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Abstract—Recent developments in the field of eye-gaze tracking
by vidoeoculography indicate a growing interest towards unob-
trusive tracking in real-life scenarios, a new paradigm referred to
as pervasive eye-gaze tracking. Among the challenges associated
with this paradigm, the capability of a tracking platform to
integrate well into devices with in-built imaging hardware and to
permit natural head movement during tracking is of importance
in less constrained scenarios. The work presented in this paper
builds on our earlier work, which addressed the problem of
estimating on-screen point-of-regard from iris center movements
captured by an integrated camera inside a notebook computer,
by proposing a method to approximate the head movements in
conjunction with the iris movements in order to alleviate the
requirement for a stationary head pose. Following iris localization
by an appearance-based method, linear mapping functions for
the iris and head movement are computed during a brief
calibration procedure permitting the image information to be
mapped to a point-of-regard on the monitor screen. Following
the calculation of the point-of-regard as a function of the iris and
head movement, separate Kalman filters improve upon the noisy
point-of-regard estimates to smoothen the trajectory of the mouse
cursor on the monitor screen. Quantitative and qualitative results
obtained from two validation procedures reveal an improvement
in the estimation accuracy under natural head movement, over
our previous results achieved from earlier work.

Keywords–Point-of-regard estimation; Eye-gaze tracking; Iris
center localization; Head movement tracking; Integrated webcam.

I. INTRODUCTION

The idea of estimating the human eye-gaze has been receiv-
ing increasing interest since at least the 1870s, following the
realization that the eye movements hold important information
that relates to visual attention. Throughout the years, efforts in
improving eye-gaze tracking devices to minimize discomfort
and direct contact with the user led to the conception of
videooculography (VOG), whereby the eye movements are
tracked remotely from a stream of images that is captured by
digital cameras. Eye-gaze tracking by VOG quickly found its
way into a host of applications, ranging from human-computer
interaction (HCI) [1]–[3], to automotive engineering [4][5].
Indeed, with the advent of the personal computer, eye-gaze
tracking technology was identified as an alternative controlling
medium enabling the user to operate the mouse cursor using
the eye movements alone [3].

Following the emergence and widespread use of highly
mobile devices with integrated imaging hardware, there has
been an increasing interest in mobile eye-gaze tracking that
blends well into the daily life setting of the user [6]. This
emerging interest led to the conception of a new paradigm
that is referred to as pervasive tracking, which refers to
the endeavor of tracking the eye movements continuously
in different real-life scenarios [6]. This notion of pervasive
eye-gaze tracking is multi-faceted, typically characterized by
different aspects such as the capability of a tracking platform
to permit tracking inside less constrained conditions, to track
the user remotely and unobtrusively and to integrate well
into devices that already comprise imaging hardware without
necessitating hardware modification.

Nevertheless, this new paradigm brings challenges that
go beyond the typical conditions for which classical video-
based eye-gaze tracking methods have been developed. Despite
considerable advances in the field of eye-gaze tracking as
evidenced by an abundance of methods proposed over the years
[7], video-based eye-gaze tracking has been mainly considered
as a desktop technology, often requiring specific conditions
to operate. Commercially available eye-gaze tracking systems,
for instance, are usually equipped with high-grade cameras
and actively project infra-red illumination over the face and
the eyes to obtain accurate eye movement measurements. In
utilizing specialized hardware to operate, active eye-gaze track-
ing fails to integrate well into devices that already comprise
imaging hardware, while its usability is constrained to con-
trolled environments away from interfering infra-red sources.
On the other hand, passive eye-gaze tracking that operates
via standard imaging hardware and exploits the appearance
of the eye without relying on specialized illumination sources
for localization and tracking, provides a solution that promises
to integrate better into pervasive scenarios.

Nonetheless, utilizing existing passive eye-gaze tracking
methods to address the challenges associated with pervasive
tracking, such as the measurement of eye movement from low-
quality images captured by lower-grade hardware, may not
necessarily be a suitable solution. For instance, existing shape-
based methods that localize the eye region inside an image
frame by fitting curves to its contours, often require images
of suitable quality and good contrast in which the boundaries
between different components such as the eyelids, the sclera
and the iris are clearly distinguishable [8]–[11]. Similarly,
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feature-based methods that search for distinctive features such
as the limbus boundary [12][13], necessitate these features to
be clearly identifiable. Appearance-based methods relying on
a trained classifier, such as a Support Vector Machine (SVM),
to estimate the 2D point-of-regard directly from an eye region
image without identifying its separate components, have been
reported to perform relatively well on lower-quality images as
long as the training data includes images of similar quality
as well [14]. However, this performance usually comes at the
cost of lengthy calibration sessions that serve to gather the
user-dependent data that is required for training [15][16].

Moreover, recent attempts to track the eye-gaze on mobile
platforms by existing eye-gaze tracking methods [17][18] have
reported undesirable constraints such as a requirement for
close-up eye region images [19], lengthy calibration sessions
[17] and stationary head poses [15][20][21] often with the aid
of a chin-rest [15][20]. The capability of a tracking platform
to allow head movement during gaze estimation, in particular,
is an important aspect in the context of pervasive eye-gaze
tracking, permitting the user to move naturally without con-
straining the tracking conditions. Methods that do not cater for
head movement during tracking and calibration often estimate
an image-to-screen mapping function that is valid for a single
head pose alone, hence requiring a stationary head pose during
and following calibration [15][20][21]. While this may be
considered as a workable solution for short-term use, it does
not provide for a comfortable setup over longer periods of
time. Head movement compensation is, therefore, required in
order to lift the constraint of maintaining a stationary head
pose, permitting small head displacement if the movement is
measured by a simple head marker [22][23] or higher degrees-
of-freedom if the head pose is calculated in 3-dimensional
space [9][24][25]. In this regard, several eye-gaze tracking
methods that cater for head movement via an appearance-
based approach generally populate a training dataset with
images captured under different head orientations [26][27],
often at the expense of presenting the user with a larger set
of calibration targets resulting in a data collection session that
is considerably prolonged [26]. Feature-based approaches for
head pose estimation, on the other hand, generally follow a
model-fitting approach whereby a face model is fit to specific
face feature landmarks allowing the estimation of the head
rotation angles [19][28][29]. The accuracy of these approaches
is often contingent upon accurate tracking of several facial
features, which is in turn susceptible to feature distortion and
self-occlusion during head rotations [19].

