the cladding temperature.

input variables are considered: physical laws essentially, but
also initial conditions, material properties and geometrical
modeling. Their probability distributions are either normal or
log-normal, and both are truncated. Such a number of input
variables is rather large for the metamodel fitting problem.
This difficult fit (due to the high dimensionality and small
learning sample size) can be made thanks to the algorithm of
[19], specifically devoted to this situation. The obtained Gp
metamodel (1) contains a linear regression part (including7
input variables) and a centered Gp model with a generalized
exponential covariance function (including6 input variables).
The reference quality of this Gp model is measured via an
additional1000-size test sample, which givesQref

2 = 0.66.
Figure 13 shows the evolution of the estimatedQ2 for

test bases with different sizes, ranging fromNtest = 10 to
Ntest= 95. The sequential validation design gives coarse esti-
mations for all the test design sizes and begins to give precise
results forNtest≥ 40. Some inadequacies, which remain when
Ntest∈ [75, 90], have to be finely analyzed in a further work. In
any cases, sequential validation design estimations are clearly
less hazardous than using a crude Monte Carlo test sample to
validate the metamodel: the90%-confidence intervals obtained
using Monte carlo samples show extremely large variation
ranges (because of the high dimensionality of the input space:
d = 53). Q2 estimation using a Monte Carlo test sample can
lead to a strongly erroneous result. Same results have been
obtained using optimized LHS for the test design instead of a
crude Monte Carlo sample.

5. Conclusion and future works

In this paper, we have proposed to look at two practical
problems when fitting a metamodel to small-size data samples:
the initial design and the validation method choices. These
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Fig. 13. For the nuclear safety computer code application,
estimation of the metamodel (Gp) predictivity coefficient
(Q2) in function of the test sample size Ntest, for two types
of validation design: sequential (red) and crude Monte
Carlo (blue).

problems are relevant when a cpu time expensive code has
to be replaced by a simplified model with negligible cost
(I;e., a metamodel). Such replacement is useful to resolve
optimisation, uncertainty propagation or sensitivity analysis
issues.

We have first paid attention to the initial input design. Our
numerical tests concentrate on the popular Gp metamodel
and on the LHS. This type of design, developed thirty years
ago, is the most widely used in industrial applications. We
have shown that an excellent way to optimize its properties,
in the objective of the best metamodel fit, is to minimize
some discrepancy measures, especially the wrap-aroundL2

discrepancy. An alternative strategy, if possible, would be to
use some adaptive designs [18]. For the Gp metamodel, this
kind of design is well-adapted due to the availability of the
variance expression (the MSE of the metamodel predictor, see
Eq. (3)).

Secondly, we have looked at the metamodel validation
process and have shown that the test sample approach can
provide erroneous results for small sizes of the test sample.
Moreover, the leave one out approach can strongly underesti-
mate the metamodel predictivity for small sizes of the whole
database. We have proposed to use a recent algorithm, called
the sequential validation design, which puts prediction points
in the unfilled zones of the learning sample design. Therefore,
a minimal number of points is required to obtain a good
estimation of the metamodel predictivity. Our numerical tests
on analytical functions and real application cases have shown
that the sequential validation design outperforms the classical
metamodel validation methods, especially in high dimensional
context. For our analytical functions, the sequential validation
design gives precise estimate of the metamodel predictivity

with a test sample sizeNtest ≥ 25, while for our industrial
application, the minimal bound isNtest≥ 40.

Further works are necessary to more deeply study the
validation designs (other test functions with different effective
dimensionality and complexity). Moreover, it would be useful
to find a criterion to determine when the sequential validation
design can be ended. Finally, the ultimate goal of such studies
will be to define a global strategy of allocating simulation
points between the metamodel fitting step and the metamodel
validation step.
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