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ABSTRACT 

 
The QR-decomposition-based least-squares lattice (QRD-
LSL) algorithm is one of the most attractive choices for 
adaptive filters applications, mainly due to its fast 
convergence rate and good numerical properties. In 
practice, the square-root-free QRD-LSL (SRF-QRD-LSL) 
algorithms are frequently employed, especially when fixed-
point digital signal processors (DSPs) are used for 
implementation. In this context, there are some major 
limitations regarding the large dynamic range of the 
algorithm’s cost functions. Consequently, hard scaling 
operations are required, which further reduce the precision 
of numerical representation and lead to performance 
degradation. In this paper we propose a SRF-QRD-LSL 
algorithm based on a modified update of the cost functions, 
which offers improved numerical robustness. Simulations 
performed in fixed-point and logarithmic number system 
(LNS) implementations support the theoretical findings. 
Also, in order to outline some practical aspects of this 
work, the proposed algorithm is tested in the context of 
echo cancellation. It is shown that this algorithm 
outperforms by far the normalized least-mean-square 
(NLMS) algorithm (which is the most common choice for 
echo cancellation), especially in terms of double-talk 
robustness.  
 

Index Terms— Adaptive filters, echo cancellation, 
fixed-point arithmetic, logarithmic number system (LNS), 
QR-decomposition-based least-squares lattice (QRD-LSL). 

 

1. INTRODUCTION 
 
The QR-decomposition-based least-squares lattice (QRD-
LSL) adaptive algorithm [1]–[3] combines the good 
numerical properties of QR-decomposition and the 
desirable features of a recursive least-squares lattice. 
Whereas its transversal counterpart, i.e., the recursive QR-
decomposition-based recursive least-squares (QRD-RLS) 
algorithm [2], requires a high computational load on the 

order of M2 (where M is the adaptive filter order), the 
QRD-LSL algorithm is “fast” in the sense that the 
computational complexity is reduced to a linear 
dependence on M. This algorithm exploits the shifting 
property of serialized input data, i.e., the Toeplitz structure 
of the data matrix, to perform joint-process estimation in a 
fast manner. Due to its features, the QRD-LSL algorithm 
proves to be a very attractive choice for many applications 
[4]–[6]. 

The standard version of the QRD-LSL algorithm uses 
Givens rotations for implementing the QR-decomposition, 
which implies the use of square-root operations. In general, 
these operations are expensive and awkward to calculate in 
practice, constituting a bottleneck for overall performance. 
It has to be noticed that the square root operations require a 
large computing time, as they must be approximated by 
another technique, e. g., Taylor series. Consequently, the 
computing time increases significantly and the application 
areas of these algorithms become restricted. Thus, the main 
goal is to minimize the number of instructions within the 
implemented algorithm. For these reasons, square-root-free 
QRD-LSL (SRF-QRD-LSL) algorithms have been 
formulated, using special methods for performing Givens 
rotations without square roots [7]. 

Following these issues, a crucial aspect is the behavior 
of the adaptive algorithm in finite precision 
implementations. In this context, due to cost considerations, 
fixed-point digital signal processors (DSPs) could be 
preferred over floating-point ones. Quantization effects in 
the former result in a deviation of the adaptive filter 
performance from that observed in infinite precision. This 
deviation, which becomes more apparent as the number of 
representation bits is reduced, may take the form of an 
increased residual error after convergence (i.e., loss of 
precision), or more dramatically, of an unbounded 
accumulation of quantization errors over time (i.e., 
numerical instability). Moreover, there are some limitations 
related to the dynamic range of the algorithm’s parameters. 
It is well known that in a fixed-point implementation 
context the absolute values of all involved parameters have 
to be smaller than one. In the case of the classical QRD-
LSL algorithm, the cost functions asymptotically increase; 
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they are upper bounded by the value 1/(1 – λ), where λ is 
the exponential weighting factor (with 0 < λ ≤ 1). When 
dealing with a value of this parameter very close to one, 
(which is highly preferred due to stability reasons [2]) very 
large values of the cost functions are expected. Therefore, 
in order to prevent the overflow phenomena, it is necessary 
to perform hard scaling operations; this could lead to 
significant degradation of the algorithm’s performance due 
to the decreased precision of numerical representation. 