In light of the challenges associated with pervasive tracking,
we propose a passive eye-gaze tracking method to estimate
the point-of-regard (POR) on a monitor screen from lower-
quality images acquired by an integrated camera inside a
notebook computer, while approximating any natural, typically
small, head rotations performed by the user during tracking.
To localize the iris center coordinates from low-resolution eye
region images while the user sits at a distance from the monitor
screen, we propose an appearance-based method that localizes
the iris region by its intensity values. In addition, our method
ensures that the iris region can be located at different angles
of eyeball and head rotation and under partial occlusion by the

eyelids, and can be automatically relocated after this has been
entirely occluded during blinking. Following iris localization,
the iris center coordinates extracted earlier are mapped to a
POR on the monitor screen via linear mapping functions that
are estimated through a brief calibration procedure. Linear
mapping functions for the head movement are also estimated
during calibration, ensuring that any natural head rotations
performed by the user during tracking are handled according to
the resulting face region displacement inside the image space.
Kalman filters handling the iris and head movement separately
are assigned to each of four screen quadrants, characterised
by different mapping functions, in order to improve upon the
noisy POR estimates computed as a function of the iris and
head movement. This serves to smoothen the trajectory of the
mouse cursor on the monitor screen.

The details of the proposed passive eye-gaze tracking
method are described in Section II. Section III presents and
discusses the experimental results. A comparison between
the results achieved by our method and those reported by
relevant state-of-the-art methods is provided in Section IV,
while Section V draws the final remarks that conclude the
paper.

II. METHOD

The following sections describe the stages of the proposed
method, starting off with eye region detection and tracking up
to the estimation of the POR onto the monitor screen.

A. Eye Region Detection

The estimation of the POR on the monitor screen requires
that the eye region is initially detected inside the first few
image frames. Searching for the eye region over an entire
image frame can be computationally expensive for a real-time
application and can lead to the occurrence of several false
positive detections. Therefore, prior to detecting the eye region,
the bounding box that encloses the face region is detected first
such that this constrains the search range for the eye region,
reducing the searching time as well as the possibility of false
positives. The eye region is subsequently detected within the
area delimited by the boundaries of the face region.

Given the real-time nature of our application, we chose
the Viola-Jones algorithm for rapid detection of the face and
eye region [30]. Within the Viola-Jones framework, features
of interest are detected by sliding rectangular windows of
Haar-like operators over an image frame, subtracting the
underlying image pixels that fall within the shaded regions
of the Haar-like operators from the image pixels that fall
within the clear regions. Candidate image patches are classified
between positive and negative samples by a cascade of weak
classifiers arranged in order of increasing complexity. Every
weak classifier is trained to search for a specific set of Haar
features by a technique called boosting, such that each stage
processes the samples that pass through the preceding classifier
and rejects the negative samples as early into the cascade as
possible to ensure computational efficiency.
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The face and eye region detection stages in our work utilize
freely available cascades of classifiers that come with the
OpenCV library [31], which had been previously trained on a
wide variety of training images such that detection generalizes
well across different users. Since the training data for these
classifiers was mainly composed of frontal face and eye region
samples, the user is required to hold a frontal head pose for a
brief period of time until the face and eye regions have been
successfully detected. In case multiple candidates are detected
by the face region classifier, the proposed method chooses the
candidate that is closest to the monitor screen characterized by
the largest bounding box, and discards the others.

B. Eye Region Tracking

To allow for small and natural head movement during
tracking without requiring the uncomfortable use of a chin-
rest, the initial position of the eye region detected earlier
needs to be updated at every image frame to account for its
displacement in the x- and y-directions. While performing eye
region detection on a frame-by-frame basis would be a possible
solution to estimate the eye region displacement through an
image sequence, such an approach would be sub-optimal in
terms of computational efficiency for a real-time application.
Therefore, assuming gradual and small head displacement, the
eye region is tracked between successive image frames by
template matching, using the last known position of the eye
region inside the previous image frame to constrain the search
area inside the next frame.

A template image of the eye region is captured and stored
following earlier detection of this region by the Viola-Jones
algorithm. The template image is then matched to the search
image inside a window of fixed size, centered around the last
known position of the feature of interest. Template matching
utilizes the normalized sum of squared differences (NSSD) as
a measure of similarity, denoted as follows,

NSSD(x, y) =

∑
x′,y′ [T (x′, y′)− I(x+ x′, y + y′)]2√∑

x′,y′ T (x′, y′)2
∑

x′,y′ I(x+ x′, y + y′)2

(1)
where T denotes the template image and I denotes the search
image. A NSSD value of zero represents a perfect match
between the template and search image, whereas a higher value
denotes increasing mismatch between the two images. This
permits the identification of the new position of the feature of
interest, which is specified by the location inside the search
image that gives the minimum NSSD value after template
matching.

C. Iris Center Localization

The movement of the eyes is commonly represented by the
trajectory of the iris or pupil center in a stream of image frames
[7], and hence the significance of localizing the iris or pupil
center coordinates after the eye region has been detected. Given
the small footprint of the eye region inside the image space,

we opt to localize the iris center coordinates rather than the
pupil, since the iris occupies a larger area inside the eye region
and can be detected more reliably.

