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Abstract

The design of assurance cases is hampered by the posit-
and-prove approach to software and systems engineering; it
has been observed that, traditionally, a product is produced
and then evidence from the development is looked for to
build an assurance case. Although post-hoc assured devel-
opment is possible, it often results in errors being uncovered
late—leading to costly redevelopment—or to systems being
over-engineered—which also escalates cost. As a conse-
quence, there has been a recent move towards the proactive
design of the assurance case. Assurance-driven design sees
assurance as a driving force in design. Assurance-driven
design is suggestive of how the design process should be
shaped for assurance. It is not, however, a prescriptive
method; rather it allows an organisation to assess their as-
surance needs according to their developmental needs, in-
cluding their attitude to risk, and to adapt their processes
accordingly.

We have situated the work within Problem Oriented En-
gineering, a design framework inspired by Gentzen-style
systems, with its root in requirement and software engineer-
ing. In the paper we present the main elements of the ap-
proach and report on its application in real-world projects.

Keywords: Dependability, Software Engineering, As-
surance Case, Problem Oriented Engineering, Engi-
neering Design

1 Introduction

By engineering design (shortly, design), we refer to the
creative, iterative and often open-ended endevour of con-
ceiving and developing products, systems and processes
(adapted from [2]).

Engineering design by necessity includes the identifi-
cation and clarification of requirements, the understanding

*An expanded version of [1]

and structuring of the context into which the engineered sys-
tem will be deployed, the detailing of a design for a solution
that can ensure satisfaction of the requirements in context,
and the construction of arguments to assure the validating
stake-holders that the solution will provide the functional-
ity and qualities that are needed. The last of these is the
concern of this paper.

Typically, for software at least, even though evidence is
gathered during development the collation, documentation
and quality injection of the assurance argument follows con-
struction; perhaps this is because software development is
currently sufficiently difficult without having to serve the
needs of two masters: code and assurance. If software and
assurance argument could be developed together, then de-
velopmental risk could be managed better—development er-
rors that weaken an assurance argument could be found ear-
lier in the process—as could developmental cost—by re-
moving the compensating tendency to over-engineer.

Assurance-driven design (ADD), introduced in [1], does
not make development any simpler; rather, it makes the
building of an assurance argument a driver for development.
Accepting this, however, ADD can guide the developer: by
providing a more specific focus on those parts of a system
that require assurance; by providing early feedback on de-
sign decisions; by capturing coverage of the design space;
and, last but not least, by delivering an assurance argument
alongside the product.

Our work on assurance-driven design is situated within
Problem Oriented Engineering (POE), our framework for
engineering design (instantiated for software in [3, 4]). The
techniques we propose have no particular dependence on a
software development context; indeed, our main example
combines software and educational materials design and it
is the assurance of their combined qualities that will drive
our development.

The paper is structured as follows. Section 2 provides
the briefest introduction to POE. In Section 3 we develop
assurance-driven design, and in Section 4 illustrate its use
through its application to a real-world problem. Section 5
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relates our work to that of others, and Section 6 reflects on
what has been achieved and concludes the paper.

2 Problem Oriented Engineering

Problem Oriented Engineering is a framework for engi-
neering design, similar in intent to Gentzen’s Natural De-
duction [5], presented as a sequent calculus. As such, POE
supports rather than guides its user as to the particular se-
quence of design steps that will be used; the user choosing
the sequence of steps that they deem most appropriate to the
context of application. The basis of POE is the problem for
representing design problems requiring designed solutions.
Problem transformations transform problems into others in
ways that preserve solutions (in a sense that will become
clear). When we have managed to transform a problem to
axioms' we have solved the problem, and we will have a
designed solution for our efforts. A comprehensive presen-
tation of POE is beyond he scope of this paper and can be
found in [3, 4].

2.1 Problem

A problem has three descriptive elements: that of an ex-
isting real-world problem context, W; that of a requirement,
R; and that of a solution, S. We write the problem with ele-
ments W, S and R as W, S - R. What is known of a problem
element is captured in its description; descriptions can be
written in any appropriate language: examples include nat-
ural language, Alloy ([6]), and machine language. Solving
a problem is finding S that satisfies R in the context of W.