Most contemporary microprocessors perform real 
arithmetic using the floating-point system. Floating-point 
circuits are large, complex and much slower than fixed-
point units; they require separate circuitry for the add/ 
subtract, multiply, divide, and square-root operations. All 
floating-point operations are liable to a maximum half-bit 
rounding error. A recent alternative to the floating point is 
the logarithmic number system (LNS). The LNS performs 
the real multiplication, division, and square-root at fixed-
point speed [8]. 

In this paper, we propose a version of the SRF-QRD-
LSL algorithm based on a modified update formula of the 
cost functions. The main issue is that the maximum value 
of the cost functions will be at initialization and then they 
will asymptotically decrease to a lower bound. Therefore, 
the scale factors are less critical, leading to an increased 
precision of numerical representation [9].  

In [10] we have analyzed some versions of the QRD-
LSL algorithm according to some ITU standard 
requirements concerning echo cancellers. The experiments 
indicated that the QRD-LSL algorithms fulfill by far the 
requirements of the ITU G.168 recommendation [11] 
concerning the steady-state echo return loss enhancement 
and convergence speed. A special interest was given to the 
problem of the behavior of the algorithms during the 
double-talk periods. Two distinct effects were identified, 
i.e., 1) the incomplete attenuation of the far-end signal and 
2) the unwanted attenuation of the near-end signal, as a 
result of the near-end signal leakage to the output of the 
adaptive filter through the error signal. Using a value of λ  
very close to 1 can reduce the last effect. The experiments 
prove that it is possible to work with such a high value of 
λ  by preserving in the same time a convergence speed that 
fulfils the requirements of the ITU recommendation. 
Generally, one can assert that this class of algorithms is 
much more robust to double-talk than the normalized least-
mean-square (NLMS) type algorithms. The QRD-LSL 
algorithms could satisfactorily operate even in the absence 
of a double-talk detector (DTD). Since the proposed SRF-
QRD-LSL algorithm is suitable for fixed-point 
implementation we present a network echo canceller based 
on this algorithm, implemented on a fixed-point DSP.  

The rest of the paper is organized as follows. In 
Section 2, we briefly present the original SRF-QRD-LSL 
algorithm and we discuss some fixed-point and LNS 
implementation aspects. The proposed algorithm is 

developed in Section 3. Some backgrounds of echo 
cancellation are given in Section 4. The experimental 
results are given in Section 5. The simulations performed in 
both fixed-point DSP and LNS implementations prove the 
theoretical findings; also, the experiments performed in 
echo cancellation context outline the practical aspects. 
Finally, Section 6 concludes this work. 

 
2. NUMERICAL ISSUES OF THE SRF-QRD-LSL 

ALGORITHM 
 
Among the versions of the SRF-QRD-LSL algorithm 
presented in the literature we have chosen the most 
frequently used one [12]. This version is described below. 
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Fig. 1. IEEE standard single precision floating point 
representation and the 32-bit LNS format. 
 

The superscript * denotes complex conjugation. The 
parameters involved in the algorithm are denoted as follows 
(for prediction order m and time index n): 
- ( ) ( ), fb

m mJ n J n  - sum of weighted backward/forward 
prediction error squares (i.e., the cost functions); 
-  - backward/forward prediction error; ( ) ( ), fb

m me n e n

-  - lattice structure coefficients; ( ) ( ), fb
m mk n k n

-  - Givens parameters; ( ) ( ) ( ) ( ), , ,fb b
m m m mc n c n s n s nf

- ( )me n  - joint-process a posteriori estimation error; 

- ( )m nα  - joint-process a priori estimation error; 

-  - ladder structure coefficients; ( )c
mk n

- λ - exponential weighting factor. 
Next, let us assume the context of a fixed-point DSP 

implementation, with a word length of B bits. The absolute 
values of the algorithm’s parameters have to be less than 
one. For simplicity, we will take into consideration only the 
forward prediction part of the algorithm; the same analysis 
could be straightforwardly extended for the backward 
prediction part. According to the update equation of the 
cost function, the upper bound limit is 

 

( ) 1
1

f
m

n
J n

→∞
=

−λ
      (1) 

 
For a value of λ very close to one, the cost functions reach 
to very large values. Therefore, a scaling operation (i.e., 
right shift) has to be applied, such that 
 