While there exist different methods that permit localization
of the iris region inside an image frame, not all of these
methods are suitable for localizing the iris region from low-
resolution images, especially if fine details such as the contours
of different components of the eye [8]–[11] need to be clearly
distinguishable. We propose an appearance-based method that
segments the iris region via a Bayes’ classifier to localize it.
The Bayes’ classifier is trained during an offline training stage
to classify between iris and non-iris pixels based on their
red channel value in the RGB color space. During tracking,
intensity values of pixels residing within the eye region are
classified as belonging to the iris region if their likelihood
exceeds a pre-defined threshold value, θ:

p(xr(i, j) | $iris)

p(xr(i, j) | $non−iris)
≥ θ (2)

where p(xr(i, j) | $iris) denotes the class-conditional proba-
bility of observing a red-band measurement at pixel (i, j) know-
ing it belongs to the iris class, while p(xr(i, j) | $non−iris)
denotes the class-conditional probability of observing the same
red-band measurement at pixel (i, j) knowing it belongs to the
non-iris class. The resulting binary image contains a blob of
pixels that belongs to the iris region, whose center of mass
is taken to represent the iris center coordinates. In case the
eyebrow is also mistakenly classified as belonging to the iris
region due to the resemblance in color with dark irises, the
blob of pixels that is closer to the center of the eye region is
considered to represent the iris.

The Bayes’ classifier had been previously used for skin
region segmentation in images [32], but to our knowledge it
has never been adopted to the problem of iris region localiza-
tion for eye-gaze tracking until our work of [1]. Preliminary
results have shown this method to be suitable in localizing
the iris region from low-quality images, owing especially to
the fact that the proposed localization method depends upon
statistical color modeling rather than geometrical information.
Another advantage that is also related to its independency from
geometrical information is the ability to locate the iris region at
different angles of rotation and under partial occlusion by the
eyelids. The main downside of this method is its susceptibility
to illumination variations, which problem is however alleviated
by training the Bayes’ classifier on iris and non-iris pixels
acquired under different illumination conditions.

D. POR Estimation

Having determined the iris center coordinates, the final stage
seeks to estimate the user’s POR on the monitor screen from
the iris displacement while approximating any head rotations
performed by the user during tracking.

For simplicity, and since we expect small eyeball and head
rotation angles within the width and height of the monitor
screen at close range, the eyeball and head rotations performed
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Figure 1. Strategically placed calibration points divide the screen display
into four separate quadrants.

by the user during tracking are approximated by planar dis-
placement of the respective iris center and face region inside
the image space. The on-screen displacement, ∆xsg , of the
user’s POR may therefore be defined as a function of the
iris displacement, ∆xse , and head displacement, ∆xsh , on the
monitor screen as follows,

∆xsg = ∆xse + ∆xsh (3)

In order to estimate the on-screen POR displacement, we seek
to determine image-to-screen mapping relationships for the iris
and head components. The assumption of planar iris center
displacement permits us to define a linear mapping relationship
between the image and screen coordinates as follows,

(x(3)se − x(1)s ) =
(x(2)s − x(1)s )

(x(2)ie
− x(1)ie

)
(x(3)

ie
− x(1)

ie
) (4)

where x(1)s and x(2)
s denote the screen coordinates of two

calibration points respectively, whereas x(1)
ie

and x(2)ie
denote

the corresponding iris center coordinates inside the eye region
which are estimated while the user fixates at the two calibration
points maintaining the head stationary. During tracking, the
mapping function in (4) computes the displacement in screen
coordinates between the new POR x(3)

se and the calibration
point x(1)s , following the estimation of the displacement in
image coordinates between the new iris center location x(3)ie

and the previously estimated x(1)ie
. In order to compensate

for the assumption of planar iris movement, the monitor
screen is divided into four separate quadrants by strategically
placed calibration points as illustrated in Figure 1, such that
each quadrant is assigned different parameter values that
best describe the linear mapping between the image-to-screen
coordinates.

Similarly, a linear image-to-screen mapping relationship for
the head displacement is defined as follows,

(x(3)sh
− x(1)s ) =

(x(2)s − x(1)s )

(x(2)ih
− x(1)ih

)
(x(3)

ih
− x(1)

ih
) (5)

requiring the estimation of image coordinates, x(1)
ih

and x(2)
ih

,
while the user fixates at the corresponding on-screen calibra-
tion targets, x(1)

s and x(2)
s , by the head pose alone maintaining

the eyes stationary. In order to reduce the calibration effort
and re-use the iris mapping relationship estimated earlier for
the visual targets in Figure 1, the user is requested to perform
head rotations in the horizontal and vertical directions while
fixating at a single calibration target. Since the user’s POR
on the monitor screen is maintained fixed during the head
movement, Equation (3) reduces to,

∆xse + ∆xsh = 0 (6)

such that the on-screen relationship between the iris and head
displacement may be defined as follows,

∆xse = −∆xsh (7)

Inside the image space, ∆xie ∝ ∆xih up to a scale factor S
which models the relationship between the different rotation
radii of the eyeball and the head around their respective
axis. As the user performs arbitrary head movement during
calibration, tuples of coordinates xie and xih are collected
allowing the scale factors Sx and Sy , in the horizontal and
vertical directions, to be estimated as follows,

Sx =
∆xih
∆xie

Sy =
∆yih
∆yie

(8)

where displacements, ∆xie and ∆xih , are estimated with
respect to initial eye and head poses. Equation (5) may hence
be re-defined as,

(x(3)
sh
− x(1)s ) =

(x(2)
s − x(1)s )

S ◦ (x(2)
ie
− x(1)

ie
)
(x(3)ih

− S ◦ x(1)ie
), (9)

S =

(
Sx

Sy

)
where x(3)

sh denotes the new POR determined by the head
movement alone, corresponding to a new head region location
x(3)ih

inside the image space. Having determined the iris, ∆xse ,
and head displacement, ∆xsh , following Equations (4) and
(9), respectively, the on-screen POR displacement may be
estimated from Equation (3).

