Unsupervised curves clustering by minimizing entropy: implementation and application to air traffic

Florence Nicol
Université Fédérale de Toulouse
Ecole Nationale de l’Aviation Civile
F-31055 Toulouse FRANCE
Email: florence.nicol@enac.fr

Stéphane Puechmorel
Université Fédérale de Toulouse
Ecole Nationale de l’Aviation Civile
F-31055 Toulouse FRANCE
Email: stephane.puechmorel@enac.fr

Abstract—In many applications such as Air Traffic Management (ATM), clustering trajectories in groups of similar curves is of crucial importance. When data considered are functional in nature, like curves, dedicated algorithms exist, mostly based on truncated expansion on Hilbert basis. When additional constraints are put on the curves, as like in applications related to air traffic where operational considerations are to be taken into account, usual procedures are no longer applicable. A new approach based on entropy minimization and Lie group modeling is presented here and its implementation is discussed in detail, especially the computation of the curve system density and the entropy minimization by a gradient descent algorithm. This algorithm yields an efficient unsupervised algorithm suitable for automated traffic analysis. It outputs cluster centroids with low curvature, making it a valuable tool in airspace design applications or route planning.

Keywords—curve clustering; probability distribution estimation; functional statistics; minimum entropy; Lie group modeling; air traffic management.

I. INTRODUCTION

Clustering aircraft trajectories is an important problem in Air Traffic Management (ATM). It is a central question in the design of procedures at take-off and landing, the so called sid-star (Standard Instrument Departure and Standard Terminal Arrival Routes). In such a case, one wants to minimize the noise and pollutants exposure of nearby residents while ensuring runway efficiency in terms of the number of aircraft managed per time unit.

The same question arises with cruising aircraft, this time the mean flight path in each cluster being used to optimally design the airspace elements (sectors and airways). This information is also crucial in the context of future air traffic management systems where reference trajectories will be negotiated in advance so as to reduce congestion. A special instance of this problem is the automatic generation of safe and efficient trajectories, but in such a way that the resulting flight paths are still manageable by human operators. Clustering is a key component for such tools: major traffic flows must be organized in such a way that the overall pattern is not too far from the current organization, with aircraft flying along airways. The classification algorithm has thus not only to cluster similar trajectories but at the same time makes them as close as possible to operational trajectories. In particular, straightness of the flight segments must be enforced, along with a global structure close to a graph with nodes corresponding to merging/splitting points and edges the airways. Moreover, the clustering procedure has to deal with trajectories that are very similar in shape but are oriented in opposite directions. These flight paths should be sufficiently separate in order to prevent hazardous encounters. Using the approach developed in [1], a Lie group modeling is proposed to take into account the direction and the position of the aircraft trajectories. The main computational complexity of such a clustering algorithm focuses on the computation of the curve system density. This computational cost can be reduced by choosing appropriate kernel functions.

This paper is organized as follows. First, previous related works is presented. Next, in Section III, the notion of spatial curve density and the related entropy are introduced for dealing with curve systems. Then, the modeling of trajectories with a Lie group approach and the statistical estimation of Lie group densities are presented. In Section IV, the unsupervised entropy clustering approach developed in [2] is extended to the new setting of Lie group modeling. In Section V, a discussion on fast implementation and algorithms presented in [1] is detailed. Finally, results on synthetic examples and real trajectory data are given and a conclusion is drawn.

II. PREVIOUS RELATED WORK

Several well established algorithms may be used for performing clustering on a set of trajectories, although only a few of them were eventually applied to air traffic analysis. The spectral approach relies on trajectories modeling as vectors of samples in a high dimensional space, and uses random projections as means of reducing the dimensionality. The huge computational cost of the required singular values decomposition is thus alleviated, allowing use on real recorded traffic over several months. It was applied in a study conducted by the Mitre corporation on behalf of the Federal Aviation Authority (FAA) [3]. The most important limitation of this approach is that the shape of the trajectories is not taken into account when applying the clustering procedure unless a resampling procedure based on arc length is applied: changing the time parametrization of the flight paths will induce a change in the classification. Furthermore, there is no means to put a constraint on the mean trajectory produced in each cluster: curvature may be quite arbitrary even if samples individually comply with flight dynamics.
Another approach is taken in [4], with an explicit use of an underlying graph structure. It is well adapted to road traffic as vehicles are bound to follow predetermined segments. A spatial segment density is computed then used to gather trajectories sharing common parts. For air traffic applications, it may be of interest for investigating present situations, using the airways and beacons as a structure graph, but will misclassify aircraft following direct routes which is quite a common situation, and is unable to work on an unknown airspace organization. This point is very important in applications since trajectory datamining tools are mainly used in airspace redesign. A similar approach is taken in [5] with a different measure of similarity. It has to be noted that many graph-based algorithms are derived from the original work presented in [6], and exhibit the aforementioned drawbacks for air traffic analysis applications.

An interesting vector field based algorithm is presented in [7]. A salient feature is the ability to distinguish between close trajectories with opposite orientations. Nevertheless, putting constraints on the geometry of the mean path in a cluster is quite awkward, making the method unsuitable for our application.

Due to the functional nature of trajectories, that are basically mappings defined on a time interval, it seems more appropriate to resort to techniques based on the kernel methods. Consider a system of curves \(\gamma: [t_0, t_1] \to \mathbb{R}^3 \) which induces a notion of spatial density as presented in [15]. Assuming that after a suitable registration process all flight paths \(\gamma_i, i = 1, \ldots, N \), are defined on the same time interval \([0, 1]\) to \(\Omega\) a domain of \(\mathbb{R}^3\), one can compute an entropy associated with the system of curves using the approach presented in [16]. Let a system of curves \(\gamma_1, \ldots, \gamma_N \) be given, its entropy is defined to be:

\[
E(\gamma_1, \ldots, \gamma_N) = -\int_{\Omega} \tilde{d}(x) \log \left(\frac{\tilde{d}(x)}{d(x)} \right) dx,
\]

where the spatial density \(\tilde{d} \) is computed according to:

\[
\tilde{d}: x \mapsto \frac{\sum_{i=1}^{N} \int_{t_i}^{1} K(\|x - \gamma_i(t)\|) \|\gamma_i'(t)\| dt}{\sum_{i=1}^{N} l_i}.
\]

In the last expression, \(l_i \) is the length of the curve \(\gamma_i \) and \(K \) is a kernel function similar to those used in nonparametric estimation. A standard choice is the Epanechnikov kernel:

\[
K: x \mapsto C \left(1 - x^2 \right) 1_{[-1,1]}(x),
\]

with a normalizing constant \(C \) chosen so as to have a unit integral of \(K \) on \(\Omega \). In multivariate density estimation, a common practice is to build a multivariate kernel function by means of an univariate kernel \(K \) composed with a norm, denoted by \(\| . \| \). The resulting mapping, \(x \mapsto K(\|x\|) \) enjoys some important properties:

- Translation invariance.
- Rotational symmetry.

In Section V, the translation invariance will be used to cut the computational cost of kernel evaluation.