               (2) ( )2 1f Q
mJ −∞ =

 
The parameter Q is the scaling factor that is computed as 
 

( )2log 1Q ⎡ ⎤= − −⎢ ⎥λ       (3) 

 
where  denotes superior integer part. •⎡ ⎤⎢ ⎥
 

 
Table 1. LNS arithmetic operations. 

x + y ADD Lz = Lx + log(1+2^(Ly-Lx)), 
Sz depends on sizes of x,y 

x - y SUB Lz = Lx + log(1-2^(Ly-Lx)), 
Sz depends on sizes of x,y 

x * y MUL Lz = Lx + Ly, Sz = Sx OR Sy 

x / y DIV Lz = Lx - Ly, Sz = Sx OR Sy 

x^2 SQU Lx << 1, Sz = Sx 

x^0.5 SQRT Lx >> 1, Sz = Sx 

x^-1 RECIP Lz = Lx, Sz = -Sx 

x^-0.5 RSQRT Lz = Lx >> 1, Sz = -Sx 

 
For example, a value of λ = 0.99 implies Q = 7 bits. The 
numerical precision loss in this case is important. Assuming 
a word length B = 16 bits we can notice that the numerical 
precision representation is almost half reduced. Moreover, 
the small parameters from the algorithm (e.g., estimation 
errors) will be affected because they are “pushed” to the 
lowest limit 2–B+1, increasing the stalling probability. 

We should note that a value of λ very close to one is 
not unusual in practice. In general, mainly due to stability 
reasons, the weighting factor for this type of algorithms is 
greater than λ = 1 – 1/3M [12]. Accordingly, a filter with 
the order M = 33 is sufficient to produce such a value of λ. 

As an alternative to floating-point, the LNS offers the 
speed advantages when implementing algorithms with 
many multiplication, division, and square-roots; in the case 
of multiplication and division operations there are not 
rounding errors at all. These advantages are, however, 
offset by the problem of performing logarithmic addition 
and subtraction. 

The 32-bit floating-point representation consists of a 
sign, 8-bit biased exponent, and 23-bit mantissa. The LNS 
format is similar in structure, as shown in Fig. 1. The 'S' bit 
again indicates the sign of the real value represented, with 
the remaining bits forming a 31-bit fixed-point word in 
which the size of the value is encoded as its base-2 
logarithm in 2's complement format. Since it is not possible 
to represent the real value zero in the logarithmic domain, 
the 'spare' (most negative) code in the 2's complement 
fixed-point part is used for this purpose, which is 
convenient since smaller real values are represented by 
more negative log-domain values. The chosen format 
compares favorably against its floating-point counterpart, 
having greater range and slightly smaller representation 
error [8]. A 20-bit LNS format is similar. It maintains the 
same range as the 32-bit, but has precision reduced to 11 
fractional bits. This is comparable to the 16-bit formats 
used on commercial DSP devices. The LNS arithmetic 
operations are presented in Table 1. More details about the 
LNS and some of its applications are available in [13], [14]. 
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3. MODIFIED SRF-QRD-LSL ALGORITHM 
 
In order to overcome the large dynamic range of the 
algorithm parameters we propose to update the cost 
functions in sort of “reverse” manner. Let us focus on the 
forward prediction part of the algorithm, where we can 
rewrite the cosine Givens rotation parameter as 
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Similarly, the sine Givens rotation parameters can be 
expressed as 
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Finally, according to (4), the update of the modified cost 
function from (5) becomes 
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so that 
 

        ( ) ( ) (1 1f f f
m m m )J n J n c= −

λ
n    (8) 

 
The initial value of the modified cost function will be 
chosen as 
 

      ( ) 10f
mJ =

λδ
    (9) 

 

The backward prediction part of the algorithm can be 
modified in a similar manner. In the ladder part of the 
algorithm the update of the a priori estimation error has to 
be rewritten as 
 

  ( ) ( ) ( ) ( ) ( )
2
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1 1 1 f f
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Concluding, the first six relations from the lattice part of 
the original SRF-QRD-LSL algorithm described in Section 
2 have to be changed as follows: 
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We may notice that a slight modification was performed in 
(6) according to (8). In addition, the last equation from the 
ladder part of the original algorithm (see Section 2) has to 
be replaced by (10); the initial value of the modified cost 
functions is given by (9). In this manner, it results a 
modified SRF-QRD-LSL (MSRF-QRD-LSL) algorithm. 