Figure 1 gives an example of engineering design prob-
lem (shortly problem), described in a Problem-Frame-like
notation ([7]). The problem (from a real world case study
[8, 9]) is that of defining a controller to release decoy flare
from a military aircraft: essentially decoy flares provide de-
fence against incoming missile attack. The context includes
a Pilot, a Defence system and some other existing hardware,
represented in the figure as named undecorated rectangles.
The solution to be designed is Decoy Controller, represented
as a named decorated rectangle. The arc annotations are
shared phenomena: for instance, the Pilot can send an ok
command to the Decoy Controller. The solution needs to
satisfy the Safe decoy control requirement, represented as a
named dotted ellipse, for the safe release of decoys. For-
mally, in POE, this problem is represented as:

Defence System®", Dispenser Unitg: .,
Aircraft Status System?",

| ~$+0K fire,sel fire,sel
Pilot™, Decoy Controller,; "' i ok ™ SPCoon out air.ok

but we use both notations interchangeably.

YAn axiomatic problem is a problem whose adequate, i.e., fit-for-
purpose, solution is already known.
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Figure 1. The Decoy Controller Problem

2.2 Problem transformations and justification
obligations

Problem transformations capture discrete steps in the
problem solving process. Many classes of transformation
are recognised in POE, reflecting a variety of engineering
practices reported in the literature or observed elsewhere.
Problem transformations relate a problem and a justifica-
tion to (a set of) problems. Problem transformations con-
form to the following general pattern (whose notation is
based on that of [5]). Suppose we have conclusion problem
P : W,S F R, premise problems P; : W;,S; - R;,i=1,...,n,

(n > 0) and justification J, then we will write:
P1 :W1,S1 |—R1 Pn:Wn,Snl—Rn [NAME]

P:W,SHR @

to mean that, derived from an application of the NAME
problem transformation schema (discussed below):

S is a solution of W, S + R with adequacy argu-
ment (AA1 A ... A AAq) A J whenever Sy, ..., Sy are
solutions of W¢,S1 F Ry,..., Wn,Sn F Rn, with
adequacy arguments AAq, ..., AAn, respectively.

Engineering design under POE proceeds in a step-wise
manner with the application of problem transformation
schemata, examples of which appear below: the initial
problem forms the root of a development tree with trans-
formations applied to extend the tree upwards towards its
leaves. A problem is solved for a stake-holder S if the
development tree is complete, and the adequacy argument
constructed for that tree convinces S that the solution is ad-
equate. For technical reasons”, we write

P

to indicate that problem P = W, S R is solved. As P will
be fully detailed in determining the solution — to the satis-
faction of stake-holders — the indication that P is solved is
without justification. For the technical details, see [4].

A partial development tree is shown in Figure 2.

2Simply, that we may indicate an axiom in a Gentzen system thus.



P3 ZW3, S3 = R3 P4 ZW4,S4 = R4 [Na]
J
Pg :Wg, Sg I Rz [N (=)
P1 ZW1,82 I R1 ()

Figure 2. A POE partial development tree

The figure contains four nodes, one for each of the prob-
lems Py, P2, P3 and P4. The problem transformation that
gave the problem solver Py is justified by J;, whereas the
branching to problems P, and Pj is justified by J,. From
the tree, we see that P3 is solved. P4 remains unsolved, so
that the adequacy argument for the tree is incomplete; from
the definition above, the incomplete adequacy argument is:

Jo A Jy

2.2.1 ‘“Have we done enough?”

At any point in a development we can ask if we have
done enough, i.e., if we were to declare our development
complete would we be able to satisfy the validating stake-
holders? This question is most obviously asked of the com-
plete development, in which case an affirmative answer con-
vinces all stake-holders that we have an adequate solution
to the whole problem.

As previously mentioned, a completed development in
POE is represented as a complete development tree, i.e., a
tree in which no problems exist to be solved. The develop-
ment is successful if the adequacy argument, AA, satisfies
the stake-holders of the adequacy of the solution. For any
stake-holder S, then, we have done enough if

AA convinces S.

