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Abstract—In this paper, we present a conceptual Spatial 

Trajectory Planning (STP) method using Rapid Random Trees 

(RRT) planner, generating visibility motion primitives in 

urban environments. Visibility motion primitives are set by 

using Spatial Visibility Clustering (SVC) analysis. Our Spatial 

Visibility Clustering (SVC) method estimates the number of 

clusters (groups) k, based on 3D visible volumes analysis in 

urban environments. Our SVC method proposes fast and exact 

3D visible volumes analysis in urban scenes based on an 

analytic solution. We test and analyze the SVC method by 

using real records of pedestrians' mobility datasets from the 

city of Melbourne and by setting control points for efficient 

monitoring and control using a K-means clustering algorithm. 

  
Keywords-Visibility; 3D; Spatial analysis; Motion Planning. 

I.  INTRODUCTION AND RELATED WORK 

Spatial clustering in urban environments is a new spatial 

field from trajectory planning aspects [1]. The motion and 

trajectory planning fields have been extensively studied over 

the last two decades [2][4][8][12][14][16][38] 

[39][40][41][54]. The main effort has focused on finding a 

collision-free path in static or dynamic environments, i.e., in 

moving or static obstacles, using roadmap, cell 

decomposition, and potential field methods [22][50][55]. 

The path-planning problem becomes an NP-hard one, 

even for simple cases such as time-optimal trajectories for a 

system with point-mass dynamics and bounded velocity and 

acceleration with polyhedral obstacles [9]. 

Path planning algorithms can be distinguished as local 

and global planners. The local planner generates one, or a 

few, steps at every time step, whereas the global planner uses 

a global search to the goal over a time-spanned tree. 

Examples of local (reactive) planners are [15][35][47][60]. 

These planners are too slow, do not guarantee safety and 

neglect spatial aspects. 

Recently, iterative planners [5][16][17][30][48][59] 

have been developed that compute several steps at a time, 

subject to the available computation time. The trajectory is 

generated incrementally by exploring a search-tree and 

choosing the best branch. 

Efficient solutions for an approximated problem were 

investigated by LaValle and Kuffner, addressing non-

holonomic constraints by using the Rapidly Random Trees 

(RRT) method [39][41]. Over the years, many other semi-

randomized methods were proposed, using evolutionary 

programming [7][43][52]. 

The randomized sampling algorithms planner, such as 

RRT, explores the action space stochastically. The RRT 

algorithm is probabilistically complete, but not 

asymptotically optimal [32]. The RRT* planner [33] 

challenges optimality by a rewiring process each time a node 

is added to the tree. However, in cluttered environments, 

RRT* may behave poorly since it spends too much time 

deciding whether to rewire or not. 

Overall, only a few works have focused on spatial 

analysis characters integrated into trajectory planning 

methods such as visibility analysis or spatial clustering 

methods [22][55]. 

'Clustering methods' refers to the division of data sets 

into groups, each containing similar objects. Data modeling 

is extensively studied in statistics, mathematics and machine 

learning [19]. Most of the common clustering methods can 

be divided into hierarchical and partitioning methods.  

Partitioning algorithms determine the clusters directly, 

such as the well-known K-Means method [27][28], where by 

a hierarchical mechanism, builds the clusters gradually [24].  

Clustering methods of 2D spatial data (such as GIS 

database) were also studied, defining data proximity by 

using, inter alia, a Delaunay diagram. These methods 

focused on performances and low complexity, by keeping K-

nearest neighbors using a connectivity graph where clusters 

become connected components [13][26].  

Many clustering methods are based on a significant 

user's input parameter, the number of clusters k. Over the 

years, several criteria were introduced to find the optimal k. 

In the case of k-means clustering method, F-statistic (also 

known as the F-test) generates the optimal k. Another 

popular choice of separation measure is a Silhouette 

coefficient [34]. 

Our research contributes to the spatial data clustering 

field, where, as far as we know, visibility analysis has 

become a leading factor for the first time. The SVC method, 

while mining the real pedestrians' mobility datasets, enables 

by a visibility analysis to set the number of clusters. 
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Analyzing pedestrian's mobility from a spatial point of 

view mainly focused on route choice [3][29], simulation 

model [51] and agent-based modeling [25][31][37][57]. 

