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Abstract - Cloud-centric collaboration in (global) software 
development continues to gain traction, resulting in new 
development paradigms such as Tools-as-a-Service (TaaS) and 
Cloud Development Environments based on Software-as-a-
Service (SaaS). However, both within and between clouds, 
there are associated security and privacy issues to both 
individuals and organizations that can potentially hamper such 
well-intentioned collaboration. This paper describes an inter-
cloud security and privacy concept for heterogeneous cloud 
developer collaboration environments that pragmatically 
addresses the distributed transmission, aggregation, storage, 
and access of events, data, and telemetry related to 
development projects, while giving individual developers fine-
granularity control over the privacy of the data collected. To 
this end, the concept adapts an existing collaborative 
development and measurement infrastructure, the Context-
aware Software Engineering Environment Event-driven 
framework (CoSEEEK) to support cloud-based event 
aggregation capabilities. The results and discussion show its 
practicality and technical feasibility while presenting 
performance tradeoffs for different cloud configurations. The 
concept enables infrastructural support for privacy, trust, and 
transparency within development teams, and could also 
support compliance with national privacy regulations in such 
dynamic and potentially global collaborative environments. 

Keywords - cloud-based software engineering environments, 
cloud-based software development collaboration, software project 
telemetry, privacy, security, trust. 

I.  INTRODUCTION 
This article extends previous work in [1]. Global 

software development (GSD) [2] is increasingly taking 
advantage of cloud-based software applications and services 
[3] and realizing its collaboration potential. Data acquired 
and utilized during the software development and 
maintenance lifecycle is no longer necessarily locally 
controlled or even contained within an organization, but may 
be spread globally among various cloud providers with the 
acquired data retained indefinitely. Tools-as-a-Service 
(TaaS) [4] and cloud mashups will enable powerful new 
applications that utilize the acquired SE data [5]. And while 
the technical landscape is changing, the corporate landscape 
is also. A 2005 survey of American corporations conducted 
by the American Management Association showed that 76% 
monitored employee Internet connections, 50% stored and 
reviewed employee computer files, and 55% retained and 
reviewed email messages, with a rapidly increasing trend [6].  

The ability to measure and minutely observe and track 
software developers during their work is becoming 
technically and economically viable to employers, managers, 
colleagues, virtual teams, and other entities. While metrics 
can be useful and provide a basis for improvements, be it at 
the organizational level (e.g., the CMMI Measurement and 
Analysis process area [7]), at the project level via automated 
software project telemetry (e.g., [8]), or for personal 
improvement (e.g., Personal Software Process [9],  [10]). 
Unintended effects and abuse are also possible, such as [11] 
and [12], misuse of publicized information, misuse by 
competitors, mobbing, etc. While software services and apps 
developed by vendors for public customers typically attend 
to user privacy due to their longevity, mass accessibility, and 
regulatory and legal scrutiny, relatively little attention has 
been paid to the privacy needs of software developers, an 
estimated 17 million worldwide [13]. 

Consequently, privacy is becoming a looming concern 
for software developers that faces unique technical 
challenges that affect their collaboration. These challenges 
include: a highly dynamic technical environment typically at 
the forefront of software technology and paradigms (e.g., 
new languages, compilers, or platforms); diverse tools (for 
instance, [4] alone identifies 384); heterogeneous project-
specific tool chains (e.g., application lifecycle management, 
version control systems, build tools, integrated development 
environments, etc.). Additionally, because development 
environments are often project-centric (unique and perhaps 
short-lived undertakings), the extra hassle and overhead for 
addressing developer privacy may seem to be an unnecessary 
hindrance to project progress and thus not be addressed at the 
management level. When multinational coordination (e.g., 
offshoring) is involved, multiple regulatory issues may apply 
and add to the complexity, etc. Developers may thus have 
little leverage and currently few technical options or 
suggestions for having their concerns addressed. Any 
privacy options should thus be economical and practically 
feasible, yet due to the dynamic technological nature of 
collaborative development environments (CDEs), 
standardization is unlikely or will be highly challenging. 

To enable collaboration, the trust climate plays a vital 
role in the success of virtual and distributed teams [14], and 
trust and transparency are considered vital values for 
effective teams and collaboration [15][16]. Where trust exists 
(consider Theory Y [17]), collected data can be utilized 
collaboratively to enhance team performance [18], for 
instance by utilizing event data to coordinate and trigger 
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actions and to provide insights, whereas where data is 
misused as an instrument of power, monitoring, or 
controlling (consider Theory X [17]), individuals require 
mechanisms for protection. Since the technical development 
infrastructure cannot know a priori what trust situation exists 
between some spectrum of complete trust to complete 
distrust, infrastructural mechanisms should support 
collaboration within some spectrum, while allowing the 
individuals and organizations to adapt their level of data 
transparency to the changing trust situation. Not all actors 
involved may have an issue with metric collection, while 
those who favor complete transparency may presume that 
those voicing privacy issues may seem to be "hiding 
something". 

Privacy is control over the extent, timing, and 
circumstances of sharing oneself. Cloud service users 
currently have few personal infrastructural mechanisms for 
retaining and controlling their own personal data. Diverse 
privacy regulations are applicable within various geographic 
realms of authority. Various (overlapping) (multi-)national 
laws and regulations may apply to such (global) 
collaborative cloud contexts. For instance, Germany has a 
Federal Data Protection Act, the European Union has a Data 
Protection Directive 95/46/EC, and within the United States, 
various states each have their own internet privacy laws. 
Many privacy and security principles are typically involved, 
including notice, consent, disclosure, security, earmarking, 
data avoidance, data economy, etc. Various challenges for 
security and privacy in cloud environments remain [19][20]. 
In the interim, pragmatic infrastructural approaches are 
needed to deal with the issues in some way.  

