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Abstract—Optimized coverage using multi-sensors is a 

challenging task, which is becoming more and more 

complicated in dense and occluded environments such as 

urban environments. In this paper, we propose a multi-

sensors placement solution for optimized coverage in dense 

urban environments. Our main contribution is based on two 

main efforts: 1. Defining conditions necessary for visibility, 

taking into account detection and false alarm rate 

probabilities, representing the sensor's stochastic character as 

part of our visibility analysis. 2. Unique concept facing 

partially visible objects, such as trees, in an urban scene, 

extending our previous work and proposing fast and exact 3D 

visible volumes analysis in urban scenes based on an analytic 

solution. We consider several 3D models for 3D visibility 

analysis and present an optimized solution using genetic 

algorithm, suited to our problem's constraints. We 

demonstrate the results through simulations with a 3D 

neighborhood model, taking trees into account. We 

demonstrate formulation of the conditions necessary for 

visibility related to detection and false alarm rate 

probabilities. 
 

Keywords- Visibility; 3D; Urban environment; Spatial 
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I.  INTRODUCTION AND RELATED WORK 

Modern cities and urban environments are becoming 

denser more heavily populated and are still rapidly growing, 

including new infrastructures, markets, banks, transportation, 

etc. 

At the same time, security needs are becoming more and 

more demanding in our present era, in the face of terror 

attacks, crimes, and the need for improving law enforcement 

capabilities, as part of the increasing global social demand 

for efficient and immediate homeland and personal security 

in modern cities. 

In the last two decades, more and more cities and mega-

cities have started using multi-camera networks in order to 

face this challenge, mounting cameras for security 

monitoring needs [1]; however, this is still not enough [30]. 

Due to the complexity of working with 3D and the dynamic 

constraints of urban terrain, sensors were placed in busy and 

populated viewpoints, to observe the occurrences at these 

major points of interest. 

These current multi-sensors placement solutions ignore 

some key factors, such as: visibility analysis in 3D models, 

which also consist of unique objects such as trees; changing 

the visibility analysis aspect from visible or invisible states 

to semi-visible cases, such as trees, and above all 

optimization solutions which take these factors into account. 

Multi-sensor placement in 3D urban environments is not a 

simple task. The optimization problem of the optimal 

configuration of multi sensors for maximal coverage is a 

well-known Non-deterministic Polynomial-time hard (NP-

hard) one [5], even without considering the added 

complexity of urban environments. 

An extensive theoretical research effort has been made 

over the last four decades, addressing a much simpler 

problem in 2D known as the art gallery problem, with 

unrealistic assumptions such as unlimited visibility for each 

agent, while the 3D problem has not received special 

attention [8][28][35]. 

The coupling between sensors' performances and their 

environment's constraints is, in general, a complex 

optimization problem. In this paper, we study the multi-

sensors placement optimization problem in 3D urban 

environments for optimized coverage based on genetic 

algorithms using novel visibility analysis. 

     Our optimization solution for this problem relates to 

maximal coverage from a number of viewpoints, where each 

3D position (x, y, z coordinates) of the viewpoint is set as 

part of the optimized solution. The search space contains 

local minima and is highly non-linear. The Genetic 

Algorithms are global search methods, which are well-suited 

for such tasks. The optimization process is based on 

randomly generating an initial population of possible 

solutions (called chromosomes) and, by improving these 

solutions over a series of generations, it is able to achieve an 

optimal solution [36]. 

Multi-sensor placements are scene- and application- 

dependent, and for this reason generic rules are not very 

efficient at meeting these challenges. Our approach is based 

on a flexible and efficient analysis that can handle this 

complexity. 

      The total number of sensors is a crucial parameter, due to 

the real-time outcome data that should be monitored and 

tracked, where too many sensors are not an efficient solution. 
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We address the sensor numbers that should be set as a 

tradeoff of coverage area and logical data sources that can be 

monitored and tracked. 

      As part of our high-dimension optimization problem, we 

present several 3D models, such as B-ref, sweeping and 

wireframe models, Polyhedral Terrain Models (PTM) and 

Constructive Solid Geometry (CSG) for an efficient 3D 

visibility analysis method, integrating trees as part of our fast 

and efficient visibility computation, thus extending our 

previous work [25] to 3D visible volumes. 

Accurate visibility computation in 3D environments is a 

very complicated process demanding a high computational 

effort, which cannot be easily carried out in a very short time 

using traditional well-known visibility methods [41]. The 

exact visibility methods are highly complex, and cannot be 

used for fast applications due to their long computation time. 

