
τOWL: A Framework for Managing Temporal Semantic Web Documents
Supporting Temporal Schema Versioning

Abir Zekri
University of Sfax

Sfax, Tunisia
abir.zekri@fsegs.rnu.tn

Zouhaier Brahmia
University of Sfax

Sfax, Tunisia
zouhaier.brahmia@fsegs.rnu.tn

Fabio Grandi
University of Bologna

Bologna, Italy
fabio.grandi@unibo.it

Rafik Bouaziz
University of Sfax

Sfax, Tunisia
raf.bouaziz@fsegs.rnu.tn

Abstract — The OWL 2 Web Ontology Language allows
defining both schema and instances of ontologies for Semantic
Web applications, but lacks explicit support for time-varying
ontologies. Hence, knowledge engineers or maintainers of
Semantic Web documents have to use ad hoc techniques in
order to specify an OWL 2 schema for time-varying instances
and to cope with its temporal evolution. In this paper, for a
disciplined and systematic approach to the temporal
management of OWL 2 ontologies, we propose the adoption of
a framework called Temporal OWL 2 (τOWL), inspired by the
Temporal XML Schema (τXSchema) framework defined for
XML data. Hence, τOWL allows creating a temporal OWL 2
ontology from a conventional (i.e., non-temporal) OWL 2
ontology and a set of logical and physical annotations. Logical
annotations identify which elements of a Semantic Web
document can vary over time and physical annotations specify
how the time-varying aspects are represented in the document.
By using annotations to integrate temporal aspects in the
traditional Semantic Web, our framework (i) guarantees
logical and physical data independence for temporal schemas
and (ii) provides a low-impact solution since it requires neither
modifications of existing Semantic Web documents, nor
extensions to the OWL 2 recommendation and Semantic Web
standards. Furthermore, temporal versioning of the schema
itself is supported in τOWL by means of a temporal schema,
which is a document that binds the three components of a
τOWL schema to the temporal versions they belong to. In
τOWL, either the conventional schema and the temporal
schema can be versioned, by means of two dedicated complete
sets of schema change primitives, which are defined in this
work. We also illustrate their use and show their impact on
OWL 2 instances through an example.

Keywords – Semantic Web; Ontology; OWL 2; τXSchema;
Logical annotations; Physical annotations; Temporal database;
XML Schema; XML; τOWL; Conventional schema; Temporal
schema; Schema versioning; Temporal ontology; Ontology
versioning

I. INTRODUCTION

Time is an omnipresent dimension in both modern [1]
and classical [2] applications; it is used to timestamp data
values to keep track of changes in the real world and model
their history. Hence, studying time has been, and continues
to be, one of the main research interests in different scientific
fields, such as databases and knowledge representation.

Since the second half of the 1980s, a great deal of work
has been done in the field of temporal databases [3][4][5].
Several data models and query languages have been
proposed for the management of time-varying data.
Temporal databases usually adopt one or two time
dimensions to timestamp data: (a) transaction time, which
indicates when an event is recorded in the database, and (b)
valid time, which represents the time when an event
occurred, occurs or is expected to occur in the real world. Bi-
temporal data are timestamped by both transaction time and
valid time dimensions. Snapshot data are traditional data,
without time support.

On the other hand, the World Wide Web (WWW or
Web) [6] was shifted from the semi-structured internet to a
more structured Web called the Semantic Web [7][8]. The
new generation of Web aims at providing languages and
tools that specify explicit semantics for data and enable
knowledge sharing among knowledge-based applications. In
this vision, ontologies [9] are used for defining and relating
concepts that describe Web resources, in a formal way. The
new emerging standard for describing ontologies, which has
been recommended by the W3C since 2009, is OWL 2
[10][11][12]. It allows defining both schema (in terms of
entities, axioms, and expressions) and instances (i.e.,
individuals) of ontologies; OWL 2 ontologies are stored as
Semantic Web documents.

Due to the dynamic nature of the Web, ontologies that
are used on the Web (like other Web application components
such as Web databases, Web pages and Web scripts) evolve
over time to reflect and model changes occurring in the real-
world. Furthermore, several Semantic Web-based
applications (like e-commerce, e-government and e-health
applications) require keeping track of ontology evolution and
versioning with respect to time, in order to represent, store
and retrieve time-varying ontologies.

Unfortunately, while there is a sustained interest for
temporal and evolution aspects in the research community
[13], existing Semantic Web standards but also state-of-the-
art ontology editors and knowledge representation tools do
not provide any built-in support for managing temporal
ontologies. In particular, the W3C OWL 2 recommendation
lacks explicit support for time-varying ontologies, at both
schema and instance levels. Thus, knowledge engineers or
maintainers of semantics-based Web resources must use ad

85

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

hoc techniques when there is a need, for example, to specify
an OWL 2 ontology schema for time-varying ontology
instances or to deal with temporal evolution of the ontology
schema itself. In the rest of the paper, we define as
Knowledge Base Administrator (KBA) a knowledge
engineer or, more in general, the person in charge of the
maintenance of semantics-based Web resources.

According to what precedes, we think that if we would
like to handle ontology evolution over time in an efficient
manner and to allow historical queries to be executed on
time-varying ontologies, a built-in temporal ontology
management system is needed. For that purpose, we propose
in this paper a framework, called τOWL, for managing
temporal Semantic Web documents, through the use of a
temporal OWL 2 extension. In fact, we want to introduce
with τOWL a principled and systematic approach to the
temporal extension of OWL 2, similar to that Snodgrass and
colleagues did to the XML language with τXSchema
[14][15][16]. τXSchema is a framework (i.e., a data model
equipped with a suite of tools) for managing temporal XML
documents, well known in the database research community
and, in particular, in the field of temporal XML [17].
Moreover, in our previous work [18][19][20], with the aim
of completing the framework, we augmented τXSchema by
defining necessary schema change operations acting on
conventional schema, temporal schema, and logical and
physical annotations (extensions which we plan to apply to
τOWL too).

Being defined as a τXSchema-like framework, τOWL
facilitates the creation of a temporal OWL 2 ontology from a
conventional (i.e., non-temporal) OWL 2 ontology
specification and a set of logical (or temporal) and physical
annotations. Logical annotations identify which components
of a Semantic Web document can vary over time; physical
annotations specify how the time-varying aspects are
represented in the document. By using temporal schema and
annotations to introduce temporal aspects in the conventional
(i.e., non temporal) Semantic Web, our framework (i)
guarantees logical and physical data independence [21] for
temporal schemas and (ii) provides a low-impact solution
since it requires neither modifications of existing Semantic
Web documents, nor extensions to the OWL 2
recommendation and Semantic Web standards.

Furthermore, with respect to the preliminary version of
this work presented at SEMAPRO 2014 [1], in this paper we
extend the τOWL framework to also support schema
versioning [22][23], which is the most powerful technique
for managing the history of schema changes. Since ontology
schemata are also evolving over time to reflect changes in
real-world applications [24], keeping a fully fledged history
of ontology changes (i.e., involving both the ontology
instances and the ontology schema) is a very required feature
for many Semantic Web applications. More precisely, we
present our technique for the versioning of a τOWL schema,
and define necessary schema change operations acting on
conventional ontology schema and on temporal ontology
schema. We do not deal in this paper with changes acting on
logical and physical annotations; that will be studied in a
future work.

The remainder of the paper is organized as follows.
Section II motivates the need for an efficient management of
time-varying Semantic Web documents. Section III describes
the τOWL framework that we propose for extending the
Semantic Web to temporal aspects: the architecture of τOWL
is presented and details on all its components and support
tools are given. Section IV presents our approach for
versioning of a τOWL schema. Section V introduces the
schema change primitives that we propose, in the τOWL
framework, for changing the conventional schema and for
updating the temporal schema. Section VI discusses related
work. Section VII provides a summary of the paper and
some remarks about our future work.

II. MOTIVATION

In this section, we present a motivating example that
shows the limitation of the OWL 2 language for explicitly
supporting time-varying instances. Then, we state the
desiderata for an OWL 2 extension, which could
accommodate time-varying instances in a disciplined and
systematic way.

A. Running Example

As a motivating and illustrative example for τOWL, we
recall and extend the example presented in the preliminary
version of this work [1], dealing with the management of the
evolution of an ontology based on Friend Of A Friend
(FOAF). The FOAF project [25] is creating a Web of
machine-readable pages describing people, the links between
them and the things they create and do.

Suppose that the Web site “Web-S1” publishes the FOAF
definition for his user “Nouredine”. A fragment of the FOAF
Resource Description Framework (RDF [26]) document of
“Nouredine” is presented in Figure 1. It describes, according
to the FOAF ontology, the personal information of
“Nouredine” (i.e., name and nickname) and the information
about his online accounts on diverse sites (i.e., the home
page of the site, and the account name of the user). In this
example, we limit to describe user’s information concerning
the account on the online Web site “Facebook”.

…
<foaf : Person rdf:ID="#Person1">

<foaf : name>Nouredine Tounsi</ foaf : name>
<foaf : nick >Nor</ foaf : nick >
<foaf : holdsAccount >

<foaf : OnlineAccount
 rdf:about="https://www.facebook.com/
 Nouredine.Tounsi">

<foaf : accountName >Nor_Tunsi
</ foaf : accountName >

</ foaf : OnlineAccount >
</ foaf : holdsAccount >

</ foaf : Person >
…

Figure 1. A fragment of Nouredine FOAF RDF document on January 15,
2014.

Assume that information about the user “Nouredine” of

the Web site “Web-S1” was added on January 15, 2014. On
February 08, 2014, Nouredine modified his nickname from

86

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

“Nor” to “Nouri” and his account name of Facebook from
“Nor_Tunsi” to “Nouri_Tunsi”. Thus, the corresponding
fragment of the Nouredine FOAF RDF document was
revised to that shown in Figure 2.

…
<foaf: Person rdf:ID="#Person1">

<foaf : name>Nouredine Tounsi</ foaf : name>
<foaf : nick >Nouri</ foaf : nick >
<foaf : holdsAccount >

<foaf : OnlineAccount
 rdf:about="https://www.facebook.com/
 Nouredine.Tounsi">

<foaf : accountName >Nouri_Tunsi
</ foaf : accountName >

</ foaf : OnlineAccount >
</ foaf : holdsAccount >

</ foaf : Person >
...

Figure 2. A fragment of Nouredine FOAF RDF document on February 08,
2014.

In many Semantic Web-based applications, the history of

ontology changes is a fundamental requirement, since such a
history allows recovering past ontology versions, tracking
changes over time, and evaluating temporal queries [27]. A
τOWL time-varying Semantic Web document records the
evolution of a Semantic Web document over time by storing
all versions of the document in a way similar to that
originally proposed for τXSchema [14].

Suppose that the webmaster of the Web site “Web-S1”
would like to keep track of the changes performed on our
FOAF RDF information by storing both versions of Figure 1
and of Figure 2 in a single (temporal) RDF document. As a
result, Figure 3 shows a fragment of a time-varying Semantic
Web document that captures the history of the specified
information concerning “Nouredine”.