The efficient computation of visible surfaces and 

volumes in 3D environments is not a trivial task. The 

visibility problem has been extensively studied over the last 

twenty years, due to the importance of visibility in GIS and 

Geomatics, computer graphics and computer vision, and 

robotics. Accurate visibility computation in 3D environments 

is a very complicated task demanding a high computational 

effort, which could hardly have been done in a very short 

time using traditional well-known visibility methods [53].  

The exact visibility methods are highly complex, and 

cannot be used for fast applications due to their long 

computation time. Previous research in visibility 

computation has been devoted to open environments using 

DEM models, representing raster data in 2.5D (Polyhedral 

model), and do not address, or suggest solutions for, dense 

built-up areas.  

Most of these works have focused on approximate 

visibility computation, enabling fast results using 

interpolations of visibility values between points, calculating 

point visibility with the Line of Sight (LOS) method [10]-

[11]. Lately, fast and accurate visibility analysis computation 

in 3D environments has been presented [18][20][21]. 

In this paper, we present, for the first time as far as know, 

a unique conceptual Spatial Trajectory Planning (STP) 

method based on RRT planner. The generated trajectories are 

based on visibility motion primitives set by SVC Optimal 

Control Points (OCP) as part of the planned trajectory, which 

takes into account exact 3D visible volumes analysis 

clustering in urban environments. 

The proposed planner includes obstacle avoidance 

capabilities, satisfying dynamics' and kinematics' agent 

model constraints in 3D environments, guaranteeing 

probabilistic completeness. The generated trajectories are 

dynamic ones and are regularly updated during daylight 

hours due to SVC OCP during daylight hours. STP 

trajectories can be used for tourism and entertainment 

applications or for homeland security needs. 

The SVC is a unified method for estimating the number 

of clusters using 3D visible volumes analysis, called Spatial 

Visibility Clustering (SVC). Based on our previous work, we 

use a fast and efficient analytic solution, setting visibility 

boundaries of visible surfaces from the viewpoint. We 

extend our solution to 3D volumes, computing 3D visible 

volumes. By using F-criteria, we set the optimal number of 

clusters from the visibility aspect. 

We demonstrate SVC method using real datasets from 

the city of Melbourne's 24-hours pedestrians monitoring 

system, localizing control points at each hour during the day, 

using a K-means algorithm with SVC output, i.e., number of 

clusters k. We analyze pedestrians' mobility behavior and 

suggest dividing the day into four time zones, based on our 

datasets and setting optimal control points during these time 

zones. 

In the following sections, we first introduce the RRT 

planner and our extension for a spatial analysis case, such as 

3D visibility. Later, we present the SVC method, and the 

extended visible volumes analysis and SVC simulation using 

the city of Melbourne's datasets. We demonstrate the SVC 

method by dividing daylight hours into four time zones and 

setting optimal control points. Later on, we present the STP 

planner, using RRT and SVC capabilities. 

II. SPATIAL RAPID RANDOM TREES 

In this section, the RRT path planning technique is briefly 

introduced with spatial extension. RRT was first introduced 

in [39][41], dealing with high-dimensional spaces by taking 

into account dynamic and static obstacles including dynamic 

and non-holonomic robots' constraints. 

The main idea is to explore a portion of the space using 

sampling points in space, by incrementally adding new 

randomly selected nodes to the current tree's nodes. 

RRTs have an (implicit) Voronoi bias that steers them 

towards yet unexplored regions of the space. However, in 

case of kinodynamic systems, the imperfection of the 

underlying metric can compromise such behavior. Typically, 

the metric relies on the Euclidean distance between points, 

which does not necessarily reflect the true cost-to-go 

between states. Finding a good metric is known to be a 

difficult problem. Simple heuristics can be designed to 

improve the choice of the tree state to be expanded and to 

improve the input selection mechanism without redefining a 

specific metric. 

A. RRT Stages  

The RRT method [39] is a randomized one, typically 

growing a tree search from the initial configuration to the 

goal, exploring the search space. These kinds of algorithms 

consist of three major steps: 

1. Node Selection: An existing node on the tree is chosen 

as a location from which to extend a new branch. 

Selection of the existing node is based on probabilistic 

criteria such as metric distance. 

2. Node Expansion: Local planning applied a generating 

feasible motion primitive from the current node to the 

next selected local goal node, which can be defined by 

a variety of characters. 

3. Evaluation: The possible new branch is evaluated 

based on cost function criteria and feasible connectivity 

to existing branches. 

These steps are iteratively repeated, commonly until the 

planner finds feasible trajectory from start to goal 

configurations, or other convergence criteria. 