As in the initial paper [1] on which this extended version 
is based, the contribution includes elucidating the 
requirements and describing a solution concept for 
pragmatically addressing various privacy and security 
concerns in cloud-based dynamic heterogeneous CDEs. The 
solution is based on service layering, introduces distributed 
cloud-based datasteading for individuals, and mediates trust 
via brokers.  Its technical feasibility and performance 
tradeoffs are investigated in an initial case study. Additional 
contributions of this extended version include a discussion, 
details, and evaluation of an aggregator implementation 
supporting push-based event collection from personal 
datasteads. 

This paper is organized as follows: the next section 
describes the assumptions and requirements for a solution, 
while Section III describes related work. In Section IV, the 
solution concept is introduced, with the following section 
providing details of a technical implementation based on the 
concept. Evaluation results are presented in Section VI. 
Section VII provides a discussion, which is then followed by 
a conclusion and description of future work. 

II. REQUIREMENTS 
The following requirements, assumptions, or constraints 

(denoted by the prefix R: in italics) were elicited from the 
primary problems, goals, and challenges introduced in the 
preceding section, and are considered to be generally 

applicable for any conceptual solution. They are summarized 
here to highlight key considerations in the solution concept. 

Multi-cloud configurability (R:MultCld): in view of 
GSD, inter-organizational collaboration, and the long-term 
nature and scale of certain development projects, any 
solution should support private clouds (R:PrivCld), public 
clouds (R:PubCld), and community clouds (R:CmtyCld) for 
a wide array of deployment options. 

Cloud portability or provider-specific cloud API 
independence (R:CldPort) should be supported to avoid 
cloud provider lock-in and allow wider adoption and 
applicability. Development teams tend to want choices in 
their tooling and infrastructure to optimize and tailor their 
project or situation based on costs or risks (business, quality-
of-service, potential espionage risks, etc.). If this is 
challenging because cloud vendors do not want to change or 
agree to some common interoperability standard, adaptation 
techniques such as bridging, brokers, or mediators could be 
used to support common infrastructure functionality. 

Cloud compatibility (R:CldCmpat) with current public 
cloud provider and private cloud APIs and services should be 
supported. This  entails avoiding exotic requirements for 
special configurations that would constrain its practical 
usage, such as refraining from special hardware requirements 
such as the Trusted Platform Module (TPM), or obtuse 
software languages, platforms, operating systems, or 
communication mechanisms that, while perhaps increasing 
privacy or security to some degree, might nevertheless 
hinder overall adoption of such an approach because such 
configurations require too much effort or become too 
unwieldy or difficult to implement and maintain.  

Single tenancy (R:1Tenant) in the personal (developer's) 
cloud should be supported to reduce risk (e.g., to avoid a 
misconfiguration compromising a much larger set of tenants 
simultaneously) and to avoid access by organizational 
administrators, which can involve an additional trust issue 
beyond the project level. 

Disclosure (R:Dsclsr): three fundamental levels of 
disclosure shall be supported: non-disclosure, anonymized 
disclosure, and personally-identifiable disclosure to specific 
aggregators. This allows the developer to adapt the 
disclosure of events and data to the trust situation of a 
specific project or group.  

Sensor Privacy (R:SnsPriv): It is assumed that any client-
side and server-side sensors, (e.g., version control system 
sensors) distribute personally-identifiable events according 
to a privacy concept, or are at least configured in such a way 
that they only transmit their events securely directly to a 
single datastead.   

Entity-level privacy control (R:EntityCtrl): the 
granularity of privacy is controllable by the entity involved 
or affected, be it persons, teams, organizations, projects, etc., 
and flows from bottom-up (from persons to teams) and 
across for similar levels (e.g., between teams or between 
organizations). Top-down controls can only restrict privacy, 
e.g., in the case where organizations no longer trust each 
other (perhaps due to legal action), they cannot forcibly 
increase the disclosure levels of lower entities.   
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Restrict network access (R:R:PrivNtwk) to collaboration 
participants only, e.g., via Virtual Private Networks (VPN), 
to reduce the accessibility of the communications to the 
collaborators only. It may also be useful even within a larger 
organization's intranet to reduce accidental leakage risk.  

Secure communication (R:SecComm) can be used to 
protect internal or external data transmission. This may be 
considered useful even within a VPN for retaining personal 
privacy.  

Basic security mechanisms (R:BscSec): this specifies the 
reliance on widely-available off-the-shelf security 
mechanisms (e.g., HTTPS), without any dependence on 
specialized or exotic hardware or software security platforms 
(e.g., Trusted Platform Module) or research-stage 
mechanisms that would constrain its practicality.  

Encryption (R:Encrypt) can be used to protect data 
accessibility and storage. 

Trusted code implementation (R:TrstCd): Open source 
and/or independent code audits together with secure 
distribution mechanisms (e.g., via digital signatures from a 
trusted website) provide assurance that the code 
implementation can be trusted.  

Remote runtime code integrity verification (R:Intgrty) 
should be supported to allow agents (e.g., automated 
temporally random auditing requests or manually initiated 
user requests) to detect any tampering with the 
implementation, sensors, configuration, or the compromise 
of any privacy safeguards. 