…
<foaf : Person rdf:ID="#Person1">

<foaf : name>Nouredine Tounsi</ foaf : name>
<versionedNick >

<NickVersion >
<nickValidityStartTime >2014-01-15
</ nickValidityStartTime >
<nickValidityEndTime >2014-02-07
</ nickValidityEndTime >
<foaf : nick >Nor</ foaf : nick >

</ NickVersion >
<NickVersion >

<nickValidityStartTime >2014-02-08
</ nickValidityStartTime >
<nickValidityEndTime >now
</ nickValidityEndTime >
<foaf : nick >Nouri</ foaf : nick >

</ NickVersion >
</ versionedNick >
<foaf : holdsAccount >

<foaf : OnlineAccount
 rdf:about="https://www.facebook.com/
 Nouredine.Tounsi">

<versionedAccountName >
<AccountNameVersion >

<accountNameValidityStartTime >
2014-01-15

</ accountNameValidityStartTime >
<accountNameValidityEndTime >

2014-02-07
</ accountNameValidityEndTime >
<foaf : accountName >Nor_Tunsi
</ foaf : accountName >

</ AccountNameVersion >
<AccountNameVersion >

<accountNameValidityStartTime >
2014-02-08

</ accountNameValidityStartTime >
<accountNameValidityEndTime >

now
</ accountNameValidityEndTime >
<foaf : accountName >Nouri_Tunsi
</ foaf : accountName >

</ AccountNameVersion >
</ versionedAccountName >

</ foaf : OnlineAccount >
</ foaf : holdsAccount >

</ foaf : Person >
...

Figure 3. A fragment of the time-varying Nouredine FOAF RDF document.

In this example, we use valid-time to capture the history

of such information. In order to timestamp the entities which
can evolve over time, we use the following optional tags:
nickValidityStartTime and nickValidityEndTime , for
recording nick name evolution, and
accountNameValidityStartTime and
accountNameValidityEndTime, for keeping the
accountName history. These are optional Data Properties
which can be added to a temporal entity. The domain of
nickValidityEndTime or accountNameValidityEndTime
includes the value “now” [28]; the entity that has “now” as
the value of its validity end time property represents the
current entity until some change occurs.

Assume that the extract of the FOAF ontology presented
in Figure 4 contains the conventional (i.e., non-temporal)
schema [14] for the FOAF RDF document presented in both
Figure 1 and Figure 2. The conventional schema is the
schema for an individual version, which allows updating and
querying individual versions.

<rdf:RDF>

<owl:Ontology rdf:about="http://purl.org/
 az/foaf#">

<rdfs:Class rdf:about="#Person">
<rdf:type rdf:resource="http://www.w3.org/

 2002/07/owl#Class"/>
</rdfs:Class>
<rdf:Property rdf:about="#holdsAccount">

<rdf:type rdf:resource="http://www.w3.org/
 2002/07/owl#ObjectProperty"/>
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="#OnlineAccount"/>

</rdf:Property>
<rdf:Property rdf:about="#accountName">

<rdf:type rdf:resource="http://www.w3.org/
 2002/07/owl#DatatypeProperty"/>
<rdfs:domain rdf:resource="#OnlineAccount"/>

</rdf:Property>
…

</rdf:RDF>

Figure 4. An RDF/XML extract from the OWL 2 FOAF ontology.

The problem is that the time-varying ontology document

87

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(see Figure 3) does not conform to the conventional ontology
schema (see Figure 4). Thus, to resolve this problem, we
need a different ontology schema that can describe the
structure of the time-varying ontology document. This new
schema should specify, for example, timestamps associated
to entities, time dimensions involved, and how the entities
vary over time. This example will be continued in Section
III.A, in order to show how these problems can be solved in
our proposed τOWL framework.

Furthermore, we want our framework also allows KBAs
to effect and keep track of changes to the conventional
schema itself. In Section V.D, we will complete this example
by describing some changes made by the KBA on this initial
framework and showing their effects both at schema and at
instance levels.

B. Desiderata

There are several goals that can be fulfilled when
augmenting the OWL 2 language to support time-varying
instances. Our approach aims at satisfying the following
requirements:

• facilitating the management of time for KBAs;
• supporting both valid time and transaction time;
• supporting (temporal) versioning of OWL 2 ontology

instances;
• keeping compatibility with existing OWL 2 W3C

recommendations, standards, and editors, without
requiring any changes to these recommendations,
standards, and tools;

• supporting existing applications that are already
using OWL 2 ontologies;

• providing OWL 2 data independence so that changes
at the logical level are isolated from those performed
at the physical level, and vice versa;

• accommodating a variety of physical representations
for time-varying OWL 2 instances;

• supporting (temporal) versioning of OWL 2 ontology
schemata.

III. THE τOWL FRAMEWORK

In this section, we present our τOWL framework for
handling temporal Semantic Web documents and provide an
illustrative example of its use. We describe the overall
architecture of τOWL and the tools used for managing both
τOWL schema and τOWL instances. Since τOWL is a
τXSchema-like framework, we were inspired by the
τXSchema architecture and tools while defining the
architecture and tools of τOWL.

The τOWL framework allows a KBA to create a
temporal OWL 2 schema for temporal OWL 2 instances
from a conventional OWL 2 schema, logical annotations,
and physical annotations. Since it is a τXSchema-like
framework, τOWL use the following principles:

• separation between (i) the conventional (i.e., non-
temporal) schema and the temporal schema, and (ii)
the conventional instances and the temporal
instances;

• use of temporal and physical annotations to specify
temporal and physical aspects, respectively, at
schema level.

Figure 5 illustrates the architecture of τOWL. Notice that
only the components that are presented in the figure as
rectangular pink boxes with bold border are specific to an
individual time-varying OWL 2 document and need to be
supplied by a KBA. The framework is based on the OWL 2
language [10], which is a W3C standard ontology language
for the Semantic Web. It allows defining both schema (i.e.,
entities, axioms, and expressions) and instances (i.e.,
individuals) of ontologies. Thus, we consider that the
signature of an OWL 2 ontology O can be defined as
follows: O = {E, A, Exp} such that:

i) E = {C, DP, OP, AP} represents the set of the entities
with:

• C: Class, represents the set of concepts;
• DP: Data Property, represents the set of properties of

the concepts;
• OP: Object Property, represents the set of the

semantic relations between the concepts;
• AP: Annotation Property, represents the set of

annotations on the entities and those on the axioms.
ii) A = {EAx, KAx} represents the set of axioms with:

• EAx: Entity Axioms, represents the axioms which
concern the entities;

• KAx: Key Axioms, represents all the identifiers
associated to the various classes.

iii) Exp = {CE, OPE, DPE} represents the set of the used
expressions (an expression is a complex description
which results from combinations of entities by using
constructors such as enumeration, restriction of
cardinality and restriction of properties) with:

• CE: Class Expressions, represents the set of
combinations of concepts by using constructors;

• OPE: Object Property Expressions, represents the set
of combinations of relations;

• DPE: Data Property Expressions, represents the set of
combinations of properties.

The KBA starts by creating the conventional schema
(box 7), which is an OWL 2 ontology that models the
concepts of a particular domain and the relations between
these concepts, without any temporal aspect. To each
conventional schema corresponds a set of conventional (i.e.,
non-temporal) OWL 2 instances (box 12). Any change to the
conventional schema is propagated to its corresponding
instances. Notice that our approach deals with OWL 2
ontologies with an RDF/XML syntax [29], which is,
according to the OWL 2 specification document [11], the
only syntax that must mandatorily be supported by OWL 2
tools.

After that, the KBA augments the conventional schema
with logical and physical annotations, which allow him/her
to express, in an explicit way, all requirements dealing with
the representation and the management of temporal aspects
associated to the components of the conventional schema, as
described in the following.

Logical annotations [16] allow the KBA to specify:

88

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1) whether a conventional schema component varies over
valid time and/or transaction time;

2) whether its lifetime is described as a continuous state
or a single event;

3) whether the component may appear at certain times
(and not at others);

4) whether its content changes.
If no logical annotations are provided, the default logical

annotation is that anything can change. However, once the
conventional schema is annotated, components that are not
described as time-varying are static and, thus, they must have
the same value across every instance document (box 12).

Physical annotations [16] allow the KBA to specify the
timestamp representation options chosen, such as where the
timestamps are placed and their kind (i.e., valid time or
transaction time) and the kind of representation adopted. The
location of timestamps is largely independent of which
components vary over time. Timestamps can be located
either on time-varying components (as specified by the
logical annotations) or somewhere above such components.
Two OWL 2 documents with the same logical information
will look very different if we change the location of their
physical timestamps. Changing an aspect of even one
timestamp can make a big difference in the representation.
τOWL supplies a default set of physical annotations, which
is to timestamp the root element with valid and transaction

times. However, explicitly defining them can lead to more
compact representations [16].

In order to improve conceptual clarity and also to enable
a more efficient implementation, we adopt a “separation of
concerns” principle in our approach: since the entities, the
axioms and the expressions of an OWL 2 ontology evolve
over time independently, we distinguish between three
separate types of annotations to be defined and to be
associated to a conventional schema: the entity annotations
(box 9), the axiom annotations (box 10) and the expression
annotations (box 11).

Entity annotations describe the logical and physical
characteristics associated to the components of an OWL 2
ontology: classes, relations, and properties. They indicate
for example the temporal formats of these components,
which could be valid-time, transaction-time, bi-temporal or
snapshot (by default). The schema for the logical and
physical entity annotations is given by EntASchema (box 4).
Axiom annotations and expression annotations describe the
logical and physical aspects of axioms and expressions
defined on classes or on properties. The schema for the
logical and physical axiom annotations is given by
AxiASchema (box 5) and the schema for the logical and
physical expression annotations is given by ExpASchema
(box 6).

Figure 5. Overall architecture of τOWL. In the picture, rectangular boxes represent documents, hexagonal boxes represent tools, solid arrows denote

Input/Output data flows, dotted arrows link documents to namespaces and dashed arrows stand for “references” relationships. Moreover, the meaning of the
color and the border pattern of rectangular boxes is as follows: pink box with bold border for documents created/added by the KBA (7, 9, 10, 11 and 12), blue

box with dotted border for documents automatically generated by the system (8, 13, 14, and 15), green box with dashed border for predefined documents
making part of the framework (2, 3, 4, 5 and 6), and white box with thin border for reference documents created by the W3C (0 and 1).

89

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Notice that EntASchema, AxiASchema, and
ExpASchema, which all contain both logical and physical
annotations, are XML Schemas [30]. The annotations
associated to the same conventional schema can evolve
independently. Any change to one of the three sets of
annotations does not affect the two other sets.

Finally, when the KBA finishes annotating the
conventional schema and asks the system to save his/her
work, this latter creates the temporal schema (box 8) in order
to provide the linking information between the conventional
schema and its corresponding logical and physical
annotations. The temporal schema is a standard XML
document, which ties the conventional schema, the entity
annotations, the axiom annotations, and the expression
annotations together. In the τOWL framework, the temporal
schema is the logical equivalent of the conventional OWL 2
schema in a non-temporal context. This document contains
sub-elements that associate a series of conventional schema
definitions with entity annotations, axiom annotations, and
expression annotations, along with the time span during
which the association was in effect. The schema for the
temporal schema document is the XML Schema Definition
document TSSchema (box 3).