 



528

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 
Figure 1.  The RRT algorithm: (A) Sampling and node selection steps;  

(B) Expansion step. 

A simple case demonstrating the RRT process is shown in 

Figure 1. The sampling step selects Nrand, and the node 

selection step chooses the closest node, Nnear,  as shown in 

Figure 1.A. The expansion step, creating a new branch to a 

new configuration, Nnew, is shown in Figure 1.B. An example 

for growing RRT algorithm is shown in Figure 2. 

 

Figure 2.  Example for growing RRT algorithm (source [39]). 

B. Spatial RRT Formulation  

We formulate the RRT planner and revise the basic RRT 

planner [39] for a 3D spatial analysis case for a continuous 

path from initial state xinit to goal state xgoal:  

1. State Space: A topological space, X. 

2. Boundary Values: 
initx X  and 

goalx X . 

3. Free Space: A function : { , }D X true false  that determines 

whether ( ) freex t X where 
freeX consist of the attainable 

states outside the obstacles in a 3D environment.  

4. Inputs: A set, U, contains the complete set of attainable 

    control efforts ui, that can affect the state. 

5. Incremental Simulator: Given a current state, ( )x t , and 

input over time interval t , compute ( )x t t . 

6. 3D Spatial Analysis: A real value function, f (x; u, OCPi) 

which specifies the cost to the center of 3D visibility 

volumes cluster points (OCP) between a pair of points in

X . 

C. Spatial RRT Formulation  

We present a revised RRT pseudo code described in Table 

I, for spatial case generating trajectory T, applying K steps 

from initial state xinit. The f function defines the dynamic 

model and kinematic constraints,     = f (x; u, OCPi), where u 

is the input and OCPi  set the next new state and the 

feasibility of following the next spatial visibility clustering 

point. 

 

TABLE I.  SPATIAL RRT PSEUDO CODE 

Generate Spatial RRT (xinit; K;   )  
T.init (xinit); 

For k = 1 to K do 

             xrand   random.state(); 

             xnear   nearest.neighbor (xrand; T ); 

             u   select.input (xrand; xnear); 

             xnew   new.state (xnear; u;   ; f); 
             T.add.vertex (xnew); 

             T.add.edge (xnear; xnew; u); 

End 

Return T 

III. SPATIAL VISIBILITY CLUSTERING (SVC) METHOD 

 

We present, for the first time as far as we know, a unified 

spatial analysis defining the number of clusters in a data set 

based on analytic visibility analysis, called Spatial Visibility 

Clustering (SVC). The output of our method can be 

efficiently used by common clustering methods (e.g., K-

means or hierarchical). The number of clusters in dense 

environments can be used for civil and security applications 

in urban environments, based on 3D visibility analysis from 

points of view. 

For the last twenty years, many methods were proposed in 

order to estimate the number of clusters in data sets 

[6][23][34][36][46][59]. As previously mentioned by [23], 

the approaches can be divided into global and local methods.  
First, we introduce the main steps of our method and 

formulate the problem of estimating the number of clusters 
and the proposed volumes visibility analysis in 3D. Later, we 
present the analysis of the number of clusters using the SVC 
method, based on real pedestrians' mobility data sets. Finally, 
we examine a unique division of a twenty four-hour day into 
four different time zones in Melbourne [44], for control 
points based on pedestrians' mobility datasets in a number of 
points of interest, presented in Figure 3. 

 
Figure 3.  Melbourne Sensors Location for Monitoring Pedestrians' 

Mobility Data 

A. Spatial Visibility Clustering - Main Stages  

Our data set      , i=1,2,..,n, j=1,2,..,p, consists of p 

features measured on n independent viewpoints, marked with 

blue circles are illustrated in Figure 4. We clustered the data 

into k clusters,           . For cluster r              with 

   viewpoints: 
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Where      denotes the visible volumes from a viewpoint x 

bounded inside the total volume S,    is the sum of the 

absolute visibility differences of all viewpoints from their 

cluster visibility mean, and the normalized visible volumes 

   for all clusters r=1..k, called dispersion. 

 

 
Figure 4.  Pedestrians' location architecture based on monitoring datasets, 

viewpoints marked with blue circles 

Similarly to many other methods estimating the number 

of clusters [23], we define reference data sets distributed 

uniformly inside bounding volume S. We define our 

reference data sets with the same size of the original data set 

X, and calculate the dispersion of these datasets, *

kT . 