As mentioned above, previous research in visibility 

computation has been devoted to open environments using 

Digital Elevation Model (DEM) models, representing raster 

data in 2.5D (Polyhedral model), which do not address, or 

suggest solutions for, densely built-up areas.  

One of the most efficient methods for DEM visibility 

computation is based on shadow-casting routine. The routine 

casts shadowed volumes in the DEM, like a light bubble 

[42]. Other methods related to urban design environment and 

open space impact treat abstract visibility analysis in urban 

environments using DEM, focusing on local areas and 

approximate openness [20]. Extensive research treated 

Digital Terrain Models (DTM) in open terrains, mainly 

Triangulated Irregular Network (TIN) and Regular Square 

Grid (RSG) structures. Visibility analysis on terrain was 

classified into point, line and region visibility, and several 

algorithms were introduced based on horizon computation 

describing visibility boundaries [11][12]. 

A vast number of algorithms have been suggested for 

speeding up the process and reducing computation time [38]. 

Franklin [21] evaluates and approximates visibility for each 

cell in a DEM model based on greedy algorithms. An 

application for siting multiple observers on terrain for 

optimal visibility cover was introduced in [23]. Wang et al. 

[52] introduced a Grid-based DEM method using viewshed 

horizon, saving computation time based on relations between 

surfaces and Line Of Sight (LOS), using a similar concept of 

Dead-Zones visibility [4]. Later on, an extended method for 

viewshed computation was presented, using reference planes 

rather than sightlines [53]. 

Most of these published papers have focused on 

approximate visibility computation, enabling fast results 

using interpolations of visibility values between points, 

calculating point visibility with the Line of Sight (LOS) 

method [13]. Other fast algorithms are based on the 

conservative Potentially Visible Set (PVS) [16]. These 

methods are not always completely accurate, as they may 

render hidden objects' parts as visible due to various 

simplifications and heuristics. 

Only a few works have treated visibility analysis in urban 

environments. A mathematical model of an urban scene, 

calculating probabilistic visibility for a given object from a 

specific viewcell in the scene, has been presented by [37]. 

This is a very interesting concept, which extends the 

traditional deterministic visibility concept. Nevertheless, the 

buildings are modeled as cylinders, and the main challenges 

of spatial analysis and model building were not tackled. 

Other methods have been developed, subject to computer 

graphics and fields of vision, dealing with exact visibility in 

3D scenes, without considering environmental constraints. 

Concerning this issue, Plantinga and Dyer [41] used the 

aspect graph – a graph with all the different views of an 

object. Shadow boundaries computation is a very popular 

method, studied by [14][47][48]. All of these works are not 

applicable to a large scene, due to computational complexity.  

As mentioned, online visibility analysis is a very 

complicated task. Recently, off-line visibility analysis, based 

on preprocessing, was introduced. Cohen-Or et al. [4] used a 

ray-shooting sample to identify occluded parts. Schaufler et 

al. [44] use blocker extensions to handle occlusion.  

Since visibility analysis in 3D urban environments is a 

very complicated task, it is therefore our main optimization 

function, known as Fitness. We introduce an extended 

visibility aspect for the common method of Boolean 

visibility values, "1" for objects seen and "0" for objects 

unseen from a specific viewpoint, and treat trees as semi-

visibility values (such as partially seen, "0.5" value), thereby 

including in our analysis the real environmental phenomena, 

which are commonly omitted. 

We extend our previous work and propose fast and exact 

3D visible volumes analysis in urban scenes based on an 

analytic solution, integrating trees into our 3D model, and it 

is demonstrated with a real urban scene model from Neve-

Sha'anan neighborhood (within the city of Haifa).  

In the following sections, we first introduce an overview 

of 3D models and our demands from these models. In the 

next section, we extended the 3D visible volumes analysis, 

which for the first time, takes trees into account. Later on, we 

present the simulation using the Neve-Sha'anan 

neighborhood (within the city of Haifa) 3D model. We 

present our genetic algorithm optimization stages and 

simulation based on our 3D visible volumes analysis, taking 

trees into account. Eventually, we extend our current 

visibility aspect and include conditions necessary for 

visibility based on the sensor's stochastic character and 

present the effect of these limitations on our visibility 

analysis. 

II. 3D MODELS FOR VISIBILITY ANALYSIS – OVERVIEW 

In this section, we present a comprehensive overview of 

3D models for urban scenes, from visibility analysis aspects. 

We divide the different models into polyhedral, parametric 

classes, which are available today using existing data sets, 

and examine the advantages and disadvantages of each. We 
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focus on visibility computation capabilities using these 

models. 