It is generally assumed that the environment and culture 
within an organization and between organizations is 
fundamentally one of mutual respect, benefit, and trust, with 
appropriate IT policies that reflect this, and that explicit 
surveillance and undermining tactics, tools, etc. are not 
tolerated or utilized to undermine employee personal 
privacy. In other words, this solution is not meant to address 
privacy and security at a hacker, professional, corporate, or 
espionage level, but rather to give developers choices in 
sharing their personal event and metric data with others in 
differing personal and project trust contexts and where they 
understand and know how that their collected data will be 
used to enhance productivity collaboratively. It has been said 
“you get what you measure,” and, when applied to 
individuals, the repercussions could be greater the more 
exposure certain personal data has. This could result in 
(un)intentional manipulation or misinterpretation of the data 
out of context, in one direction to perhaps show off, and 
could negatively affect other hitherto positive interactions. 
E.g., if one measures individual programmer productivity 
and broadcasts this, then such desired behaviors as helping 
others or team or quality issues may be diminished or 
ignored. Other team members may very well be crucially 
supporting the development effort but not in ways currently 
being measured. 

In summary, a primary tenet here is that organizations 
and teams want to support privacy freedom for individuals, 
that they support and value self-organizing teams, and that 
they do not wish to hinder electronic collaboration and 
communication. While together the aforementioned 
elucidated requirements are not intended to be sufficient or 

complete, they nevertheless provide a practical basis for 
considering and comparing solution concepts and can be 
useful for furthering discussion.  

III. STATE OF THE ART 
In the area of global software development, [4] discusses 

support for TaaS and [21] Software-as-a-service in 
collaborative situations. Neither go into detail on various 
privacy issues, nor is support for various aforementioned 
requirements, e.g., for individuals (R:EntityCtrl). Example 
industrial offers for cloud-based collaboration include 
Atlassian OnDemand and CollabNet CloudForge. Individual 
privacy control (R:EntityCtrl, R:Dsclsr) do not appear to be 
supported. 

Work on more general multicloud collaboration includes 
[5], which similarly supports opportunistic collaboration 
without relying on cloud standardization based on the use of 
proxies. However, aspects such as (R:BscSec, R:Intgrty, 
R:EntityCtrl) were not considered and a technical 
implementation was not investigated.  

Work in the area of standardization and reference 
architecture includes [22], which mentions privacy but fails 
to prescribe a solution. [23] lists various security and 
interoperability standards and their status, but their maturity 
and market penetration when considering (R:MultCld) and 
(R:CldCmpat) remain issues. 

Various general cloud security mechanisms have been 
proposed. Privacy as a Service (PasS) [24] relies on secure 
cryptographic coprocessors to provide a trusted and isolated 
execution and data storage environment in the computing 
cloud. However, its dependency on hardware within cloud 
provider infrastructure hampers (R:CldCmpat, R:CldPort, 
and R:BscSec). Data protection as a service (DPaaS) [25] is 
intended to be a suite of security primitives that enforce data 
security and privacy and are offered by a cloud platform. Yet 
this would inhibit (R:CldPort). Other work such as [26] 
describe privacy-preserving fine-grained access control and 
key distribution mechanisms, but are not readily available for 
a pragmatic approach that is usable today (R:BscSec). 

IV. SOLUTION CONCEPT 
For a cloud-based context-aware collaboration system to 

have satisfactory utility, it will depend on some type of event 
and data collection and communication facilities. Thus, this 
foundational infrastructure should be equipped with basic 
trust and security mechanisms such that upper-level services 
like context-awareness and collaboration can ensue without 
impinging on privacy.  

Thus, to provide a flexible solution for achieving privacy 
control in such environments, a primary principle in the 
solution concept is the application of the Service Layer 
design pattern [27] to provide a decoupling and separation of 
concerns as shown in Figure 1. The lower conceptual Event 
and Data Services Layer includes event and/or data services 
for an entity (person/team/organization), including 
acquisition, storage, retention, and dissemination, while the 
upper Collaboration and Tools Services Layer includes CDE 
and tool services. The upper layer services utilize lower layer 
data to provide collaboration, data sharing, analytics, 
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telemetry, contextual guidance, and other value-added 
services. Any single entity would have more limited privacy 
control mechanisms. 

 

Event & Data Services Layer

Collaboration & Tool Services Layer

Event  
Service 

Person B

Collaboration 
Service Y

Tool 
Service Z

Data 
Service 
Org C

Sensor
A

Analytics
Service X

 
Figure 1.  Services Layer Pattern. 

A second solution principle is the introduction of a 
datastead, shown in Figure 2.  Loosely analogous to the 
concept of homesteading or seasteading, it provides an entity 
with both a certain degree of data isolation and control for 
some area. In this case, some entity (be it an individual or 
some unit) manages and controls clearly delineated data 
resources in the cloud for which they have or receive 
responsibility and ownership rights. The technical 
implementation of a datastead can be in the form of a 
personal cloud in the case of an individual, or an area within 
a private cloud for an organization. It is thus clear to the 
individual or entity that they have complete control over 
personal (or entity) event and data storage that is kept 
separate under their personal (or entity) jurisdiction. Each 
datastead can pass data to one or more other datasteads (such 
as one belonging to a team) or directly to (usually one) 
community cloud where it can be processed and utilized to 
enhance collaboration. A configuration with successive, 
staged, or pipelined datasteads, while not required, can 
support the need for entity level privacy and disclosure 
control from the lowest levels to the highest levels in 
organizations (bottom-up). Community clouds may also 
successively pass data on to larger community clouds if 
desirable to the providing community. For instance, 
academic research communities could access and analyze 
this data for multiple projects. 
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Figure 2.  Generic Solution Concept. 

