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Abstract—For the future space network scenarios, where 
multi-rovers can return science data through one obiter 
simultaneously, we design a new distributed LT (NDLT) code 
between two sources, one relay and a single sink, which could 
enhance the efficiency and reliability of packets transferring 
from source to sink. This paper proposes a method to 
decompose weaken robust soliton distribution (WRSD) 
exploited by relay node into two deconvolved weaken robust 
soliton distributions (DWSDs), which are used in the sources 
and have lower average degree than traditional RSD-based 
deconvolved soliton distributions (DSDs). Low operation 
complexity at sources and only including a simple XOR 
operation at relay node could be provided by the proposed 
degree distribution. This paper provides analytical results 
about the coding complexity of proposed and traditional 
distributed LT (DLT) code. The simulation results show that 
the proposed NDLT has a higher decoding probability than 
that of traditional DLT, under the conditions of recovering a 
certain proportion of original information, such as some space 
mission scenarios with specific data completeness requirement. 
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I.  INTRODUCTION 

An erasure channel in [1] is a communication channel 
model wherein errors are described as erasures events. In 
the packetized data transmission, such as scientific data 
return in space communication, packets may be deleted if 
the destination fails to recover the packets. In order to 
recover the packets lost in file delivery, a kind of forward 
erasure coding is proposed, i.e., fountain codes [1]. Luby 
transform (LT) code is the first realization of fountain code 
[2], where the input symbols are been encoded according to 
RSD (robust soliton distribution). Raptor code in [3], as a 
kind of improved LT code, consists of pre-coding and LT-
coding. Raptor codes have better decoding efficiency than 
LT codes by using pre-coding. The intermediate symbols 
are the symbols generated by pre-code from the input 
symbols. The output symbols are the symbols by LT-code 
from the intermediate symbols. 

In space explorations, several scenarios are common, 
where probers on the explored planet are much more than 
the obiter or relay satellites. To provide the simultaneous 
bulk data return capacity for multi-sources through limited 
relay satellites and enhance the efficiency of the relay 
satellites, in this paper, we consider such a scenario, where 
two sources transmit information to a sink through a relay, 
as shown in Fig. 1.  

In [4, 5], the method to decompose LT codes into DLT 
codes based on the deconvolution of RSD is proposed. The 
constructed DLT has large redundancy, coding complexity 
and large decode failure probability. Density evolution is 
used in [6] to find optimal codes over the network in which 
multiple sources transmit information to a sink through a 
relay. The work in [7] introduces Soliton-like rateless 
coding, which exploits the benefits of fountain coding and 
network coding over a Y-network. This method has larger 
operation complexity than that in [5, 6]. In space 
communication scenarios with multiple sources, single relay 
and single sink node, a new distributed LT code is designed 
for enhancing the efficiency and reliability of packets 
transferring from source to sink. In this network of Fig. 1, as 
a first step, the symbols at each of the two sources are 
encoded using the DWSD as the degree distribution. Then, 
the relay selectively XORs the bit streams it receives from 
each source and transmits the resulted NDLT code which 
approximatively follows WRSD to sink node. In this paper, 
we propose a method to deconvolve the WRSD for yielding 
DWSD, by which less coding packets is consumed to cover 
original packets with the maximum degree of D+1. In this 
paper, the belief propagation (BP) decoding algorithm is 
adopted in the sink node. The proposed method could obtain 
the DWSD-based NDLT code by constructing a special 
function, which has lower coding complexity and lower 
decode failure probability compared with DLT under the 
condition of only recovering a certain proportion of original 
packets. We provide analytical results about coding 
complexity of proposed and traditional distributed LT code. 

This paper is organized as follows. Section II gives a 
review on WRSD and proposes a specific method to 
deconvolve the WRSD into DWSD. Section III provides 
analytical results about the coding complexity of distributed 
LT code. The simulation results and discussion about 
overhead and decode failure probability are shown in 
Section IV. Section V presents a conclusion of this paper. 

II. DECOMPOSING WRSD INTO DWSD 

A. WRSD 

WRSD is applicable to the LT-coding in Raptor codes 
[3]. In the decoding process, it could recover a certain 
proportion of original packets and the rest packets are 
recovered by pre-coding. WRSD has the lower average 
degree than RSD if they have the same number of original 
symbols. WRSD has lower decode failure probability than 
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RSD under the condition of recovering a certain proportion 
of original information. 

Definition 1: For constants 0  ,  4 1 /D      

and , the weaken robust soliton 

distribution (WRSD)  is given by  
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WRSD has above advantages because of its degree 
distribution which has largest degree-D+1 and two obvious 
spiky values, as shown in Fig. 2. It is apparent to see that the 
first spiky value is in degree-2, which could enhance the 
decode success probability in BP decoding process. The 
other spiky value is in largest degree-D+1, which could 
consume low coding packets to cover original packets. Thus, 
this could reduce the decode failure probability. 