A. Polyhedral models 

Wireframe - In this model, 3D objects are represented as 

a set of vertices and lines, but not as faces. The model's 

assumption is that buildings consist of straight lines and that 

very dense scenes can be modeled. However, building types 

are very limited and, above all, the model is missing 

topological relations. Therefore, wireframe models are rarely 

used for visibility analysis applications. 

B-rep - Boundary models offer a very flexible tool for 

modeling manmade objects. They are based on a surface-

oriented view of solid objects: an object is considered as 

completely represented by its bounding faces. In order to 

represent the object correctly, boundary models consist of 

edges and vertices, as well as the topological relations of all 

features. The faces, edges, and vertices are the (labeled) 

nodes of a graph, and the direct neighborhood relations are 

described by a graph of edges, as shown in Figure 1. 

 

 
Figure 1.  Boundary model of a solid object: a graph with nodes of type f 

(faces), e (edges) and v (vertices) and their topological relations (source: 

[34]) 

Boundary models are well-suited for visualization tasks 

because they readily include all data required for that 

purpose, which is why they are very often used for 3D solid 

modeling systems. On the other hand, simple operators 

demand a very complex computation effort, which is 

sometimes critical for efficient visibility analysis, with 

limited representation capabilities. Therefore, B-ref are very 

common for visualization but not for efficient visibility 

analysis. 

B. Parametric models  

Sweep methods: Sweep-representations of a 3D object 

are created by moving a planar (2D) shape, which is usually 

defined as a closed polygon, according to a pre-defined rule 

[43][46]. Depending on the rule by which the 2D shape is 

moved, two types of sweep representations can be 

distinguished, as seen in Figure 2:  

Translational sweep: The shape is translated along a pre-

defined translational vector.  

Rotational sweep: The shape is rotated around a pre-defined 

rotational axis.  

The concept of translational sweeps can be extended by 

sweeping two shapes along each other [34]. Sweep 

representations are widely-used in computer vision, using 

symmetry for rendering techniques. However, topological 

relations and Boolean set operations between objects used in 

visibility methods such as union, intersection and difference 

are not supported. Moreover, the generation of arbitrary 

objects becomes rather difficult using this technique [46].  

Constructive Solid Geometry (CSG): It is the aim of 

CSG to provide solid 3D primitives describing a set of 

parameters that reflect the object's dimensions. CSG 

primitives are simple objects such as cubes, boxes, 

tetrahedrons or quadratic pyramids. The CSG method can be 

easily adapted by using Boolean set operations (union, 

intersection and difference) in order to represent more 

complex objects consisting of more than one primitive, as 

shown in Figure 3. Therefore, CSG is the most useful and 

convenient method for visibility analysis, since the 

generation history of the solid itself, corresponding to the 

CSG tree upper node, is stored in the tree, as can be seen in 

Figure 4. As Boolean set operations are an integral part of a 

CSG tree, these operations are closed for CSG trees, e.g., 

the union of two CSG trees will again be a valid CSG tree 

[34]. 

 

 
 

Figure 2.  Sweeping a planar rectangular shape. (Top) a translational 

sweep creates a vertical prism. (Bottom) a rotational sweep creates a 
cylindrical object (source: [34]) 

 

Figure 3.  Boolean set operations (union, difference and intersection) 

(source: [34]) 

 

 
Figure 4.  CSG - The CSG model (left) is represented by the CSG tree 

(right) consisting of three primitives connected by a Boolean union 
operation, (source: [34]) 
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C. Discussion 

Visibility analyses commonly use tree presentations, 

which allow fast Boolean operations and modeling many 

types of objects, where computational effort is a major 

issue. The existing models possess rules which eliminate 

them from representing the whole building's structure 

envisioned by the designing architect. Table I summarizes 

the different capabilities of each model for our demands, 

where CSG seems to be the most relevant model for 

visibility computation.  

TABLE I.  COMPARISONS OF 3D MODELS FOR VISIBILITY 

COMPUTATION 

Presentation 

Accuracy 

Fast Visibility 

Computation 

Presentation 

friability 
Model 

Low Limited Limited Wireframe 

High Limited Flexible B-rep 

Medium Limited Limited Sweep 

High Flexible Constraint free CSG 

III. ANALYTIC 3D VISIBLE VOLUMES ANALYSIS 

In this section, we present fast 3D visible volumes 

analysis in urban environments, based on an analytic solution 

that plays a major role in our proposed method of estimating 

the number of clusters. We briefly present our analysis 

presented in [27], extending our previous work [25] for 

surfaces' visibility analysis, and present an efficient solution 

for visible volumes analysis in 3D. 