The third principle is the inclusion of a Trust Broker that 
mediates between service and data access, acting as both a 
cloud service broker (for interoperability with various tools) 
and cloud security broker (for security) between layers. Akin 
to the Trusted Proxy pattern [28] and Policy Enforcement 
Point [29], it constrains access to protected resources and 
allows custom, finely-tuned policies to be enforced 
(R:EntityCtrl). Rules can be used to configure and 
distinguish/filter access by event types, timeframes, projects, 
etc. It provides secure communication mechanisms 
(R:SecComm) to authenticate and authorize data acquisition 
and data dissemination in the datastead, as well as 
interoperability mechanisms for various collaboration and 
tool services. Only client requests from preconfigured known 
addresses are accepted. A management interface to the Trust 
Broker provides the datastead owner with policy 
management capabilities. It also supports data 
anonymization on a per request basis if so configured. For 
secure storage, the Trust Broker encrypts (R:Encrypt) 
acquired events and data (Encrypted Storage pattern [28]) to 
prevent unauthorized access by administrators or intruders, 
and protects access to the encrypted storage typically on a 
single port (Single Access Point pattern [29]). The Trusting 
Broker supports runtime code integrity (R:Intgrty) via 
remote attestation, and a client, called the Trusting Tool, can 
be invoked periodically or based on certain events to ensure 
that the Trust Broker has not been tampered with. 

As to transmission, a Personal Channel transmits events 
from sensors to the personal datastead. The Inter-Cloud 
Channel transmits personal or anonymized events to one or 
more Community Clouds. The Community Channel is 
optional and can be used, e.g., for impersonal sensors (e.g., 
team build server) or perhaps in special situations when 
duplication and parallel transmission of personal events for 
reliability or performance is desired and approved. Secure 
Channels and Secure Sessions [29] are used to protect the 
transmission between the sensors and the datastead (the 
Personal Channel), between sensors and the Community 
Cloud (Community Channel), as well as between the 
datastead and any collaboration and tool services (Inter-
cloud Channel). For a community cloud, a VPN is used to 
limit network access to collaborators in the community only.  

V. TECHNICAL IMPLEMENTATION 
To determine the technical feasibility of the solution 

concept and provide a concrete case study, the solution 
concept was applied to an existing heterogeneous CDE 
called the Context-aware Software Engineering Environment 
Event-driven framework (CoSEEEK) [30], which had 
hitherto not incorporated privacy or security techniques. 
CoSEEEK's architecture and integrated technologies are 
shown in Figure 3. Its suitability is based on its portability 
(use of mainly Java and web-based languages), use of non-
commercial technologies described below, its reliance on 
common distributed communication mechanisms such as 
RESTful web services, and its heterogeneous tool support. 
Additional technical details on CoSEEEK can be found in 
[31][32]. 
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Figure 3.  CoSEEEK Architecture (affected areas shown in red). 

For event acquisition, CoSEEEK relies on the Hackystat 
framework [33] and its SE tool-based sensors (e.g., Ant, 
Eclipse, Visual Studio) for event extraction and event storage 
(shown in red in Figure 3). Hackystat does not currently 
provide extensive security and privacy mechanisms. For an 
insight, [34] briefly describes some of its security issues. 

Service Layer Separation: the Hackystat-related elements 
(shown in red) were hereby separated into the Event and 
Data Services Layer and the remaining elements were placed 
in the Collaboration and Tools Services Layer. 

Cloud configuration: To meet (R:MultCld, R:CldCmpat, 
R:CldPort), two different cloud platforms were utilized in 
isolation. To represent a public IaaS cloud provider 
configuration (R:PubCld), Amazon Web Services (AWS) 
was used, using Elastic Compute Cloud (EC2) for computing 
services, the Elastic Block Store (EBS) for storing 
configuration files and XML database, and the Relational 
Database Service (RDS) that holds the sensorbase.  

To represent a private cloud (R:PrivCld) or community 
cloud (R:CmtyCld) deployment, OpenStack was used with 
Compute used for computing and Object Storage used in 
place of EBS storage. Since nothing directly equivalent to 
AWS RDS was available, we configured a Compute instance 
with Object Storage that contains a MySQL Server database 
and for single tenancy (R:1Tenant) one Compute instance 
per developer with access restricted to the developer. 

Trust Broker: the Trust Broker supports (R:Dsclsr) was 
implemented in Java using a REST framework. An example 
of a query that can be sent is the following, specifying the 
project via the sensorbase_id, the timeframe, the sensor data 
type, the tool, and its uri source. 

 
GET 

/trustbroker/sensordata/{sensorbase_id}?
startTime={startTime}&endTime={endTime}&
sdt_name={sdt_name}&tool={tool} 

&uriPatterns={uriPatterns} 
 

Encryption of events (R:Encrypt) can be optionally 
configured. For encryption of arriving events and decryption 
of events on authenticated and authorized retrieval, Java's 
AES 128 and the SHA-256 hash algorithm were used 
(R:BscSec). One reason for encrypting the storage is that it 
provides an additional form of protection, should, e.g., a 
provider's agent or intruder gain access.  