To complete the figure in our temporal context, after
creating the temporal schema, the system creates a temporal
document (box 14) in order to link each conventional
ontology instance document (box 12), which is valid to a
conventional ontology schema (box 7), to its corresponding
temporal ontology schema (box 8), and more precisely to its
corresponding logical and physical annotations (which are
referenced by the temporal schema). A temporal document is
a standard XML document that maintains the evolution of a
non-temporal ontology instance document over time, by
recording all of the versions (or temporal slices) of the
document with their corresponding timestamps and by
specifying the temporal schema associated to these versions.
This document contains sub-elements that associate a series
of conventional ontology instance documents with logical
and physical annotations (on entities, axioms, and
expressions), along with the time span during which the
association was in effect. Thus, the temporal document is
very important for making easy the support of temporal
queries working on past versions or dealing with changes
between versions. The schema for the temporal document is
the XML Schema Definition document TDSchema (box 2).

Notice that, whereas TDSchema (box 2), TSSchema (box
3), EntASchema (box 4), AxiASchema (box 5), and
ExpASchema (box 6) have been developed by us, OWL 2
(box 0) and XML Schema (box 1) correspond to the
standards endorsed by the W3C.

In a similar way to what happens in the τXSchema
framework, the temporal schema document (box 8) is
processed by the temporal schema validator tool in order to
ensure that the logical and physical entity annotations, axiom
annotations and expression annotations are (i) valid with
respect to their corresponding schemas (i.e., EntASchema,
AxiASchema, and ExpASchema, respectively), and (ii)
consistent with the conventional schema. The temporal
schema validator tool reports whether the temporal schema

document is valid or invalid.
Once all the annotations are found to be consistent, the

representational schema generator tool generates the
representational schema (box 13) from the temporal schema
(i.e., from the conventional schema and the logical and
physical annotations); it is the result of transforming the
conventional schema according to the requirements
expressed through the different annotations. The
representational schema becomes the schema for temporal
instances (box 15). Temporal instances could be created in
four ways:

i) automatically from the temporal document (box 14)
(i.e., from non-temporal ontology instances (box 12)
and the temporal ontology schema (box 8)), using the
temporal instances generator tool (such an operation
is called “squash” in the original τXSchema
approach);

ii) automatically from instances stored in a knowledge
base, i.e., as the result of a “temporal query” or a
“temporal view”;

iii) automatically from a third-party tool, or
iv) manually (i.e., temporal instances are directly inserted

by the KBA into the τOWL repository).
Moreover, temporal instances are validated against the

representational schema through the temporal instances
validator tool, which reports whether the temporal instances
document (box 15) is valid or invalid.

Notice that the four mentioned tools (i.e., Temporal
Schema Validator, Temporal Instances Validator,
Representational Schema Generator, and Temporal Instances
Generator) are under development. For example, the
temporal instances validator tool is being implemented as a
temporal extension of an existing conventional ontology
instance validator.

A. Running example reprise

In order to show the functioning of the proposed
approach, we continue in the following our motivating
example of Section II.A, in order to show how management
of temporal ontology document versions is dealt with in the
τOWL approach.

On January 15, 2014, the KBA creates a conventional
ontology schema (box 7), named “PersonSchema_V1.owl”
(as in Figure 4), and a conventional ontology document (box
12), named “Persons_V1.rdf” (as in Figure 1), which is valid
with respect to this schema. We assume that the KBA
defines also a set of logical and physical annotations,
associated to that conventional schema; they are stored in an
ontology annotation document (boxes 9, 10, and 11) titled
“PersonAnnotations_V1.xml” as shown in Figure 6.

<?xml version=”1.0” encoding=”UTF-8”?>
<ontologyAnnotationSet >

<logicalAnnotations >
<item target=”/Person/nick”>

<validTime kind=”state”
 content=”varying”
 existence=”constant”/>
</ item >

</ logicalAnnotations >
<physicalAnnotations >

90

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

<stamp target=”Person/nick”
dataInclusion=”expandedVersion”>

<stampkind timeDimension=”validTime”
 stampBounds=”extent”/>
</ stamp >

</ physicalAnnotations >
</ ontologyAnnotationSet >

Figure 6. The annotation document on January 15, 2014.

After that, the system creates the temporal ontology

schema (box 8) in Figure 7, which ties
“PersonSchema_V1.owl” and “PersonAnnotations_V1.xml”
together; this temporal schema is saved in an XML file titled
“PersonTemporalSchema.xml”. Consequently, the system
uses the temporal ontology schema of Figure 7 and the
conventional ontology document in Figure 1 to create a
temporal document (box 14) as in Figure 8, which lists both
versions (i.e., temporal “slices”) of the conventional
ontology documents with their associated timestamps. The
squashed version (box 15) of this temporal document, which
could be generated by the Temporal Instances Generator, is
provided in Figure 9.

<?xml version=”1.0” encoding=”UTF-8”?>
<temporalOntologySchema >

<conventionalOntologySchema >
<sliceSequenc e>

<slice location=” PersonSchema_V1.owl ”
 begin=”2014-01-15” />
</ sliceSequence >

</ conventionalOntologySchema >
<ontologyAnnotationSet >

<sliceSequence >
<slice

location=” PersonAnnotations_V1.xml ”
begin=”2014-01-15” />

</ sliceSequence >
</ ontologyAnnotationSet >

</ temporalOntologySchema >

Figure 7. The temporal schema on January 15, 2014.

<?xml version=”1.0” encoding=”UTF-8”?>

<td:temporalRoot
temporalSchemaLocation= ”PersonTemporalSchema.xml

” />
<td:sliceSequence >

<td:slice location =”Persons_V1.rdf ”
 begin=”2014-01-15” />

</ td:sliceSequence >
</ td:temporalRoot >

Figure 8. The temporal document on January 15, 2014.

<foaf : Person rdf:ID="#Person1">

<foaf : name>Nouredine Tounsi</ foaf : name>
<nick_RepItem >

<nick_Version >
<timestamp_ValidExtent
 begin=”2014-01-15” end=”now” />
<foaf : nick >Nor</ foaf : nick >

</ nick_Version >
</ nick_RepItem >
<foaf : holdsAccount >

<foaf : OnlineAccount
 rdf:about="https://www.facebook.com/

 Nouredine.Tounsi">
<accountName_RepItem >

<accountName_Version >
<timestamp_ValidExtent
 begin=”2014-01-15” end=”now” />
<foaf : accountName >Nor_Tunsi
</ foaf : accountName >

</ accountName_Version >
</ accountName_RepItem >

</ foaf : OnlineAccount >
</ foaf : holdsAccount >

</ foaf : Person >

Figure 9. The squashed document correponding to the temporal document
on January 15, 2014.

On February 08, 2014, the KBA updates the conventional

ontology document “Persons_V1.rdf” as presented in Section
II.A to produce a new conventional ontology document
named “Persons_V2.rdf” (as in Figure 2). Since the
conventional ontology schema (i.e., PersonSchema_V1.owl)
and the ontology annotation document (i.e.,
PersonAnnotations_V1.xml) are not changed, the temporal
ontology schema (i.e., PersonTemporalSchema.xml) is
consequently not updated. However, the system updates the
temporal document, in order to include the new slice of the
new conventional ontology document, as shown in Figure
10. The squashed version of the updated temporal document
is provided in Figure 11.

<?xml version=”1.0” encoding=”UTF-8”?>

<td:temporalRoot
temporalSchemaLocation= ”PersonTemporalSchema.xml

” />
<td:sliceSequence >

<td:slice location =”Persons_V1.rdf ”
 begin=”2014-01-15” />
<td:slice location =”Persons_V2.rdf ”
 begin=”2014-02-08” />

</ td:sliceSequence >
</ td:temporalRoot >

Figure 10. The temporal document on February 08, 2014.

<foaf : Person rdf:ID="#Person1">

<foaf : name>Nouredine Tounsi</ foaf : name>
<nick_RepItem >

<nick_Version >
<timestamp_ValidExtent begin=”2014-01-15”
 end=”2014-02-07” />
<foaf : nick >Nor</ foaf : nick >

</ nick_Version >
<nick_Version >

<timestamp_ValidExtent begin=”2014-02-08”
 end=”now” />
<foaf : nick >Nouri</ foaf : nick >

</ nick_Version >
</ nick_RepItem >
<foaf : holdsAccount >

<foaf : OnlineAccount
 rdf:about="https://www.facebook.com/
 Nouredine.Tounsi">

<accountName_RepItem >
<accountName_Version >

<timestamp_ValidExtent
 begin=”2014-01-15”
 end=”2014-02-07”/>
<foaf : accountName >Nor_Tunsi
</ foaf : accountName >

91

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

</ accountName_Version >
<accountName_Version >

<timestamp_ValidExtent
 begin=”2014-02-08”
 end=”now” />
<foaf : accountName >Nouri_Tunsi
</ foaf : accountName >

</ accountName_Version >
</ accountName_RepItem >

</ foaf : OnlineAccount >
</ foaf : holdsAccount >

</ foaf : Person >

Figure 11. The squashed document correponding to the temporal document
on February 08, 2014.

Obviously, each one of the squashed documents (see

Figure 9 and Figure 11) should conform to a particular
schema, which is the representational schema (box 13),
which is generated (by the Representational Schema
Generator) from the temporal schema shown in Figure 7.

The example will be completed in Section V.D, after that
the management of schema changes has been introduced.

IV. OUR APPROACH TO SCHEMA VERSIONING IN THE

τOWL FRAMEWORK

In this section, we describe how τOWL conventional
schema and τOWL logical and physical annotations can be
versioned in our approach.

The first step of a schema versioning sequence is the
creation of a first schema version: the KBA creates a
conventional ontology schema (i.e., an OWL 2 file) and
annotates it with some logical and physical annotations in an
independent document (which is stored as an XML file),
through, for instance, a graphical interface. Consequently,
the system creates the temporal ontology schema (also stored
as an XML file) that ties together the conventional schema
and the annotations.

In further steps of the versioning sequence, applied when
necessary, the KBA can independently change the
conventional ontology schema, the logical or the physical
ontology annotations.

Changing the conventional ontology schema leads to a
new version of it. Similarly, changing logical or physical
ontology annotations leads to a new version of the whole
ontology annotation document. Therefore, the temporal
ontology schema is implicitly and automatically updated by
the system after each change of the conventional schema or
of the annotation document.

Schema change operations performed by the KBA are
high-level, since they are usually conceived having in mind
high-level real-world specifications. Each of these high-level
schema change operations is then mapped onto a sequence of
low-level schema change operations (or schema change
primitives). The mapping is performed by a schema change
processor.

Each high-level change can be expressed as a sequence
of change primitives. Thus, the consistency of the resulting
conventional ontology schema (respectively, the resulting
ontology annotation document or the resulting temporal
ontology schema) is always guaranteed, if change primitives

preserve the conventional ontology schema (respectively, the
ontology annotation document or the temporal ontology
schema) consistency.