We analyze each building, computing visible surfaces 

and defining visible pyramids using analytic computation for 

visibility boundaries [25]. For each object we define Visible 

Boundary Points and (VBP) and Visible Pyramid (VP). 

A simple case demonstrating analytic solution from a 

visibility point to a building can be seen in Figure 5(a). The 

visibility point is marked in black, the visible parts colored in 

red, and the invisible parts colored in blue where VBP are 

marked with yellow circles.  

 
                            (a)                                                        (b) 

Figure 5.  (a) Visibility Volume Computed with the Analytic Solution. (b) 

Visible Pyramid from a Viewpoint (marked as a Black Dot) to VBP of a 

Specific Surface (source: [27]). 

In this section, we briefly introduce our concept for 

visible volumes inside bounding volume by decreasing 

visible pyramids and projected pyramids to the bounding 

volume boundary. First, we define the relevant pyramids and 

volumes. 

The Visible Pyramid (VP): we define VPi
j=1..Nsurf

(x0, y0, 

z0) of object i as a 3D pyramid generated by connecting 

VBP of specific surface j to a viewpoint V(x0, y0, z0). 

In the case of a box, the maximum number of Nsurf for a 

single object is three. VP boundary, colored with green 

arrows, can be seen in Figure 5(b). 

For each VP, we calculate Projected Visible Pyramid 

(PVP), projecting VBP to the boundaries of the bounding 

volume S. 

Projected Visible Pyramid (PVP) - we define 

    
                   of object i as 3D projected points to 

the bounding volume S, VBP of specific surface j through 

viewpoint V(x0, y0, z0). PVP boundary, colored with purple 

arrows, can be seen in Figure 6.  

 

 
Figure 6.  Invisible Projected Visible Pyramid Boundaries colored with 

purple arrows from a Viewpoint (marked as a Black Dot) to the boundary 
surface ABCD of Bounding Volume S (source: [27]). 

The 3D Visible Volumes inside bounding volume S,    , 

computed as the total bounding volume S,     minus the 

Invisible Volumes    . In a case of no overlap between 

buildings,     is computed by decreasing the visible volume 

from the projected visible volume,          
 
  

     
   

    
   

     
 
    

             
      

   

    
   

                      (1)                                       

                
 
       

 
  

     

   

    

   

 

 

By decreasing the invisible volumes from the total 

bounding volume, only the visible volumes are computed, as 

seen in Figure 7. Volumes of PVP and VP can be simply 

computed based on a simple pyramid volume geometric 

formula. 

Invisible Hidden Volume (IHV) - We define Invisible 

Hidden Volume (IHV), as the Invisible Surface (IS) between 

visible pyramids projected to bounding box S. 

The PVP of the object close to the viewpoint is marked in 

black, colored with pink circles denoted as boundary set 

points              and the far object's PVP is colored with 

orange circles, denoted as boundary set points             . 
It can be seen that IHV is included in each of these invisible  
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Figure 7.  Invisible Volume       
 
       

 
  Colored in Gray Arrows. 

Decreasing Projected Visible Pyramid boundary surface ABCD of 

Bounding Volume S from Visible Pyramid (source: [27]). 

volumes, where                           
and                          , as can be seen in Figure 8. 

Therefore, we add IHV between each overlapping pair of 

objects to the total visible volume. In the case of overlapping 

between objects' visible pyramids, 3D visible volume is 

formulated as:  

 

                
 
       

 
      

 
 

     
   

    

           (2) 

 

The same analysis holds true for multiple overlapping 

objects, adding the IHV between each two consecutive 

objects. 

 

 

Figure 8.  Invisible Volume       
 
       

 
  colored in purple and 

green arrows for each building. PVP of the object close to viewpoint 
colored in black, the far object PVP colored with orange circle (source: 

[27]). 

Extended formulation for two buildings with or without 

overlap can be seen in [27]. 

A. Partial Visibility Concept - Trees 

In this research, we analyze trees as constant objects in 

the scene, and formulate a partial visibility concept. In our 

previous work, we tested trees as dynamic objects and their 

effect on visibility analysis [26]. Still, the analysis focused 

on trees' branches over time, setting visible and invisible 

values for each state, taking into account probabilistic 

modeling in time. 

We model trees as two boxes [40], as seen in Figure 9. 

The lower box, bounded between        models the tree's 

trunk, leads to invisible volume and is analyzed as presented 

previously for a box modeling building's structures. On the 

other hand, the upper box bounded between         is 

defined as partially visible, since a tree's leaves and the 

wind's effect are hard to predict and continuously change 

over time. Due to these inaccuracies, we set the projected 

surfaces and the Projected Visible Pyramid of this box as 

half visible volume. 