Since the entropy is minimal for concentrated distributions, it is quite intuitive to figure out that seeking for a curve system \(\{\gamma_1, \ldots, \gamma_N\} \) giving a minimum value for \(E(\gamma_1, \ldots, \gamma_N) \) will induce the following properties:

- The images of the curves tend to get close one to another.
• The individual lengths will be minimized: it is a direct consequence of the fact that the density has a term in γ' within the integral that will favor short trajectories.

Using a standard gradient descent algorithm on the entropy produces an optimally concentrated curve system, suitable for use as a basis for a route network. In Section V, this algorithm is applied on a curve system produced by an automated trajectory planner.

The displacement field for trajectory j is oriented at each point along the normal vector to the trajectory, with norm given by:

$$
\left| \Omega \right| K' \sum_{i=1}^{N} i \frac{\gamma_j(t) - x}{\| \gamma_j(t) - x \|} \| d(x) \| dx \left(\frac{\| \gamma_j(t) - x \|}{\| \gamma_j(t) \|} \right) \|
$$

(2)

$$
- \left(\int_{\Omega} K \left(\frac{\| \gamma_j(t) - x \|}{\| \gamma_j(t) \|} \right) d(x) \right) \left(\frac{\| \gamma_j(t) \|}{\| \gamma_j(t) \|} \right) \|
$$

(3)

$$
+ \left(\int_{\Omega} d(x) \log(\| d(x) \|) dx \right) \left(\frac{\| \gamma_j(t) \|}{\| \gamma_j(t) \|} \right) \|
$$

(4)

where the notation v_{ij} stands for the projection of the vector v onto the normal vector to the trajectory. An overall scaling constant of:

$$
\frac{1}{\sum_{i=1}^{N} t_i}
$$

where t_i is the length of trajectory i, has to be put in front of the expression to get the true gradient of the entropy. In practice, it is not needed since algorithms will adjust the size of the step taken in the gradient direction. Another formulation using the scaled arclength in the entropy can be found in [2]. While being equivalent to the one presented above, since it relies on a reparametrization, only the term related to the kernel gradient remains in the final expression. As a consequence, there is no need to project moves onto the normal to the curves. However, it introduces a constraint that must be taken into account in numerical implementations. So far, the principle retained is to resample the curves after the update so as to ensure that the defining property (constant velocity) of the arclength is preserved.

B. A Lie group modeling

While satisfactory in terms of traffic flows, the previous approach suffers from a severe flaw when one considers flight paths that are very similar in shape but are oriented in opposite directions. Since the density is insensitive to direction reversal, flight paths will tend to aggregate while the correct behavior will be to ensure a sufficient separation in order to prevent hazardous encounters. Taking aircraft headings into account in the clustering process is then mandatory when such situations have to be considered.

This issue can be addressed by adding a penalty term to neighboring trajectories with different headings but the important theoretical property of entropy minimization will be lost in the process. A more satisfactory approach will be to take heading information directly into account and to introduce a notion of density based on position and velocity.

Since the aircraft dynamics is governed by a second order equation of motion of the form:

$$
\frac{d^2 v}{dt^2} = F(t; v, \gamma(t)),
$$

it is natural to take as state vector:

$$
\begin{bmatrix}
\gamma(t) \\
\gamma'(t)
\end{bmatrix}
$$

The initial state is chosen here to be:

$$
\begin{bmatrix}
0 \\
\frac{0_d}{\mathbf{e}_1}
\end{bmatrix}
$$

with \mathbf{e}_1 the first basis vector, and 0_d the origin in \mathbb{R}^d. It is equivalent to model the state as a linear transformation:

$$
0_d \otimes \mathbf{e}_1 \mapsto T(t) \otimes A(t)(0_d \otimes \mathbf{e}_1) = \gamma(t) \otimes \gamma'(t),
$$

where $T(t)$ is the translation mapping 0_d to $\gamma(t)$ and $A(t)$ is the composite of a scaling and a rotation mapping \mathbf{e}_1 to $\gamma'(t)$. Considering the vector $(\gamma(t), 1)$ instead of $\gamma(t)$ allows a matrix representation of the translation $T(t)$:

$$
\begin{bmatrix}
\gamma(t) \\
\gamma'(t)
\end{bmatrix}
$$

$$
= \begin{bmatrix}
I & 0 \\
0 & A(t)
\end{bmatrix} \begin{bmatrix}
0_d \\
\mathbf{e}_1
\end{bmatrix}.
$$

(5)

The previous expression makes it possible to represent a trajectory as a mapping from a time interval to the matrix Lie group $G = \mathbb{R}^d \times \Sigma \otimes SO(d)$, where Σ is the group of multiples of the identity, $SO(d)$ the group of rotations and \mathbb{R}^d the group of translations. Please note that all the products are direct. The $A(t)$ term in the expression (5) can be written as an element of $\Sigma \otimes SO(d)$. Starting with the defining property $A(t)\mathbf{e}_1 = \gamma'(t)$, one can write $A(t) = \frac{\| \gamma'(t) \|}{\| \gamma(t) \|} U(t)$ with $U(t)$ a rotation mapping $\mathbf{e}_1 \in \mathbb{S}^{d-1}$ to the unit vector $\gamma'(t)/\| \gamma'(t) \| \in \mathbb{S}^{d-1}$. For arbitrary dimension d, $U(t)$ is not uniquely defined, as it can be written as a rotation in the plane $\mathcal{P} = \text{span}(\mathbf{e}_1, \gamma'(t))$ and a rotation in its orthogonal complement \mathcal{P}^\perp. A common choice is to let $U(t)$ be the identity in \mathcal{P}^\perp which corresponds in fact to a move along a geodesic (great circle) in \mathbb{S}^{d-1}. This will be assumed implicitly in the sequel, so that the representation $A(t) = A(t)U(t)$ with $A(t) = \| \gamma'(t) \|I_d$ becomes unique.

The Lie algebra \mathfrak{g} of G is easily seen to be $\mathbb{R}^d \times \mathbb{R} \times \text{Asym}(d)$ with $\text{Asym}(d)$ is the space of skew-symmetric $d \times d$ matrices. An element from \mathfrak{g} is a triple (u, λ, A) with an associated matrix form:

$$
M(u, \lambda, A) = \begin{pmatrix}
0 & u & 0 \\
0 & 0 & \lambda d + A
\end{pmatrix}.
$$

(6)

The exponential mapping from \mathfrak{g} to G can be obtained in a straightforward manner using the usual matrix exponential:

$$
\exp((u, \lambda, A)) = \exp(M(u, \lambda, A)).
$$

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org
The matrix representation of \mathfrak{g} may be used to derive a metric:

$$
\langle (u, \lambda, A), (v, \mu, B) \rangle_\mathfrak{g} = \text{Tr} \left(M(u, \lambda, A) \mathbf{t} M(v, \mu, B) \right).
$$

Using routine matrix computations and the fact that A, B being skew-symmetric have vanishing trace, it can be expressed as:

$$
\langle (u, \lambda, A), (v, \mu, B) \rangle_\mathfrak{g} = n \lambda \mu + \langle u, v \rangle + \text{Tr} \left(A^t B \right).
$$

(7)