Notice that in our approach, like in [15], the temporal
schema, which ties the conventional schema and the
annotations together, is not “explicitly” versioned; for each
conventional schema (i.e., all the versions of this schema)
and its associated annotation document (i.e., all the versions
of this document), there is always one XML document that
represents the temporal schema, which is updated when the
conventional schema and/or the annotation document are
changed. In fact, in the τOWL framework, the temporal
schema is instrumental to support versioning of anything can
change in the managed Semantic Web repository. As a
consequence, by its nature, the temporal schema comes out
“implicitly” versioned (i.e., all versions of a temporal
schema document are stored within this document; the
version of a temporal schema, valid at any given time Tx,
could be extracted from that schema by removing all the
<slice ... begin=Ty/> elements where Ty>Tx). Thus, we
think that other kinds of versioning of the temporal schema
are neither necessary nor could be meaningfully put at user’s
disposal (without getting out of the τOWL framework).

Notice also that neither conventional schema versioning
nor annotation versioning lead automatically to proliferation
of schema versions. The creation of a new conventional
schema version (or of a new annotation document version) is
anyway a seldom task during the Semantic Web repository
lifetime, which can only be performed by an administrator of
this repository. This task may consist of dozens of schema
change operations, which are grouped together in the same
single transaction.

V. PRIMITIVES FOR CHANGING CONVENTIONAL SCHEMA

AND TEMPORAL SCHEMA IN THE τOWL FRAMEWORK

In this section, we first present our design principles and
then introduce our proposed change primitives. We start by
providing change primitives acting on conventional schema
in τOWL and then we provide primitives for changing the
temporal ontology schema. We have individuated change
primitives (i.e., non-further decomposable in terms of the
other ones), which make up a complete set of changes (i.e.,
such that any possible complex change can be defined via a
combination/sequence of them). For each change primitive,
we describe its arguments and its operational semantics.
Finally, we give an example that illustrates the use of these
primitives for versioning of τOWL conventional schema.

A. Design principles

The definition of the primitives will obey the following
principles and conventions:

1) all primitives must work on a well-formed and valid
Conventional Ontology Schema (COS) (or on the Temporal
Ontology Schema (TOS)), that is, primitives must have a
well-formed and valid COS (or TOS) as input and produce a
well-formed and valid COS (or TOS) as output;

2) all primitives need to work on an OWL 2 file (or an
XML file) storing the COS (or TOS), whose name must be
supplied as argument;

92

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3) for all primitives, arguments that are used to identify
the object on which the primitive works are in the first place
of the argument list;

4) primitives adding elements with possibly optional
attributes have the values for all the attributes as arguments;
empty places in the argument list stand for unspecified
optional attributes;

5) for primitives changing elements, values are specified
only for attributes that are changed; the value “unchanged”
means that the corresponding attribute is not updated; an
empty place in the argument list means that the
corresponding attribute receives a nil value.

The lists of operations in the subsections that follow are
the applications of the design principles presented above.

B. Primitives for changing conventional schema

Based on the OWL 2 ontology definition we adopted in
Section III (e.g., assuming the signature O = {E, A, Exp}),
we define a complete set of primitives for changing a
conventional ontology schema, composed of twenty-eight
operations. The idea is that each primitive deals with an
OWL 2 ontology component (e.g., a class, a data property,
an object property), by creating, removing or modifying
such a component. For each primitive change, we describe
its arguments and its operational semantics. Obviously, each
primitive change has an effect on the COS. We do not
present in this paper the effects of all primitive changes. We
give only the effect of some selected primitive changes.

We have organized the proposed primitives into eight
categories: (i) primitives acting on the whole COS (in the
sub-section V.B.1), (ii) primitives acting on a class (in the
sub-section V.B.2), (iii) primitives acting on a data property
(in the sub-section V.B.3), (iv) primitives acting on an
object property (in the sub-section V.B.4), (v) primitives
acting on an annotation property (in the sub-section V.B.5),
(vi) primitives acting on an entity axiom (in the sub-section
V.B.6), (vii) primitives acting on a key axiom (in the sub-
section V.B.7), and (viii) primitives acting on an entity
expression (in the sub-section V.B.8).

1) Primitives acting on the whole COS
We have only three primitives:
• CreateConventionalOntologySchema(COS.owl)
It produces a valid empty OWL 2 file. According to the

second design principle, the argument is the name of the
OWL 2 file where the new COS is stored.

Notice also that the name of this file is the name of the
ontology (e.g., Author, Paper, and Conference).

The effect of such a primitive, that is, the contents of the
COS.owl file after its application, is as follows:

<rdf:RDF>

<owl:Ontology rdf:about=”” />
</rdf:RDF>

• RenameConventionalOntologySchema(oldCOS,

newCOS)
It changes the name of a COS from “oldCOS” to

“newCOS” (or, it changes the name of an ontology from
“oldOntoName” to “newOntoName”).

• DropConventionalOntologySchema(COS.owl)
It removes the COS.owl file from disk, with the

constraint that the argument represents an empty COS (i.e.,
like the one above initially created by the
CreateConventionalOntologySchema primitive). Any other
contents must have been removed before.

2) Primitives acting on a class
We have defined three primitives:
• AddClass(COS.owl, className)
It adds a new class having the name “className” to the

COS.
The effect of such a primitive, that is, the contents of the

COS.owl file after its application, is as follows:

<rdf:RDF>
<owl:Ontology rdf:about=””>

<owl:Class rdf:about=" className"/>
</owl:Ontology>

</rdf:RDF>

• RenameClass(COS.owl, oldClassName,

newClassName)
It changes the name of a class from “oldClassName” to

“newClassName”, in the COS.
• DropClass(COS.owl, className)
It removes the class having the name “className” from

the COS.
3) Primitives acting on a data property
We have defined five primitives:
• AddDataProperty(COS.owl, className,

DataPropertyName, DataPropertyType)
It adds a new data property having the name

“DataPropertyName” and the type “DataPropertyType” to
the class “className”, in the COS.

Notice that the “className” and the “DataPropertyType”
are considered as the “DataPropertyDomain” and the
“DataPropertyRange”, respectively.

The effect of such a primitive, that is, the contents of the
COS.owl file after its application, is as follows:

<rdf:RDF>

<owl:Ontology rdf:about=””>
<owl:Class rdf:about=" className"/>
<owl:DatatypeProperty

rdf:about=" DataPropertyName">
<rdfs:domain rdf:resource=" className"/>
<rdfs:range rdf:resource=" DataPropertyType"/>

</owl:DatatypeProperty>
</owl:Ontology>

</rdf:RDF>

• DropDataProperty(COS.owl, className,

DataPropertyName)
It removes the data property having the name

“DataPropertyName” from the class “className”, in the
COS.

• RenameDataProperty(COS.owl, className,
oldDataPropertyName, newDataPropertyName)

It changes the name of a data property from
“oldDataPropertyName” to “newDataPropertyName” in the

93

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

class “className”, in the COS.
• ChangeDataPropertyDomain(COS.owl, className,

DataPropertyName, newDataPropertyDomain)
It replaces the domain (or class) “className” of the data

property “DataPropertyName” with a new domain
“newDataPropertyDomain”, in the COS.

The effect of such a primitive, that is, the contents of the
COS.owl file after its application, is as follows:

<rdf:RDF>

<owl:Ontology rdf:about=””>
<owl:Class rdf:about=" newDataPropertyDomain"/>
<owl:DatatypeProperty

rdf:about="DataPropertyName">
<rdfs:domain

rdf:resource=" newDataPropertyDomain"/>
<rdfs:range rdf:resource="DataPropertyType"/>

</owl:DatatypeProperty>
</owl:Ontology>

</rdf:RDF>

• ChangeDataPropertyRange(COS.owl, className,

DataPropertyName, oldDataPropertyRange,
newDataPropertyRange)

It replaces the range (or type) “oldDataPropertyRange”
of the data property “DataPropertyName” of the class
“className” with a new range “newDataPropertyRange”, in
the COS.

4) Primitives acting on an object property
We have defined five primitives:
• AddObjectProperty(COS.owl,

ObjectPropertyName, ObjectPropertyDomain,
ObjectPropertyRange)

It creates an object property (a relation) having the name
“ObjectPropertyName” between a source class
“ObjectPropertyDomain” and a target class
“ObjectPropertyRange”, in the COS.

The effect of such a primitive, that is, the contents of the
COS.owl file after its application, is as follows:

<rdf:RDF>

<owl:Ontology rdf:about=””>
…
<owl:ObjectProperty

rdf:about=" ObjectPropertyName">
<rdfs:domain

rdf:resource=" ObjectPropertyDomain"/>
<rdfs:range

rdf:resource=" ObjectPropertyRange"/>
</owl:ObjectProperty>

</owl:Ontology>
</rdf:RDF>

• DropObjectProperty(COS.owl,

ObjectPropertyName)
It removes the object property “ObjectPropertyName”

from the COS.
• RenameObjectProperty(COS.owl,

oldObjectPropertyName, newObjectPropertyName)
It changes the name of an object property from

“oldObjectPropertyName” to “newObjectPropertyName”, in
the COS.

• ChangeObjectPropertyDomain(COS.owl,
ObjectPropertyName, oldObjectPropertyDomain,
newObjectPropertyDomain)

It replaces the domain “oldObjectPropertyDomain” of
the object property “ObjectPropertyName” with a new
domain “newObjectPropertyDomain”, in the COS.

• ChangeObjectPropertyRange(COS.owl,
ObjectPropertyName, oldObjectPropertyRange,
newObjectPropertyRange)

It replaces the range “oldObjectPropertyRange” of the
object property “ObjectPropertyName” with a new range
“newObjectPropertyRange”, in the COS.

5) Primitives acting on an annotation property
We have defined three primitives:
• AddAnnotationProperty(COS.owl, propertyType,

propertyName, annotationProperty)
It defines a new annotation property

“annotationProperty” on the propertyType (i.e., Class,
DataProperty, ObjectProperty, EntityAxiom, or KeyAxiom)
named “propertyName”, in the COS.

• DropAnnotationProperty(COS.owl, propertyType,
propertyName, annotationProperty)

It removes the annotation property “annotationProperty”
defined on the propertyType (i.e., Class, DataProperty,
ObjectProperty, EntityAxiom, or KeyAxiom) named
“propertyName”, in the COS.

• ChangeAnnotationProperty(COS.owl,
propertyType, propertyName,
oldAnnotationProperty, newAnnotationProperty)

It replaces the annotation property
“oldAnnotationProperty” defined on the propertyType (i.e.,
Class, DataProperty, ObjectProperty, EntityAxiom, or
KeyAxiom) named “propertyName”, in the COS, with a new
annotation property “newAnnotationProperty”.

6) Primitives acting on an entity axiom
 We have defined three primitives:
• AddEntityAxiom(COS.owl, entityType, entityName,

entityAxiom)
It defines a new entity axiom “entityAxiom” on the

entityType (i.e., Class, DataProperty, ObjectProperty, or
AnnotationProperty) named “entityName”, in the COS.

• DropEntityAxiom(COS.owl, entityType,
entityName, entityAxiom)

It removes the entity axiom “entityAxiom” defined on
the entityType (i.e., Class, DataProperty, ObjectProperty, or
AnnotationProperty) named “entityName”, in the COS.