Based on F statistic, datasets are analyzed, where adding 

another cluster does not give a better modeling of the data, 

also known as F-test criteria. By setting a group's visibility 

variance, the number of clusters can be estimated efficiently: 

 

                                                                                              (2) 

 

Fast and efficient visibility volume computation from a 

specific viewpoint, bounded in volume S, is presented in the 

next subsection.    

We can summarize SVC steps as follows: 

1. Calculate the sum of absolute visibility differences of 

all points from their cluster visibility mean. Normalize 

this sum for all possible clusters   , also called 

dispersion. 

2. Generate a set of reference datasets, simulated by a 

uniform distribution model inside bounding volume S. 

3. Calculate the dispersion of each of these reference 

datasets, and calculate their mean visibility values. 

4. Define SVC for each possible number of clusters as: 

Expected dispersion of reference datasets - Dispersion 

of original dataset.  

Originally, F statistic was used to test the significance of 

the reduction in the sum of squares as we increase the 

number of clusters [27]. In general, when the number of 

clusters increases, the in-cluster decay first declines rapidly. 

From a certain k, dividing a dataset into k+1 clusters 

decreases the value of F-test function which depends on k.  

Approximated F-test function: Assuming that    is the 

partition of n instances into k clusters, and      is obtained 

from    splitting one of the clusters, then the overall mean 

ratio can be approximated as: 

 

   
    

      
                        (3) 

 
We adapted aspects of previous F statistic theory for 

visibility analysis. More detailed F statistic analysis can be 

found in [27]. 

The spatial meaning of this mathematical clustering 

formulation can be simplified as a group of viewpoints with 

minimal difference to the average visible volume in the same 

bounding box. 

B. Analytic 3D Visible Volumes Analysis 

In this section, we present fast 3D visible volumes 

analysis in urban environments, based on an analytic solution 

which plays a major role in our proposed method of 

estimating the number of clusters. We extend our previous 

work [18] for surfaces visibility analysis, and present an 

efficient solution for visible volumes analysis in 3D. 

We analyze each building, computing visible surfaces 

and defining visible pyramids using analytic computation for 

visibility boundaries [18][21]. For each object we define 

Visible Boundary Points and Visible Pyramid. 
Visible Boundary Points (VBP) - we define VBP of the 

object i as a set of boundary points j=1..Nbound of the visible 
surfaces of the object, from viewpoint V(x0, y0, z0). 

 
 
 
 
 
 
 
 
Roof Visibility – The analytic solution for visibility 

boundaries does not treat the roof visibility of a building 
[18].  We simply check if viewpoint height V(z0) is lower or 

higher than the building height 
maxCi

h and use this to decide if 

the roof is visible or not: 
 
 
If the roof is visible, roof surface boundary points are 

added to VBP. Roof visibility is an integral part of VBP 
computation for each building. 

A simple case demonstrating analytic solution from a 

visibility point to a building including visible roofs can be 

seen in Figure 5. The visibility point is marked in black, the 
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visible parts colored in red, and the invisible parts colored in 

blue.  

          
Figure 5.  Visibility Volume Computed with the Analytic Solution. 

Viewpoint is marked in Black, Visible Parts Colored in red, and Invisible 

Parts Colored in Blue; VBP marked with Yellow Circles 

In the previous part, we treated a single building case, 

without considering hidden surfaces between buildings, i.e., 

building surfaces (or parts of surfaces) occluded by other 

buildings, which directly affect the visibility volumes 

solution. In this section, we introduce our concept for visible 

volumes inside bounding volume by decreasing visible 

pyramids and projected pyramids to the bounding volume 

boundary. First, we define the relevant pyramids and 

volumes. 

The Visible Pyramid (VP): we define VPi
j=1..Nsurf

(x0, y0, 

z0) of the object i as a 3D pyramid generated by connecting 

VBP of specific surface j to a viewpoint V(x0, y0, z0). 

In the case of a box, the maximum number of Nsurf for a 

single object is three. VP boundary, colored with green 

arrows, can be seen in Figure 6. 

 
Figure 6.  A Visible Pyramid from a Viewpoint (marked as a Black Dot) 

to VBP of a Specific Surface 

For each VP, we calculate Projected Visible Pyramid 

(PVP), projecting VBP to the boundaries of the bounding 

volume S. 

Projected Visible Pyramid (PVP) - we define 

    
                   of the object i as 3D projected points 

to the bounding volume S, VBP of specific surface j trough 

viewpoint V(x0, y0, z0). VVP boundary, colored with purple 

arrows, can be seen in Figure 7.  