(6)

The proposed algorithm is mathematical equivalent 
with the original one, so that they will have the same 
behaviour in infinite precision. Nevertheless, in a fixed-
point arithmetic context they will behave differently, as we 
will demonstrate in the following. 

As we have shown in Section 2, the cost functions of 
the original algorithm asymptotically grow to very large 
values, when the value of λ is close to one. Thus, hard 
scaling operations are required in order to avoid overflows. 
On the other hand, the modified cost functions of the 
proposed MSRF-QRD-LSL algorithm are updated in a 
reverse manner, so that they will asymptotically decrease to 
a lower bound, which can be computed as 

 

( ) 1f
m

n
J n

→∞

−
=

λ
λ

                  (11) 

 
The maximum value of these functions will be the initial 
one given in (9). Consequently, we have to impose a scale 
factor such that 
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        1 2 1S− =
λδ

                   (12) 

 
which leads to 
 

   ( )2logS ⎡= −⎢ ⎤⎥λδ                   (13) 
 
The value of the initialization parameter δ slightly 
influences only the initial convergence of the algorithm 
[15], so that it is less important than the parameter λ. 
Typically, we can set δ = 1. Consequently, for a value of 
the weighting factor λ = 0.99, the value of the scale factor 
from (13) is bit, which is insignificant. 
Thus, in practice we may set the initial value of the 
modified cost functions to one, so that there is almost no 
need for the scale factor S any more.  

0.015 1S ≅ − =⎡ ⎤⎢ ⎥

A second aspect that we have to take into account is 
related to the lower bound from (11). As we may notice 
from the update (8), the algorithm stalls when the modified 
cost functions decrease under the lowest limit 2–B+1. In 
order to prevent this problem we have to impose 
 

     11 2 B− +−
≥

λ
λ

                   (14) 

 
From (14), the condition for the maximum value of the 
weighting factor results as 
 

     1
1

1 2 B− +
≤

+
λ                    (15) 

 
For example, if the word length is B = 16 bits, we have to 
choose λ ≤ 0.999969, which is not a severe limitation. 
Concluding, if we initialize the cost functions with the 
value one and if we take into account condition (15), there 
is almost no need for scaling operations in the proposed 
MSRF-QRD-LSL algorithm. Consequently, its numerical 
robustness is improved as compared to the original SRF-
QRD-LSL algorithm. 
 

4. BACKGROUNDS OF ECHO CANCELLATION 
 
In practice, there is a need for network echo cancellers for 
echo paths with long impulse response. Therefore, long 
FIR adaptive filters (e.g., ) are required. It is well 
known that the longer impulse response implies slower 
convergence rate, thus rendering traditional algorithms like 
NLMS inadequate. Based on convergence performance 
alone, a RLS-based algorithm is clearly the algorithm of 
choice. However, the requirements of an echo canceller are 
for both rapid convergence and a low computational cost. 
Thus, a highly desirable algorithm is a low cost (i.e., fast) 
RLS algorithm. On the other hand, another consideration 
for this application is the algorithm stability, because it is 

256M ≥

 

 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Echo cancellation configuration. 
 
unacceptable for the algorithm to diverge unexpectedly 
from the true solutions. Taking these two aspects into 
account, the proposed MSRF-QRD-LSL algorithm could 
be feasible for real-time applications, like network echo 
cancellation. 

Besides convergence rate and complexity issues, an 
important aspect of an echo canceller is its performance 
during double-talk. In the case of NLMS-based algorithms, 
the presence of near-end signal considerably disturbs the 
adaptive process. To eliminate the divergence of echo 
cancellers the standard procedure is to inhibit the weight 
updating during the double-talk. The presence of double-
talk is detected by a DTD. A number of samples are 
required by the DTD to detect the double-talk presence. 
Nevertheless, this very small delay can generate a 
considerable perturbation of the echo estimate. 

Let us consider the “interference cancellation” 
configuration from Fig. 2, which is the basis of echo 
cancellation. The purpose of the scheme is to extract the 
signal u(n) from the mixture u(n) + v(n). In the case of an 
echo canceller, x(n) is the far-end signal, u(n) is the near-
end, H is the echo path equivalent to a FIR filter with the 
impulse response h(n), and W is an adaptive filter, having 
the coefficients w(n). As was suggested in [16], to make 
more apparent in results, it is convenient to subtract out the 
direct near-end component from the error signal . In 
this manner, the residual error  cumulates the 
undesired attenuation of the near-end signal u(n) and the 
imperfect rejection of the echo path response . In a 
real application such a subtraction can never be done 
because the signal u(n) is not available. 