• ChangeEntityAxiom(COS.owl, entityType,
entityName, oldEntityAxiom, newEntityAxiom)

It replaces the entity axiom “oldEntityAxiom” defined on
the entityType (i.e., Class, DataProperty, ObjectProperty, or
AnnotationProperty) named “entityName”, in the COS, with
a new entity axiom “newEntityAxiom”.

7) Primitives acting on a key axiom
We have defined also three primitives:
• AddKeyAxiom(COS.owl, className, keyAxiom)
It defines a new key axiom “keyAxiom” on the class

“className”, in the COS.
• DropKeyAxiom(COS.owl, className, keyAxiom)

94

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

It removes the key axiom “keyAxiom” defined on the
class “className”, in the COS.

• ChangeKeyAxiom(COS.owl, className,
oldKeyAxiom, newKeyAxiom)

It replaces the key axiom “oldKeyAxiom” defined on the
class “className” in the COS, with a new key axiom
“newKeyAxiom”.

8) Primitives acting on an entity expression
We have only three primitives:
• AddEntityExpression(COS.owl, entityType,

entityName, entityExpression)
It defines a new entity expression “entityExpression” on

the entityType (i.e., Class, DataProperty, or ObjectProperty)
named “entityName”, in the COS.

• DropEntityExpression(COS.owl, entityType,
entityName, entityExpression)

It removes the entity expression “entityExpression”
defined on the entityType (i.e., Class, DataProperty, or
ObjectProperty) named “entityName”, in the COS.

• ChangeEntityExpression(COS.owl, entityType,
entityName, oldEntityExpression,
newEntityExpression)

It replaces the entity expression “oldEntityExpression”
defined on the entityType (i.e., Class, DataProperty, or
ObjectProperty) named “entityName”, in the COS, with a
new entity expression “newEntityExpression”.

C. Primitives for changing the temporal ontology schema

Changing the temporal ontology schema is a task that
must be done within the same transaction that changes the
corresponding conventional ontology schema and/or the
ontology annotation document. We also propose in this sub-
section a complete set of primitives acting on a temporal
ontology schema (their total number is four). For each
primitive, we provide specifications for its actions and
explanation of its parameters. We also present the effects of
some of them. These primitives are as follows:

• CreateTemporalOntologySchema(TOS.xml)
It produces a valid empty TOS. According to the second

design principle, the argument is the name of the XML file
where the new TOS is stored.

The effect of the
CreateTemporalOntologySchema(TOS.xml) primitive, that
is, the contents of the COS.xml file after its application, is as
follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<temporalOntologySchema/>

• DropTemporalOntologySchema(TOS.xml)
It removes the TOS.xml file from disk, with the

constraint that the argument represents an empty TOS (i.e.,
like the one above initially created by the
CreateTemporalOntologySchema primitive). Any other
contents must have been removed before.

• AddSlice(TOS.xml, toWat, sourceSlice, targetSlice)
It adds the <slice/> element with specified sourceSlice

and targetSlice to the toWhat (i.e.,
<conventionalOntologySchema/> or

<ontologyAnnotationSet/>) container.
- The sourceSlice parameter could be:
a) The keyword empty; in this case, the resource pointed

by targetSlice is initialized to an empty conventional
ontology schema or ontology annotation document according
to the toWhat value.

b) The keyword current; in this case, the resource pointed
by targetSlice is initialized with a copy of the current
conventionalOntologySchema or ontologyAnnotationSet
resource (according to toWhat), whose location is found in
the TOS.xml temporal schema file by choosing the slice with
the maximum value of begin in the corresponding
sliceSequence (note: after the creation of the first schema
version, this is the normal case).

c) A specified file name (URL): in this case, a copy of
the specified resource is renamed as targetSlice and used as
the new location (e.g., this case is used to create a new
conventional ontology schema version from an already
existing OWL 2 file, which could be quite common when
creating the first schema version but can be used also later
for reuse purpose and/or integrating independently
developed schemata into a τOWL framework).

- The targetSlice parameter is the value assigned to the
location attribute of <slice/> and must not correspond to the
URL of any already existing OWL 2 file/resource.

For example, the effects of the AddSlice(“TOS.xml”,
conventionalOntologySchema, empty, “COS_V1.owl”)
primitive are described in the following:

i) The contents of the TS.xml file is updated as follows
(the transaction time associated to the execution of the
transaction that includes this primitive is March 01, 2012,
which is used as value of begin in the <slice/> element):

<?xml version=”1.0” encoding=”UTF-8”?>
<temporalOntologySchema>

<conventionalOntologySchema>
<sliceSequence>

<slice location=”COS_V1.owl”
 begin=”2012-03-01” />

</sliceSequence>
</conventionalOntologySchema>

</temporalOntologySchema>

ii) A new empty conventional ontology schema, titled

“COS_V1.owl”, is created as follows:

<rdf:RDF>
<owl:Ontology rdf:about=”” />

</rdf:RDF>

• DropSlice(TOS.xml, fromWat, targetSlice)
It removes the <slice/> element with specified targetSlice

from the fromWhat (i.e., <conventionalOntologySchema/>
or <ontologyAnnotationSet/>) container.

D. Running example conclusion

Let us resume the example started in Section II.A.
Suppose that on July 18, 2014, the KBA decides to make
some changes to the first version of the conventional
ontology schema, in order to meet some changes in the code

95

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of the application that exploit such an ontology schema.
These changes are as follows:

– define an irreflexive relationship (or object property),
named “childOf”, on the class “Person”;

– create two new classes, named “Man” and “Woman”,
which inherit from the class “Person”;

– define a symmetric relationship, named “hasSpouse”,
between the class “Man” and the class “Woman”;

– specify a relationship, named “hasWife”, between the
class “Man” and the class “Woman”. This relationship
inherits from the relationship “hasSpouse”;

– change the name of the property (or data property)
“name” of the class “Person” to “fullName”;

– add a new property, named “age” and having the XSD
type “nonNegativeInteger”, to the class “Person”;

– specify an expression on the relationship
“holdsAccount”, which indicates that each person must have
at least one online account.

The second version of the conventional ontology schema
and the second version of each one the two conventional
ontology instance documents are shown in Figure 12, Figure
13, and Figure 14, respectively. The temporal ontology
schema is also updated by adding a new slice related to this
new version of the conventional ontology schema, as shown
in Figure 15. Moreover, the temporal document is updated,
in order to include two new slices corresponding to the two
new conventional ontology instance documents, as shown in
Figure 16. The squashed version of the updated temporal
document that consequently can be generated by the
Temporal Instances Generator tool is similar to documents
provided in Figure 9 and Figure 11. Notice that changes are
presented in red, in Figures 12-16.

<rdf:RDF>

<owl:Ontology
rdf:about="http://purl.org/az/foaf#">

<owl:Class rdf:about="Person"/>
<owl:Class rdf:about="OnlineAccount"/>
<owl:Class rdf:about="Man"/>
<owl:Class rdf:about="Woman"/>
<owl:DatatypeProperty rdf:about="accountName">

<rdfs:domain rdf:resource="Person"/>
<rdfs:range rdf:resource=
"http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="nick">

<rdfs:domain rdf:resource="Person"/>
<rdfs:range rdf:resource=
"http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="fullName">

<rdfs:domain rdf:resource="Person"/>
<rdfs:range rdf:resource=
"http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:about="age">

<rdfs:domain rdf:resource="Person"/>
<rdfs:range rdf:resource=
"http://www.w3.org/2001/XMLSchema#nonNegativeI

nteger"/>
</owl:DatatypeProperty>

<owl:ObjectProperty rdf:about="holdsAccount">
<rdfs:domain rdf:resource="Person"/>
<rdfs:range rdf:resource="OnlineAccount"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="hasSpouse">

<rdfs:domain rdf:resource="Man"/>
<rdfs:range rdf:resource="Woman"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="hasWife">

<rdfs:domain rdf:resource="Man"/>
<rdfs:range rdf:resource="Woman"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="childOf">

<rdfs:domain rdf:resource="Person"/>
<rdfs:range rdf:resource="Person"/>

</owl:ObjectProperty>
<owl:Class rdf:about="Man">

<rdfs:subClassOf rdf:resource="Person"/>
</owl:Class>
<owl:Class rdf:about="Woman">

<rdfs:subClassOf rdf:resource="Person"/>
</owl:Class>
<owl:SymmetricProperty rdf:about="hasSpouse"/>
<owl:IrreflexiveProperty rdf:about="childOf"/>
<owl:ObjectProperty rdf:about="hasWife">

<rdfs:subPropertyOf rdf:resource="hasSpouse"/>
</owl:ObjectProperty>
<owl:Restriction>

<owl:onProperty rdf:resource="#holdsAccount"/>
<owl:minCardinality rdf:datatype=
"http://www.w3.org/2001/XMLSchema#nonNegativeI

nteger">1
</owl:minCardinality>

</owl:Restriction>
…

</owl:Ontology>
</rdf:RDF>

Figure 12. Second version of the conventional ontology schema
(PersonSchema_V2.owl), on July 18, 2014.

…
<foaf:Person rdf:ID="#Person1">

<foaf: fullName >Nouredine Tounsi</foaf:fullName>
<foaf:nick>Nor</foaf:nick>
<age/>
<childOf />
<hasSpouse />
<hasWife />
<foaf:holdsAccount>

<foaf:OnlineAccount rdf:about=
"https://www.facebook.com/Nouredine.Tounsi">

<foaf:accountName>Nor_Tunsi</foaf:accountName>
</foaf:OnlineAccount>

</foaf:holdsAccount>
</foaf:Person>
…

Figure 13. “Persons_V3.rdf”: the second version of the conventional
ontology instance document “Persons_V1.rdf”, on July 18, 2014.

…
<foaf:Man rdf:ID="#Person1">

<foaf: fullName >Nouredine Tounsi</foaf: fullName >
<foaf:nick>Nouri</foaf:nick>
<age/>
<childOf/>
<hasSpouse/>
<hasWife/>

96

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

<foaf:holdsAccount>
<foaf:OnlineAccount rdf:about=
 "https://www.facebook.com/Nouredine.Tounsi">

<foaf:accountName>Nouri_Tunsi
</foaf:accountName>

</foaf:OnlineAccount>
</foaf:holdsAccount>

</foaf:Person>
…

Figure 14. “Persons_V4.rdf”: the second version of the conventional
ontology instance document “Persons_V2.rdf”, on July 18, 2014.

<?xml version=”1.0” encoding=”UTF-8”?>
<temporalOntologySchema>

<conventionalOntologySchema>
<sliceSequence>

<slice location=”PersonSchema_V1.owl”
begin=”2014-01-15” />

<slice location=”PersonSchema_V2.owl”
begin=”2014-07-18” />

</sliceSequence>
</conventionalOntologySchema>
<ontologyAnnotationSet>

<sliceSequence>
<slice location=”PersonAnnotations_V1.xml”

begin=”2014-01-15” />
</sliceSequence>

</ontologyAnnotationSet>
</temporalOntologySchema>

Figure 15. The temporal ontology schema (PersonTemporalSchema.xml), on
July 18, 2014.

