
435

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Cloud-based Collaborative Software Development:
A Concept for Managing Transparency and Privacy based on Datasteads

Roy Oberhauser
Computer Science Dept.

Aalen University
Aalen, Germany

roy.oberhauser@htw-aalen.de

Abstract - Cloud-centric collaboration in (global) software
development continues to gain traction, resulting in new
development paradigms such as Tools-as-a-Service (TaaS) and
Cloud Development Environments based on Software-as-a-
Service (SaaS). However, both within and between clouds,
there are associated security and privacy issues to both
individuals and organizations that can potentially hamper such
well-intentioned collaboration. This paper describes an inter-
cloud security and privacy concept for heterogeneous cloud
developer collaboration environments that pragmatically
addresses the distributed transmission, aggregation, storage,
and access of events, data, and telemetry related to
development projects, while giving individual developers fine-
granularity control over the privacy of the data collected. To
this end, the concept adapts an existing collaborative
development and measurement infrastructure, the Context-
aware Software Engineering Environment Event-driven
framework (CoSEEEK) to support cloud-based event
aggregation capabilities. The results and discussion show its
practicality and technical feasibility while presenting
performance tradeoffs for different cloud configurations. The
concept enables infrastructural support for privacy, trust, and
transparency within development teams, and could also
support compliance with national privacy regulations in such
dynamic and potentially global collaborative environments.

Keywords - cloud-based software engineering environments,
cloud-based software development collaboration, software project
telemetry, privacy, security, trust.

I. INTRODUCTION
This article extends previous work in [1]. Global

software development (GSD) [2] is increasingly taking
advantage of cloud-based software applications and services
[3] and realizing its collaboration potential. Data acquired
and utilized during the software development and
maintenance lifecycle is no longer necessarily locally
controlled or even contained within an organization, but may
be spread globally among various cloud providers with the
acquired data retained indefinitely. Tools-as-a-Service
(TaaS) [4] and cloud mashups will enable powerful new
applications that utilize the acquired SE data [5]. And while
the technical landscape is changing, the corporate landscape
is also. A 2005 survey of American corporations conducted
by the American Management Association showed that 76%
monitored employee Internet connections, 50% stored and
reviewed employee computer files, and 55% retained and
reviewed email messages, with a rapidly increasing trend [6].

The ability to measure and minutely observe and track
software developers during their work is becoming
technically and economically viable to employers, managers,
colleagues, virtual teams, and other entities. While metrics
can be useful and provide a basis for improvements, be it at
the organizational level (e.g., the CMMI Measurement and
Analysis process area [7]), at the project level via automated
software project telemetry (e.g., [8]), or for personal
improvement (e.g., Personal Software Process [9], [10]).
Unintended effects and abuse are also possible, such as [11]
and [12], misuse of publicized information, misuse by
competitors, mobbing, etc. While software services and apps
developed by vendors for public customers typically attend
to user privacy due to their longevity, mass accessibility, and
regulatory and legal scrutiny, relatively little attention has
been paid to the privacy needs of software developers, an
estimated 17 million worldwide [13].

Consequently, privacy is becoming a looming concern
for software developers that faces unique technical
challenges that affect their collaboration. These challenges
include: a highly dynamic technical environment typically at
the forefront of software technology and paradigms (e.g.,
new languages, compilers, or platforms); diverse tools (for
instance, [4] alone identifies 384); heterogeneous project-
specific tool chains (e.g., application lifecycle management,
version control systems, build tools, integrated development
environments, etc.). Additionally, because development
environments are often project-centric (unique and perhaps
short-lived undertakings), the extra hassle and overhead for
addressing developer privacy may seem to be an unnecessary
hindrance to project progress and thus not be addressed at the
management level. When multinational coordination (e.g.,
offshoring) is involved, multiple regulatory issues may apply
and add to the complexity, etc. Developers may thus have
little leverage and currently few technical options or
suggestions for having their concerns addressed. Any
privacy options should thus be economical and practically
feasible, yet due to the dynamic technological nature of
collaborative development environments (CDEs),
standardization is unlikely or will be highly challenging.

To enable collaboration, the trust climate plays a vital
role in the success of virtual and distributed teams [14], and
trust and transparency are considered vital values for
effective teams and collaboration [15][16]. Where trust exists
(consider Theory Y [17]), collected data can be utilized
collaboratively to enhance team performance [18], for
instance by utilizing event data to coordinate and trigger

436

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

actions and to provide insights, whereas where data is
misused as an instrument of power, monitoring, or
controlling (consider Theory X [17]), individuals require
mechanisms for protection. Since the technical development
infrastructure cannot know a priori what trust situation exists
between some spectrum of complete trust to complete
distrust, infrastructural mechanisms should support
collaboration within some spectrum, while allowing the
individuals and organizations to adapt their level of data
transparency to the changing trust situation. Not all actors
involved may have an issue with metric collection, while
those who favor complete transparency may presume that
those voicing privacy issues may seem to be "hiding
something".