Consider again the form of the adequacy argument given
a partial tree, such as that in Figure 2. Suppose that S is
a stake-holder for problem P¢. Should Py be solvable, we
would wish to find justification J; and solved problem Ps,
say, such that

J3z A Jo A Jq convinces S and Ps [Ns]

P, (49

If we were free to choose Ps without any reference to the
requirements of the argument that establishes it as fit-for-
purpose (that formed when Js is added to the adequacy ar-
gument) it would be unlikely to result in something that
could be justified. Of the techniques mentioned in the intro-
duction to this paper, the ‘posit’ of ‘posit and prove’ is mov-
ing towards this ‘free’ choice; moreover, over-engineering
a solution simply allows the engineer a freer choice.
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As we begin to balance the choice of Ps and J3, we move
towards the position of assurance-driven design, in which
the requirements for justification motivate the design. The
techniques we introduce in this paper allow us to structure
the development so that this balance can occur. Primary
amongst them is the construction of projections from the
overall development tree into, what might be called, ‘stake-
holder spaces’ in which validation takes place.

2.2.2 A formal
justification

backwater: the weakest pre-

Although it is — currently — only of theoretical interest,
by inspection, there is a best such justification that, given
an incomplete development tree, completes the adequacy
argument so as to just satisfy the stake-holder, S. By anal-
ogy to other formal systems, we term this the weakest pre-
Justification, Jygj, such that, if IAA is the current (incom-
plete) adequacy argument for that tree, then for any K

(K A'1AA convinces S) = (K = Jyp)

3 Assurance-driven design

A metaphor for engineering design under POE is that one
grows a forest of trees. Each tree in the forest grows from
a root problem through problem transformations that gener-
ate problems like branches; with happy resonance, the tree’s
stake-holders guide the growth of the tree. Some trees,
those that have root problems that are validatably solvable
for its stake-holders will grow until they end with solved
problem leaves.

There are many reasons why the forest has many trees:
described elsewhere [10], but only of note in this paper, is
the preservation of a record of unsuccessful design steps,
i.e., design steps that are not validatable for the current
stake-holders, which cause a development to backtrack to
a point where a different approach can be taken. The back-
tracked sub-trees are kept as record of unsuccessful devel-
opment strategies®.

For this paper, we note simply that development trees
grow through the developer’s careful choice of effective de-
sign steps. To produce an effective design step, the devel-
oper must consider both the problem(s) that the step will
produce towards solution and what is the justification obli-
gation that will satisfy the validating stake-holders. With
the discharged justification obligations forming the basis of
the adequacy argument, the result of a sequence of effec-
tive design steps is a solution fogether with its assurance

3Backtracked trees are not ‘deadwood’; rather they stand as proof of
design space exploration, with their structure being reusable for, for in-
stance, other stake-holders’ problems. Unsolved problems that remain in
backtracked trees do not affect the completed status of a development.
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argument*. We have observed the interplay of design steps
and their justification under POE (for instance, [11]), and
have developed a simple, composable process pattern—the
POE Process Pattern—that guides their effective interleav-
ing. The structuring of the problem solving activity through
the POE process pattern is the basis of assurance-driven de-
sign.

We note that a problem transformation schema is applied
to a conclusion problem, and that the development tree is
extended up by the application. There is no necessity for
any premise problem to be determined before the justifica-
tion is added. Indeed, one could see the problem solver say-
ing “It is fashionable to have a fan oven in stainless steel”,
and then searching for an oven that fits the bill®.

It is determining the needs for the justification, rather
than for the premise problem(s), that motivates us to in-
troduce assurance-driven design: assurance-driven design
determines the justification first, and then looks for the cor-
responding premise problem.

3.1 The POE process pattern

Problem Validator Problem Finder

Previous problem
a

Most recent
roblem

Problem Problem

2

validation exploration validation
1 invalid
5
B
3
N
§
2
S
Solution P,
exploration validation
invalid

valid

Solution Finder Solution Validator

Figure 3. The POE Process Pattern for assurance-driven de-
sign

The POE process pattern shown in Figure 3 is described
in a variant of the UML activity diagram notation [12]: rect-
angles are resource consuming activities; diamonds indicate

“If there are no validating stake-holders for a development, the justifi-
cation obligations can be ignored.