<?xml version=”1.0” encoding=”UTF-8”?>

<td:temporalRoot
temporalSchemaLocation= ”PersonTemporalSchema.xml

” />
<td:sliceSequence >

<td:slice location =”Persons_V1.rdf ”
 begin=”2014-01-15” />
<td:slice location =”Persons_V2.rdf ”
 begin=”2014-02-08” />
<td:slice location=”Persons_V3.rdf”
 begin=”2014-07-18” />
<td:slice location=”Persons_V4.rdf”
 begin=”2014-07-18” />

</ td:sliceSequence >
</ td:temporalRoot >

Figure 16. The temporal document (PersonTemporalDocument.xml)
on July 18, 2014.

The transaction listed in the following contains the

sequence of primitives that have been performed on the
temporal ontology schema (PersonTemporalSchema.xml, in
Figure 7), on the first version of the conventional ontology
schema (PersonSchema_V1.owl in Figure 4), on the first
version of the conventional ontology instance document
(Persons_V1.rdf in Figure 1) and on the second version of
the conventional ontology instance document
(Persons_V2.rdf in Figure 2), in order to update the
temporal ontology schema (see Figure 15) and the temporal
document (see Figure 16) and to produce the second version
of the conventional ontology schema, named
“PersonSchema_V2.owl” (see Figure 12), and the third and

the fourth versions of the conventional ontology instance
document, named “Persons_V3.rdf” (see Figure 13) and
“Persons_V4.rdf” (see Figure 14), respectively, which are
valid with respect to “PersonSchema_V2.owl”:

Begin Transaction

(i) AddSlice(“PersonTemporalSchema.xml”,

conventionalOntologySchema, current,

“PersonSchema_V2.owl”)

(ii) AddObjectProperty(“PersonSchema_V2.owl”,

“childOf”, “Person”, “Person”)

(iii) AddEntityAxiom(“PersonSchema_V2.owl”,

ObjectProperty, “childOf”,

“IrreflexiveProperty”)

(iv) AddClass(“PersonSchema_V2.owl”, “Man”)

(v) AddClass(“PersonSchema_V2.owl”, “Woman”)

(vi) AddEntityAxiom(“PersonSchema_V2.owl”, Class,

“Man”, “subClassOf(Person)”)

(vii) AddEntityAxiom(“PersonSchema_V2.owl”, Class,

“Woman”, “subClassOf(“Person”)”)

(viii) AddObjectProperty(“PersonSchema_V2.owl”,

“hasSpouse”, “Man”, “Woman”)

(ix) AddEntityAxiom(“PersonSchema_V2.owl”,

ObjectProperty, “hasSpouse”,

“SymmetricProperty”)

(x) AddObjectProperty(“PersonSchema_V2.owl”,

“hasWife”, “Man”, “Woman”)

(xi) AddEntityAxiom(“PersonSchema_V2.owl”,

ObjectProperty, “hasWife”,

“subObjectPropertyOf(“hasSpouse”)”)

(xii) RenameDataProperty(“PersonSchema_V2.owl”,

“Person”, “name”, “fullName”)

(xiii) AddDataProperty(“PersonSchema_V2.owl”,

“Person”, “age”,

“http://www.w3.org/2001/XMLSchema#nonNegativeIn

teger”)

(xiv) AddEntityExpression(“PersonSchema_V2.owl”,

ObjectProperty, “holdsAccount”,

“minCardinality(1)”)

Commit

The transaction time associated to the execution of the

transaction above is July 18, 2014, which is used as value of
the attribute “begin” of the new <slice/> element,
corresponding to the new conventional ontology schema
version, in the temporal ontology schema file.

Notice that on July 18, 2014, our multiversion τOWL
framework is thus composed of two successive versions of
the conventional ontology schema (shown in Figure 4 and
Figure 12, respectively), four versions of the conventional
ontology instance documents (shown in Figure 1, Figure 2,
Figure 13, and Figure 14, respectively), one version of the
ontology annotation document (shown in Figure 6), the
temporal document (shown in Figure 16) and the temporal
ontology schema (shown in Figure 15).

97

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Notice also that “Persons_V3.rdf” (shown in Figure 13)
and “Persons_V4.rdf” (shown in Figure 14) are the results
of schema change propagation (i.e., the effects of schema
changes on instances), in order to adapt all existing
instances, stored in “Persons_V1.rdf” (shown in Figure 1)
and “Persons_V2.rdf” (shown in Figure 2), to the new
schema version “PersonSchema_V2.owl” (shown in Figure
12). In fact, after creating "Persons_V3.rdf" as a copy of
"Persons_V1.rdf" and "Persons_V4.rdf" as a copy of
"Persons_V2.rdf", the two following XQuery Update
Facility [31] statements could be executed on
"Persons_V3.rdf" and "Persons_V4.rdf", respectively, to
achieve the purpose:

for $p in fn:doc("Persons_V3.rdf")//foaf:Person

return {

rename node $p/foaf:name as "foaf:fullName",

insert node <age/> after $p/foaf:nick,

insert node <childOf/> after $p/age,

insert node <hasSpouse/> after $p/childOf,

insert node <hasWife/> after $p/hasSpouse

}

for $p in fn:doc("Persons_V4.rdf")//foaf:Person

return {

rename node $p/foaf:name as "foaf:fullName",

insert node <age/> after $p/foaf:nick,

insert node <childOf/> after $p/age,

insert node <hasSpouse/> after $p/childOf,

insert node <hasWife/> after $p/hasSpouse

}

These statements are derived, in an automatic and

transparent way, by the system as a part of the semantics of
the schema change primitives. They are not part of what the
KBA puts in his/her schema change transaction, but it is the
system to generate and add them to the transaction that is
actually executed.

VI. RELATED WORK DISCUSSION

In the literature, there are several proposals that deal with
managing temporal aspects in ontologies or Semantic Web.
OWL-Time (formerly DAML-Time) [32] is a temporal
ontology that has been developed for describing the temporal
content of Web pages and the temporal properties of Web
services. Excepting language constructs for representing time
in ontologies, mechanisms for representing evolution of
concepts (e.g., events) over time are absent. Furthermore,
temporal relations cannot be expressed directly in OWL,
since they are ternary (i.e., properties of objects that change
in time involve also a temporal value in addition to the object
and the subject); representing such temporal relations in
OWL requires appropriate methods (e.g., 4D-fluents [33]).
Our approach allows a KBA to represent (i) evolution of
concepts over time, and (ii) temporal relations.

In [34], the authors present the annotation features of
OWL 2 by showing that it allows for annotations on
ontologies, entities, anonymous individuals, axioms (e.g.,

giving information about who asserted an axiom or when),
and annotations themselves. In our work, we took another
direction from using OWL 2 annotation features because we
rather wanted to exploit the power of the τXSchema
approach (e.g., including the exploitation of a τXSchema-
like underlying infrastructure).

Time dimension(s) are explicitly added to Semantic Web
languages and formalisms (e.g., RDF, OWL and SPARQL
[35]) in order to represent time in semantic annotations, to
build temporal ontologies and to support temporal querying
and reasoning. An annotated bibliography of previous work
in this area is presented in [13], and a survey on the models
and query languages for temporally annotated RDF is
provided in [36]. In particular, in the literature, there are
various contributions that propose to represent temporal data
in the Semantic Web.

Gutiérrez et al. [37] presented a comprehensive
framework to incorporate temporal reasoning into RDF,
yielding temporal RDF graphs. They define a syntactic
notion of temporal RDF graphs. A powerful system, called
CHRONOS, for reasoning over temporal information in
OWL ontologies is presented in [38]. Since qualitative
representations are very common in natural language
expressions such as in free text or speech and can be proven
to be valuable in the Semantic Web, the authors choose to
represent both qualitative temporal (i.e., information whose
temporal extents are unknown such as “before”, “after” for
temporal relations) and quantitative information (i.e., where
temporal information is defined precisely, e.g., using dates).
The CHRONOS reasoner can be applied to temporal
relations in order to infer implied relations and to detect
inconsistencies while retaining soundness, completeness and
tractability over the supported relations set. The paper [39]
proposes a logic-based approach to introduce valid-time into
RDFS and OWL 2 languages. An extension of SPARQL that
can be used to query temporal RDF(S) and OWL 2 is also
presented. Moreover, the author describes a general query
evaluation algorithm that can be used with all entailment
relations used in the Semantic Web. Finally, he presents two
optimizations of the algorithm that are applicable to
entailment relations characterized by a set of deterministic
rules, such RDF(S) and OWL 2 RL/RDF Entailment. As
opposed to Gutiérrez et al. [37], Anagnostopoulos et al. [38]
and Motik [39], in our present approach, we are not
interested in temporal (or spatio-temporal) reasoning.

Two complementary and alternative proposals for
modeling temporally changing information in OWL are
proposed in [40]. They are based on the perdurantist theory
and benefit from results coming from the discipline of
Formal Ontology, in order to restrict the appropriate use of
the proposed frameworks. In the first proposal, the authors
combine the perdurantist worm view with the notion of
individual concepts for formulating a conceptual structure
that allows one to separate, from the information that define
all the individuals, the information concerning those that can
possibly change. In the second proposal, they extend the first
proposal with the distinction between objects and moments
and the notion of qua individuals, where a qua individual is
the way an object participates in a certain relation.

98

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Differently from Zamborlini et al. [40], our approach does
not deal with modeling of time inside the ontology, but just
aims at supporting temporal versioning.

O’Connor et al. [41] present a methodology and a set of
tools for representing and querying temporal information in
OWL ontologies. Their approach uses a lightweight temporal
model to encode the temporal dimension of data. It also uses
the OWL-based Semantic Web Rule Language (SWRL) and
the SWRL-based OWL query language (SQWRL) to reason
with and query the temporal information represented using
the proposed model. By now, our approach does not support
temporally-aware semantic rules.

The authors of [42] propose a new language, called
temporal OWL (tOWL), which is an extension of the
Ontology Web Language Description Logics (OWL-DL) to
the temporal aspect. It enables the representation of time and
change in dynamic domains. Through a layered approach,
they introduce three extensions: (i) Concrete Domains,
which allow the representation of restrictions using concrete
domain binary predicates, (ii) Temporal Representation,
which introduces timepoints, relations between timepoints,
intervals, and Allen’s 13 interval relations [43] into the
language, and (iii) TimeSlices/Fluents, which implement a
perdurantist view on individuals and enable the
representation of complex temporal aspects such as process
state transitions. The main purpose of our approach is to
support past ontology versions, to be accessed via time-slice
queries. We think that supporting temporal ontology versions
is very interesting for several purposes and in different areas.
The problem of not having temporal versions is that, e.g., if
we have now to investigate on someone having put some
illegal material on Facebook last week, we want to be able to
individuate the account details even if they have been
changed thereafter.

As far as ontology schema evolution and versioning
problems are concerned, we can find also several studies
which have dealt with them. In general, we could summarize
them under the three following groups of issues taken into
account:

– modeling, implementing, and detecting changes in
ontologies [44][45][46][47][48];

– preserving the consistency of evolving ontologies
[49][50][51][52];

– ontology versioning support
[53][54][55][56][57][58][59][60][61].