A left invariant metric on the tangent space $T_g \mathcal{G}$ at $g \in \mathcal{G}$ is derived from (7) as:

$$
\langle X, Y \rangle_g = (g^{-1}X, g^{-1}Y)_\mathfrak{g},
$$

with $X, Y \in T_g \mathcal{G}$. Please note that \mathcal{G} is a matrix group acting linearly so that the mapping g^{-1} is well defined from $T_g \mathcal{G}$ to \mathcal{G}. Using the fact that the metric (7) splits, one can check that geodesics in the group are given by straight segments in \mathfrak{g}; if g_1, g_2 are two elements from \mathcal{G}, then the geodesic connecting them is:

$$
t \in [0, 1] \mapsto g_1 \exp \left(t \log \left(g_1^{-1} g_2 \right) \right),
$$

where \log is a determination of the matrix logarithm. Finally, the geodesic length is used to compute the distance $d(g_1, g_2)$ between two elements g_1, g_2 in \mathcal{G}. Assuming that the translation parts of g_1, g_2 are respectively u_1, u_2, the rotations U_1, U_2 and the scalings $\exp(\lambda_1), \exp(\lambda_2)$ then:

$$
d(g_1, g_2)^2 = (\lambda_1 - \lambda_2)^2 + \text{Tr} \left(\log(U_1^t U_2) \log(U_1^t U_2)^t \right) + \|u_1 - u_2\|^2.
$$

(8)

(9)

An important point to note is that the scaling part of an element $g \in \mathcal{G}$ will contribute to the distance by its logarithm.

Based on the above derivation, a flight path γ with state vector $(\gamma(t), \dot{\gamma}(t))$ will be modeled in the sequel as a curve with values in the Lie group \mathcal{G}:

$$
\Gamma: t \in [0, 1] \mapsto \Gamma(t) \in \mathcal{G},
$$

with:

$$
\Gamma(t), (0, e_1) = (\gamma(t), \dot{\gamma}(t)).
$$

In order to make the Lie group representation amenable to statistical thinking, we need to define probability densities on the translation, scaling and rotation components that are invariant under the action of the corresponding factor of \mathcal{G}.

C. Nonparametric estimation on \mathcal{G}

Since the translation factor in \mathcal{G} is the additive group \mathbb{R}^d, a standard nonparametric kernel estimator can be used. It turns out that it is equivalent to the spatial density estimate of (1), so that no extra work is needed for this component.

As for the rotation component, a standard parametrization is obtained recursively starting with the image of the canonical basis of \mathbb{R}^d under the rotation. If R is an arbitrary rotation and e_1, \ldots, e_d is the canonical basis, there is a unique rotation R_{e_i} mapping e_1 to Re_1 and fixing e_2, \ldots, e_d. It can be represented by the point $Re_1 = r_1$ on the sphere \mathbb{S}^{d-1}. Proceeding the same way for Re_2, \ldots, Re_d, it is finally possible to completely parametrized R by a $(d-1)$-uple (r_1, \ldots, r_{d-1}) where $r_i \in \mathbb{S}^{i-1}, i = 1, \ldots, d$. Finding a rotation invariant distribution amounts thus to construct such a distribution on the sphere. In directional statistics, when we consider the spherical polar coordinates of a random unit vector $u \in \mathbb{S}^{d-1}$, we deal with spherical data (also called circular data or directional data) distributed on the unit sphere. For $d = 3$, a unit vector may be described by means of two random variables θ and φ which respectively represent the co-latitude (the zenith angle) and the longitude (the azimuth angle) of the points on the sphere. Nonparametric procedures, such as the kernel density estimation methods are sometimes convenient to estimate the probability distribution function (p.d.f.) of such kind of data but they require an appropriate choice of kernel functions.

Let X_1, \ldots, X_n be a sequence of random vectors taking values in \mathbb{R}^d. The density function f of a random d-vector may be estimated by the kernel density estimator [17] as follows:

$$
\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} K_H(x - X_i), \ x \in \mathbb{R}^d,
$$

where $K_H(x) = |H|^{-1/2} K(H^{-1/2} x)$, K denotes a multivariate kernel function and H represents a d-dimensional smoothing matrix, called bandwidth matrix. The kernel function K is a d-dimensional p.d.f. such as the standard multivariate Gaussian density $K(x) = (2\pi)^{d/2} \exp \left(-\frac{1}{2} x^T x \right)$ or the multivariate Epanechnikov kernel. The resulting estimation will be the sum of “bumps” above each observation, the observations closed to x giving more important weights to the density estimate. The kernel function K determines the form of the bumps whereas the bandwidth matrix H determines their width and their orientation. Thereby, bandwidth matrices can be used to adjust for correlation between the components of the data. Usually, an equal bandwidth h in all dimensions is chosen, corresponding to $H = h I_d$ where I_d denotes the $d \times d$ identity matrix. The kernel density estimator then becomes:

$$
\hat{f}(x) = \frac{1}{nh^d} \sum_{i=1}^{n} K \left(h^{-1}(x - X_i) \right), \ x \in \mathbb{R}^d.
$$

In certain cases when the spread of data is different in each coordinate direction, it may be more appropriate to use different bandwidths in each dimension. The bandwidth matrix H is given by the diagonal matrix in which the diagonal entries are the bandwidths h_1, \ldots, h_d.

In directional statistics, a kernel density estimate on \mathbb{S}^{d-1} is given by adopting appropriate circular symmetric kernel functions such as von Mises-Fisher, wrapped Gaussian and wrapped Cauchy distributions. A commonly used choice is the von Mises-Fisher (vMF) distribution on \mathbb{S}^{d-1} which is denoted $\mathcal{M}(m, \kappa)$ and given by the following density expression [18]:

$$
K_{\text{vMF}}(x; m, \kappa) = c_d(\kappa) e^{\kappa m^T x}, \ \kappa > 0, \ x \in \mathbb{S}^{d-1},
$$

(10)

where

$$
c_d(\kappa) = \frac{\kappa^{d/2 - 1}}{(2\pi)^{d/2} I_{d/2 - 1}(\kappa)}
$$

(11)

is a normalizing constant with $I_{\kappa}(\kappa)$ denoting the modified Bessel function of the first kind at order r. The vMF kernel function is an unimodal p.d.f. parametrized by the unit mean-direction vector m and the concentration parameter κ that controls the concentration of the distribution around the mean-direction vector. The vMF distribution may be expressed by means of the spherical polar coordinates of $x \in \mathbb{S}^{d-1}$ [19].
Given the random vectors $X_i, i = 1, \ldots, n$, in S^{d-1}, the estimator of the spherical distribution is given by:

$$
\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} K_{V,M,F}(x; X_i, \kappa)
$$

(12)

$$
= \frac{c_d(\kappa)}{n} \sum_{i=1}^{n} \exp(x^T X_i \kappa), \quad \kappa > 0, \quad x \in S^{d-1}.
$$

(13)

The quantity $x - X_i$ which appears in the linear kernel density estimator is replaced by $X_i^T x$ which is the cosine of the angles between x and X_i, so that more important weights are given on observations close to x on the sphere. The concentration parameter κ is a smoothing parameter that plays the role of the inverse of the bandwidth parameter as defined in the linear kernel density estimation. Large values of κ imply greater concentration around the mean direction and lead to undersmoothed estimators whereas small values provide oversmoothed circular densities [20]. Indeed, if $\kappa = 0$, the vMF kernel function reduces to the uniform circular distribution on the hypersphere. Note that the vMF kernel function is convenient when the data is rotationally symmetric.