To alleviate the issue of noisy iris center and head dis-
placement measurements from low-quality images, and hence
smoothen the trajectory of the mouse cursor on the monitor
screen after mapping the iris and head movement to a POR,
we propose to employ Kalman filtering to improve upon these
noisy measurements. Indeed, the Kalman filter is an algorithm
that recursively utilizes noisy measurements observed over
time to produce estimates of desired variables that tend to be
more accurate than the single measurements alone [33]. We
define separate Kalman filters to handle the respective iris and
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head displacement for our specific application of smoothing
the mouse cursor trajectory as follows:

State Vector: We define the state vector x(e)k+1 as,

x(e)k+1 = [∆xse ∆yse ]Tk+1 (10)

comprising the horizontal iris centre displacement, ∆xse =

(x
(3)
se − x

(1)
s ), and similarly for the vertical iris centre dis-

placement displacement, ∆yse . Similarly, for the other Kalman
filter, we define the state vector x(h)k+1 as,

x(h)k+1 = [∆xsh ∆ysh ]Tk+1 (11)

where ∆xsh and ∆ysh denote the horizontal and vertical on-
screen head displacement.

Transition Matrix: Assuming the eye and head movement
during tracking to consist of fixation periods and smooth move-
ment between one visual stimulus and another, we represent
the transition matrices A(e) and A(h) by simple linear models
of the ideal mouse cursor trajectory during constant velocity
movement as follows,

A(e) =

[
1 0
0 1

]
(12)

and,

A(h) =

[
1 0
0 1

]
(13)

Measurement Vector: In our work, the measurement vector
z(e)k+1, attributed to the Kalman filter that handles the iris
movement, holds the estimated image displacement of the iris
center coordinates as follows,

z(e)k+1 = [∆xie ∆yie ]Tk+1 (14)

where ∆xie and ∆yie represent the horizontal and vertical
image displacement respectively. Similarly, the measurement
vector, z(h)k+1, belonging to the Kalman filter that handles the
head movement is defined as follows,

z(h)k+1 = [∆xih ∆yih ]Tk+1 (15)

where ∆xih and ∆yih denote the horizontal and vertical head
displacement inside the image space.

Measurement Matrix: The measurement matrix defines the
relationship that maps the true state space onto the measure-
ment. In our work, the values that populate the measurement
matrices can be derived from Equations (4) and (9), such that
these matrices map the screen coordinates onto the image
coordinates. The measurement matrix corresponding to the
Kalman filter that handles the iris displacement is defined as,

Figure 2. Five visual stimuli were displayed in succession on the monitor
screen during a brief calibration procedure in order to collect image-screen
coordinate pairs.

H
(e)
k+1 =

 (x
(2)
ie
−x(1)

ie
)

(x
(2)
s −x(1)

s )
0

0
(y

(2)
ie
−y(1)

ie
)

(y
(2)
s −y(1)

s )

 (16)

while the measurement matrix attributed to the Kalman filter
that handles the head movement is defined as,

H
(h)
k+1 =

 Sx(x
(2)
ie
−x(1)

ie
)

(x
(2)
s −x(1)

s )
0

0
Sy(y

(2)
ie
−y(1)

ie
)

(y
(2)
s −y(1)

s )

 (17)

Measurement Noise and Process Noise: The measurement
noise is represented by vector, vk+1 = [vxk+1v

y
k+1], charac-

terized by standard deviations σvx and σvy in the x- and
y-directions, respectively, and similarly the process noise is
represented by vector, wk+1 = [wx

k+1w
y
k+1], characterized

by standard deviations σwx
and σwy

in the respective x-
and y-directions. The process noise corresponding to the iris
movement is taken to represent the characteristics inherent
to the visual system itself, such that the standard deviations
σ
(e)
wx and σ

(e)
wy are therefore set to a low value to model

the small, microsaccadic movements performed by the eye
during periods of fixation. Similarly, the standard deviations
σ
(h)
wx and σ

(h)
wy characterizing the process noise corresponding

to the head movement are also set to a low value. Values
for the standard deviations, σ(e)

vx and σ
(e)
vy , corresponding to

the iris displacement and standard deviations, σ(h)
vx and σ

(h)
vy ,

corresponding to the head movement that adequately smooth
the mouse cursor trajectory after the estimation of noisy image
measurements were found experimentally.

Separate Kalman filters are assigned to every screen quad-
rant, with each filter being characterized by a different mea-
surement matrix corresponding to the screen quadrant for
which it is responsible. During tracking, all Kalman filters are
updated online to produce an estimate of the POR following
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Figure 3. An additional calibration target was displayed at the center of the
monitor screen while the participants performed horizontal and vertical head
rotations, maintaining a fixed gaze point.

the estimation of the iris center coordinates, such that the on-
screen position of the mouse cursor can subsequently be up-
dated according to the Kalman filter estimate that corresponds
to the quadrant of interest. In updating the Kalman filters at
every time step, we ensure a smooth hand over between one
filter and another as the mouse cursor trajectory crosses over
adjacent screen quadrants.

III. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate the proposed eye-gaze tracking method, a group
of nine female and male participants having a mean age of 35.1
and standard deviation of 12.7, were recruited for an experi-
mental session. All participants were proficient computer users
without any prior experience in the field of eye-gaze tracking,
except for one participant who was already accustomed to the
technology. The experimental procedure was carried out on
a 15.6” notebook display while each participant was seated
inside a well-lit indoor environment at an approximate distance
of 60 cm from the monitor screen and the camera. At this
distance, combined eyeball and head rotations were carried out
within a ±15◦ range, corresponding to the width and height of
the monitor screen. Image data was acquired by the webcam
that was readily available on-board the notebook computer.