Our approach belongs to the last set of contributions. In
[53], the authors consider the notion of context as an
abstraction mechanism to deal with multi-representation
ontologies (contextual ontologies). A formal representation
language based on modal description logics is proposed to
comply with the requirements of multiple perspectives of
domain ontology.

Bouquet et al. [54] show how ontologies can be
contextualized, by proposing Context OWL (C-OWL), a
language whose syntax and semantics have been obtained by
extending the OWL syntax and semantics to allow for the
representation of contextual ontologies. Notice that an
ontology is said to be contextualized when its contents are
kept local, and, therefore, not shared with other ontologies,

and mapped with the contents of other ontologies via explicit
(context) mappings.

Heflin et al. [55] show that the Semantic Web needs a
formal semantics for the various kinds of links between
ontologies and other documents, and then provide a model
theoretic semantics that takes into account ontology
extension and ontology versioning.

Völkel et al. [56] present an RDF-centric versioning
approach and an implementation called SemVersion. The
proposed approach separates the management aspects from
the versioning core functionality. SemVersion provides
structural and semantic versioning for RDF models and
RDF-based ontology languages like RDFS, considering
blank node enrichment as a technique to identify the blank
nodes in the versioned models.

Bedi et al. [57] introduce an approach that combines the
concepts of temporal frame and slot versioning with the
ontology to create temporal tagged ontologies with
embedded versioning. The authors also propose to enhance
the existing OWL to enable the creation of temporal tagged
OWL ontologies: two new tags, “rdf:Validity” and
“rdf:Timestamp”, are introduced and a scheme is presented
for the value of the “rdf:Id” and “rdf:Resource” tags to make
the temporal tagged ontologies consistent with the non-
temporal ontologies.

Kondylakis et al. [61] propose a solution that allows
query answering in data integration systems under evolving
ontologies without mapping redefinition. This is achieved by
rewriting queries among ontology versions and then
forwarding them to the underlying data integration systems
to be answered.

The works that are more strictly related with our
approach are [58], [59], and [60]. Grandi [58] provides a
multi-temporal RDF database model; a database consists in a
set of RDF triples timestamped along the valid and/or
transaction time axes. The data model is equipped with
manipulation operations which allow the KBA to maintain a
multi-temporal RDF database in order to manage temporal
versions of an ontology. Grandi et al. [59] introduce “The
Valid Ontology”, a framework to represent and store
multiple temporal versions of an ontology in a compact
temporal XML format and efficiently extract ontology
snapshots from the multiversion XML document via a
temporal XML processor. Grandi [60] focuses on temporal
versioning of light-weight ontologies expressed in RDF(S)
and show how the multi-temporal RDF data model proposed
in [58] can be used to support RDF(S) ontology versioning.
The data model is equipped with a complete set of primitive
ontology change operations, which are defined in terms of
low-level updates acting on RDF triples. When used within
the transaction template, which has also been introduced, the
proposed ontology changes allow a KBA to define and
manage temporal versions of an RDF(S) ontology.

However, whereas all the works in this group, including
[58], [59], and [60], basically propose ad hoc solutions for
the management of temporal versions of RDF, RDF(S) or
OWL resources, we introduce a τXSchema-like general
framework embodying a disciplined and principled approach
to temporal versioning of Semantic Web documents, both at

99

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

instance and at schema levels.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed τOWL, a τXSchema-like
framework, which allows creating a temporal OWL 2
ontology from a conventional OWL 2 ontology and a set of
logical and physical annotations. Our framework ensures
logical and physical data independence, since it (i) separates
conventional schema, logical annotations, and physical
annotations, and (ii) allows each one of these three
components to be changed independently and safely.
Furthermore, adoption of τOWL provides for a low-impact
solution, since it requires neither modifications of existing
Semantic Web documents, nor extensions to the OWL 2
recommendation and Semantic Web standards. The
extension of OWL 2 to temporal and versioning aspects is
performed without having to depend on approval of
proposed extensions by standardization committees (and on
upgrade of existing tools conforming to standards to comply
with approved extensions).

Moreover, we have extended our τOWL framework by
proposing a general approach for schema versioning in it and
focusing on the definition of a set of change primitives for
supporting the evolution of both temporal and conventional
ontology schema. Our approach helps the KBA in the
management of conventional schema changes in τOWL-
based Semantic Web repositories and guarantees the
maintenance of a full history of evolving conventional
ontology instances and schemata.

In order to embed our approach into a user-friendly
environment at the disposal of KBAs, a tool for the
management of temporal ontologies in the τOWL framework
is under development at the University of Sfax. A first
release of the tool, named τOWL-Manager [62], is already
available and implements our τOWL framework with the
support of temporal versioning of ontology instances. The
new release currently under development will support all
schema change primitives proposed in this paper, and put
them at the disposal of KBAs, via an intuitive interface
which assists them in expressing their needs to fulfill
application requirements. Furthermore, we are also
extending the present work by defining a complete set of
schema change primitives for the ontology annotation
document which stores logical and physical annotations
specified on the conventional ontology schema.

Besides, in order to further simplify the work of KBAs
and to make our approach more useful, we intend to propose
in our future work high-level and more user-friendly schema
change operations, based on the primitives introduced in this
paper and on those that will be defined for changing
annotations. A high-level operation is a valid sequence of
primitives, which correspond to frequent schema evolution
needs and allows expressing complex changes in a more
compact way [63]. Moreover, we will also allow the KBA to
build his/her own high-level schema change operations, by
combining in a consistent way pre-defined high-level
operations and/or primitives, through the use of a specific
tool that will be integrated in a future release of the τOWL-
Manager environment.

As a part of our future work, we will also thoroughly
study the propagation of changes performed on conventional
ontology schema, i.e., their effects on conventional ontology
instances stored in conventional ontology instance
documents, which are valid with respect to the conventional
ontology schema.

Finally, we also plan to address querying of temporal
ontology instances under schema versioning, in the τOWL
framework. The starting point for this extension will be the
T-SPARQL language [27], which allows end users and
KBAs to express queries on multi-temporal ontology
instances (which are composed of multi-temporal RDF
triples) under a single ontology schema version; such a
language could be extended with features to support schema
versions and specify multi-schema queries, i.e., queries
involving instances of several schema versions [64].

REFERENCES
[1] A. Zekri, Z. Brahmia, F. Grandi, and R. Bouaziz, “τOWL: A

Framework for Managing Temporal Semantic Web
Documents,” Proceedings of the 8th International Conference
on Advances in Semantic Processing (SEMAPRO 2014),
Rome, Italy, 24-28 August 2014, pp. 33-41.

[2] C. S. Jensen and R. T. Snodgrass, “Temporal Data
Management,” IEEE Transactions on Knowledge and Data
Engineering, vol. 11, January/February 1999, pp. 36-44.

[3] O. Etzion, S. Jajodia, and S. Sripada (eds.), “Temporal
Databases: Research and Practice,” LNCS 1399, Springer-
Verlag, 1998.

[4] C. S. Jensen and R. T. Snodgrass, “Temporal Database,” in
Liu L., Özsu M.T., (Eds.), Encyclopedia of Database Systems,
Springer US, 2009, pp. 2957-2960.

[5] F. Grandi, “Temporal Databases,” in M. Koshrow-Pour, (Ed.),
Encyclopedia of Information Science and Technology (3rd
Ed.), IGI Global, Hershey, in press.

[6] T. Berners-Lee, R. Cailliau, A. Luotonen, H. F. Nielsen, and
A. Secret, “The World Wide Web,” Communications of the
ACM, vol. 37, August 1994, pp. 76-82.

[7] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic
Web,” Scientific American, vol. 284, May 2001, pp. 34-43.

[8] W3C Semantic Web Activity. <http://www.w3.org/2001/sw/>
[retrieved: May, 2015]

[9] N. Guarino (Ed.), Formal Ontology in Information Systems,
IOS Press, Amsterdam, 1998.

[10] W3C, OWL 2 Web Ontology Language – Primer (Second
Edition), W3C Recommendation, 11 December 2012.
<http://www.w3.org/TR/owl2-primer/> [retrieved: May,
2015]

[11] W3C, OWL 2 Web Ontology Language – Document
Overview (Second Edition), W3C Recommendation, 11
December 2012. <http://www.w3.org/TR/owl2-overview/>
[retrieved: May, 2015]

[12] W3C, OWL 2 Web Ontology Language – Profiles (Second
Edition), W3C Recommendation, 11 December 2012.
<http://www.w3.org/TR/owl2-profiles/> [retrieved: May,
2015]

[13] F. Grandi, “Introducing an Annotated Bibliography on
Temporal and Evolution Aspects in the Semantic Web,”
SIGMOD Record, vol. 41, December 2012, pp. 18-21.

[14] F. Currim, S. Currim, C. E. Dyreson, and R. T. Snodgrass, “A
Tale of Two Schemas: Creating a Temporal XML Schema
from a Snapshot Schema with tXSchema,” Proceedings of the
9th International Conference on Extending Database
Technology (EDBT 2004), Heraklion, Crete, Greece, 14-18

100

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

March 2004, pp. 348-365.
[15] R. T. Snodgrass, C. E. Dyreson, F. Currim, S. Currim, and S.

Joshi, “Validating Quicksand: Schema Versioning in
τXSchema,” Data Knowledge and Engineering, vol. 65, May
2008, pp. 223-242.

[16] F. Currim, S. Currim, C. E. Dyreson, S. Joshi, R. T.
Snodgrass, S. W. Thomas, and E. Roeder, “τXSchema:
Support for Data- and Schema-Versioned XML Documents,”
TimeCenter Technical Report TR-91, 279 pages, September
2009.
<http://timecenter.cs.aau.dk/TimeCenterPublications/TR-
91.pdf> [retrieved: May, 2015]

[17] C. E. Dyreson and F. Grandi, “Temporal XML,” in L. Liu and
M. T. Özsu (Eds.), Encyclopedia of Database Systems,
Springer US, 2009, pp. 3032-3035.

[18] Z. Brahmia, R. Bouaziz, F. Grandi, and B. Oliboni, “Schema
Versioning in τXSchema-Based Multitemporal XML
Repositories,” Proceedings of the 5th IEEE International
Conference on Research Challenges in Information Science
(RCIS 2011), Guadeloupe - French West Indies, France, 19-
21 May 2011, pp. 1-12.

[19] Z. Brahmia, F. Grandi, B. Oliboni, and R. Bouaziz,
“Versioning of Conventional Schema in the τXSchema
Framework,” Proceedings of the 8th International Conference
on Signal Image Technology & Internet Systems
(SITIS’2012), Sorrento – Naples, Italy, 25-29 November
2012, pp. 510-518.

[20] Z. Brahmia, F. Grandi, B. Oliboni, and R. Bouaziz, “Schema
Change Operations for Full Support of Schema Versioning in
the τXSchema Framework,” International Journal of
Information Technology and Web Engineering, vol. 9, April-
June 2014, pp. 20-46.

[21] T. Burns, E. Fong, D. Jefferson, R. Knox, L. Mark, C. Reedy,
L. Reich, N. Roussopoulos, and W. Truszkowski, “Reference
Model for DBMS Standardization, Database Architecture
Framework Task Group (DAFTG) of the ANSI/X3/SPARC
Database System Study Group,” SIGMOD Record, vol. 15,
March 1986, pp. 19-58.