 

 
Figure 9.  Modeling a Tree Using Two Bounding Boxes. 

According to that, a tree's effect on our visibility analysis 

is divided into regular boxes included in the total number of 

objects,      (identical to the building case), and the upper 

boxes modeling the tree's leaves, denoted as          The 

total 3D visible volumes can be formulated as: 

                
 
       

 
      

 
 

     

   

 

    

   

 

  
 

 
       

 
       

 
      

 
 

     

   

      

   

 

    

(3) 

 

B. Simulations 

In this section, we demonstrate our 3D visible volumes 

analysis in urban scenes integrated with trees, presented in 

the previous section. We have implemented the presented 

algorithm and tested some urban environments on a 1.8GHz 

Intel Core CPU with Matlab. Neve-Sha'anan Street in the 

city of Haifa was chosen as a case study, presented in Figure 

10.  

We modeled the urban environment into structures using 

AutoCAD model, as seen in Figure 11, with bounding box S. 

By using the Matlab©MathWorks software we automated 

the transformation of data from AutoCAD structure to our 

model’s internal data structure.  

Our simulations focused on two cases: (1) small-scale 

housing in dense environments; (2) Multi-story buildings in 

an open area. These two different cases do not take the same 

objects into account. The first viewpoint is marked with 

black dot and the second one marked in purple, as seen in 

Figure 12. Since trees are not a part of our urban scene 

0 

   

    
 

h1 

h2 
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model, trees are simulated based on similar urban terrain in 

Neve-Sha'anan. We simulated fifty trees' locations using 

standard Gauss normal distribution, where the trees' 

parameters       are defined randomly                 
       , as seen in Figure 12.  

 

 
Figure 10.  Views of Neve-Sha'anan Street, Haifa, Israel from Google Maps  

source: [20] 

 

Figure 11.  AutoCAD model of Neve-Sha'anan Street, Haifa, Israel. 

 

 
Figure 12.  Tested Scenes with Trees marked with green points, Viewpoint 

1 Colored in Black, Viewpoint 2 Colored in Purple : (a) Small-scale 

housing in dense environments; (b) Multi-story buildings in an open area. 

We set two different viewpoints, and calculated the 

visible volumes based on our analysis presented in the 

previous sub-section. Visible volumes with time computation 

for different cases of bounding boxes' test scenes are 

presented in Table II and Table III. 

One can notice that the visible volumes become smaller 

in the dense environments described in Table II, as we 

enlarge the bounding box. Since we take into account more 

buildings and trees, less volumes are visible and the total 

visible volumes from the same viewpoint are smaller. 

Pseudo-code of our visible volumes analysis can be seen in 

Section II.C. 

 

TABLE II.  VISIBLE VOLUMES AND COMPUTATION TIME FOR SMALL-
SCALE HOUSING CASE 

Bounding 

Box 
Viewpoint 

Visible 

Volumes 

[        

Computation 

Time 

[sec] 

[100 m *100 

m * 100 m] 

Viewpoint 1 321.7 
19.6 

Viewpoint 2 486.8 

[200 m * 200 

m * 200 m] 

Viewpoint 1 547.4 
20.8 

Viewpoint 2 584.2 

TABLE III.  VISIBLE VOLUMES FOR SMALL MULTI-STORY BUILDINGS 

CASE 

Bounding Box 

[100 m *100 m * 100 

m] 

Visible Volumes 

[        
Computation Time 

[sec] 

Viewpoint 1 3453 
22.9 

Viewpoint 2 3528 

 

C.   3D Visible Volumes - Pseudo Code 

 
Given viewpoint V(x0, y0, z0) 
1. Calculate bounding volume    
2. For  i=1:1:Nobj  building models  

     2.1. Calculate Azimuth 
i and Distance 

iD  from viewpoint to object 

2.2. Set and Sort Buildings Azimuth Array [ ]i  

2.3. IF Azimuth Objects (i, 1..i-1) Intersect   
       2.3.1. Sort Intersected Objects j=1:1:Ninsect by Distance                 

       2.3.2. Compute VBP for each intersected building, 
int sec

1..

1..
boundN

j NVBP 
. 

       2.3.3. Generate VP for each intersected building, 
int sec

1..

1..
surfN

j NVP 
 

       2.3.4. Set     
 
 and     

 
 volumes for objects, Nobj 

       2.3.5. Set     
 
 and     

 
 volumes for Trees, NTrees  

Else 

       2.3.6. Compute VBP for each object, 
int sec

1..

1..
boundN

j NVBP 
. 

       2.3.7. Generate VP for each building, 
int sec

1..