The vMF kernel function is a convenient choice for our problem because this p.d.f. is invariant under the action on the sphere of the rotation component of the Lie group G. Moreover, this distribution has properties analogous to those of multivariate Gaussian distribution and is the limiting case of a limit central theorem for directional statistics. Other bivariate von Mises, the Bingham or the Kent distributions of a limit central theorem for directional statistics. Other functions such as the Gaussian and the Epanechnikov kernel of two univariate von Mises kernels, it is more appropriate for modeling density distributions on the torus and the spread of data. However, the rotation-invariance property of the p.d.f. is lost.

The first thing to be considered is the extension of the entropy definition to curve systems with values in G. Starting with expression from (1), the most important point is the choice of the kernel involved in the computation. As the group G is a direct product, choosing $K = K_t, K_s, K_o$ with K_t, K_s, K_o functions on respectively the translation, scaling and rotation part will yield a G-invariant kernel provided the K_t, K_s, K_o are invariant on their respective components. Since the translation part of G is modeled after \mathbb{R}^d, the Epanechnikov kernel is a suitable choice. As for the scaling and rotation, the choice made follows the conclusion of Section III-C: a log-normal kernel and a von-Mises one will be used respectively. Finally, the term $||x(t)||$ in the original expression of the density, that is required to ensure invariance under re-parametrization of the curve, has to be changed according to the metric in G and is replaced by $\langle \langle \gamma(t) \rangle \rangle$.

The quantity $x - X_i$ which appears in the linear kernel density estimator is replaced by $X_i^T x$ which is the cosine of the angles between x and X_i, so that more important weights are given on observations close to x on the sphere. The concentration parameter κ is a smoothing parameter that plays the role of the inverse of the bandwidth parameter as defined in the linear kernel density estimation. Large values of κ imply greater concentration around the mean direction and lead to undersmoothed estimators whereas small values provide oversmoothed circular densities [20]. Indeed, if $\kappa = 0$, the vMF kernel function reduces to the uniform circular distribution on the hypersphere. Note that the vMF kernel function is convenient when the data is rotationally symmetric.

The vMF kernel function is a convenient choice for our problem because this p.d.f. is invariant under the action on the sphere of the rotation component of the Lie group G. Moreover, this distribution has properties analogous to those of multivariate Gaussian distribution and is the limiting case of a limit central theorem for directional statistics. Other multidimensional distributions might be envisaged, such as the bivariate von Mises, the Bingham or the Kent distributions [18]. However, the bivariate von Mises distribution being a product kernel of two univariate von Mises kernels, it is more appropriate for modeling density distributions on the torus and the spread of data. The Bingham distribution is bimodal and satisfies the antipodal symmetry property $K(x) = K(-x)$. This kernel function is used for estimating the density of axial data and is not appropriate for our clustering approach.

Finally, the Kent distribution is a generalization of the vMF distribution, which is used when we want to take into account the spread of data. However, the rotation-invariance property of the vMF distribution is lost.

As for the scaling component of G, the usual kernel functions such as the Gaussian and the Epanechnikov kernel functions are not suitable for estimating the radial distribution of a random vector in \mathbb{R}^d. When distributions are defined over a positive support (here in the case of non-negative data), these kernel functions cause a bias in the boundary regions because they give weights outside the support. An asymmetrical kernel function on \mathbb{R}^+ such as the log-normal kernel function is a more convenient choice. Moreover, this p.d.f. is invariant by change of scale. Let R_1, \ldots, R_n be univariate random variables from a p.d.f. which has bounded support on $[0; +\infty[$. The radial density estimator may be defined by means of a sum of log-normal kernel functions as follows:

$$
\tilde{g}(r) = \frac{1}{n} \sum_{i=1}^{n} K_{L,N}(r; \ln R_i, h), \quad r \geq 0, \quad h > 0,
$$

(14)

where

$$
K_{L,N}(r; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma r} \exp\left(-\frac{\ln r - \mu)^2}{2\sigma^2}\right)
$$

(15)

is the log-normal kernel function and h is the bandwidth parameter. The resulting estimate is the sum of bumps defined by log-normal kernels with medians R_i and variances $(e^{2h^2} - 1)e^{h^2} R_i^2$. Note that the log-normal (asymmetric) kernel density estimation is similar to the kernel density estimation based on a log-transformation of the data with the Gaussian kernel function. Although the scale-change component of G is the multiplicative group \mathbb{R}^+, we can use the standard Gaussian kernel estimator and the metric on \mathbb{R}.

IV. UNSUPERVISED ENTROPY CLUSTERING

The first thing to be considered is the extension of the entropy definition to curve systems with values in G. Starting with expression from (1), the most important point is the choice of the kernel involved in the computation. As the group G is a direct product, choosing $K = K_t, K_s, K_o$ with K_t, K_s, K_o functions on respectively the translation, scaling and rotation part will yield a G-invariant kernel provided the K_t, K_s, K_o are invariant on their respective components. Since the translation part of G is modeled after \mathbb{R}^d, the Epanechnikov kernel is a suitable choice. As for the scaling and rotation, the choice made follows the conclusion of Section III-C: a log-normal kernel and a von-Mises one will be used respectively.

Finally, the term $||\gamma(t)||$ in the original expression of the density, that is required to ensure invariance under re-parametrization of the curve, has to be changed according to the metric in G and is replaced by $\langle \langle \gamma(t) \rangle \rangle^1/2$. The density at $x \in G$ is thus:

$$
d_\phi(x) = \frac{\sum_{i=1}^{N} \int_{0}^{1} K(x, \gamma_i(t)) \langle \langle \gamma(t) \rangle \rangle^{1/2}_{\gamma_i(t)} dt}{\sum_{i=1}^{N} l_i}
$$

(16)

where l_i is the length of the curve in G, that is:

$$
l_i = \int_{0}^{1} \langle \langle \gamma(t) \rangle \rangle^{1/2}_{\gamma_i(t)} dt.
$$

(17)

The expression of the kernel evaluation $K(x, \gamma_i(t))$ is split into three terms. In order to ease the writing, a point x in G will be split into x^t, x^s, x^o components where the exponent r, s, t stands respectively for translation, scaling and rotation. Given the fact that K is a product of component-wise independent kernels it comes:

$$
K(x, \gamma_i(t)) = K_t(x^t, \gamma^t_i(t)) K_s(x^s, \gamma^s_i(t)) K_o(x^o, \gamma^o_i(t))
$$

where:

$$
K_t(x^t, \gamma^t_i(t)) = \frac{2}{\pi} \exp\left(||x^t - \gamma^t_i(t)||\right)
$$

(18)

$$
K_s(x^s, \gamma^s_i(t)) = \frac{1}{x^s\sigma\sqrt{2\pi}} \exp\left(-\frac{\log x^s - \log \gamma^s_i(t))^2}{2\sigma^2}\right)
$$

(19)

$$
K_o(x^o, \gamma^o_i(t)) = C(\kappa) \exp\left(\kappa x^o\gamma^o_i(t)\right)
$$

(20)

with $\exp: x \in \mathbb{R}^+ \mapsto (1 - x^2)^{1/2}_{0,1}(x)$ and $C(\kappa)$ the normalizing constant making the kernel of unit integral. Please note that the expression given here is valid for arbitrary rotations, but for the application targeted by the work presented here, it boils down to a standard von-Mises distributions on S^{d-1}:

$$
K_o(x^o, \gamma^o_i(t)) = C(\kappa) \exp\left(\kappa x^o\gamma^o_i(t)\right)
$$
with normalizing constant as given in (11). In the general case, it is also possible, writing the rotation as a sequence of moves on spheres S^{d-1}, S^{d-2}, \ldots and the distribution as a product of von-Mises on each of them, to have a vector of parameters κ: it is the approach taken in [21] and it may be applied verbatim here if needed.