The measurement database, called sensorbase in 
Hackystat, required a few minor adaptations. For (R:Dsclsr) 
to support anonymization, the HACKYUSER table was 
extended to include an anonymization flag that is checked 
before responding, replacing a userid with anonymous. In 
order to support HTTPS connections, the sensorbase client 
(R:SnsPriv) was modified and rebuilt, requiring any sensors 
to utilize this modified jar file. HTTPS (R:BscSec) was used 
to secure all three communication channels (personal, 
community, and inter-cloud) (R:SecComm). Additional 
properties were added to indicate the location of the 
keystore. SSH was used to configure and manage each cloud. 
Security groups were used in both AWS and OpenStack. 

A. Aggregator 
To improve cloud-based performance, we adapted the 

solution concept from our initial paper to remove the 
ongoing querying of the datastead by the Trust Broker in the 
community cloud. Instead, a client-based push approach for 
event transmission was implemented. A blacklist within the 
client Trust Broker filters or anonymizes the types of events 
that are passed on and made available. The aggregation of 
the events now avoids polling the clients. For this, the client 
Trust Broker is responsible for tracking which events were 
already successfully transferred and which still need to be 
sent to any Aggregator in the Trust Broker on a Community 
Cloud.  

The interaction between components for the transfer of 
events is shown in Figure 4. Sensors send their events on a 
push basis to the Hackystat sensorbase located in the 
datastead. The datastead Trust Broker periodically queries 
the sensorbase for events newer than its last transmission to 
any particular Aggregator. Once an event is fetched, it is 
checked against a blacklist to determine if it should be 
blocked or anonymized. Then the datastead Trust Broker 
pushes the event via its REST connection to the Aggregator 
within the Trust Broker residing on the Community Cloud, 
where it is persisted and can be processed by various upper-
level services in CoSEEEK. This is repeated in a loop until 
the latest event has been sent. 

There are valid arguments for maintaining either a 
whitelist or blacklist, depending on what standpoint one 
takes (send most data vs. send almost no data), the extent of 
the associated rules, as well as the consideration of what 
should happen if something is not specified. In the case of a 
blacklist where something is missing or was misconfigured, 
that would imply that events would slip through.  

While a whitelist could have been used, for simplification 
of the implementation for demonstration purposes we chose 
to use a blacklist, since we presume that developers will 
more likely know exactly what sensors they want to block or 
anonymize (i.e., blacklist) from the community more than 



440

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

they will care to know and manage all the diverse and 
possible sensors (whitelist). 
 

 
Figure 4.  Sequence diagram showing push-based aggregation. 

The file blacklist.xml specifies which events should be 
blocked or anonymized, whereby blocking is the default. The 
boolean tag <Anonymize> controls anonymization, but can 
be explicitly set to false as a kind of "unblock" to allow a 
specific event to be unblocked when most others are 
blocked.  

If no events should be anonymized or blocked, then the 
list is empty as shown below. 

 
<Blacklist> 
</Blacklist> 
 
By default, if a tool is listed all events from that tool 

sensor are blocked and remain in the datastead. For example, 
to block all events from the eclipse tool sensor, it would be 
specified as follows: 

 
<Blacklist> 
  <Tool> 
    <Name>Eclipse</Name> 
  </Tool> 
</Blacklist> 
 
To anonymize, for example, all events from the eclipse 

tool sensor, it would be specified as follows: 
 
<Blacklist> 
  <Tool> 
    <Name>Eclipse</Name> 
    <Anonymize>true</Anonymize> 
  </Tool> 
</Blacklist> 
 
For example, to by default block all the other Eclipse tool 

events, but anonymize only the Eclipse File Open events, it 
would be specified as follows: 

 
 
 

<Blacklist> 
  <Tool> 
    <Name>Eclipse</Name> 
    <Property> 
      <Anonymize>true</Anonymize> 
      <Key>Subtype</Key> 
      <Value>Open</Value> 
    </Property> 
  </Tool> 
</Blacklist> 
 
To anonymize all Eclipse events, and by default block 

the Eclipse File Open events, one specifies additional 
properties, as shown here: 

 
<Blacklist> 
  <Tool> 
    <Name>Eclipse</Name> 
    <Anonymize>true</Anonymize> 
    <Property> 
      <Key>Subtype</Key> 
      <Value>Open</Value> 
    </Property> 
  </Tool> 
</Blacklist> 
 
To anonymize all Eclipse events except the File Open 

events, for example, the following would be specified: 
 
<Blacklist> 
  <Tool> 
    <Name>Eclipse</Name> 
    <Anonymize>true</Anonymize> 
    <Property> 
      <Anonymize>false</Anonymize> 
      <Key>Subtype</Key> 
      <Value>Open</Value> 
    </Property> 
  </Tool> 
</Blacklist> 
 
To manage what event to push, a simple event timestamp 

reference that is persisted tracks the last event successfully 
retrieved from the Hackystat sensorbase and that was either 
blocked due to the blacklist or transmitted to a specific 
Aggregator on a per event basis. Should an error during 
transmission occur, the client is responsible for 
retransmitting. Should the Aggregator become unavailable, 
the client will continue to retry rebuilding a connection until 
it succeeds in pushing the events not yet successfully 
transmitted in the order of their occurrence (timestamp). No 
separate queue is maintained and all events are stored in the 
sensorbase. 