1..
surfN

j NVP 
 

       2.3.8. Set     
 
 volumes for objects, Nobj 

       2.3.9. Set     
 
 volumes for Trees, NTrees  

     End 
2.4. Calculate Visible Volumes      
End  

 

D.  Complexity Analysis 

We analyze our algorithm complexity based on the 
pseudo code presented in the previous section, where n 
represents the number of buildings and trees. In the worst 
case, n objects hide each other. Visibility complexity consists 
of generating VBP and VP for n objects,       complexity. 
Projection and intersection are also       complexity. The 
complexity of our algorithm, without considering data 
structure managing for urban environments, is      . 

IV. OPTIMIZED COVERAGE USING GENETIC ALGORITHMS 

The Genetic Algorithm (GA) presented by Holland [31] is 

one of the most common algorithms from the evolutionary 
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algorithms class used for complex optimization problems in 

different fields, such as: pharmaceutical design [33], 

financial forecasting [50], tracking and coverage 

[18][39][45], and bridge design [24]. These kinds of 

algorithms, inspired by natural selection and genetics, are 

sometimes criticized for their lack of theoretical background 

due to the fact that in some cases the outcome is 

unpredictable or difficult to verify.  

The main idea behind GA is based on repeated evaluation 

of individuals (which are part of a candidate solution) using 

an objective function over a series of generations. These 

series are improved over generations in order to achieve an 

optimal solution. In the next paragraphs, we present the 

genetic algorithms' main stages, adapted to our specific 

problem. 

The major stages in the GA process (evaluation, selection, 

and reproduction) are repeated either for a fixed number of 

generations, or until no further improvement is noted. The 

common range is about 50-200 generations, where fitness 

function values improve monotonically [31]. A block 

diagram of GA is depicted in Figure 13. 

 

 
Figure 13.  GA Block Diagram, source: [31]. 

Population Initialization: The initialization stage creates 

the first generation of candidate solutions, also called 

chromosomes. A population of candidate solutions is 

generated by a random possible solution from the solution 

space. The number of individuals in the population is 

dependent on the size of the problem and also on 

computational capabilities and limitations. In our case, it is 

defined as 500 chromosomes, due to the fact that 3D visible 

volumes must be computed for each candidate.  

For our case, the initialized population of viewpoints 

configuration is set randomly, and would probably be a poor 

solution due to its random nature, as can be estimated. The 

chromosome is a 3xN-dimensional vector for N sensor's 

locations, i.e., viewpoints, where position and translation is a 

3-dimensional (x,y,z) vector for each viewpoint location, as 

seen in Figure 14. The population is depicted in Figure 15.  

Evaluation: The key factor of genetic algorithm relates 

to individual evaluation, which is based on a score for each 

chromosome, known as Fitness function. This stage is the 

most time-consuming in our optimization, since we evaluate 

all individuals in each generation. It should be noticed that 

each chromosome score leads to 3D visible volume 

computation N times. As a tradeoff between the covered area 

and computational effort, we set N to eight. In the worst 

case, one generation evaluation demands visibility analysis 

for four thousand different viewpoints. In such a case, one 

can easily understand the major drawback of the GA method 

in relation to computational effort. Nevertheless, parallel 

computation has made a significant breakthrough over the 

last two decades; GA and other optimization methods based 

on independent evaluation of each chromosome can nearly 

be computed in linear time.  

 

 
Figure 14.  An individual in the GA search is also called "Chromosome". In 

our case it represents one possible sensor's location for N viewpoints 

computing 3D visible volumes analysis with trees. 

 
Figure 15.  Population of GA search with N chromosomes. 

Fitness Function: The fitness function evaluates each 

chromosome using optimization function, finding a global 

minimum value, which allows us to compare chromosomes 

in relation to each other.  

 In our case, we evaluate each chromosome's quality 

using 3D visible volumes normalized to the bounding box S 

around a viewpoint: 

     
 

 
       

 

   

        (4) 

Selection: Once the population is sorted by fitness, 

chromosomes' population with greater values will have a 

better chance of being selected for the next reproduction 

stage. Over the last years, many selection operators have 

been proposed, such as the Stochastic Universal Sampling 

and Tournament Selection. We used the most common 

Tournament, where k individuals are chosen randomly, and 

the best performance from this group is selected. The 

selection operator is repeated until a sufficient number of 

parents are chosen to form a child generation. 

Reproduction: In this stage, the parent individuals 

chosen in the previous step are combined to create the next 

generation. Many types of reproduction have been presented 

over the years, such as crossover, mutation and elitism. 