Following detection and tracking of the eye region, and
iris center localization, each participant was requested to sit
through a brief calibration procedure that served to estimate
the mapping functions required to transform the iris center
and head displacement inside the image space into a POR
on the monitor screen. During the calibration procedure, the
participants were first instructed to fixate at five visual stimuli
appearing in succession on the monitor screen as shown
in Figure 2, and requested to maintain a stationary head
pose while pairs of image-screen coordinates were collected.
Subsequently, an additional calibration target was displayed at
the center of the monitor screen as shown in Figure 3, during
which the participants were instructed to perform horizontal
and vertical head rotations while maintaining their gaze fixed
onto the visual target. The five visual stimuli displayed succes-
sively during calibration were positioned strategically in order

Figure 4. A validation session consisting of nine visual stimuli displayed in
succession served to calculate the error of the estimated PORs.

to divide the screen into four separate quadrants, as illustrated
in Figure 1. A different mapping function was estimated for
each quadrant according to the relationship between the image
and screen coordinates collected earlier.

Every participant was then requested to sit through two
validation procedures that served to calculate the error between
the estimated POR and ground truth data. The first valida-
tion procedure consisted of nine visual stimuli which were
evenly spread throughout the monitor screen and displayed
in succession as shown in Figure 4. The participants were
allowed natural head movement, and instructed to move the
mouse cursor as close to each visual stimulus as possible
and hold its position for a brief period of time such that the
on-screen coordinates of the mouse cursor were recorded, as
shown in Figure 7 for participant 7. Tables I and II display
the mean absolute error (MAE) and standard deviation (SD) in
pixels for each validation target in the x- and y-directions. The
second validation procedure served to evaluate the accuracy
of head pose compensation for a fixed POR on the monitor
screen. To this end, the participants were requested to maintain
their gaze fixed upon a single visual stimulus displayed on
the monitor screen and perform arbitrary head rotations in
the horizontal and vertical directions while the mouse cursor
coordinates were recorded. Table IV presents the MAE and SD
in pixels calculated between the cursor position and validation
target in the x- and y-directions. Qualitative results of the iris
segmentation method are presented in Figure 6. The proposed
method was coded in C using the OpenCV library [31] and
was capable of executing in real-time at 18 fps on an Intel
Core i5 notebook computer, at 2.60 GHz.

An analysis of the results in Tables I and II reveals that for
the majority of the validation targets, the MAE and SD values
in pixel units for the x-coordinates of the estimated PORs
exceed the error values corresponding to the y-coordinates
across all participants. One of the main sources for this con-
sistent discrepancy in error was found to relate to inaccuracies
in the estimation of the iris center coordinates, as indicated
by the iris segmentation results in Figures 6(a-e). As shown
in the binary images, dark colored pixels belonging to the
eyelashes are often erroneously included with the iris region
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TABLE I. MEAN ABSOLUTE ERROR (MAE) AND STANDARD DEVIATION (SD) IN PIXELS, OF THE ESTIMATED ON-SCREEN POR X-COORDINATES FOR
EACH VALIDATION TARGET.

Participant
Validation Target

1 2 3 4 5 6 7 8 9
x-Coordinate (MAE (pix), SD (pix)))

1 (18.32, 13.09) (37.96, 28.02) (20.81, 11.74) (28.12, 18.30) (6.19, 3.05) (34.36, 5.27) (9.03, 6.74) (10.88, 5.08) (34.09, 13.42)
2 (27.12, 15.40) (12.91, 13.36) (38.92, 5.41) (8.66, 5.46) (9.03, 8.06) (47.25, 21.30) (6.99, 6.00) (18.11, 12.28) (37.96, 13.04)
3 (22.00, 13.13) (17.91, 9.14) (20.06, 11.27) (9.95, 7.75) (10.66, 8.37) (22.47, 8.10) (7.67, 5.03) (20.65, 8.01) (33.64, 9.38)
4 (20.38, 8.80) (37.17, 24.06) (37.61, 6.18) (32.55, 20.05) (55.94, 38.20) (30.23, 0.67) (12.47, 3.70) (26.58, 5.93) (34.91, 7.94)
5 (10.66, 2.14) (27.80, 14.63) (58.44, 25.70) (20.68, 13.11) (13.64, 3.18) (38.37, 4.46) (6.98, 6.23) (33.85, 18.78) (36.80, 15.25)
6 (7.72, 4.46) (20.16, 3.37) (23.90, 6.73) (4.16, 2.28) (25.54, 7.13) (27.10, 8.28) (10.81, 12.31) (15.61, 3.53) (20.73, 8.51)
7 (29.85, 7.43) (32.49, 7.69) (40.82, 14.18) (11.53, 6.15) (13.95, 3.89) (49.05, 10.89) (13.57, 7.82) (9.22, 6.09) (19.35, 4.86)
8 (17.67, 4.95) (8.07, 0.96) (17.22, 4.36) (30.95, 11.36) (15.37, 15.08) (23.41, 5.55) (6.01, 2.38) (6.10, 3.96) (27.41, 4.34)
9 (14.22, 10.92) (17.90, 9.79) (25.75, 15.29) (20.49, 17.14) (17.32, 9.49) (26.92, 23.10) (18.88, 8.10) (10.71, 5.05) (47.01, 22.97)

Mean (18.66, 8.92) (23.60, 12.34) (31.50, 11.21) (18.57, 11.29) (18.63, 10.72) (33.24, 9.74) (10.27, 6.48) (16.86, 7.63) (32.43, 11.08)

TABLE II. MEAN ABSOLUTE ERROR (MAE) AND STANDARD DEVIATION (SD) IN PIXELS, OF THE ESTIMATED ON-SCREEN POR Y-COORDINATES FOR
EACH VALIDATION TARGET.