The entropy of the system of curves is obtained from the density in \mathcal{G}:

$$E(d_{\mathcal{G}}) = -\int_{\mathcal{G}} d\mathcal{G}(x) \log d\mathcal{G}(x) d\mu_{\mathcal{G}}(x) \quad (21)$$

with $d\mu_{\mathcal{G}}$ the left Haar measure. Using again the fact that \mathcal{G} is a direct product group, $d\mu_{\mathcal{G}}$ is easily seen to be a product measure, with dx^t, the usual Lebesgue measure on the translation part, dx^s/x^s on the scaling part and dx^κ on S^{d-1} for the rotation part. It turns out that the $1/x^s$ term in the expression of dx^s/x^s is already taken into account in the kernel definition, due to the fact that it is expressed in logarithmic coordinates. The same is true for the von-Mises kernel, so that in the sequel only the (product) Lebesgue measure will appear in the integrals.

Finding the system of curves with minimum entropy requires a displacement field computation as detailed in [16]. For each curve γ_i, such a field is a mapping $\eta_i: [0, 1] \rightarrow T\mathcal{G}$ where at each $t \in [0, 1]$, $\eta_i(t) \in T_{\gamma_i(t)} \mathcal{G}$. Compare to the original situation where only spatial density was considered, the computation must now be conducted in the tangent space to \mathcal{G}. Even for small problems, the effort needed becomes prohibitive. In Section V, we will present in detail an efficient implementation of this algorithm. First, note that the structure of the kernel involved in the density can help in cutting the overall computations needed. Since it is a product, and the translation part is compactly supported, being an Epanechnikov kernel, one can restrict the evaluation to points belonging to its support. Density computation will thus be made only in tubes around the trajectories. Second, for the target application that is to cluster the flight paths into a route network and is of pure spatial nature, there is no point in updating the rotation and scaling part when performing the moves: only the translation part must change, the other two being computed from the trajectory. The initial optimization problem in \mathcal{G} may thus be greatly simplified. Finally, binning techniques [22] will be used to reduce the computational cost of the translation, rotation and scale components in the kernel K.

Let ϵ be an admissible variation of curve γ_i, that is a smooth mapping from $[0, 1]$ to $T\mathcal{G}$ with $\epsilon(t) \in T_{\gamma_i(t)} \mathcal{G}$ and $\epsilon(0) = \epsilon(1) = 0$. We assume furthermore that ϵ has only a translation component. The derivative of the entropy $E(d_{\mathcal{G}})$ with respect to the curve γ_i is obtained from the first order term when γ_i is replaced by $\gamma_i + \epsilon$. First of all, it has to be noted that $d_{\mathcal{G}}$ is a density and thus has unit integral regardless of the curve system. When computing the derivative of $E(d_{\mathcal{G}})$, the term

$$-\int_{\mathcal{G}} d\mathcal{G}(x) \frac{\partial}{\partial \gamma_i} d\mathcal{G}(x) d\mu_{\mathcal{G}}(x)$$

will thus vanish. It remains:

$$-\int_{\mathcal{G}} \partial_{\gamma_i} d\mathcal{G}(x) \log d\mathcal{G}(x) d\mu_{\mathcal{G}}(x).$$

The density $d\mathcal{G}$ is a sum on the curves, and only the i-th term has to be considered. Starting with the expression from (16), one term in the derivative will come from the denominator. It computes the same way as in [16] to yield:

$$\frac{\gamma_i''(t)}{\langle \langle \gamma_i'(t), \gamma_i'(t) \rangle \rangle_{\mathcal{G}}} E(d_{\mathcal{G}}) \quad (22)$$

Please note that the second derivative of γ_i is considered only on its translation component, but the first derivative makes use of the complete expression. As before, the notation $|_N$ stands for the projection onto the normal component to the curve.

The second term comes from the variation of the numerator. Using the fact that the kernel is a product $K_i K_s K_\kappa$, and that all individual terms have a unit integral on their respective components, the expression becomes very similar to the case of spatial density only and is:

$$-\left(\int_{\mathcal{G}} K(x, \gamma_i(t)) \log d\mathcal{G}(x) d\mu_{\mathcal{G}}(x) \right) \frac{\gamma_i''(t)}{\langle \langle \gamma_i'(t), \gamma_i'(t) \rangle \rangle_{\mathcal{G}}} |_N$$

$$+ \int_{\mathbb{R}^4} e(t) K''(x^t, \gamma_i(t)) \log d\mathcal{G}(x) \langle \langle \gamma_i(t), \gamma_i(t) \rangle \rangle_{\mathcal{G}}^{1/2} d\mathcal{G}(x) dt$$

(23)

with:

$$e(t) = \frac{\gamma_i'(t) - x^t}{\| \gamma_i'(t) - x^t \| _N}.$$

V. IMPLEMENTATION

Two computational bottlenecks are associated with the implementation of the clustering algorithm. The first one is the computation of the curve system density and the second one is the entropy minimization, which relies on gradient iterations. These two aspects will be separately treated in the sequel. Please note that the algorithms introduced are mainly tailored for the application in air traffic and may not be adequate to problems with different state spaces.

A. Density evaluation

Assuming that the original trajectories are planar, the overall dimension of the Lie group \mathcal{G} is 4. The method requires the evaluation of the integral

$$E(d_{\mathcal{G}}) = -\int_{\mathcal{G}} d\mathcal{G}(x) \log d\mathcal{G}(x) d\mu_{\mathcal{G}}(x)$$

that has potentially a very high computational cost. However, as mentioned in Section III-B, \mathcal{G} is a direct product, so that the Haar measure $\mu_{\mathcal{G}}$ splits into three terms: one that is the usual Lebesgue measure on \mathbb{R}^2, the second one that is the Lebesgue measure on the unit circle and the last being of the form ds/s. Let a point x in \mathcal{G} be represented as (x_1, x_2, θ, s) with (x_1, x_2) the spatial component in \mathbb{R}^2, θ be the angle giving the position on the unit circle (with the usual identification $2\pi = 0$) and s be the scale factor. The integral (25) becomes:

$$E(d_{\mathcal{G}}) =$$

$$-\int_{\mathbb{R}^2} \int_0^{2\pi} \int_0^s d\mathcal{G}(x_1, x_2, \theta, s) \log d\mathcal{G}(x_1, x_2, \theta, s) dx_1 dx_2 d\theta ds$$

$$= \frac{d\mathcal{G}(x_1, x_2, \theta, s) dx_1 dx_2 d\theta ds}{s}$$

(27)

In computer implementation, multi-dimensional integrals can be evaluated either using polynomial approximations on
a discrete grid [23] or Monte-Carlo methods when the dimensionality of the problem induces an intractable computational cost. In the present case, where the integration has to be conveyed in four dimensions, grid based approaches can still be applied. Extension to trajectories with values in \mathbb{R}^3 will increase the dimension to 6 which mandates the use of stochastic approximations. In any case, it must be noted that a high accuracy in the result is not needed, so that randomized algorithms may be used without impairing the convergence of the subsequent gradient iteration.