50Of course, we could have written such a statement as part of the re-
quirement, but that would have been the stake-holder’s statement, not the
problem solver’s.
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choice points; the flow of information is indicated by ar-
rows; the scope of the various roles is indicated by shading,
overlapping shading indicating potential need for communi-
cation between roles. Referring to the numbers in the figure:
first explore the problem better to understand it (/), check-
ing that understanding through problem validation (2), it-
erating problem exploration as necessary; then explore the
solution better to understand its design (3), checking that
understanding through solution validation (4), iterating so-
lution exploration as necessary.

The role of a problem finder during problem exploration
is to explore their understanding of the problem (or part
thereof), perhaps with the help of others. The goal of prob-
lem exploration is to produce descriptions of the problem
that will satisfy the problem-validators(s) at problem vali-
dation. Similarly, the role of solution finder during solution
exploration is to explore their understanding the solution (or
part thereof) to the problem, again perhaps with the help of
others. The goal of solution exploration is to produce de-
scriptions of the solution that will satisfy the solution val-
idator(s) at solution validation.

The role of a problem validator is to validate a candidate
problem description. There are many familiar examples of
problem validator. These include, but are not limited to:

e the customer or client — those that pay for a product
or service;

o the regulator — those whose remit is the certification
of safety of a safety of a safety-critical product, for
instance;

e the business analyst — whose role is to determine
whether the problem lies within the development or-
ganisation’s business expertise envelope;

e the end-user — those who will use the product or ser-
vice when commissioned.

It is a problem validator’s role to answer the question “Is
this (partial) problem description valid?” Depending on a
problem validator’s answer, the Problem Finder will need
to re-explore the problem (when the answer is "No!”), or
task the Solution Finder to find a (partial) solution (when
the answer is “Yes!”).

The role of the solution validator(s) is to validate a (can-
didate or partial) solution description, such as a candidate
architecture (a partial solution) or choice of component
(something of complete functionality). Although present
in every commercial development, the roles of solution val-
idator may be less familiar to the reader. They include, but
are not limited to:

e a technical analyst — whose role is to determine
whether a proffered solution is within the development
organisation’s technology expertise envelope;
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e an oracle — who determines, for instance, which of
a number of features should be included in the next
release;

e a unit, module, or system tester; a project manager—
who needs to timebox particular activities.

It is the solution validator’s role to answer the question “Is
this (candidate or partial) solution description valid?” De-
pending on their response, the problem solver may need to
re-explore the solution (when the answer is “No!”), move
back to exploring this or a previous problem (when the an-
swer is “No, but it throws new light on the problem!”), or
moving on to the next problem stage (when the answer is
“Yes!”).

The potential for looping in the POE process pattern con-
cerns unsuccessful attempts to validate, and is indicated by
arrows labelled invalid in the figure. Those leading back to
exploration activities, of which there are two, continue their
respective exploration activities in the obvious way. The
other two invalid arrows lead from a failed solution valida-
tion to restart a problem exploration when the indication is
that it was wrong. Examples of this latter form of failure are
well known in the literature. For instance, Don Firesmith, in
an upcoming book [13], talks about the need for architecture
re-engineering in the light of inadequately specified quality
requirements [part of an earlier problem exploration]:

[...] it is often not until late in the project that the
stakeholders recognize that the achieved levels of
quality are inadequate. By then [...] the architec-
ture has been essentially completed [solution ex-
ploration], and the system design and implemen-
tation has been based on the inadequate architec-
ture.

In this way, recognising late that inadequately specified
quality requirements (as discovered through problem explo-
ration and validated at problem validation) have not been
met can be very difficult and expensive to fix; leading to
revisiting a long past problem, that of re-establishing the
architecturally significant quality requirements®.

Although we do not consider developmental risk explic-
itly in this paper, we note that feedback within the pro-
cess has an impact on resources: an unsuccessful validation
indicates that some previous exploration was invalid, to a
greater or lesser extent. Moreover, some proportion of the
development resource that will have expended during and
subsequent to that exploration — the impact of the failed
validation — will have been lost’.

SFiresmith cites Boeing’s selection of the Pratt and Whitneys PW2037
Engine for the Boeing 757 [14] as an instance of this problem.

"Work on risk management in POE is in preparation at the time of writ-
ing.
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After successful problem validation, handover between
the problem and solution finders occurs. In problem and
solution finder are the same person, this raises no issues.
Otherwise, it is possible to consider the solution finder as
a problem validator, so that they receive a description of
the problem that they have validated as the basis of their
solution exploration. Symmetry dictates that the problem
finder should have a role in solution finding too.