Privacy is control over the extent, timing, and
circumstances of sharing oneself. Cloud service users
currently have few personal infrastructural mechanisms for
retaining and controlling their own personal data. Diverse
privacy regulations are applicable within various geographic
realms of authority. Various (overlapping) (multi-)national
laws and regulations may apply to such (global)
collaborative cloud contexts. For instance, Germany has a
Federal Data Protection Act, the European Union has a Data
Protection Directive 95/46/EC, and within the United States,
various states each have their own internet privacy laws.
Many privacy and security principles are typically involved,
including notice, consent, disclosure, security, earmarking,
data avoidance, data economy, etc. Various challenges for
security and privacy in cloud environments remain [19][20].
In the interim, pragmatic infrastructural approaches are
needed to deal with the issues in some way.

As in the initial paper [1] on which this extended version
is based, the contribution includes elucidating the
requirements and describing a solution concept for
pragmatically addressing various privacy and security
concerns in cloud-based dynamic heterogeneous CDEs. The
solution is based on service layering, introduces distributed
cloud-based datasteading for individuals, and mediates trust
via brokers. Its technical feasibility and performance
tradeoffs are investigated in an initial case study. Additional
contributions of this extended version include a discussion,
details, and evaluation of an aggregator implementation
supporting push-based event collection from personal
datasteads.

This paper is organized as follows: the next section
describes the assumptions and requirements for a solution,
while Section III describes related work. In Section IV, the
solution concept is introduced, with the following section
providing details of a technical implementation based on the
concept. Evaluation results are presented in Section VI.
Section VII provides a discussion, which is then followed by
a conclusion and description of future work.

II. REQUIREMENTS
The following requirements, assumptions, or constraints

(denoted by the prefix R: in italics) were elicited from the
primary problems, goals, and challenges introduced in the
preceding section, and are considered to be generally

applicable for any conceptual solution. They are summarized
here to highlight key considerations in the solution concept.

Multi-cloud configurability (R:MultCld): in view of
GSD, inter-organizational collaboration, and the long-term
nature and scale of certain development projects, any
solution should support private clouds (R:PrivCld), public
clouds (R:PubCld), and community clouds (R:CmtyCld) for
a wide array of deployment options.

Cloud portability or provider-specific cloud API
independence (R:CldPort) should be supported to avoid
cloud provider lock-in and allow wider adoption and
applicability. Development teams tend to want choices in
their tooling and infrastructure to optimize and tailor their
project or situation based on costs or risks (business, quality-
of-service, potential espionage risks, etc.). If this is
challenging because cloud vendors do not want to change or
agree to some common interoperability standard, adaptation
techniques such as bridging, brokers, or mediators could be
used to support common infrastructure functionality.

Cloud compatibility (R:CldCmpat) with current public
cloud provider and private cloud APIs and services should be
supported. This entails avoiding exotic requirements for
special configurations that would constrain its practical
usage, such as refraining from special hardware requirements
such as the Trusted Platform Module (TPM), or obtuse
software languages, platforms, operating systems, or
communication mechanisms that, while perhaps increasing
privacy or security to some degree, might nevertheless
hinder overall adoption of such an approach because such
configurations require too much effort or become too
unwieldy or difficult to implement and maintain.

Single tenancy (R:1Tenant) in the personal (developer's)
cloud should be supported to reduce risk (e.g., to avoid a
misconfiguration compromising a much larger set of tenants
simultaneously) and to avoid access by organizational
administrators, which can involve an additional trust issue
beyond the project level.

Disclosure (R:Dsclsr): three fundamental levels of
disclosure shall be supported: non-disclosure, anonymized
disclosure, and personally-identifiable disclosure to specific
aggregators. This allows the developer to adapt the
disclosure of events and data to the trust situation of a
specific project or group.

Sensor Privacy (R:SnsPriv): It is assumed that any client-
side and server-side sensors, (e.g., version control system
sensors) distribute personally-identifiable events according
to a privacy concept, or are at least configured in such a way
that they only transmit their events securely directly to a
single datastead.

Entity-level privacy control (R:EntityCtrl): the
granularity of privacy is controllable by the entity involved
or affected, be it persons, teams, organizations, projects, etc.,
and flows from bottom-up (from persons to teams) and
across for similar levels (e.g., between teams or between
organizations). Top-down controls can only restrict privacy,
e.g., in the case where organizations no longer trust each
other (perhaps due to legal action), they cannot forcibly
increase the disclosure levels of lower entities.

437

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Restrict network access (R:R:PrivNtwk) to collaboration
participants only, e.g., via Virtual Private Networks (VPN),
to reduce the accessibility of the communications to the
collaborators only. It may also be useful even within a larger
organization's intranet to reduce accidental leakage risk.

Secure communication (R:SecComm) can be used to
protect internal or external data transmission. This may be
considered useful even within a VPN for retaining personal
privacy.