 

 

  

 
Figure 7.  Invisible Projected Visible Pyramid Boundaries colored with 

purple arrows from a Viewpoint (marked as a Black Dot) to the boundary 

surface ABCD of Bounding Volume S 

The 3D Visible Volumes inside bounding volume S,    , 

computed as the total bounding volume S,     minus the 

Invisible Volumes    . In a case of no overlap between 

buildings,     is computed by decreasing the visible volume 

from the projected visible volume,          
 
  

     
   

    
   

     
 
    

 

             
      

   

    
   

                      (6)                                       

                
 
       

 
  

     

   

    

   

 

 

By decreasing the invisible volumes from the total bounding 

volume, only the visible volumes are computed, as seen in 

Figure 8. Volumes of VPV and VP can be simply computed 

based on a simple pyramid volume geometric formula. 

 

 

Figure 8.  Invisible Volume       
 
       

 
  Colored in Gray Arrows. 

Decreasing Projected Visible Pyramid boundary surface ABCD of 
Bounding Volume S from Visible Pyramid  

In a case of two buildings without overlapping,     

computed for each building, as presented above, as can be 

seen in Figure 9.  
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Figure 9.  Invisible Volume       
 
       

 
  Colored in Gray Arrows. 

Decreasing Projected Visible Pyramid boundary surface ABCD of 

Bounding Volume S from Visible Pyramid  

 

Considering two buildings with overlap between object's 

Visible Pyramids, as seen in Figure 10(a). In Figure 10(b), 

VP1
1
 boundary is colored by green lines, VP2

1
 boundary is 

colored by purple lines and the hidden and Invisible Surface 

between visible pyramids   
   

 

   
 

 is colored in white. 

Invisible Hidden Volume (IHV) - We define Invisible 

Hidden Volume (IHV), as the Invisible Surface (IS) between 

visible pyramids projected to bounding box S. 

For example, IHV in Figure 10(c) is the projection of the 

invisible surface between visible pyramids colored in white, 

projected to the boundary plane of bounding box S.   

In the case of overlapping buildings, by computing 

invisible volumes    , we decrease IHV twice between the 

overlapped objects, as can be seen in Figure 10(c), IHV 

boundary points denoted as             . The same scene is 

presented in Figure 11, where Invisible Volume       
 
  

     
 
     colored in purple and green arrows for each 

building.   

The PVP of the object close to the viewpoint is marked in 

black, colored with pink circles denoted as boundary set 

points              and the far object's PVP is colored with 

orange circles, denoted as boundary set points             . 
It can be seen that IHV is included in each of these invisible 

volumes, where                           
and                          . 

Therefore, we add IHV between each overlapping pair of 

objects to the total visible volume. In the case of overlapping 

between objects' visible pyramids, 3D visible volume is 

formulated as:  

 

                
 
       

 
      

 
 

     
   

    

           (7) 

 

The same analysis holds true for multiple overlapping 

objects, adding the IHV between each two consecutive 

objects. 

 

 

 
(a) 

 
(b)                                                           

 

 
(c) 

Figure 10.  (a)  Computing Hidden Surfaces between Buildings , VP2
1 Base 

Plane,   
   

 

   
 

 (b) The Two Buildings - VP1
1 in green and VP2

1 in Purple 

(from the Viewpoint) and   
   

 

   
 

 in White (c) IHV boundary points colored 

with gray circles denoted 
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Figure 11.  Invisible Volume       
 
       

 
  colored in purple and 

green arrows for each building. PVP of the object close to viewpoint 

colored in black, colored with pink circles and the far object PVP colored 

with orange circle 

In Figure 12, we demonstrate the case of three buildings 

with overlapping. The invisible surfaces are bounded with 

dotted lines, while the projected visible surfaces to the 

overlapped building are colored in gray. In order to calculate 

the visible volumes from a viewpoint, IHV between each two 

buildings must be added as a visible volume, since it is 

already omitted at the previous step as an invisible volume. 

 
Figure 12.  Three overlapping buildings. Invisible surfaces bounded with 

dotted lines, projected visible surfaces of the overlap building colored in 

gray 

C. Simulations 

In this section, we demonstrate the SVC method of 

estimating the number of clusters based on pedestrians' 

mobility datasets. For each pedestrian's location datasets, we 

analyze the 3D visible volumes inside bounding volume S, 

defined as a 3D box.   