3.1.1 Building potent design processes

Although the POE process pattern provides a structure for
problem solving, in its raw form, a problem will only be
solved (i.e., the end state in Figure 3 is reached) when, after
iteration, a validated problem is provided with a validated
solution. This ‘bang-bang’ approach is suitable for simple
problems, but is unlikely to form the basis of any realisti-
cally complex problem encountered in software engineer-
ing.

To add the necessary complexity, the POE process pat-
tern combines with itself in three basic ways; in combina-
tion, it is again a process that can be combined. The three
ways it can be combined are in sequence, in parallel and
in a fractal-like manner, as suggested in Figure 4, and as
described in the sequel.

o

Figure 4. (a) Sequential, (b) Parallel and (c) Fractal-like
combination

Sequential Design By identifying the end of one com-
plete problem solving cycle with the start of another (see
Figure 4(a)), we move a partially solved problem to the next
phase: using the validated solution to explore the problem
further. In [4], we show how a partial solution in the form
of an architecture can lead to more detailed problem ex-
ploration: in that paper, we use the Model-View-Controller
architecture to structure the solution of a problem, simplify-
ing the problem to one of defining first the Model, then the
View and finally the Controller.

In sequence, the POE process pattern models (more or
less traditional) design processes in which architectures are
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used as structure in the solution space according to architec-
turally significant requirement and qualities, and according
to developmental requirements.

Parallel Design By identifying many instances of the
POE process pattern through the start state, many problem
solvers can solve problems in parallel. Architectures that
admit such concurrent problem solving, and that might be
discovered in a sequential prelude to such a process, are
evident in many areas. One of timely relevance, given their
current popularity, is open source projects, such as the GNU
Classpath project whose goal is to provide

‘a 100% free, clean room implementation of the
standard class libraries for compilers and run-
time environments for the java programming lan-
guage.’

Concurrent development may place demands on the re-
sources shared throughout the concurrent design. For in-
stance, during problem and solution validation should ac-
cess to the various stake-holders be co-ordinated, or should
individual problem and solution finders be allowed access
to them as and when necessary?

Communications between those involved in parallel de-
velopment is an issue on the GNU Classpath project, and
it is not surprising that explicit guidance exists to i) par-
tition work through a task list and a mailing list, ii) con-
tact the central maintainer of the project when the devel-
oper wishes to make certain non-trivial additions to the
project, iii) global announcements whenever important bugs
are fixed or when ‘nice new functionality’ is introduced.

Fractal-like Design Fractal structures are self-similar in
the sense that the whole structure resembles the parts it is
made of [15]. Another way to look at it is that the whole
is generated from simple building blocks, with complexity
emerging through recursion of the simple generators. By
analogy, problem solving under the POE process pattern is
structurally simple and admits recursive application in that
problem solving activity can occur in the Problem Explo-
ration and Solution Exploration parts of the POE process
pattern. In the next section, we show how this leads to our
notion of assurance-driven design.

3.1.2 The ‘fractal’ nature of validation

Given that problem and solution exploration can both be
instances of the POE process pattern, let us consider the
problems and solutions they work with.

As Problem Exploration leads to Problem Validation,
it is ‘complete’ when we have delivered a problem de-
scription that satisfies the problem validator. That is,
Problem Exploration is complete when we have found a
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Figure 5. (a) Problem exploration as a problem validation
problem, and (b) Solution exploration as a solution valida-
tion problem.

Problem Description that solves the following problem vali-
dation problem, illustrated in Figure 5(a):

Problem Validation Context, Problem Validator,
Problem Description - Problem Validation Requirements

The Problem Validation Context (PVC) is a description of
the context in which the validation of the problem will be
undertaken, and will need to be found as part of the fractal
problem exploration phase of the outer problem exploration,
as will the Problem Validation Requirements (PVR), i.e., the
requirements that will need to be met for the problem to be
validated. Note that the Problem Validator (PV) is an explicit
domain in the context.