The computation of the density itself is more constraining as its original definition involves for each point where its value is needed a summation of integrals over all trajectories which may quickly become prohibitive. In a previous work [16] where the density was two-dimensional, a grid based approach was selected, which allows a very simple discrete convolution formulation. Here, due to the higher dimensionality, a crude extension of the method seems to yield an unacceptable increase of both the computational cost and memory footprint. However, it turns out that the problem is less complex than expected as a result of the product form of the kernel. Starting with the expression (16), the critical point in the evaluation of the density at a given point $x = (x_1, x_2, \theta, s)$ is the sum:

$$\sum_{i=1}^{N} \int_{0}^{1} K(x, \gamma(t)) \langle \gamma_i(t), \gamma_i^\prime(t) \rangle_{\gamma_i(t)}^{1/2} dt. \tag{29}$$

Using any classical quadrature formula, the integral may be reduced to a finite sum, yielding a double sum:

$$\sum_{i=1}^{N} \sum_{j=1}^{M_i} w_{ij} K(x, \gamma(t_{ij})) \langle \gamma_i(t_{ij}), \gamma_i^\prime(t_{ij}) \rangle_{\gamma_i(t_{ij})}^{1/2} \tag{30}$$

where M_i is the number of sample points t_{ij} on trajectory i and the w_{ij} are the quadrature weights. The expression (30) is fully general, but a simpler choice is made in practice: the sampling points t_{ij} are selected to be evenly spaced and the weights all equal to 1. It is nothing but the rectangle quadrature formula, whose accuracy is sufficient for the application in mind. Switching to a higher order formula is straightforward. In (30), the evaluation of the kernel has the highest cost since the norm $\langle \gamma_i(t_{ij}), \gamma_i^\prime(t_{ij}) \rangle_{\gamma_i(t_{ij})}$ does not depend on x and can be computed once for all. To compute the density at a single point, the total number of kernel evaluations is $\sum_{i=1}^{N} M_i$, with typical values of $N = 100$, $M_i = 20$ for the analysis of a control sector to $N = 10000$, $M_i = 100$ in the case of a country sized airspace. While acceptable in the first case, a direct application of the formula is not efficient enough in the second.

Recalling that the kernel K is a product of three elementary kernels $K = K_\theta K_{\gamma_x} K_{\gamma_s}$, it is clear that K will vanish outside of the support of any of the three. As mentioned before, K_θ is selected to be an Epanechnikov kernel which is compactly supported, so that K itself will vanish when the distance between the translation components of x and $\gamma(t_{ij})$ is large enough. The sum (30) will thus have almost all terms vanishing if the bandwidth of K_{θ} is adequately selected. Finally, using the t superscript to denote the translation part of the points:

$$K_t(x^t, \gamma_i^\prime(t_{ij})) = \frac{2}{\pi} \text{ep} \left(\|x^t - \gamma_i^\prime(t_{ij})\| \right)$$

with $\text{ep}: x \in \mathbb{R}^+ \rightarrow (1 - x^2)^1_{[0,1]}(x)$.

The final step towards efficient evaluation of the density is to reduce the computation to points located on a evenly spaced grid. This procedure is known in the non-parametric statistics community as binning [22]. First of all, the domain of interest in the translation component is assume to be of the form $[a_1, b_1] \times [a_2, b_2]$, which fits almost all possible cases in a real world application. For the air traffic clustering problem, it is a box covering the investigated airspace. Letting L_1, L_2 be the respective number of grid points desired in each direction, an evenly spaced grid is constructed by taking as vertices the points:

$$x_{k,l}^t = \left(a_1 + \frac{k(b_1 - a_1)}{L_1 - 1}, a_2 + \frac{l(b_2 - a_2)}{L_2 - 1} \right)$$

with $k \in \{0, \ldots, L_1 - 1\}$, $l \in \{0, \ldots, L_2 - 1\}$ and $L_1 > 1, L_2 > 1$. Please note that the vertices $x_{k,l}^t$ define implicitly bins that are rectangular cells $[x_{k,l}^t, x_{k+1,l}^t] \times [x_{k,l}^t, x_{k,l+1}^t]$. The density will be evaluated at the vertices of the grid only, resulting in a final approximation made of $L_1 \times L_2$ discrete values. Furthermore, sample points $\gamma_i(t_{ij})$ will be considered equal to the grid vertex $x_{k,l}^t$ that is closest to it (the case of ties up to machine precision is unlikely to appear, but can be solved by either randomly drawing the vertex among those equally close or splitting the observation between ex-aequo vertices). Due to this approximation, the norm $||x^t - \gamma_i^\prime(t_{ij})||$ can only take a finite number of values, namely the distances between any pair of vertices and can thus be precomputed. Furthermore, since the kernel K_t is compactly supported, the number of non-zeros is in practice much lower than the size of the grid.

Binning is used also for the rotation and scale components with respective kernels K_{γ_x} and K_{γ_s}. In both cases, the support of the kernel is identical to the domain of variation itself, so that cutting the computation cost using the previous trick is quite difficult. For the specific application to air traffic analysis, two remarks can be made:

- Within the frame of the current airspace organization, aircraft are bound to follow quite narrow paths. Even in the future, a complete free flight cannot be imagined unless humans are removed from the loop, which is not intended. As a consequence, one can assume a quite small bandwidth for the von-Mises kernel K_{θ}.

- The main use of the rotation and scale components is to disambiguate between flows that are spatially closed, but with otherwise very different behaviors: opposite headings, different speed categories. In these cases, a fine representation of the rotation and scale components is not needed, as the observed values are expected to be well separated.

Gathering things together, a coarse grid was selected for binning the rotation and scale components. In the experiments conducted so far, a 10×10 was enough to ensure the desired behavior. Since the translation component is discretized on a 100×100, the overall bins number is 16^2, which is well within acceptable limits for memory footprint (around 10MB with current implementation).

In the first of the complete density computation algorithm, the density grid is created as a block matrix \mathcal{M} of size $m_1 \times m_2$, where m_1, m_2 are the respective number of bins desired in each component and each block is of size $p \times q$, with p (resp.
The domain of variation for the translation component is a rectangle $[a_1, b_1] \times [a_2, b_2]$, the interval $[0, 2\pi]$ for the rotation and $[s_1, s_2]$ for the scale. An elementary cell in the grid where a given point (x_1, x_2, θ, s) lies can be determined using the following procedure:

- The block coordinates (i, j) is found from the couple (x_1, x_2) as:
 $$i = (m_1 - 1) \frac{x_1 - a_1}{b_1 - a_1}, j = (m_2 - 1) \frac{x_2 - a_2}{b_2 - a_2}. $$
- Within the block $M_{i,j}$, the respective rotation and scale indices (k, l) are obtained pretty much by the same way:
 $$k = (p - 1) \frac{\theta}{2\pi}, l = (q - 1) \frac{s - s_1}{s_2 - s_1}.
$$

Please note that all indices are zero-based, so that $M_{0,0}$ is the first block in the matrix M. Actual elements in M are referred to using quadruples (i, j, p, q), with the first two components designing the block and the remaining two locating the element in the block.