Crossover takes parts from two parents and splices them 

to form two offspring, as seen in Figure 16(a). Mutation 

modifies the parameters of a randomly selected chromosome 

from within a single parent, as seen in Figure 16(b). Elitism 

takes the fittest parents from the previous generation and 

replicates them into the new generation. Finally, individuals 

not selected as parents are replaced with new, random 
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offspring. Further analysis and operators can be found in 

[29][36]. The major steps of these operators can be seen in 

Figure 16. 

      
                         (a)                                                            (b)                                                              

Figure 16.  Reproduction operators of GA (a) Crossover (b) Mutation  

 source: [17]. 

A. Simulations 

In this section, we report on simulation runs with our 3D 

visible volumes analysis in urban scenes integrated with 

trees, using genetic algorithms. The genetic algorithms were 

tested on a 1.8GHz Intel Core CPU with Matlab. We used 

Fallvile Island Sketchup Google Model [19] for simulating a 

dense urban scene with trees, as seen in Figure 17.  

The stages of Crossover and Elitism operators are 

described as follows, with a probability of        

(otherwise parents are copied without change): 

1. Choose a random point on the two parents. 

2. Split parents at this crossover point. 

3. Create next generation chromosomes by exchanging tails. 

Where the Mutation operator modifies each gene 

independently with a probability            
In order to process the huge amount of data, we bounded 

a specific region, which includes trees and buildings, as seen 

in Figure 18. We imported the chosen region to Matlab and 

modeled the objects by boxes, neglecting roofs' profiles. 

Time computation for one generation was one hour long on 

average. As we could expect, the evaluation stage took up 

94% of the total simulation time. We set the bounding box S 

as [500 m* 200 m* 50 m]. Population initialization included 

500 chromosomes, each of which is a 24-dimensional vector 

consisting of position and translation, where all of them were 

generated randomly. 

Based on the Fitness function described previously and 

the different GA stages and 3D visible volumes analysis, the 

location of eight viewpoints for sensor placement was 

optimized. Viewpoints must be bounded in S and should not 

penetrate buildings and trees. Stop criteria was set to 50 

generations and Fitness function gradient. 

Optimal coverage of viewpoints and visible volumes 

during ten runnings' simulations is seen in Figure 19, 

bounded in polygons marked with arrows. During these ten 

runnings simulations, we initialized the population randomly 

at different areas inside bounding box S. 

These interesting results show that trees' effect inside a 

dense urban environment was minor, and trees around the 

buildings in open spaces set the viewpoint's location. As seen 

in Figure 19, polygon A and polygon B are both outside the 

areas blocked by buildings. But they are still located near 

trees, which affect the visible volumes, and we can predict 

that the same affect will occur in our real world. On the other 

hand, polygon C, which is closer to the area blocked by 

buildings, takes into account the trees in this region, but the 

major factor are still the buildings. 

 

 
(a) 

                                                                                                       
(b) 

Figure 17.  Fallvile Island Sketchup Google Model Simulating Dense 

Urban Scene with Trees, [19]: (a) Topview; (b) Isometric view. 

 
Figure 18.  Bounded Area inside Bounding Box S marked in Black, inside 

Fallvile Island Sketchup Google Model. 

 

 
Figure 19.  Bounded Polygons of Optimized Cover Viewpoints Using GA 

marked with Arrows. 

A 
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V. VISIBILITY ANALYSIS CONSIDERING SENSOR'S 

STOCHASTIC CHARACTER 

In this section, we extend our visibility model by 

exploring and including sensors' sensing capabilities and 

physical constraints. Our visibility analysis is based on the 

fact that sensors are located at specific visibility points. 

Sensors are commonly treated as deterministic detectors, 

where a target can only be detected or undetected. These 

simplistic sensing models are based on the disc model 

[6][49]. 

We study sensors' visibility-based placement effected by 

taking into account the stochastic character of target 

detection. We present a single sensor model, including noisy 

measurement, and define the necessary condition for 

visibility analysis with false alarm and detection probabilities 

for each visibility point's candidate. 

A. Single Visibility Sensing Model 

Most of the physical signals are based on energy vs. 

distance from single source model. Different kind of sensors 

such as: radars, lasers, acoustics, etc., are based on this signal 

character. Like other signal models presented in the literature 

[15][32][51] we use signal decay model as follows: 

 

      

  

 
 

  
  
        

          

                                   (5) 

 
where    is the original energy emitted by the target, k is the 

decaying factor (typical values from 2 to 5), and    is a 

constant determined by the size of the target and the sensor. 

We model the sensor's noise    located at visibility point 

  , using zero-mean normal distribution,         
  . 

Sensor signal energy including noise effect,   , can be 

formulated as: 

 

           
                                  (6) 

 
In practice,    parameters are set by empiric datasets.  