B. Deconvolution of the WRSD 

 
Figure 1. A two-source single-sink relay network 

We consider that, as shown in Fig. 1, two sources s1 and 
s2 transfer packets to the same sink t through the relay r. 
Each source has k/2 input symbols to be transferred to the 
same sink. In this scenario, the source-to-relay link is 
lossless and all erasures occur on the relay -to -sink link. We 
define X1 as a code symbol generated at s1 with a degree d1 
and X2 is a code symbol generated at s2 with a degree d2. 
Both d1 and d2 have the same degree distribution. Symbols 
from the two sources encoded in the relay are the same as 
[5]. We expect that the degree of 1

    p p R     ,                               (2) 

where and both obey and obey1d 2d  p  1d d 2  R  . We 

could obtain  p   by deconvolving WRSD directly. 

Direct deconvolution of the WRSD in (2), however, 

does not necessarily yield a valid probability distribution 
similar with [5]. To avoid direct deconvolution, we attempt 
to split the WRSD

 R 

 R   into two distributions  1R   

and  2R  .  2R   captures the problematic part of the 

WRSD in [5](i.e., the degree-one symbols and the spike at 
1i D  ) and  1R  is a smooth distribution that is easier to 

deconvolve . 
Then we define   1R   as follows: 
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Similarly,  2R  is given by  
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with the normalization factor 
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Thus, 1 2 1b b  , and the WRSD can be rewritten as  
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So the WRSD is a mixture of the distributions  1R   and 

 2R   with mixing parameter b1. 

The approach taken in this paper is to deconvolve the 
distribution  1R   and use the result in the construction of 

the new DLT codes.  
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Direct deconvolution of  in (6) yields  1R   f  , whose 

independent variable value is from 1 to
1

2

D 
. Give a degree 

distribution        1
1 2 , for 1

2X X  is a random 

variable with the degree distribution of WRSD  R  , which 

WRSD has the lower average degree decode failure 
probability than RSD under the condition of recovering a 
certain proportion of original information. We define this 
problem as follows.  

i
D

p i f i R i
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obtain the large ree-st deg
1

2

D 
, which could not make the 

degree distribution in relay to sink approximate WRSD 
using the low operation complexity protocol in the relay. 
Without improving obviously the operations complexity at 
the relay, we hope the probability of choosing the largest 

degree D+1 in the relay is larger. We define  
^

f   

recursively by 
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with D increasing，
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According to [5], we have 
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Figure 2. The WRSD R(·) and the DWSD p(·) both with ε=0.04. 

We simulate in Fig. 2 and find that DWSD is the 

same as WRSD. It is noted that, the largest probability value 
of DWSD is about of 71% in degree-one, while the largest 
probability value of WRSD is in degree-two. However, 
DWSD also has a spiky value in degree-D+1, and is the 
same to WRSD. Thus, it has similar properties with WRSD.  

 
^

p 

C. DWSD Applied to a Two-Source Single-Sink Relay 
Network 

Similar with [5], the two sources encode symbols 
following the DWSD, which can be used to encode 
information in the network of Fig. 1. We define a sequence 
of code symbols produced in this process as a NDLT-2 code, 
and the sequence of symbols transmitted by the relay as a 
NMLT-2 code. It is necessary to construct a randomized 
decision protocol in which the relay transmits a symbol 
whose degree approximately follows the WRSD to sink. 
This approach is applied in fountain network coding in [7-
10]. 
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Figure 3. Comparison of WRSD and the degree distribution produced in the 

relay with ε=0.04 

Considering the Fig. 3, the probability distribution 
produced by the decision protocol from [5] in the relay is 
approximate to WRSD. The distribution approximates 
WRSD in the Fig. 3. They have the same soliton waveforms 
coinciding with the theoretical analysis. WRSD has the 
lower average degree than RSD if they have the same 
number of original symbols. WRSD has lower decode 
failure probability than RSD in the condition of recovering a 
certain proportion of original information. 

III. THE CODING COMPLEXITY OF DISTRIBUTED LT CODE  

Definition 3: For constants and 0c  [0,1]  , the 

robust soliton distribution (RSD) ( )   is given by  
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The RSD ( )   could be split into two distributions 

 ' i and  i'' : 
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A. Analysis of the Coding Complexity 

In some specified scenarios with requirement of low 
complexity, such as deep space communication, overhead 
and decode failure probability and encoding complexity are 
important factors to measure the encoding algorithm.  The 
algorithm of coding complexity is the same as [3].  

We derive the expression of coding complexity as 
follows: assuming that the number of encoding symbols 
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2) Encoding complexity of  new distributed  LT 

The average degree of DWSD in the source is  
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The average degree of one and two degree distribution in 
the relay is  

12 1 1b    .                              (27) 

Thus, encoding complexity of new distributed LT is 
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B.  Results about the Coding Complexity 

We assume that the number of encoding symbols is 
k=500, 800, 1000; and DSD with constants 0.05c  , 

0.5  and DWSD with 0.04  . 