[22] J. F. Roddick, “Schema Versioning,” in Liu L., Özsu M.T.,
(Eds.), Encyclopedia of Database Systems, Springer US,
2009, pp. 2499-2502.

[23] Z. Brahmia, F. Grandi, B. Oliboni, and R. Bouaziz, "Schema
Versioning," in M. Khosrow-Pour (Ed.), Encyclopedia of
Information Science and Technology (3rd Ed.), IGI Global,
2014, pp. 7651-7661.

[24] D. Rogozan and G. Paquette, “Managing ontology changes on
the semantic web,” Proceedings of the 2005 IEEE/WIC/ACM
International Conference on Web Intelligence (WI 2005),
Compiegne, France, 19-22 September 2005, pp. 430-433.

[25] The Friend of a Friend (FOAF) project. <http://www.foaf-
project.org/> [retrieved: May, 2015]

[26] W3C, Resource Description Framework (RDF), Semantic
Web Standard. <http://www.w3.org/RDF/> [retrieved: May,
2015]

[27] F. Grandi, “T-SPARQL: a TSQL2-like temporal query
language for RDF,” Proceedings of the 1st International
Workshop on Querying Graph Structured Data (GraphQ
2010), Novi Sad, Serbia, 20 September 2010, pp. 21-30.

[28] J. Clifford, C. Dyreson, T. Isakowitz, C. S. Jensen, and R. T.
Snodgrass, “On the Semantics of "Now" in Databases,” ACM
Transactions on Database Systems, vol. 22, June 1997, pp.
171–214.

[29] W3C, RDF/XML Syntax Specification (Revised), W3C
Recommendation, 10 February 2004.
<http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-
20040210/> [retrieved: May, 2015]

[30] XML Schema Part 0: Primer Second Edition, W3C

Recommendation, 28 October 2004.
<http://www.w3.org/TR/2004/REC-xmlschema-0-
20041028/> [retrieved: May, 2015]

[31] W3C, XQuery Update Facility 1.0, W3C Candidate
Recommendation, 17 March 2011.
<http://www.w3.org/TR/2011/REC-xquery-update-10-
20110317/> [retrieved: May, 2015]

[32] W3C, Time Ontology in OWL, W3C Working Draft, 27
september 2006. <http://www.w3.org/TR/owl-time/>
[retrieved: May, 2015]

[33] C. A. Welty and R. Fikes, “A Reusable Ontology for Fluents
in OWL,” Proceedings of the 4th International Conference on
Formal Ontology in Information Systems (FOIS 2006),
Baltimore, Maryland, USA, 9-11 November 2006, pp. 226-
236.

[34] W3C, OWL 2 Web Ontology Language – New Features and
Rationale (Second Edition), W3C Recommendation, 11
December 2012. <http://www.w3.org/TR/owl2-new-
features/> [retrieved: May, 2015]

[35] W3C, SPARQL Query Language for RDF, W3C
Recommendation, 15 January 2008,
<http://www.w3.org/TR/2008/REC-rdf-sparql-query-
20080115/> [retrieved: May, 2015]

[36] A. Analyti and I. Pachoulakis, “A survey on models and
query languages for temporally annotated RDF,” International
Journal of Advanced Computer Science and Applications,
vol. 3, September 2012, pp. 28-35.

[37] C. Gutiérrez, C. A. Hurtado, and A. A. Vaisman, “Introducing
time into RDF,” IEEE Transactions on Knowledge and Data
Engineering, vol. 19, February 2007, pp. 207-218.

[38] E. Anagnostopoulos, S. Batsakis, and E. G. M. Petrakis,
“CHRONOS: A Reasoning Engine for Qualitative Temporal
Information in OWL,” Proceedings of the 17th International
Conference in Knowledge-Based and Intelligent Information
& Engineering Systems (KES 2013), Kitakyushu, Japan, 9-11
September 2013, pp. 70-77.

[39] B. Motik, “Representing and Querying Validity Time in RDF
and OWL: A Logic-based Approach,” Proceedings of the 9th
International Semantic Web Conference (ISWC 2010),
Shanghai, China, 7-11 November 2010, pp. 550-565.

[40] V. Zamborlini and G. Guizzardi, “On the representation of
temporally changing information in OWL,” Workshops
Proceedings of the 14th IEEE International Enterprise
Distributed Object Computing Conference (EDOCW 2010),
Vitória, Brazil, 25-29 October 2010, pp. 283-292.

[41] M. J. O’Connor and A. K. Das, “A method for representing
and querying temporal information inOWL,” In Biomedical
Engineering Systems and Technologies, volume 127 of
Communications in Computer and Information Science, pp.
97-110. Springer-Verlag, Heidelberg, Germany, 2011.

[42] V. Milea, F. Frasincar, and U. Kaymak, “tOWL: A Temporal
Web Ontology Language,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B, vol. 42, February 2012, pp.
268-281.

[43] J. F. Allen, “Maintaining Knowledge About Temporal
Intervals,” Communications of the ACM, vol. 26, November
1983, pp. 832-843.

[44] M. C. A. Klein and D. Fensel, “Ontology versioning on the
Semantic Web,” Proceedings of the 1st Semantic Web
Working Symposium (SWWS 2001), Stanford University,
California, USA, 30 July – 1 August 2001, pp. 75-91.

[45] M. C. A. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov,
“Ontology Versioning and Change Detection on the Web,”
Proceedings of the 13th International Conference on
Knowledge Engineering and Knowledge Management.
Ontologies and the Semantic Web (EKAW 2002), Siguenza,
Spain, 1-4 October 2002, pp. 197-212.

101

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[46] N. F. Noy and M. A. Musen, “Ontology versioning in an
ontology management framework,” IEEE Intelligent Systems,
vol. 19, July 2004, pp. 6-13.

[47] J. Eder and C. Koncilia, “Modelling changes in ontologies,”
Proceedings of the OTM Confederated International
Workshops and Posters, GADA, JTRES, MIOS, WORM,
WOSE, PhDS, and INTEROP 2004, Agia Napa, Cyprus, 25-
29 October 2004, pp. 662-673.

[48] T. Redmond, M. Smith, N. Drummond, and T. Tudorache,
“Managing change: an ontology version control system,”
Proceedings of the 5th International Workshop on OWL:
Experiences and Directions (OWLED 2008), Karlsruhe,
Germany, 26-27 October 2008. CEUR Workshop Proceedings
(CEUR-WS.org), Vol-432. <http://ceur-ws.org/Vol-
432/owled2008eu_submission_33.pdf> [retrieved: May,
2015]

[49] P. De Leenheer, “Revising and managing multiple ontology
versions in a possible worlds setting,” Proceedings of the
OTM Confederated International Workshops and Posters,
GADA, JTRES, MIOS, WORM, WOSE, PhDS, and
INTEROP 2004, Agia Napa, Cyprus, 25-29 October 2004, pp.
798-809.

[50] P. Haase and L. Stojanovic, “Consistent Evolution of OWL
Ontologies,” Proceedings of the 2nd European Semantic Web
Conference (ESWC 2005), Heraklion, Crete, Greece, 29 May
– 1 June 2005, pp. 182-197.

[51] N. Sassi, W. Jaziri, and F. Gargouri, “How to Evolve
Ontology and Maintain Its Coherence - A Corrective
Operations-based Approach,” Proceedings of the International
Conference on Knowledge Engineering and Ontology
Development (KEOD 2009), Funchal - Madeira, Portugal, 6-8
October 2009, pp. 384-387.

[52] W. Jaziri, N. Sassi, and F. Gargouri, “Approach and tool to
evolve ontology and maintain its coherence,” International
Journal of Metadata, Semantics, and Ontologies, vol. 5, May
2010, pp. 151-166.

[53] A. Arara and D. Benslimane, “Towards formal ontologies
requirements with multiple perspectives,” Proceedings of the
6th International Conference on Flexible Query Answering
Systems (FQAS 2004), Lyon, France, 24-26 June 2004, pp.
150-160.

[54] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and
H. Stuckenschmidt, “Contextualizing ontologies,” Journal of
Web Semantics, vol. 1, October 2004, pp. 325-343.

[55] J. Heflin and Z. Pan, “A model theoretic semantics for
ontology versioning,” Proceedings of the 3rd International
Semantic Web Conference (ISWC 2004), Hiroshima, Japan,

7-11 November 2004, pp. 62-76.
[56] M. Völkel and T. Groza, “SemVersion: An RDF-based

Ontology Versioning System,” Proceedings of the IADIS
International Conference on WWW/Internet (ICWI 2006),
Murcia, Spain, 5-8 October 2006, vol. 1, pp. 195-202.
<http://www.xam.de/2006/10-SemVersion-ICIW2006.pdf>
[retrieved: May, 2015]

[57] P. Bedi and S. Marwaha, “Versioning OWL ontology using
temporal tags,” Proceedings of the 21st International
Conference on Computer, Electrical, Systems Science and
Engineering (CESSE'07), Vienna, Austria, 25-27 May 2007,
pp. 332-337.

[58] F. Grandi, “Multi-temporal RDF ontology versioning,”
Proceedings of the 3rd International Workshop on Ontology
Dynamics (IWOD 2009), Washington DC, USA, 26 October
2009. CEUR Workshop Proceedings (CEUR-WS.org), Vol-
519. <http://ceur-ws.org/Vol-519/grandi.pdf> [retrieved:
May, 2015]

[59] F. Grandi and M. R. Scalas, “The valid ontology: A simple
OWL temporal versioning framework,” Proceedings of the 3rd
International Conference on Advances in Semantic Processing
(SEMAPRO 2009), Sliema, Malta, 11-16 October 2009, pp.
98-102.

[60] F. Grandi, “Light-weight Ontology Versioning with Multi-
temporal RDF Schema,” Proceedings of the 5th International
Conference on Advances in Semantic Processing (SEMAPRO
2011), Lisbon, Portugal, 20-25 November 2011, pp. 42-48.

[61] H. Kondylakis and D. Plexousakis, “Ontology evolution
without tears,” Journal of Web Semantics, vol. 19, March
2013, pp. 42-58.

[62] A. Zekri, Z. Brahmia, F. Grandi, and R. Bouaziz, “τOWL-
Manager: A Tool for Managing Temporal Semantic Web
Documents in the τOWL Framework,” Proceedings of the 9th
International Conference on Advances in Semantic Processing
(SEMAPRO 2015), Nice, France, 19-24 July 2015, in press.

[63] Z. Brahmia, F. Grandi, B. Oliboni, and R. Bouaziz, “High-
level Operations for Changing Temporal Schema,
Conventional Schema and Annotations, in the τXSchema
Framework,” TimeCenter Technical Report TR-96, 56 pages,
January 2014.
<http://timecenter.cs.aau.dk/TimeCenterPublications/TR-
96.pdf> [retrieved: May, 2015]

[64] F. Grandi, “A relational multi-schema data model and query
language for full support of schema versioning,” Proceedings
of SEBD 2002 – National Conference on Advanced Database
Systems, Isola d’Elba, Italy, 19-21 June 2002, pp. 323-336.

102

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