Symmetrically, solution exploration can be seen as com-
plete when we have found a Solution Description that, when
considered in the Solution Validation Context (SVC), sat-
isfies the Solution Validation Requirements (SVR) of the
Solution Validator (SV). As a POE problem, this is the solu-
tion validation problem, illustrated in Figure 5(b):

Solution Validation Context, Solution Validator,
Solution Description + Solution Validation Requirements

Although the fractal-like nature makes an easy clarity
somewhat difficult, the view we have just presented fits well
with practice. Indeed, discussions that lead to an agreed
(i.e., validated) collection of use-cases [16] can be seen as a
technique for producing a problem description that satisfies
the problem validation problem. Moreover, discussions that
lead to an agreed collection of acceptance tests can be seen
as a solution description that satisfies the solution validation
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problem. Requirements engineering, consisting of elicita-
tion, analysis, specification can be seen as a technique for
partial problem exploration; pattern oriented analysis and
design is a technique for partial solution exploration.

In terms of Section 2.2, each validation is a projection
of a whole development tree’s adequacy argument into the
stake-holder space determined by the validation context and
validation requirements and, for a properly engineered so-
lution, considering each of the adequacy problems is impor-
tant.

4 Assurance-driven design in practice

The companion paper, [1], presented the assurance-driven
design of a safety-critical subsystem of an aircraft. In this
paper, we present a very different problem, that of the
assurance-driven design of a research programme for The
Open University. Whereas the aircraft example involved
just a single stake-holder — the regulator for the system
— this paper’s example involved over 50 stake-holders as
problem and solution validators. The project manager for
the programme is the second author. For more informa-
tion about that project, and a discussion of how POE was
adopted in practice, please refer to [17, 18].

4.1 Notation

Because of the needs of the problem, we have augmented
the traditional Gentzen-style notation to support better the
separation of the problem and solution explorations, and to
link validation problems to the justification of which they
form a part. Figure 6 illustrates the differences. In the
figure, we see the traditional transformations involving the
problems labelled ‘design problem’ that will be familiar
from Section 2.2. The triangular structures that extend the
horizontal bar indicates the collection of validation prob-
lems associated with the step: by convention, when written
on the right they are problem validation problem, when on
the left they are solution validation problem?®.

4.2 Example

The Computing Department at The Open University is
in the process of developing a new part-time MPhil pro-
gramme to be delivered at a distance, supported by a blend
of synchronous and asynchronous internet and web tech-
nologies — the eMPhil. The eMPhil is innovative in many
ways in its adoption and use of emergent technology, like
Second Life and Moodle, to support the core processes of
the programme (the interested reader is directed to [19] for
details).

8Because of the separation of problem and solution validations, never
will problem and solution validations need to appear in the same step.
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The eMPhil project team was faced with a complex
socio-technical problem, that of the adoption and develop-
ment of appropriate software systems and the definition of
new processes and practices, of the design and delivery of
induction and training activities for staff and students, and
the institution of a framework for quality assurance, mon-
itoring and continuous process improvement. The project
also found itself with many stake-holder groups, those who
would play problem validators, such as the Head of the
Department of Computing, and solution validators, includ-
ing Head of the Research Degrees Committee and Pro-Vice
Chancellor for Research and Enterprise. The difficulties of
managing the design and validation of the programme par-
tially motivated the development of and application of the
techniques described in this paper.

4.2.1 The problem

The eMPhil was required to meet a number of objectives:

e for the Head of the Department of Computing: to en-
hance and develop the department’s provision to its
graduate community; to increase the overall amount
of research supervision that takes place within the de-
partment;

o for at-a-distance students: to make available technol-
ogy for their support; to provide as a forum for that
student community; to allow those unable to commit
time for a PhD a research degree to study for;

e for academics wishing to promote research in their
area: to create cohorts of research students on specific
research themes and projects;

o for the Head of the Research Degrees Committee and
Pro-Vice Chancellor Research and Enterprise: to sup-
port the development of research skills; to comply with
university policy on research student induction and
training; to comply with national standards [20].

The eMPhil core project team — the problem and solu-
tion finders — was composed of four academics, with the
second author as project leader. The POE process pattern
was used as described below to shape the project, with the
techniques described earlier in the paper used to drive and
manage its development and risks, as well as to identify the
eMPhil project’s needs for resource and communication.