Our datasets are based on the city of Melbourne's 24-

hour pedestrian monitoring system (24PM). This system 

measures pedestrian activity at several Points of Interests 

(POI) with counting sensors. Pedestrian mobility datasets are 

available online with interactive maps, as seen in Figure 13, 

and can be downloaded for a specific date.  

 

 
Figure 13.  City of Melbourne's 24-hour pedestrian monitoring system 

(24PM) – Online Visualization Map 

Our datasets include the number of pedestrians in each 

hour during the 2nd of July 2013, at different seventeen 

points of interest in Melbourne where counting sensors are 

located and defined as viewpoints. Based on these datasets, 

we approximated the pedestrians' location using the well-

known and common kinematic model for pedestrians 

presented by Hoogendoorn et al. [29]. Based on this model, 

pedestrian 2D location can be estimated as: 

                      (8) 

where w is a white noise of a standard Wiener Process which 

reflects the uncertainty in the expected traffic condition, 

described as Gaussian distribution. 

Pedestrian speed V can be divided into three major groups:  

1. Fast: 1.8 meters per second 

2. Standard: 1.3 meters per second 

3. Slow: 0.8 meters per second  

                                                             

            
 

                 (9) 

The kinematic model of a pedestrian is only a part of the 

estimation and prediction of his movement in an urban 

environment. For simplicity, we use only a kinematic model 

for a pedestrian's future location, since decision-making in 

this field is very complicated. 

At time step t, pedestrian location     , is taken from a 

specific POI from our dataset, and the estimated pedestrian 

location         can be computed. In our simulations we 

set    for five minutes. For example, pedestrians' 2D 

location in UTM coordination, using the Hoogendoorn etc. 

model [29], between 6-7 a.m., can be seen in Figure 14.  
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Figure 14.  Pedestrians' 2D estimated location using the Hoogendoorn etc. 

model [29] between 6-7 a.m. 

Each of pedestrian locations is processed as a viewpoint 

for estimating the number of clusters from spatial visibility 

aspects. The 3D visible volumes computation presented in 

the previous section are applied for computing   , as 

described in Section III.  

At each POI, we set the reference dataset of the 

pedestrian location distributed uniformly around the POI 

location, where the reference dataset size is the same one as 

the original dataset for the same POI, computing *

kT . 

We set the possible number of clusters from one to ten, 

demonstrating the SVC method. The number of clusters 

based on visible volumes analysis per day hour is presented 

in Figure 15.  

   

 
Figure 15.  Number of Clusters for each Hour of 2/7/2013 Using SVC 

As we can see in Figure 15, there is a correlation between 

the number of clusters and the pedestrians' mobility 

behavior. The number of clusters is close to the maximum 

(ten clusters in our case) during 6-9 AM, as can be predicted 

due to pedestrians' mobility while going to work. The 

number of clusters drops to a figure between eight to four 

clusters during the midday hours, and climbs again during 

nigh hours. More incentives analyzing pedestrians' mobility 

patters are presented in the next section.   

 

 

 
Figure 16.  Control Points Location and Clusters Presentation during Each 

Hour in a Day. Control points are marked with black circles. Pedestrians' 

mobility Clustered in different colors 

IV. ANALYZING PEDESTRIANS' MOBILITY DATASETS 

A.  Control Points  

In this section, we analyze pedestrians' mobility datasets 

during one day, estimating the number of clusters by using 

the SVC outcome, which is based on visibility analysis. 

Upon that, we use the K-means clustering method. 

K-means clustering intends to partition n objects 

into k clusters, where each object belongs to the cluster with 

the nearest mean. The centroid of all objects in each cluster 
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is set as control point. This method produces 

exactly k different clusters, where k is predefined from the 

SVC method. The objective of K-means clustering is to 

minimize total intra-cluster variance, or the squared error 

function. K-means algorithm stages can be described as: 

1. Cluster the data into k groups, where k is predefined 

from the SVC method. 

2. Select k points at random as cluster centers. 

3. Assign objects to their closest cluster center using 

Euclidean distance function. 

4. Calculate the centroid all objects in each cluster. 

5. Repeat steps 2, 3 and 4 until the same points are 

assigned to each cluster. 

By using K-means and SVC method, control points location 

can be seen in Figure 16. 