)(ne
)(nr

)(nv

In the real case of any adaptive algorithm the 
coefficients w(n) depend on the signal u(n). As a 
consequence, two effects appear [6], [10]: 
- w(n) differs to h(n) in a certain extent and this may be 

viewed as a divergence of the algorithm; as a direct 
consequence, will result a decrease of the echo return 
loss enhancement (ERLE). 

- y(n) will contain a component proportional to u(n), 
that will be subtracted from the received signal. This 
phenomenon is in fact a leakage of the u(n) in y(n), 

W 

x(n) 

H 

u(n)

v(n) y(n) 
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through the error signal e(n); the result consists of an 
undesired attenuation of the near-end signal. 
In the case of the RLS-based algorithms, this leakage 

process is important for lower values of λ, where y(n) ≈ 
v(n) + u(n), and is practically absent for  λ ≈ 1, where y(n) 
≈ v(n). On the other hand, when λ is very close to one, we 
deal with the finite-precision effects presented in Section 2. 
These practical aspects motivate the use of the proposed 
MSRF-QRD-LSL instead of the classical algorithm.  

 
 
 
 
 
 
 
 
 
  
 5. SIMULATION RESULTS 
  
 • Fixed-point and LNS implementations 
 

For the first set of experimental results we consider a 
“system identification” configuration. In this class of 
applications an adaptive filter is used to provide a linear 
model that represents the best fit (in some sense) to an 
unknown system. The adaptive filter and the unknown 
system are driven by the same input. The unknown system 
output supplies the desired response for the adaptive filter. 
These two signals are used to compute the estimation error, 
in order to adjust the filter coefficients. 

 
 
 
 
 
 
 
 
 

In a first experiment, the input signal is a random 
sequence with an uniform distribution on the interval         
(–1;1). The order of the adaptive filter is M = 32 and it is 
equal to the order of the system that has to be identified. 
We compare the original SRF-QRD-LSL algorithm 
presented in Section 2 with the proposed MSRF-QRD-LSL 
algorithm. The parameters of the algorithms were fixed to λ 
= 0.99 and δ = 1. This set of simulations was run on a 
fixed-point DSP, using a word length B = 16 bits. The 
results are presented in Fig. 3. Following the discussions 
from Sections 2 and 3, it can be seen that the precision loss 
(because of the scale factors) disturbs the behavior of the 
SRF-QRD-LSL algorithm (Fig. 3 - upper; the error starts to 
grow after 3000 iterations). In the same context, the 
proposed MSRF-QRD-LSL algorithm achieves good 
performances (Fig. 3 - lower; the algorithm is stable after 
3000 iterations) due to its improved numerical robustness.  

 
 
 
 
 
 
Fig. 3.  Square error [dB], fixed-point B = 16 bits, λ = 0.99, δ=1, 
algorithms: (upper) SRF-QRD-LSL, (lower) MSRF-QRD-LSL. 
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A comparison of the algorithms performance on 32-bit 
floating point, 32-bit LNS, and 20-bit LNS 
implementations is performed in a similar “system 
identification” scheme. The input signal was generated as a 
first-order AR process with a correlation matrix eigenvalue 
spread of 20. The standard deviation of the input was 0.1 
and the standard deviation of measurement noise was 
0.001. The parameters of the algorithms were identical to 
those of the previous example. An accurate standard for 
comparison of the outputs of both algorithms LNS 
implementation was obtained by presenting the input data 
to their double precision versions and compute the absolute 
sum of errors of the 20-bit or 32-bit LNS outputs.  

Fig. 4. (upper) The absolute sum of errors for 32-bit LNS and 
FLOAT implementations of the investigated algorithms;      
(lower) The absolute sum of errors for 20-bit LNS 
implementations of the investigated algorithms. 
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 Fig. 5.  Block Diagram of SC140 Core.  
 