Participant
Validation Target

1 2 3 4 5 6 7 8 9
y-Coordinate (MAE (pix), SD (pix)))

1 (17.58, 5.76) (17.06, 7.60) (11.75, 2.27) (26.60, 20.07) (16.26, 9.50) (10.80, 7.35) (31.84, 16.23) (6.63, 6.80) (7.29, 6.97)
2 (11.48, 8.46) (49.17, 14.13) (7.75, 2.02) (13.42, 8.65) (9.96, 6.17) (33.21, 19.31) (22.28, 5.19) (23.80, 13.06) (14.37, 8.63)
3 (16.31, 13.45) (11.97, 9.08) (16.03, 7.98) (5.64, 3.65) (13.16, 11.03) (13.38, 8.06) (20.53, 7.51) (12.20, 7.84) (10.36, 5.93)
4 (20.03, 8.98) (30.14, 11.08) (34.84, 8.96) (29.59, 7.31) (19.27, 8.11) (10.69, 5.13) (13.87, 6.49) (18.14, 9.72) (22.98, 2.82)
5 (4.53, 2.87) (7.50, 2.91) (15.12, 7.08) (12.06, 5.85) (22.44, 7.50) (16.74, 1.55) (44.73, 28.11) (31.64, 16.13) (21.39, 18.39)
6 (8.58, 4.55) (11.50, 4.93) (29.49, 21.50) (3.67, 2.43) (6.34, 3.06) (20.62, 14.87) (31.06, 19.01) (14.28, 10.16) (11.27, 7.39)
7 (4.58, 3.52) (26.90, 2.01) (27.49, 3.28) (21.19, 5.79) (4.06, 3.06) (3.87, 2.03) (6.97, 4.39) (22.06, 4.14) (15.09, 7.48)
8 (56.07, 5.24) (31.06, 1.83) (16.35, 2.11) (35.15, 4.03) (11.01, 9.04) (7.63, 4.49) (23.50, 3.04) (8.12, 5.36) (11.75, 4.61)
9 (20.52, 13.49) (3.54, 3.39) (10.14, 6.11) (12.34, 9.41) (13.60, 6.50) (37.78, 33.79) (23.47, 16.18) (14.08, 7.00) (11.11, 11.15)

Mean (17.74, 7.37) (20.98, 6.33) (18.77, 6.81) (17.74, 7.47) (12.90, 7.11) (17.19, 10.73) (24.25, 11.79) (16.77, 8.91) (13.96, 8.15)

during segmentation due to their close resemblance in color
to dark brown irises. This erroneous inclusion of pixels on
either side of the iris region serves to shift the center of
mass of the segmented blob of pixels horizontally towards
the inner or outer eye corners, away from the true iris center.
The horizontal displacement of the iris center gives rise to
errors in the estimated PORs, and it was found that even a
seemingly trivial error of a few pixels in the estimation of the
iris center coordinates inside the image frame could produce
a significant POR error at an approximate distance of 60 cm
from the monitor screen.

While the majority of the validation targets displayed a
higher error in the horizontal component of the estimated
PORs, the results for validation target 7 clearly indicate
the contrary, that is higher MAE and SD values for the y-
coordinates of most participants. The discrepancy in error for
this particular validation target relates to its lower left on-
screen position as shown in Figure 4, requiring the user to gaze
downwards and towards the outer edge of the monitor screen.
At this instance, the tracked iris region displaces towards the
outer eye corner and becomes partially occluded underneath
the upper and lower eyelids, as shown in Figures 6(f-j). The
reduced visibility of the true shape of the iris region shifts
the localized iris centre downwards, reducing the accuracy of
the corresponding POR. Another source of error that reduces
the accuracy of the POR y-coordinates in general is the less
than ideal positioning of the webcam at the top of the monitor
screen, in relation to the positioning of the eyes as the user
sits in front of the display. Indeed, commercial systems usually
place the tracking device below the monitor screen in order
to capture a better view of the visible portion of the eyeball
that is not concealed below the eyelid. Being situated at the

TABLE III. MEAN ABSOLUTE ERROR (MAE) AND STANDARD
DEVIATION (SD) OF THE ERROR IN PIXELS AND VISUAL ANGLE, OF THE
ESTIMATED ON-SCREEN POR COORDINATES FOR THE FIRST VALIDATION

STAGE.

Participant x y x y
Number (MAE (pix), SD (pix)) (MAE (◦), SD (◦))

1 (22.20, 11.63) (16.20, 9.17) (0.53, 0.28) (0.39, 0.22)
2 (22.99, 11.15) (20.60, 9.51) (0.55, 0.27) (0.49, 0.23)
3 (18.34, 8.91) (13.29, 8.28) (0.44, 0.21) (0.32, 0.20)
4 (31.98, 12.84) (22.17, 7.62) (0.76, 0.31) (0.53, 0.18)
5 (27.47, 11.50) (19.57, 10.04) (0.65, 0.27) (0.47, 0.24)
6 (17.30, 6.29) (15.20, 9.77) (0.41, 0.15) (0.36, 0.23)
7 (24.43, 7.67) (14.69, 3.97) (0.58, 0.18) (0.35, 0.09)
8 (16.91, 5.88) (22.29, 4.42) (0.40, 0.14) (0.53, 0.11)
9 (22.13, 13.54) (16.29, 11.89) (0.53, 0.32) (0.39, 0.28)

Mean (22.64, 9.93) (17.81, 8.30) (0.54, 0.24) (0.42, 0.20)

top of the screen, the webcam that is utilized in our work
captures a smaller portion of the iris especially when the user
gazes downwards, partially occluding the iris region below the
eyelid and potentially introducing an error in the estimation of
the iris center coordinates. It is, nonetheless, worth noting that
since the iris region is localized by its photometric appearance
rather than the shape, the proposed method for iris region
segmentation was equally capable of detecting the iris region
and hence follow its displacement under partial occlusion by
the eyelids.