TABLE I.  DWSD AND DSD 

k k=500 k=800 k=1000 

d DWSD DSD DWSD DSD DWSD DSD 

1 0.7101 0.6826 0.7101 0.684 0.7101 0.6848

2 0.1167 0.1142 0.1167 0.1144 0.1167 0.1145

3 0.0486 0.483 0.0486 0.0483 0.0486 0.0483

4 0.0269 0.0271 0.0269 0.027 0.0269 0.0027

5 0.0172 0.0175 0.0172 0.0175 0.0172 0.0174

64 0.0002 0.0193 0.0002  0.0002  

76    0.0182   

84      0.0177

105 0.0047  0.0047  0.0047  

a1 3.1102 4.4985 3.1102 4.8943 3.1102 5.0934

Table I shows the probability value from degree one to 
five and max degree of DWSD and DSD. The average 
degree a1 is given in table I. The average degree of DWSD 
is far less than DSD. Coding complexity at source of NDLT 
codes is 3.1102 n , and the complexity of DLT codes is 
4.4985 n . 

TABLE II.   DEGREE DISTRIBUTION IN THE RELAY 

k k=500 k=800 k=1000 
d NDLT DLT NDLT  DLT NDLT DLT 
1 0.0293 0.0536 0.0293 0.9511 0.0293 0.9533
2 0.9707 0.9464 0.9707 0.0489 0.9707 0.0467
a2 1.9707 1.9464 1.9707 1.9511 1.9707 1.9533

Table II shows the probability value from degree one to 
two in the relay of new and traditional DLT codes. The 
average degree a2 is given in the end. But the average 
degree of distribution in the relay from DWSD is slightly 
larger than DSD.  
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Combining complexity of coding at source with relay, 
the total encoding complexity of new distributed LT is  

3.1102 2 1.9707 4.2497n n    n

n

.                (29) 
Meanwhile encoding complexity of traditional distributed 
LT is  

 .                (30) 4.4985 2 1.9464 7.0506n n     
It can be simply seen that, encoding complexity of new 

distributed LT is less than traditional distributed LT with the 
same overhead. In the practical application scenarios, such 
as the deep space communication, this communication 
requests low complexity which can save the consumption of 
energy. Thus, it can enhance efficiency of information 
transferring from detectors on the objective planet to the 
earth station. 

IV. SIMULATION AND DISCUSSION 

In the simulation, two sources encode symbols by 
DWSD or DSD, and the sink node decodes by belief 
propagation decoding algorithm. If it dose not recover all 
the original symbols or a certain proportion of original 
symbols, we will call this decode failure. Overhead is the 
ration between the number of extra symbols required for 
decoding to succeed and k. The formula of calculating 
overhead is (K-k)/k. We assume that the number of original 

symbols is k=500, 800,.1000 ， DLT with constants 
,0.05c  0.5   and NDLT with 0.04  . 
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(b) k=800 
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(c) k=1000 

Figure 4. Overhead and decoding failure probability of distributed LT and 
new distributed LT of  recovering 99%, 98%, 97% of original information. 

Decode failure probability is shown in Fig. 4. with total 
coding overhead. It is indicated that distributed LT can 
recover all the original symbols, but its decode failure 
probability is larger than the NDLT codes under the 
condition of recovering a certain proportion of the original 
symbols. The NDLT codes only recover a certain proportion 
of the original symbols, but the rest proportion of the 
information could be recoverd by traditonal code in [3]. The 
results show if the new distributed LT code recover the 
quatity of  original information below 98%, decode failure 
probability is far less than traditional distributed LT. It 
ensures the efficiency and reliability of the information 
transmission in some degree. But when the NDLT recovers 
more than 99% of total original data packets, decode failure 
probability is more than traditional distributed LT. Thus, we 
should choose proper traditional code, which can be more 
effective to recover all the original symbols. Moreover, it 
also show that the NDLT code has lower decode failure 
probability than the traditional DLT code on the condition 
of  recovering the same proportion of original information. 
Thus, the NDLT code could be applicable to several 
specified  scenatios for recovery on a certain propotion of 
original packets. 

V. CONCLUSION 

In this paper, we proposed an efficient method of 
deconvolving degree distribution of decentralized LT code 
and designed a specified distributed LT codes about the 
network model with communication between two sources 
and single sink through the relay. The proposed NDLT has 
lower coding complexity than traditional DLT. The 
simulation results indicated that coding complexity of 
NDLT is approximate one half of DLT. The NDLT has 
lower decode failure probability than traditional DLT under 
the condition of recovering a certain proportion of original 
packets. The decode failure probability is far less than DLT 
when the NDLT recover below 98% original information. 
The proposed NDLT is applicable to several scenarios to 
recover a certain proportion of original packets, such as file 
delivery in space communication. 
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