B. Remote Attestation 
To implement remote attestation, on the client-side, a 

user configures the Trusting Tool with the expected 
checksum value (provided, e.g., by the admin or a trusted 
website), version, and the interval for rechecking. On the 
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service side, a REST interface sensorbase/checksum was 
added that loads the local adapted sensorbase.jar file, 
computes the SHA-256 hash value using 
java.security.MessageDigest, and returns this 
value and the sensorbase version to the Trusting Tool. While 
not foolproof, since any unauthorized access on the server or 
client could allow spoofing, it provides an additional level of 
confidence. Various stronger jar file tampering technologies 
could be employed if needed, such as componio JarCryp 
bytecode encryption. 

VI. EVALUATION 
The case study evaluated the technical feasibility of the 

concept based on the technical implementation. However, 
security and privacy are highly contextually dependent on 
the expectations, requirements, environment, risks, policies, 
training, available attack mechanisms, implementation 
details (bugs), configuration settings, etc. Therefore, making 
a comprehensive formal assessment in this area is difficult. 
So the assumption is made that the prescribed privacy and 
security mechanisms suffice or are balanced for current 
developer needs in developer settings. 

Since CoSEEEK is a reactive system, the ability to 
respond adequately to contextual changes via events is 
dependent primarily on event latency. Cloud networking, 
additional network security mechanisms, and the additional 
delay incurred by inserting datastead nodes could negatively 
affect responsiveness, and thus this infrastructural level of 
event latency was the primary focus of the evaluation.  

To elaborate, as CoSEEEK is a process-centered 
software engineering environment, any events that arrive too 
late to be contextually relevant can cause CoSEEEK-
triggered actions or responses to be irrelevant and thus 
ignored. Developers also tend to be impatient when a 
guidance system is not providing relevant and applicable 
guidance for the context when expected, and they will 
continue on without it and perhaps begin to ignore it. As to 
event volume, events generated by any single developer's 
actions are typically sporadic and not highly voluminous. If a 
sensor is overly vociferous in relation to the amount of 
developer activity, it can typically be configured to eliminate 
redundant events or to summarize events. If this capability is 
not built in, a complex event processor (e.g., Esper) can be 
utilized to reduce the load on the network and aggregator in 
larger project environments. 

A subjective evaluation by developers in an industrial 
setting was considered but not feasible at this time due to 
resource and schedule constraints, and is included in future 
work. 

A. Security Overheads 
To determine security overheads, the Client PC (for use 

by a developer) has an i5-2410M (2.3-2.9 GHz) dual core 
CPU and 6GB RAM with 32-bit Windows XP SP3. The 
network consists of gigabit Ethernet and two 1 Gbit 
connections from the university campus in Germany to the 
Internet Provider. 

Representative for a private (R:PrivCld) or community 
cloud where a datastead could also be placed, the OpenStack 

configuration (OSCfg) consisted of a local intranet server 
with an i5-650 (3.2-3.4GHz) dual core CPU, 8GB RAM, and 
64-bit Ubuntu Server 12.04. The OpenStack Cloud Essex 
Release was installed on the Server via DevStack and the 
Compute instances also ran Ubuntu Server 12.04. MySQL v. 
5.5.24 was used for Hackystat sensorbase storage in a 
Compute instance. 

As a public cloud provider (R:PubCld) representative, a 
free AWS configuration (AWSCfg) was chosen. It consisted 
of t1.micro EC2 instance types located in US-EAST-1d 
(Virginia) with 613 MiB memory, up to 2 EC2 units (for 
short periodic bursts) with low I/O performance running 64-
bit Ubuntu Server 12.04. MySQL v. 5.5.27 was used for the 
Hackystat sensorbase storage in AWS RDS.  

Common software included Hackystat 8.4 with the 
Noelios Restlet Engine 1.1.5 and JDK 1.6.  

Typical network usage scenarios were considered, thus 
no optimizations were applied to any configurations nor was 
an artificially quiet network state created. All results are the 
average of 10 repeated measurements (with one exception 
noted below). A secure configuration denotes using the 
TrustBroker via HTTPS (R:SecComm) with encrypted 
storage (R:Encrypt), and an insecure configuration means 
HTTP without a TrustBroker. VPN (R:R:PrivNtwk) 
overheads were not measured. 

To determine delays from the client to the datastead in 
cloud variants, on the client PC the Ant build tool was 
invoked, causing the Hackystat Ant sensor to send one XML 
event to the Server (a write in the remote sensorbase) 
consisting of 235 bytes of event data plus 73 bytes of 
network protocol overhead. The measured latency values are 
shown in Table I and Figure 5. 

TABLE I.  LATENCY (IN MS) FOR SENDING AN EVENT (235 BYTES)  
FROM THE CLIENT PC TO THE SERVER SENSORBASE 

Insecure Private 
Cloud (ms) 

Secure Private  
Cloud (ms) 

Secure AWS  
Cloud (ms) 

214 389 608 
 
 

 
Figure 5.  Latency (in ms) for sending an event (235 bytes)  

from the client PC to the server sensorbase. 

Once events are in the datastead, then latencies incurred 
between cloud computing instances are of interest, since 
collaboration services or tool services will require this data. 
The measured values are shown in Table II and grouped by 
security mechanisms in Figure 6. 