4.2.2 The process

Figure 6 illustrates the early design steps taken by the de-
velopment team towards a solution to the problem. The first
transformation (bottom of the figure) achieves a first char-
acterization of the problem context and requirement (from
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validation problems
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Figure 6. Early design steps

an empty conclusion problem—the start of all POE De-
sign explorations), with a problem validator identified as the
Head of the Computing Department (HoD). The HoD set the
strategic goals which constituted the initial requirement de-
scription, and led to the inclusion of Computing academic
staff and research students as a first approximation for the
problem context. This initial problem exploration was cou-
pled with the solution of the associated validation problem,
consisting in making sure that the HoD’s strategic intent was
understood correctly by the problem solver.

The next transformation (top of Figure 6) captures an
early solution exploration activity, in which a candidate so-
lution architecture is starting to emerge, that of a new re-
search degree, an MPhil, to be delivered in part-time mode
at a distance. Note the validation problems to the left. The
initial buy-in for the new degree was sought from the HoD,
as the person in charge of releasing resources for the project,
and with whom the rationale for the proposed solution was
discussed. Approval from the HoD then triggered a compre-
hensive approval process throughout the organisation, re-
flecting its power structure (each validation problem con-
cerns stake-holders at different management levels). Down-
side risks at these point were very high, with assurance tak-
ing precedence and greatly influencing the design.

Subsequent design alternated between further problem
and solution explorations, and related validation, as illus-
trated in Figure 8, which provides a snapshot of the design
tree after the first 10 months’ development from the devel-
oper team perspective, assuming both problem and solution
finder roles. Transformations labelled A and B at the bottom
of the figure correspond to the early steps we have just de-

scribed. From the initial solution architecture, a number of
sub-problems were then identified (transformation C) each
addressing complementary aspects of the solution, such as
the design of its technological infrastructure, a related cost
model, a programme of user induction and training, a sys-
tem of monitoring and evaluation, etc. Each sub-problem
was then taken forward through further transformations and
related stake-holder validation, with the design problems
at the top representing either solved sub-problems or open
problems in the process of being addressed.

Note that some of the steps introduce sub-problems,
which lead to branches in the design tree. This happens
when a number of solution components have been identi-
fied, each to be designed, together with their architectural
relations and mutual constraints. The POE transformation
which generates them, called solution expansion, generates
appropriate sub-problems for each to-be-designed compo-
nent, based on such architectural knowledge. Each sub-
problem then becomes the root of a (sub-) design tree.

4.2.3 Fractal Problem Validation

As introduced in Section 3, validation problems are prob-
lems too, and so their solution can be arrived at through a
problem solving process, and hence (should they have so-
lution) solvable in our POE framework, i.e., they should be
treated as any other problem, with problem finder explor-
ing the problem, obtaining problem validation, and so on.
In the augmented notation, the obvious place for the vali-
dation problem development is in the extension to the hor-
izontal bar; see Figure 7. However, such diagrams quickly
become unwieldy, and a more pragmatic approach was nec-

126



essary in which the validation problem development was
placed in a separate file, with indicators (again, Figure 7,
on the left) for the state of each validation problem and hy-
perlinks used for easy access to the embedded validation
problem development. It became apparent that the indica-
tors formed a useful proxy for developmental risk associ-
ated with an unsolved validation problem, that risk being as-
sociated with the progress made in the solution of the main
problem as opposed to the validation problem. We used a
simple semaphore system for the risk indicators. Given the
lack of tool support, this was deemed a simple, but useful
tool from a project management perspective; of course, a
more accurate estimation of risk would have required more
sophisticated tools. Figure 7 gives an intuition of the mean-
ing of the risk indicator: to the right is the equivalent fully
expanded validation problem.

4.3 Early evaluation

The experience on the project so far has been very en-
couraging, and has clearly indicated that the conceptual
tools offered by POE, including assurance-driven design
were able to cater for all relevant aspects of the project.
Design forests provide a powerful summary of the devel-
opment, with all critical decision points clearly exposed,
and all sub-problems (solved and unresolved) and their re-
lation clearly identified. The risk indicators, despite their
lack of sophistication, were considered very useful in sign-
posting critical parts of the development. The notation was
also considered an effective communication tool: its rel-
ative simplicity and abstraction allowed even non techni-
cal stake-holders, like senior managers in academic and
academic-related units, to grasp the essence of the project
with very little explanation required. The inclusion of val-
idation problems within the development tree, with the ex-
plicit acknowledgement of all relevant stake-holders, was
also considered a valuable tool to gauge the criticality of
each design step, as well as to focus attention on the aspects
of the problem of significance to each stake-holder. For in-
stance, the high criticality of initial approval process is ev-
idenced by the large set of validation problems in the early
stages of development, in which the validation effort largely
outweighed the effort to produce an initial outline for the so-
lution, but greatly reduced the risk of the programme not to
be deemed viable by management later on.