In order to put the error values tabulated in Tables I and
II into context, the mean MAE and SD values per participant
across all validation targets were subsequently calculated and
converted to visual angle at a distance of 60 cm between
the user and the monitor screen, as presented in Table III.
Given that the resolution of the monitor screen is equal to
1366 × 768 pixels, a mean MAE value of (22.64, 17.81)
in pixel units constitutes less than 2% and 3% of the screen
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resolution in the horizontal and vertical directions, respectively.
Furthermore, at a distance of 60 cm away from the monitor
screen, a mean error of (22.64, 17.81) pixels was found to
correspond to an error of (0.54◦, 0.42◦) in visual angle. It is
also worth noting that in approximating any head movement
performed by the user during tracking, we have also obtained
an improvement of around 37% and 59% in visual angle corre-
sponding to the horizontal and vertical directions respectively,
over our previous result of (1.46◦, 0.71◦) obtained through our
earlier work without head movement compensation [1]. This
improvement further substantiates the benefit of handling head
movement during tracking rather than constraining the user
to a stationary head pose, where small head displacements
performed by the user due to fatigue may adversely affect
the accuracy of the estimated PORs if the computed mapping
function is valid for a single head pose alone. Indeed, plotting
the calculated on-screen iris and head displacements performed
by participant 7 during the validation procedure in Figure
5, reveals that the users naturally tend to perform combined
eyeball and head movement during tracking in order to move
the mouse cursor position close to the validation targets.
The low quantitative error obtained by the proposed method
may also be corroborated qualitatively as shown in Figure 7,
displaying a small distance between the estimated PORs on
the monitor screen and the ground truth validation targets. If
the average on-screen icon is taken to have an average size of
45 × 45 pixels, the mean error that is achieved through the
proposed method can be considered to be within the footprint
of the average on-screen icon and therefore applicable to an
HCI scenario.

A second validation procedure aimed to evaluate the ac-
curacy of head movement approximation, by requesting the
user to perform horizontal and vertical head rotations while
maintaining the gaze fixed upon an on-screen validation target.
Visually, the mouse cursor was expected to maintain a fixed
on-screen position close to the validation target during this
experimental procedure. In response to the head rotations
performed during this validation stage, the mouse cursor was
noticed to displace in the direction of the head movement and
promptly return to its starting position in response to a counter-
rotation of the eyeball without a change in the user’s gaze.
This resulted in mouse cursor trajectories as shown in Figure
8, for three horizontal and vertical head rotations performed
by participant 7. As shown in Figure 9, the return positions
of the mouse cursor corresponding to a total of five different
head rotations performed by the participant were close to the
ground truth validation target, hence ensuring that a fixed
POR was also maintained on the monitor screen. Plotting the
calculated on-screen iris and head displacements for these head
rotations in Figure 10, together with the resulting mouse cursor
coordinates, reveals that at every head rotation the estimated
iris and head displacements reach equivalent amplitudes in
opposite directions in agreement with Equation (7). The MAE
and SD values across all participants, presented in Table IV
in pixels and visual angle calculated at a distance of 60 cm
from the monitor screen, reveal low error values between
the return positions of the mouse cursor and the validation
target. These results indicate the effectiveness of the head

TABLE IV. MEAN ABSOLUTE ERROR (MAE) AND STANDARD
DEVIATION (SD) IN PIXELS AND VISUAL ANGLE, OF THE ESTIMATED

ON-SCREEN POR COORDINATES DURING ARBITRARY HEAD ROTATIONS.

Participant x y x y
Number (MAE (pix), SD (pix)) (MAE (◦), SD (◦))

1 (45.30, 59.53) (64.02, 19.20) (1.08, 1.42) (1.53, 0.46)
2 (36.56, 11.07) (16.52, 9.70) (0.87, 0.26) (0.39, 0.23)
3 (13.27, 7.07) (24.96, 16.87) (0.32, 0.17) (0.60, 0.40)
4 (48.97, 9.66) (12.28, 4.53) (1.17, 0.23) (0.29, 0.11)
5 (16.93, 8.85) (10.33, 6.91) (0.40, 0.21) (0.25, 0.16)
6 (13.06, 4.65) (21.44, 5.21) (0.31, 0.11) (0.51, 0.12)
7 (29.02, 2.46) (24.13, 3.05) (0.69, 0.06) (0.58, 0.07)
8 (42.24, 23.47) (28.01, 10.23) (1.01, 0.56) (0.67, 0.24)
9 (17.37, 6.20) (23.12, 13.28) (0.41, 0.15) (0.55, 0.32)

Mean (29.19, 14.77) (24.98, 9.89) (0.70, 0.35) (0.60, 0.24)

pose compensation algorithm in maintaining a consistent POR
corresponding to a fixed gaze point in the presence of head
rotations.

IV. COMPARISON WITH THE STATE-OF-THE-ART

In order to put the results achieved by the proposed method
into context, a comparison with the results reported by other
state-of-the-art methods [9][15]–[17][21][24][28] has been
provided in Table V. Relevant state-of-the-art methods that
estimate a POR on a monitor screen under conditions similar to
ours have been chosen. These include methods that allow free
head movement [9][16][17][21][24][28] and utilize generic
imaging hardware, such as webcams [9][15][17][21][24], for
image frame acquisition. Table V presents a comparison of
gaze estimation results in visual angle, specifying the number
of subjects considered during data collection, the number of
calibration points required for POR estimation, the range of
head rotation angles performed by the participants, and the
distance at which the participants sit from the camera and
visual targets.