A grouping by cloud type is shown in Figure 7. For 
AWSCfg, a single query for 67 events (15818 bytes) 
between two EC2 instances took 78 ms on average via HTTP 
and 84 ms over HTTPS. In a secure configuration the 
retrieval took 347 ms. For OSCfg between two Compute 
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instances, a single query took 38 ms  to return 22 events 
(5243 bytes). Note that HTTP insecure reads in the private 
cloud had two anomaly values (178 and 210 ms) that would 
have changed the average from 38 to 69, and were also far 
larger than any secure value measurements. Thus, these two 
measurement values were removed, and the average created 
from the remaining 8 values. These large latencies could 
perhaps be attributed to a network, disk, operating system, or 
OpenStack related issue. Continuing with the measurements 
with 39 events (9238 bytes), HTTPS requests took 60 ms 
while in the secure configuration it averaged 61ms. The 
overhead of the privacy approach is the addition of SSL, 
brokering a second SSL connection, and encryption. For the 
OSCfg, the difference of TrustBroker and decryption showed 
on average only a 1ms difference to that with purely SSL. 
One explanation could be that the extra overhead is minimal 
compared to the data transfer delays between OpenStack 
instances, but further investigation of OpenStack internals 
and performance profiling would be needed to clarify this.  

TABLE II.  PRIVATE VS. PUBLIC CLOUD INTER-COMPUTING INSTANCE 
QUERY LATENCIES (IN MS) 

 

Inter-OSCfg  
Latency (ms) 

Inter-AWSCfg  
Latency (ms) 

Insecure 38 78 
HTTPS 60 84 
Secure 61 347 
 

 

Figure 6.  Private vs. public cloud inter-computing instance query 
latencies grouped by security (in ms). 

Based on the results shown in the above figures, the use 
of the secure configuration of the OSCfg within a private or 
even a community cloud setting would appear to have 
acceptable performance overhead for cloud-centric 
collaborative development work, and distributed retrieval 
from datasteads is viable for responding to changes in the 
collaborative situation. On the other hand, the use of the 
secure configuration in the public cloud (AWSCfg), as 
shown in this perhaps worst case as a free offshore minimal 
public cloud setting, incurs substantially higher network 
latencies. Obviously, choosing geographically close 
locations when possible is recommended. Also, provisioning 
sufficient computing and I/O resources support to deal with 
the additional inter-cloud and security mechanism overheads 
would also reduce such lags in public cloud configurations. 
Optimizing this area could yield performance improvements 
but may incur additional financial costs. 

 

 
Figure 7.  Inter-cloud query latency grouped by cloud type  

for different degrees of security (in ms). 

To determine the remote attestation overhead, the 
Trusting Tool was measured on the PC using the AWSCfg 
over SSL. The average request-response latency was 702 ms. 
On the server, this involved loading and calculating the 
SHA-256 hash value for the 5.5 MB large sensorbase.jar file. 
Thus, the attestation mechanism of the remote cloud instance 
could be configured to be automatically invoked periodically 
by client-side sensors at regular intervals in a separate thread 
or process so as not to interfere with other network 
communication. 

B. Aggregator Performance 
In order to remove the query of datasteads by the Trust 

Broker Aggregator, the implementation was changed to a 
client-based push approach as mentioned in the previous 
section. The aggregator push implementation was measured 
separately to determine its performance and adequacy. For 
this a client PC served as the datastead. The following 
hardware setup was used for these measurements: the client 
was a Lenovo ThinkPad X201T with 2GHz Intel Core i7 
L620 and 4GB RAM. The local server consisted of a PC 
with a 3.30GHz Intel Core i3-3220 CPU with 4GB RAM.  
Amazon AWS T2.micro consisted of 1 VCPU with 1GB 
RAM. All used a 64-Bit Ubuntu version 14.04. The network 
connection consisted of a 1 Gbit LAN between the PC and 
server locally and 2.5Mbit upstream and 50Mbit downstream 
to the internet provider. HTTP with REST was used for these 
measurements using Jersey 2.10 and the Java Runtime 
Environment 7.  

Since the filtering of events will not consume significant 
wall clock time in comparison to the network aggregation, 
event filtering and anonymization were disabled. 128 events 
were pushed to the Aggregator from the client. Since events 
are not likely to be excessively large, events of 256 and 512 
bytes in total length were used for comparison. The results 
are shown in Table III and Figure 8.  

No significant latency differences due to a larger event 
size were detected on the local network. This can be 
explained in that the primary overheads involved are not 
related to content analysis or processing of data within the 
packets or events since this was not performed, and that the 
high network transmission rate available made the additional 
payload insignificant.  

The latency durations indicates that potential exists here 
for performance optimization, but due to time and resource 
constraints a more thorough analysis of these initial results 
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using CPU profiling and network sniffers could not be 
performed. 

TABLE III.  LOCAL VS. PUBLIC CLOUD NETWORK AGGREGATION 
LATENCIES (IN MS) FOR 128 EVENTS 

Event size 
(bytes) 

Local Aggregator 
Duration (ms) 

AWS Aggregator 
Duration (ms) 

256 7528 10448 
512 7527 10617 

 

 
Figure 8.  Aggregation network latencies (in ms) in local vs. public cloud 

settings for 128 events. 

In summary, the evaluation showed that network 
latencies incurred by the solution concept are most likely 
insignificant for collaboration in PrC settings, but that 
security overheads in global PuC settings may require 
optimization attention to minimize their effects.  