5 Related Work

Work on assurance cases is found in the area of de-
pendability, from which two main structured notations for
expressing safety cases have emerged. One is the goal-
structuring notation (GSN) [21], a graphical argumentation
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notation which allows the representation of individual ele-
ments of a safety argument and their relations. Elements
include: goals (used to represent requirements and claims
about the system), context (used to represent the rationale
for the approach and the context in which goals are stated),
solutions (used to give evidence of goal satisfaction) and
strategies (the approach used to identify sub-goals). The
other, is Adelard’s Claim-Argument-Evidence (ASCAD)
approach [22], which is based on Toulmins work on argu-
mentation and includes: claims (same as Toulmin’s claims),
evidence (same as Toulmin’s grounds) and argument (com-
bination of Toulmin’s warrant and backing). More recently,
Habli and Kelly [23] have also suggested ways in which
product and process evidence could be combined in GSN
assurance cases. One of the difficulties of these approaches
is that they were not conceived to provide an integrated ap-
proach to safety development and, by and large, use arti-
facts and processes which may parallel but not integrate
with software development. Instead, a main aim of our
work is to allow for the efficient co-design of both software
and assurance case based on artefacts and processes which
are common to both. Some very recent work by Strunk
and Knight [24] proposes Assurance Based Development
(ABD) in which a safety-critical system and its assurance
case are developed in parallel through the combined used of
Problem Frames [7] and GSN. Although this work shares
some of our goals, it is still rather preliminary for a mean-
ingful comparison with POE.

A more mature process model, which shares something
with POE, is the CHOAS model and lifecycle of Raccoon
[25]. In this model fractal invocations of problem solving
processes are combined to provide a rich model of software
development, which is then used as the basis for a critical
review of software engineering, of its processes and its prac-
tices. Raccoon’s review leads to the conclusion that neither
separately nor together do top-down or bottom-up develop-
ments tell the whole story; hence, a ‘middle out theory’ is
proposed, based on the work that developers do to link high
level project issues to, essentially, code structures. It is an
attractive theory, and we wish to explore the ways in which
fractal invocation in POE and assurance-driven design sat-
isfy the criteria laid down for it.

6 Discussion and conclusion

The POE notion of problem suggests a separation of con-
text, requirement and solution, with explicit descriptions of
what is given, what is required and what is designed. This
improves the traceability of artefacts and their relation, as
well as exposing the assumptions upon which they are based
to scrutiny and validation. That all descriptions are gener-
ated through problem transformation forces the inclusion of
an explicit justification that such assumptions are realistic
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and reasonable. In particular, requirements are justified as
valid, are fully traceable with respect to the designed sys-
tem (and vice versa), and evidence of their satisfaction is
provided by the adequacy argument of a completed POE
development tree.

We have shown (a) how (partial) problem and solution
validation can be used to manage developmental risk and (b)
how an assurance arguments can be constructed alongside
the development of a product. Developmental risks arise
from tentative transformation which are not completely jus-
tified: in such cases concerns can be stated as suspended
justification obligations to be discharged later on in the pro-
cess. This adds the flexibility of trying out solutions, while
still retaining the rigour of development and clearly identi-
fying points where backtracking may occur.

Although other approaches provide a focus on an assur-
ance argument, the possibility of having the assurance argu-
ment drive development is an option that appears unique to
ADD and POE.

Finally, POE defines a clear formal structure in which
the various elements of evidence fit, that is whether they
are associated with the distinguished parts of a development
problem or the justifications of the transformation applied
to solve it. This provides a fundamental clarification of the
type of evidence provided and reasoning applied. Moreover,

that the form of justification is not prescribed under POE
signifies that all required forms of reasoning can be accom-
modated, from deductive to judgemental, within a single
development.
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