 

B. Visibility Using Sensors Network 

Nowadays, detection systems use more and more data 

fusion methods [9][10]. In order to use multi sensors 

benefits, fusion and local decision-making using several 

sensors' data is a very common capability. As with other 

distributed data fusion methods, we assume that each sensor 

sends the energy measurement to a Local Decision Making 

Module (LDMM). Similar to other well known fusion 

methods [51], the LDMM integrates and compares the 

average sensors' measurements n against detection threshold 

 .     

Detection probability, denoted by   , is the probability 

that a target is correctly detected. Supposing that n sensors 

take part in the data fusion applied in the LDMM, detection 

probability is given by: 
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Where             and    denote the distribution 

function. In the same way, false alarm rate probability is the 

probability of making a positive detection decision when no 

target is present. False alarm rate probability, denoted by   , 

is given by: 
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Conditions Necessary for Visibility: Given two real 

numbers,         and        . Visibility Point 

          can be defined as visible point if and only if  

         and         . 

 

The conditions necessary for visibility plays a major role 

in the GA process. In order to include stochastic sensor 

character as part of our visibility analysis and sensor 

placement, we suggest an updated GA search block diagram. 

As described above, the population stage creates the first 

generation of candidate solutions, also called chromosomes. 

These chromosomes should be tested and pass the necessary 

condition, as can be seen in Figure 20. If a specific 

chromosome fails, other chromosomes are generated 

randomly as part of the population initialization stage.  

  

 
Figure 20.  GA Block Diagram Including Conditions Necessary for 

Visibility. 

C. Simulations 

In this section, we report on simulation runs including 

conditions necessary for visibility as part of our genetic 

algorithms search, according to the block diagram presented 

in Figure 20. In the same manner, similar to the simulation 

environment presented in Section IV.A, we used 1.8GHz 

Intel Core CPU with Matlab using Fallvile Island Sketchup 

Google Model [14], simulating a dense urban scene with 

trees, as seen in Figure 17.  
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In order to compare our current running results with the 

case of not using conditions necessary for visibility, which 

are detailed in Section IV.A., we used, in our case, the exact 

same running parameters of the genetic algorithm search in 

the different stages (population, evaluation, selection, 

reproduction, fitness function and stopping criteria). 

Sensing model of detection and false alarm rate 

probabilities set the sensor's detection performances, and 

have a great influence on which objects are included in the 

bounding box. Our parameters of the visibility sensing model 

were set as follows:   =1,   =35, k=2,       . 

As expected, simulation results applying the conditions 

necessary for visibility generated results similar to the case 

of not using this condition, as the detection probability is set 

to higher values with lower values of false alarm rate 

probability. On the same way, viewpoints' locations were 

bounded in the A, B, C polygons described in Figure 19. 

Results can be seen in Table IV.    

TABLE IV.  VIEWPOINTS LOCATIONS DIFFRENCES USING CONDITIONS 

NECESSARY FOR VISIBILITY USING GA SEARCH   

Detection 
Probability 

   

False Alarm Rate 
Probability 

   

Detected 
Objects in 

Bounding Box 

 [Percents] 

Viewpoints 
Located Outside  

A, B, C 

Polygons 
0.9 0.01 87% 3 

0.95 0.005 94% 2 

0.98 0.002 96% 1 

0.99 0.001 97% 1 

VI. CONCLUSIONS 

In this paper, we presented an optimized solution for the 

problem of computing maximal coverage from a number of 

viewpoints, using genetic algorithms method. In addition, we 

propose conditions necessary for visibility based on sensors' 

model analysis, taking into account stochastic character. As 

far as we know, for the first time we integrated trees as 

partially visible objects participating in a 3D visible volumes 

analytic analysis and conditions necessary for visibility with 

sensors' noises effects. As part of our research we tested 

several 3D models of 3D urban environments from the 

visibility viewpoint, choosing the best model from the 

computational effort and the analytic formulation aspects. 

We tested our 3D visible volumes method on real a 3D 

model from an urban street in the city of Haifa, with time 

computation and visible volumes parameters. 

In the second part of the paper, we introduced a genetic 

algorithm formulation to calculate an optimized solution for 

the visibility problem. We used several reproduction 

operators, which made our optimization robust. We tested 

our algorithm on the Fallvile Island Sketchup Google Model 

combined with trees, and analyzed the viewpoint's polygons 

results, and also compared using versus not using the 

conditions necessary for visibility. 

Our future work is related to validation between our 

simulated solution and projected volumes from sensors 

mounted in these viewpoints for optimal coverage. 
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