The 32-bit LNS and 32-bit floating-point results were 
virtually identical (see the amplitude of the error in Fig. 4 - 
upper). The absolute sum of errors for the 32-bit LNS 
implementation (solid line in Fig. 4 - upper) is smaller than 
that of the 32-bit floating-point implementation (dotted 
line). This is consistent with other results reported on [13] 
and [14] using a similar class of algorithms. It can be seen 
from Fig. 4 that the LNS implementations of both 
algorithms have only slightly different performances. As 
expected, the absolute sum of errors for the 20-bit LNS 
implementation is much higher than that of the 32-bit LNS 
implementation. However, for some applications that do 
not require much precision, the 20-bit LNS version could 
be an attractive alternative. As expected, the proposed 
algorithm does not offer advantages over the classical one 
when floating-point implementation is used. 

 
• DSP implementation of a network echo canceller  

For the practical implementation of the echo canceller 
we chose a well-known processor, i.e., Motorola SC140 
DSP, with a large number of million instructions per 
second (MIPS) and a parallel architecture that allows 
several instructions to be executed simultaneously. In 
addition, we have structured the algorithm in a way to 
allow a high complexity algorithm to be run in real-time in 
a specific application. The specific features of this 
architecture [17] are the following (see Fig. 5): 
- High level abstraction of the Application Software: 

applications development in C language; hardware 
supported integer and fractional data. 

- Scalable performance: 4 Arithmetic logic Units 
(ALUs) and 2 Address Arithmetic Units (AAUs); 4 
million multiply and accumulate operations per second 
(MMACS) for each megahertz of clock frequency. 

 
The core important features are: 
- Up to 10 RISC MIPS for each megahertz of clock 

frequency; 
- A true (16*16) + 40  40-bit MAC unit in each ALU; 
- A true 40-bit parallel barrel shifter in each ALU; 
- 16 x 40-bit data registers for fractional and integer data 

operand storage; 
- 16 x 32-bit address registers (8 can be used as 32-bit 

base address registers); 
- 4 address offset registers and 4 modulo address 

registers; 
- Unified data and program memory space (Harvard 

architecture); 
- Byte addressable data memory. 
 

However, the main feature that we have already 
mentioned is the C compiler and the ability to convert C 
source code into assembly code. The complexity of the 
MSRF QRD-LSL algorithm is quite large and therefore the 
need for flexibility is important, since programming in C 
code is much easier than implementing the algorithm direct 
in assembly code. The C compiler supports ANSI C 
standard and also intrinsic functions for ITU/ETSI 
primitives. Assembly code integration is also possible, 
which optimizes supplementary the code. 

One of our main goals is to minimize the number of 
cycles needed by the algorithm per iteration, in order to 
lower the computational time per iteration under the 
sampling time of the CODEC. If we take advantage of the 
fact that the structure of the algorithm is symmetrical (i.e., 
similarities between the forward prediction structure and 
the backward prediction structure) then we can use two 
identical blocks for each lattice cell; thus, we can call twice 
a function in C language during one iteration. The filtering 
part is included in backward prediction part and is 
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performed if a flag is set. This flag is set before the 
backward prediction and reset before the forward 
prediction. Another optimization technique accomplished 
using this procedure is that all the transformations are made 
in-place, regardless of the iteration (i.e., the moment of 
time), saving a large amount of memory. Choosing an 
appropriate level of optimization from the C compiler, i.e., 
Code Warrior (0 – 3), makes further optimization. As well, 
the proper use of intrinsic functions from C compiler can 
further reduce the number of cycles. 

The standard ITU-T G.168 [11] recommends certain 
test procedures for evaluating the performance of echo 
cancellers. Test signals used are so-called composite source 
signals (CSS) that have properties similar to those of 
speech with both voiced and unvoiced sequence as well as 
pauses. Moreover, we choose a long network echo path 
(i.e., 64 ms) according to the same above recommendation. 
The impulse response and the corresponding magnitude 
function of the hybrid are shown in Fig. 6. The echo return 
loss (ERL) of this echo path is about 10 dB and it is 
considered typical. 