As mentioned above, a benefit of the binning procedure is the ability to pre-compute the kernel values, since the difference between any two grid points is known. As an example, for the translation component, the value for the kernel K_t can be stored as a $m_1 m_2 \times m_1 m_2$ matrix K^t with entries $K^t_{i,j,(k,l)} = K_t(d_{i,j,(k,l)})$ and:

$$d_{i,j,(k,l)} = \sqrt{\left(\frac{k-i}{b_1-a_1}\right)^2 + \left(\frac{l-j}{b_2-a_2}\right)^2}.$$

The storage size is $m_1^2 \times m_2^2$ and seems prohibitive, but it turns out that most of the element values are redundant. It is assumed that the matrix K^t is stored in a lexicographic order, that is couples (i, j) are stored in increasing i then increasing j order. K^t is clearly symmetric, and all the elements on the diagonal have the same value $K_t(0)$. Furthermore, since the distance $d_{i,j,(k,l)}$ is based only on the differences $k-i$ and $l-j$, it is invariant if the same shift (p, q) is applied to both couples. It implies that the matrix K^t has a block structure that is represented as:

$$
\begin{pmatrix}
A_0 & A_1 & \cdots & A_{m_2} \\
A_1 & A_0 & \cdots & A_{m_2-1} \\
\vdots & \vdots & \ddots & \vdots \\
A_{m_2} & \cdots & \cdots & A_1 \\
A_0 & & & \\
\end{pmatrix}
$$

Each block A_i is symmetric and within a given block, all the diagonals are equal, thanks again to the integer shift invariance property. Therefore, the storage really required is just $m_1 \times m_2$ that is no more than the number of grid points. Please note that it is due entirely to the shift invariance property, in the scale from the translation invariance of the distance: using more general kernels that do not exhibit invariance properties will require storing the full K^t matrix: in practical implementations, it is thus highly desirable to stick to distance based kernels.

A further reduction of complexity comes from the fact that K_t is compactly supported: for distance greater than a given threshold, K_t will be identically 0. It means that only a subset of the blocks A_i will not vanish. Within the blocks themselves, when the bandwidth parameter is low enough, only a subset of the diagonals will be non zero. As a consequence, the real needed storage is only a fraction of the original one and is well below $m_1 \times m_2$. In practice, the most convenient way is to store data in a $u \times v$ matrix $K'\!^t$ with entries:

$$K'_{ij} = K_t\!\left(\sqrt{\left(\frac{i}{b_1-a_1}\right)^2 + \left(\frac{j}{b_2-a_2}\right)^2}\right).$$

The size of K' is of course depending on the kernel bandwidth, but is generally in the order of one tenth to one fifth of the size of M in each coordinates.

On the rotation and scale components, there is no particular vanishing property that can be used. Except when dealing with very small bandwidths, there is no interest in having less kernel values stored that possible distances. In the sequel, the corresponding vectors will be denoted as K^r (resp. K^s) with size p (resp. q).

The density computation can then be performed using the Algorithm 1. On completion, the block matrix M contains as entries the density up to a scalar. Normalizing it so that all its elements sum to 1 yields the final density estimate. In practical implementations, the matrix M will have all its elements stored contiguously.

Algorithm 1 Density computation

1: $M \leftarrow 0$
2: for $i = 0 \ldots N - 1$ do
3: for $j = 0 \ldots M_1 - 1$ do
4: $x \leftarrow \gamma^t_i(t_j)$
5: $(k, l, m, n) \leftarrow$ coordinate of cell containing x
6: $\text{UPDATE}(k, l, m, n)$
end for
end for
8: procedure $\text{UPDATE}(k, l, m, n)$
10: for $i = -u \ldots u$ do
11: if $k + i \geq 0$ and $i < N$ then
12: for $j = -v \ldots v$ do
13: if $l + j \geq 0$ and $j < M_1$ then
14: $k_t \leftarrow K'^r_{k,l,m,n}$
15: $\text{UPDATEINNERBLOCK}(k_t, k+i,l+j,m,n)$
end if
end for
end if
17: end for
18: end for
19: end procedure
20: procedure $\text{UPDATEINNERBLOCK}(k, k, l, m, n)$
21: for $i = 0 \ldots p$ do
22: $ir \leftarrow (m+i) \mod p$
23: $k\theta \leftarrow K'^r_{k,r}$
24: for $j = 0 \ldots q$ do
25: $js \leftarrow n+j$
26: if $js < q$ then
27: $ks \leftarrow K'^s_{k,j}$
28: $M_{k,j,i+ir,j} \leftarrow M_{k,j,i+ir,j} + K_t \ast k\theta \ast ks$
end if
end for
end for
end procedure
B. Moving density computation to GPUs

There is an increasing interest in the numerical analysis community for GPU computation. These massively parallel processors, first intended to perform tasks related to 3D scenes display, have proved themselves very efficient in problems where it is possible to formulate the solution has a set of asynchronous and independent tasks. Due to the high number of processing units available, GPUs excel in many algorithms coming from the field of linear algebra, simulation, PDE solving. In the clustering application described here, GPU computing can leverage the efficiency of density computation that leads naturally to parallel processing. Some care must be taken however as simultaneous accesses to common memory locations may impair the overall performance.

First of all, one can note that computation within a M block, that is updating the rotation and scale part of the density requires only the knowledge of the samples with translation coordinates falling within the corresponding grid cell and is independent of the computation made on another block. This gives access to the first level of parallelism. On most GPU architectures, the computation may be organized in thread blocks. It is the case within the CUDA programming model of NVIDIA, and a thread block size of 16×16 was selected. The size of the kernel grids in rotation and scale components were chosen accordingly. To maximize the performance, the corresponding block in the matrix M is first copied to local memory (designed as “shared memory” in CUDA), then all computation are performed on it within the given thread block. At the end of the updating phase, the local memory is transferred back to the global one. The storage needed for the local block is 256 times the size of a float, which yields a total of 1Ko, well below the 48Ko limit of the CUDA architecture.

At the beginning of the density computation, a global memory block representing the whole of matrix M is allocated on the device and set to 0. One thread block (256 threads) is dedicated to a single block in M, for a total of $m_1 \times m_2 \times 256$ threads. Depending on the hardware and the choice made on m_1,m_2, this value can exceed the maximum number of threads allowed on a particular GPU. In such a case, the update is performed on submatrices of the original matrix M. With the typical values given previously, the maximal number of threads of the GTX980 used for the development is not reached.

Using the GPU to affect the sample points $\gamma_i(t_{ij})$ to the right block in M will not improve the performance. A better choice is to use the CPU to perform the task, then to send the processed array of samples to the GPU device.

A second level of parallelism will be to consider updates of submatrices of blocks in M instead of single blocks. The expected gain is small, except when more that one GPU are present in the system. The implementation details are not given here, trying to improve the overall algorithm being still a work in progress.