It can be noticed in Figure 16 that in some cases the 

geometric location of the sensor location is separated into 

two different clusters. Our maximal number of clusters is set 

to ten, whereas there are seventeen sensors. We set the 

maximal number of clusters to be smaller than the number of 

sensors on the scene. One of the major contributions of our 

work, related to the adaptive clustering capability, is 

separating datasets into a different clustering and setting the 

control points from a visibility aspect. Moreover, control 

point location should cover more than one area, as can be 

seen in Figure 14, and also depends on pedestrians' mobility 

during this hour, as can be seen in the next sub-section.  

Video simulations showing control points locations using 

K-means clustering and SVC methods are available in [56]. 

B.  Time Zones  

In this section, we concentrate on learning pedestrians' 

patterns for setting Optimal Control Points (OCP), i.e., 

control points for each time zone. We divide the day into 

four time zones for efficient pedestrian monitoring: 

1. Morning hours (movement to work) – 6 – 9 AM.  

2. Mid-Day Hours (between morning and afternoon) – 10 

    AM  to 16 PM. 

3. Afternoon hours (back from work and activity hours) – 

    17- 20 PM.  

4. Night hours 20 – 23 PM. 

 
Figure 17.  Pedestrian Activity Analysis [45] 

The suggested division of time zones partition can also 

be seen clearly in an official pedestrian monitoring report of 

the city of Melbourne [45] (see Figure 17). The number of 

pedestrians counted by the monitoring system rises at the 

suggested time zones.     

In order to get reliable and comprehensive results 

regarding pedestrian mobility patterns, we tested a full 

month's (July 2013) dataset, analyzing each day for twenty-

four hours. 

Based on the average estimated number of clusters using 

SVC on these datasets, we found out that the number of 

optimal control points during these time zones is: 

- Morning hours – Nine control points 

- Mid-Day Hours – Six control points 

- Afternoon hours – Seven control points 

- Night hours – Eight  control points 

The localization of the optimal control points and the number 

of clusters for each time zone can be seen in Figure 18.  

It can be seen that in the different time zones, three 

optimal control points and their cluster division are almost 

identically marked with arrows and numbers in Figure 18. 

   Four optimal control points with similar clustering can be 

seen in three time zones in Figure 18. These results can also 

be applicable for personal-security and homeland security 

application in urban environments, localizing forces and 

sensors for optimal monitoring and trajectory planning 

during a daylight hours. 

V. SPATIAL TRAJECTORY PLANNING (STP)  

In this section, we present a conceptual STP method based 

on RRT planner. The method generates visibility motion 

primitives in urban environments. The STP method is based 

on a RRT planner extending the stochastic search to specific 

OCP. These primitives connecting between nodes through 

OCP are defined as visibility primitives. 

 A common RRT planner is based on greedy 

approximation to a minimum spanning tree, without 

considering either path lengths from the initial state or 

following or getting close to specific OCP. Our STP planner 

consist of a tree's extension for the next time step with 

probability to goal and probability to waypoint, where 

trajectories can be set to follow adjacent points or through 

OCP. The planner includes obstacle avoidance capabilities, 

satisfying dynamics' and kinematics' agent model constraints 

in 3D environments. As we demonstrated in the previous 

section, the OCP are dynamic during daylight hours. Due to 

OCP's dynamic character, the generated trajectory is also a 

dynamic one during daylight hours.  
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Figure 18.  Optimal Control Points Location in Four Time Zones. Optimal 

Control points marked with black circles. Pedestrians' mobility Clustered in 

different colors 

 
Figure 19.  Four-Wheeled Car Model with Front-Wheel Steering [Lewis] 

 We present our concept addressing the STP method 

formulating planner for a UGV model, integrating OCP's as 

part of the generated trajectories along with obstacle 

avoidance capability. 

A. Dynamic Model 

In this section, we suggest an Unmanned Ground Vehicle 

(UGV) dynamic model based on the four-wheeled car 

system (UGV) with rear-wheel drive and front-wheel 

steering [42]. This model assumes that only the front wheels 

are capable of turning and the back wheels must roll without 

slipping, and all the wheels turn around the same point 

(rotation center) which is co-linear with the rear axle of the 

car, as can be seen in Figure 19, where L is the length of the 

car between the front and rear axles. rt is the instantaneous 

turning radius.  

Thus, UGV dynamic model can be described as: 

           

 
  

  

 

 = 

       

       
 

 
      

                  (10)  

The state vector, x, is composed of two position variables 

(x,y) and an orientation variable, θ. The x-y position of the 

car is measured at the center point of the rear axle. The 

control vector, u, consists of the vehicle’s velocity, v, and the 

angle of the front wheels, ϕ, with respect to the car's heading. 