The first experiment refers to the convergence rate and 
echo return loss enhancement. In Figs. 7 and 8, we present 
the convergence results obtained by the NLMS (using a 
normalized step-size 1μ = ) and the MSRF-QRD-LSL 
(with 0.9999λ = ) algorithms. For ITU recommendation 
G.168 testing purposes, the method defined for measuring 
the level of the signals is a root mean square (RMS) 
method, using a 35 ms rectangular sliding window. The 
measurement device comprises a squaring circuit and an 
exponential filter (35 ms, 1-pole). The following 
conclusions are obvious: 
- the convergence speed and ERLE are clearly superior 

in the case of the MSRF-QRD-LSL algorithm; 
- test 1 (steady-state and residual echo level test) is by 

far fulfilled in the case of the MSRF-QRD-LSL 
algorithm; 

- the requirements of the recommendation test 2B 
(convergence speed) are accomplished in the case of 
the MSRF-QRD-LSL algorithm for time far less than 
one second. 
The second experiment was performed using speech as 

excitation signals in order to simulate a real-world 
conversation. It evaluates the performances of the echo 
canceller for a high level double-talk sequence (similar to 
test 3B). The double-talk level in this case is about the 
same as that of the far-end signal. The results are presented 
in Figs. 9 and 10. In the case of SRF QRD-LSL algorithm 
one can see that the near-end signal u(n) is recovered in 
e(n) with slight distortions. The NLMS based echo 
canceller (using Geigel DTD [18]) fails in this situation 
because double-talk appears during initial convergence 
phase so that the adaptive process is prematurely inhibited. 
Let us remind that we do not use any DTD in our echo 
canceller based on the MSRF-QRD-LSL algorithm. 
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Fig. 6.  Network echo path characteristics: (a) impulse response; 
(b) frequency response. 
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Fig. 7.  Power levels [dBm0] for the far-end signal x(n) (CSS), the 
echo signal v(n), and the error signal e(n), in the case of the  
NLMS algorithm. 
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Fig. 8.  Power levels [dBm0] for the far-end signal x(n) (CSS), the 
echo signal v(n), and the error signal e(n), in the case of the  
MSRF-QRD-LSL algorithm. 
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Fig. 9.  Performances of the NLMS algorithm for speech signals, 
during double-talk: (a) far-end signal x(n); (b) near-end signal 
u(n); (c) recovered near-end signal in e(n); (d) residual error r(n). 
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  Fig. 10.  Performances of the MSRF-QRD-LSL algorithm for 
speech signals, during double-talk: (a) far-end signal x(n); (b) 
near-end signal u(n); (c) recovered near-end signal in e(n); (d) 
residual error r(n). 

 
Also, in our experiments, we have not used any non-

linear processor (NLP) [11]. A NLP placed in the send path 
of the echo canceller will produce an additional attenuation 
of the residual echo level during the silent periods of the 
near-end talker, improving the overall performances. 

Other experiments (which are not shown here) were 
performed using more “difficult” echo paths (ERL up to 
6dB). It should be noted that 6 dB is a typical worst case 
value encountered for most networks, and most current 
networks have typical ERL values better than this. 
Nevertheless, it was obvious the superior convergence rate 
and double-talk robustness of the echo canceller based on 
the MSRF-QRD-LSL adaptive algorithm. 

 

 
6. CONCLUSIONS 

 
The SRF-QRD-LSL algorithm is an attractive choice in 
many adaptive systems, due to its fast convergence rate and 
good numerical properties. Nevertheless, it faces some 
limitations in fixed-point implementations, where the 
scaling operations required by the large values of the cost 
functions affect its performances. 

In this paper, we have proposed a modified version of 
the SRF-QRD-LSL algorithm, based on a modified update 
of the cost functions. In our approach, these parameters are 
computed in a reverse manner, preventing the use of the 
scaling procedures. The modified cost functions decrease to 
a lower bound, so that the maximum value is the initial one. 
In this case, milder scaling conditions have to be imposed 
s compared to the case of the original algorithm. Using a 

proper initialization, the proposed algorithm does not need 
for scaling operations any more. Consequently, its 
numerical robustness is significantly improved. 

seconds 
a

The simulations performed in a fixed-point DSP 
context support the theoretical findings. Moreover, the 
proposed algorithm proved to have efficient LNS 
implementation as well, due to the important number of 
multiplications and divisions. 

The proposed MSRF-QRD-LSL algorithm was tested 
in the context of network echo cancellation. The 
experimental results showed that the requirements of the 
ITU-T G.168 recommendation concerning the steady-state 
echo return loss enhancement and convergence speed are 
fulfilled. The most relevant result is that the MSRF-QRD-
LSL algorithm could satisfactorily operate even in the 
absence of the DTD, which is a very important issue in 
echo cancellation.  
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