C. Implementing the gradient descent algorithm

Once the density grid M has been computed, the implementation of the gradient move is quite straightforward and requires only the ability to estimate the first and second derivative on each trajectory. A very classical finite differences scheme gives a sufficient accuracy to obtain convergence on most situations. It takes the form of the product of a matrix D_i with the $N_i \times 4$ matrix of samples $(\gamma_i(t_{i1}),\ldots,\gamma_i(t_{iN_i}))$ to yield the matrix of derivative estimates $(\gamma_i'(t_{i1}),\ldots,\gamma_i'(t_{iN_i}))$. Please note that the coordinates are put in columns, while the samples are in row. Iterating the product with D_i will give rise to the second derivative. Generally speaking, D_i is obtained from the Lagrange interpolation polynomial and can be constructed using the algorithm 2 (in the sequel d is the degree of the interpolating polynomial).

Algorithm 2 Computation of the derivation matrix D_i

1: $D_i \leftarrow 0$
2: for $k = 0 \ldots N_i$ do
3: \hspace{1em} offset = GETOFFSET(k)
4: \hspace{1em} for $j = 0 \ldots N_i$ do
5: \hspace{2em} $D_i[k;j+offset] = \text{LAGRANGE}(j,k,offset)$
6: \hspace{1em} end for
7: end for
8: function GETOFFSET(i)
9: \hspace{1em} if $i < d/2$ then
10: \hspace{2em} o $\leftarrow 0$
11: \hspace{1em} else if $i > N_i - d/2 - 1$ then
12: \hspace{2em} o $\leftarrow N_i - d$
13: \hspace{1em} else
14: \hspace{2em} o $\leftarrow i - d/2$
15: \hspace{1em} end if
16: \hspace{1em} return o
17: end function
18: function LAGRANGE(k,j,offset)
19: \hspace{1em} w $\leftarrow 1.0$
20: \hspace{1em} for $a = 0 \ldots d$ do
21: \hspace{2em} if $a \neq k$ then
22: \hspace{3em} w $\leftarrow w * (t_{i,k+offset} - t_{i,a+offset})$
23: \hspace{2em} end if
24: \hspace{1em} end for
25: \hspace{1em} s $\leftarrow 0.0$
26: \hspace{1em} for $a = 0 \ldots d$ do
27: \hspace{2em} if $a \neq k$ then
28: \hspace{3em} p $\leftarrow 1.0$
29: \hspace{2em} for $b = 0 \ldots d$ do
30: \hspace{3em} if $b \neq k \land b \neq a$ then
31: \hspace{4em} p $\leftarrow p * (t_{i,j} - t_{i,b+offset})$
32: \hspace{3em} end if
33: \hspace{2em} end for
34: \hspace{2em} s $\leftarrow s + p$
35: \hspace{2em} end if
36: \hspace{1em} end for
37: \hspace{1em} return s/w
38: end function

As mentioned before, integrals are computed using a quadrature formula, that was chosen to the simplest one, with all weights equal.

D. Results

In Figures 1 and 2, the problem of automatic conflict solving is addressed. From an initial flight plan, we have generated a conflicting set of trajectories that are converging to a single unsafe point. The median of the initial flows correspond to the flight plan showed in Figure 1. Next, an automated planner has proposed a solution by generating a set of safe trajectories that are relatively complex and may
fail to be manageable by air traffic controllers. In Figure 2, the minimization entropy criterion has deformed the proposed flight paths and produced straighten trajectories with route-like behavior. The median of the initial and the final flows are represented in Figures 1 and 2.

![Figure 1. Initial flight plan.](image1)

![Figure 2. Entropy minimal curve system from the initial flight plan.](image2)

However, because the spatial density is not sensitive to the directional information, the entropy based procedure will tend to aggregate flight paths that should be sufficiently separated such that trajectories with opposite directions. The Lie group modeling will take into account the direction and the position of the curves and the algorithm works as expected, avoiding going too close to trajectories with opposite directions as indicated on Figure 3. Note that using the Lie approach properly separates the two left flight paths that have similar shape but opposite directions.

![Figure 3. Clustering using the Lie approach.](image3)

In a more realistic setting, arrivals and departures at Toulouse Blagnac airport were analyzed. The dataset used was a record of approximately 1700 trajectories between Paris Orly and Toulouse Blagnac. The projection used focuses on Blagnac and exaggerates the lateral deviation to enlighten the fluxes separation. The algorithm performs well as indicated on Figure 4. Four clusters are identified, with mean lines represented through a spline smoothing between landmarks. It is quite remarkable that all density-based algorithms were unable to separate the two clusters located at the right side of the picture, while the present one clearly show a standard approach procedure and a short one.

![Figure 4. Mean cluster trajectories at Toulouse airport (nautical miles). Red arrivals and grey departures.](image4)

An important issue still to be addressed with the extended algorithm is the increase in computation time that reaches 20 times compared to the approach using only spatial density entropy. In the current implementation, the time needed to cluster the traffic presented in Figure 3 is in the order of 0.01s on a XEON 3Ghz machine and with a pure java implementation. For the case of Figure 4, 5 minutes are needed on the same machine for dealing with the set of 1784 trajectories.

Finally, a similar procedure was used to obtain the so-called bundled traffic. Here the purpose of the algorithm is not to cluster flight paths, but instead simplify the picture so that an operator is able to extract quickly the interesting features. The heading information was not used in the experiments, since the main goal was to extract the major flows followed by the aircraft so as to dimension the airspace sectoring. One picture represents one day of recorded traffic over France, with all low altitude flights removed: they correspond to general aviation and are not to be considered in the design of the airspace. Roughly 8000 trajectories are processed for one day. Since there is no heading information, the execution time is greatly reduced. Furthermore, the software was implemented here in C++, resulting in a total processing time of 5 seconds on the same machine as above.
VI. CONCLUSION AND FUTURE WORK

The entropy associated with a system of curves has proved itself efficient in unsupervised clustering application where shape constraints must be taken into account. For using it in aircraft route design, heading and velocity information must be added to the state vector, inducing an extra level of complexity. In our algorithm, we cannot enforce the regulatory separation norms, just construct clusters with low interactions. Please note that we can consider the current algorithm as a preprocessing phase. In a second step, we could imagine running an algorithm based on, for instance, optimal control in order to keep in line with the minimum separation norms. The present work relies on a Lie group modeling as an unifying approach to state representation. It has successfully extended the notion of curve system entropy to this setting, allowing the heading/velocity to be added in a intrinsic way. The method seems promising, as indicated by the results obtained on simple synthetic situations, but extra work needs to be dedicated to algorithmic efficiency in order to deal with the operational traffic datasets, in the order of tens of thousand of trajectories.

Moreover, the choice of the kernel bandwidth parameters should be explored in the next step of this work. Indeed, as it is noted in [2], kernel bandwidth values will influence the effect of the minimization entropy procedure on the curve straightening: straightening is preeminence for low values, while gathering dominates at high bandwidths. An automatic procedure in the choice of bandwidth parameter is then desirable and an adaptive bandwidth procedure may be of some interest.

Generally speaking, introducing a Lie group approach to data description paves the way to new algorithms dedicated to data with a high level of internal structuring. Studies are initiated to address several issues in high dimensional data analysis using this framework.

REFERENCES

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