The results in Table V reveal that our method achieves
a POR estimation performance that is comparable to [21]1
or better than the results reported by relevant state-of-the-art
methods in [9][15]–[17][21][24][28]. It is also worth noting
that our method achieves this performance by employing fewer
calibration points than the methods of [15]–[17][21][24][28],
in the absence of training prior to POR estimation unlike the
method of [16] and without constraining the user to a stationary
head pose by the use of a chin-rest unlike the method of
[15]. These characteristics allow for a method that addresses
the challenges associated with pervasive eye-gaze tracking in
less constrained conditions, by estimating a POR on a monitor
screen from images acquired by an integrated webcam inside
a notebook computer, under natural head movement, following
a brief calibration procedure that does not require prolonged
user-cooperation.

V. CONCLUSION

In this paper, we have proposed a passive eye-gaze tracking
method to estimate the POR on a monitor screen from low-
quality image data acquired by an integrated camera inside
a notebook computer, while approximating any head rota-
tions performed by the user during tracking. Following eye
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(a) (b)

Figure 5. Calculated on-screen iris and head displacements, with respect to reference head and eye poses, during horizontal (a) and vertical (b) head rotations
performed by participant 7 throughout the first validation procedure.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6. The proposed method for iris region segmentation was capable of localizing the iris center coordinates marked in green, at different eyeball rotations
(a-e) and under partial occlusion of the iris region by the eyelids (f-j).
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TABLE V. COMPARISON OF THE MEAN ABSOLUTE ERROR (MAE) AND STANDARD DEVIATION (SD) RESULTS OBTAINED BY OUR METHOD WITH
RESULTS REPORTED BY RELEVANT STATE-OF-THE-ART METHODS. 1,2,3,4 REFER TO RESULTS REPORTED BY THE SAME METHOD, EMPLOYING DIFFERENT

CALIBRATION PATTERNS CONTAINING VARYING AMOUNTS OF CALIBRATION POINTS.

Method Yaw Pitch Number of
Subjects

Number of
Calibration

Points

Range of Head
Rotation

User-Camera
Distance

User-Target
Distance

(MAE/◦, SD/◦) (MAE/◦, SD/◦) (Yaw/◦, Pitch/◦, Roll/◦) (cm) (cm)
Our method (0.54, 0.24) (0.42, 0.20) 9 6 (±15, ±15, 0) 60 60

[9] 1.9 2.2 11 5 N/A 75 75
[15] 2.60 (±3.43) 2.61 (±2.45) 5 48 None 75 75
[16] 1.90 4 4000 training

samples/user
N/A N/A N/A

[17] 3.55 (±0.42) 11 16 N/A 58.42 (±6.98) 58.42 (±6.98)
[21]1 0.59 (±0.38) 7 33 N/A 50 - 60 50 - 60
[21]2 0.63 (±0.39) 7 23 N/A 50 - 60 50 - 60
[21]3 0.69 (±0.41) 7 18 N/A 50 - 60 50 - 60
[21]4 0.97 (±0.57) 7 9 N/A 50 - 60 50 - 60
[24] 5.06 N/A 12 (621.2, 69.75, 0) N/A N/A
[28] 5.3 7.7 5 Arbitrary head

rotations
N/A 220 240

Figure 7. Validation result for participant 7, showing the displayed visual
stimuli (green) and the estimated on-screen PORs (colored).

Figure 8. Mouse cursor trajectories in response to three of five head rotations
performed by participant 7, keeping a fixed gaze point.

Figure 9. Return positions of the mouse cursor close to the ground truth
validation target, corresponding to a total of five different head rotations
performed by participant 7.

region detection and tracking, we proposed an appearance-
based method which allows the localization of the iris center
coordinates from low-resolution eye region images. In view
of the constraints imposed when working on a computer,
approximate linear mapping functions for the iris and head
displacement inside the image space were computed during a
calibration procedure, in order to map the image information
to a POR on the monitor screen. The POR estimates, computed
as a function of the iris and head movement, were improved
by Kalman filters to smoothen the mouse cursor trajectory.

Two validation procedures were carried out in order to
evaluate the proposed POR estimation method with head
movement approximation. The experimental results for the
first validation procedure revealed a noticeable discrepancy
between the error in the x- and y-directions of the estimated
PORs, with the error in the x-direction being the dominant
between the two. The source of this error was observed to
relate to incorrect segmentation of pixels belonging to artifacts,
such as the eyelashes, along with the iris region producing a
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(a) (b)

Figure 10. Calculated on-screen iris and head displacements, with respect to reference head and eye poses, having the same amplitude in opposite directions,
during horizontal (a) and vertical (b) head rotations maintaining a fixed gaze point.

horizontal shift away from the true iris center. Nonetheless,
the proposed method for iris region segmentation was capable
of detecting and hence following the displacement of the iris
region under partial occlusion by the eyelids, permitting the
estimation of the POR in less than ideal conditions. It is
noteworthy to mention that the proposed method achieved a
low mean MAE of (0.54◦, 0.42◦), a significant improvement
over our previous result of (1.46◦, 0.71◦) obtained through our
earlier work without head movement compensation [1].

The second validation procedure aimed to evaluate the
accuracy of head movement approximation. In response to
horizontal and vertical head rotations without a change in
gaze, the mouse cursor was noticed to displace in the direction
of the head movement and promptly return to its starting
position, hence retaining a fixed POR on the monitor screen.
A low mean MAE of (0.70◦, 0.60◦) was achieved across all
participants, indicating a small distance between the return
positions of the mouse cursor and the validation target.

Future work aims to consider the non-linearities associated
with eyeball and head rotations, approximated by planar image
displacement of the respective iris center and head region in
this work, in order to permit a wider range of eyeball and head
rotations during tracking.
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