B. Search Method 

Our search is guided by following spatial clustering 

points based on 3D visible volumes analysis in 3D urban 

environments, i.e., Optimal Control. The cost function for 

each next possible node (as the target node) consists of 

probability to closest OCP, POCPi , and probability to random 

point, Prand . 

In case of overlap between a selected node and obstacle 

in the environment, the selected node is discarded, and a new 

node is selected based on POCPi and Prand. Setting the 

probabilities as POCPi =0.9 and Prand=0.1, yield to the 

exploration behavior presented in Figure 20. 
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Figure 20.  STP Search Method: (A) Start and Goal Points; (B) Explored 

Space to the Goal Through OCP 

C. STP Planner Pseudo-Code 

We present our STP planner pseudo code described in 

Table II, for spatial case generating trajectory T with search 

space method presented in the Section V.B. The search space 

is based on POCPi and Prand. We apply K steps from initial 

state xinit. The f  function defines the dynamic model and 

kinematic constraints,     = f (x; u), where u is the input and 

OCPi  are local target points between start to goal states.  

TABLE II.  STP PLANNER PSEUDO CODE 

STP Planner (xinit; xGoal ;K;   ; OCP)  
T.init (xinit); 

xrand   random.state(); 

xnear   nearest.neighbor(xrand; T ); 

u   select.input(xrand; xnear); 

xnew   new.state.OCP (OCP1; u;   ; f); 
While xnew  xGoal do 

xrand   random.state(); 

xnear   nearest.neighbor(xrand; T ); 

u   select.input(xrand; xnear); 

xnew   new.state.OCP (OCPi; u;   ; f); 
T.add.vertex(xnew); 

T.add.edge(xnear; xnew; u); 

end  

return T; 
 

Function new.state.OCP (OCPi;u;   ; f)  
Set POCPi , Set Prand 

p uniform_rand[0..1] 

if    0 < p < POCPi 

       return xnew = f(OCPi,u,  ); 
else  

      if POCPi < p < Prand+ POCPi 

then 

       return RandomState(); 

end. 

 

D. Completeness 

Motion-planning and search algorithms commonly 

describe 'complete planner' as an algorithm that always 

provides a path planning from start to goal in bounded time. 

For random sampling algorithms, 'probabilistic complete 

planner' is defined as: if a solution exists, the planner will 

eventually find it by using random sampling. In the same 

manner, the deterministic sampling method (for example, 

grid-based search) defines completeness as resolution 

completeness. 

Sampling-based planners, such as the STP planner, do 

not explicitly construct search space and the space's 

boundaries, but exploit tests with preventing collision with 

obstacles and, in our case, taking spatial considerations into 

account. Similarly, to other common RRT planners, which 

share similar properties with the STP planner, our planner 

can be classified as a probabilistic complete one. 

VI. CONCLUSIONS 

In this paper, we have presented a unique planner concept, 

STP, generating trajectory in 3D urban environments based 

on UGV model. The planner takes into account obstacle 

avoidance capabilities and passes through optimal control 

points calculated from spatial analysis. The spatial analysis 

defines the number of clusters in a dataset based on an 

analytic visibility analysis, named SVC. 

The SVC method is based on fast and efficient 3D visible 

volumes computation. Estimating the number of clusters is 

based on minimum normalized visible volumes to reference 

datasets distributed uniformly inside bounding volume S. We 

demonstrated the SVC by using datasets from the city of 

Melbourne's 24-hour pedestrian monitoring system (24PM). 

In the second part of this research, based on the SVC-

estimated number of clusters, we analyzed pedestrians' 

mobility behavior, setting control points during daylight 

hours and dividing a daylight hours into four time zones. We 

found a correlation of several optimal control points in 

different time zones. 

Based on similar spatial analysis in other urban scenes, 

one can set optimal control points for various applications, 

such as entertainment events that can be efficiently visible at 

such points, or monitoring crowds' movements from these 

control points in emergencies, planning medical assistance. 

The STP concept includes probabilistically complete 

properties which changes dynamically during daylight hours. 

The planner allows us to generate trajectory for various 

applications such as personal security and homeland security 

applications in urban environments, localizing police forces 

and sensors for optimal monitoring at different hours of a 

day. 

Future work will focus on simulation in real data records 

using the STP planner, generating trajectories in 2D and 3D 

urban environments using an Unmanned Aerial Vehicle 

(UAV) model. Future research will also include 

performances and algorithm complexity analysis for STP and 

SVC methods. 
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