VII. DISCUSSION 
Telemetry and metrics play a vital role in providing a 

data basis for assessing areas for improvement, for 
benchmarking against other organizations or projects, as a 
basis for root cause analysis, and for determining the effects 
of any improvement initiatives.  

When the trust environment in an organization or project 
is healthy, then the sharing of event data and associated 
metrics can be used to support tighter collaboration, 
streamline interactions, and be used in retrospectives for 
analysis to support and verify improvements and best 
practices. However, when the trust environment is degraded 
or non-existent, then a forced sharing of detailed personal-
level data may result in additional inefficiencies due to 
psychological or motivational effects, circumvention or 
abuse of such a system, or adapting behaviors or sensors to 
intentionally providing misleading data to make certain 
people look good and/or others look worse. 

The Tuckman model [35] for the development of small 
groups may be useful to illustrate the difficulties as teams 
transition in their interactions and the associated change in 
the trust among members, from forming to storming, 
norming, performing, and then adjourning. The concept in 
this paper can adjust for increasing trust, from blocked to 
anonymous to personalized events. Should the trust situation 
decline, it can support adjustments in the policies from that 
point on for new events. Any events already disclosed will 
however remain so unless the community cloud is manually 
cleansed by an administrator. 

If we look beyond software developers and at the broader 
picture of employees in organizations that intentionally 
monitor their employees, they are then likely to utilize 
surveillance products that were intentionally built for this 
purpose and will likely not explicitly involve their 
employees. Addressing privacy in such situations is beyond 
the technical scope of the concept and approach in this paper 
and will likely need to rely on regulatory mechanisms to 
balance the rights and responsibilities of the parties involved.  

However, due to the dynamics of projects and 
development environments, and the freedom and influence 
or empowerment developers often have, software developers 
are in a unique position to influence the use of measurements 
for team improvement while balancing the amount of 
transparency and personal measurement to the shifting trust 
environment. Personal empowerment over personal 
measurement data may allow developers to embrace the 
adoption and inclusion of personal metrics and enhance the 
productivity of teams without the negative impacts of forced 
submission to measurement collection. The adoption in open 
source projects, for example, would allow deeper analysis 
and understanding, even if the metrics and events were 
anonymous. In the larger scheme of things, this could 
provide the software engineering research community with 
valuable additional data for (meta-)analysis and 
improvements in the hitherto semi-inaccessible data 
collection area associated with software development 
processes. 

The approach in this paper intended to provide personal 
control mechanisms to developers to deal with privacy and 
trust reservations of developers towards the integration of 
sensors in their environments needed by collaboration and 
telemetry systems similar to CoSEEEK. 

VIII. CONCLUSION AND FUTURE WORK 
To address security and privacy in collaborative cloud 

development, this paper presented a practical concept with 
entity-level control of non-, anonymized-, and personally-
identifiable disclosure for multiple cloud configurations. It 
can further both collaboration and trust by giving individuals 
transparency and control and allowing them to adjust 
disclosure to the changing trust situation. The paper 
contributes a practical basis for illustrating issues, eliciting 
awareness, community discussion, and may increase self-
regulation and infrastructural privacy offerings. 
Organizations adopting such a privacy infrastructure show 
that they value and trust their employees, enabling them to 
reap mutual trust rewards. Also, one could envision, for 
instance, that an audited "we don't spy here" seal might help 
attract and retain developers for certain organizations.  

The evaluation showed its technical feasibility and 
practicality, requiring only minimal adaptation of the 
CoSEEEK CDE. The Trust Broker enables fine granularity 
access control to personal data. Performance was sufficient 
in private cloud configurations, while public cloud 
configurations using additional security and privacy 
mechanisms may require optimization to ensure fluid 
collaboration situational response. The push-based 
aggregation supports black-list filtering and anonymization 
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on a fine-grained event basis and better supports aggregating 
events when many clients are involved. The current 
implementation relies on the clients to avoid retransmission 
of events. Should this not suffice in practice, the Aggregator 
could be adapted to ensure that duplicates are not stored, e.g., 
by using a hash value or checksum for each received event, 
and any new events compared with all previous event hash 
values, although this would add some additional overhead.  

Limitations and risks include: extending privacy/trust 
support within and across collaboration layer tools, non-
detection/discovery of (un)intentionally unspecified/hidden 
sensors, data manipulation risk by datastead owners 
themselves, and provider-side access or manipulation risk. In 
the case of trust issues with the service provider, building 
your own datastead cloud server site could be considered. A 
concept for reliably maintaining and updating the software 
across the various datasteads in a trustworthy and efficient 
manner, with or without manual intervention by the 
datastead owner, should also be considered. Perhaps the 
updates should require some certification and could then be 
performed automatically if desired by the owning entity. In 
the end, developers will likely prefer low hassle solutions 
that still provide adequate privacy transparency and controls. 

Future work includes an industrial field study, the 
inclusion of various data provenance and data integrity 
mechanisms to mitigate manipulation risk, and the 
investigation of enhanced remote attestation mechanisms. In 
the face of shifting privacy norms, infrastructural support for 
data confidentiality is needed to limit disclosure of 
distribution data beyond its original intent, like lifetime 
constraints, transitivity bounds, and claims-based access 
[36]. One challenge here is to deal with annulment or 
revocation of data already shared in the past when the trust 
situation degrades. Since service privacy is also a broader 
issue, development and adoption of global industry service 
privacy standards combined with independent privacy audits 
involving all service layers would enhance the trust of cloud-
based data acquisition and service offerings.  
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