Basic security mechanisms (R:BscSec): this specifies the
reliance on widely-available off-the-shelf security
mechanisms (e.g., HTTPS), without any dependence on
specialized or exotic hardware or software security platforms
(e.g., Trusted Platform Module) or research-stage
mechanisms that would constrain its practicality.

Encryption (R:Encrypt) can be used to protect data
accessibility and storage.

Trusted code implementation (R:TrstCd): Open source
and/or independent code audits together with secure
distribution mechanisms (e.g., via digital signatures from a
trusted website) provide assurance that the code
implementation can be trusted.

Remote runtime code integrity verification (R:Intgrty)
should be supported to allow agents (e.g., automated
temporally random auditing requests or manually initiated
user requests) to detect any tampering with the
implementation, sensors, configuration, or the compromise
of any privacy safeguards.

It is generally assumed that the environment and culture
within an organization and between organizations is
fundamentally one of mutual respect, benefit, and trust, with
appropriate IT policies that reflect this, and that explicit
surveillance and undermining tactics, tools, etc. are not
tolerated or utilized to undermine employee personal
privacy. In other words, this solution is not meant to address
privacy and security at a hacker, professional, corporate, or
espionage level, but rather to give developers choices in
sharing their personal event and metric data with others in
differing personal and project trust contexts and where they
understand and know how that their collected data will be
used to enhance productivity collaboratively. It has been said
“you get what you measure,” and, when applied to
individuals, the repercussions could be greater the more
exposure certain personal data has. This could result in
(un)intentional manipulation or misinterpretation of the data
out of context, in one direction to perhaps show off, and
could negatively affect other hitherto positive interactions.
E.g., if one measures individual programmer productivity
and broadcasts this, then such desired behaviors as helping
others or team or quality issues may be diminished or
ignored. Other team members may very well be crucially
supporting the development effort but not in ways currently
being measured.

In summary, a primary tenet here is that organizations
and teams want to support privacy freedom for individuals,
that they support and value self-organizing teams, and that
they do not wish to hinder electronic collaboration and
communication. While together the aforementioned
elucidated requirements are not intended to be sufficient or

complete, they nevertheless provide a practical basis for
considering and comparing solution concepts and can be
useful for furthering discussion.

III. STATE OF THE ART
In the area of global software development, [4] discusses

support for TaaS and [21] Software-as-a-service in
collaborative situations. Neither go into detail on various
privacy issues, nor is support for various aforementioned
requirements, e.g., for individuals (R:EntityCtrl). Example
industrial offers for cloud-based collaboration include
Atlassian OnDemand and CollabNet CloudForge. Individual
privacy control (R:EntityCtrl, R:Dsclsr) do not appear to be
supported.

Work on more general multicloud collaboration includes
[5], which similarly supports opportunistic collaboration
without relying on cloud standardization based on the use of
proxies. However, aspects such as (R:BscSec, R:Intgrty,
R:EntityCtrl) were not considered and a technical
implementation was not investigated.

Work in the area of standardization and reference
architecture includes [22], which mentions privacy but fails
to prescribe a solution. [23] lists various security and
interoperability standards and their status, but their maturity
and market penetration when considering (R:MultCld) and
(R:CldCmpat) remain issues.

Various general cloud security mechanisms have been
proposed. Privacy as a Service (PasS) [24] relies on secure
cryptographic coprocessors to provide a trusted and isolated
execution and data storage environment in the computing
cloud. However, its dependency on hardware within cloud
provider infrastructure hampers (R:CldCmpat, R:CldPort,
and R:BscSec). Data protection as a service (DPaaS) [25] is
intended to be a suite of security primitives that enforce data
security and privacy and are offered by a cloud platform. Yet
this would inhibit (R:CldPort). Other work such as [26]
describe privacy-preserving fine-grained access control and
key distribution mechanisms, but are not readily available for
a pragmatic approach that is usable today (R:BscSec).

IV. SOLUTION CONCEPT
For a cloud-based context-aware collaboration system to

have satisfactory utility, it will depend on some type of event
and data collection and communication facilities. Thus, this
foundational infrastructure should be equipped with basic
trust and security mechanisms such that upper-level services
like context-awareness and collaboration can ensue without
impinging on privacy.

Thus, to provide a flexible solution for achieving privacy
control in such environments, a primary principle in the
solution concept is the application of the Service Layer
design pattern [27] to provide a decoupling and separation of
concerns as shown in Figure 1. The lower conceptual Event
and Data Services Layer includes event and/or data services
for an entity (person/team/organization), including
acquisition, storage, retention, and dissemination, while the
upper Collaboration and Tools Services Layer includes CDE
and tool services. The upper layer services utilize lower layer
data to provide collaboration, data sharing, analytics,

438

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

telemetry, contextual guidance, and other value-added
services. Any single entity would have more limited privacy
control mechanisms.

Event & Data Services Layer

Collaboration & Tool Services Layer

Event
Service

Person B

Collaboration
Service Y

Tool
Service Z

Data
Service
Org C

Sensor
A

Analytics
Service X

Figure 1. Services Layer Pattern.

A second solution principle is the introduction of a
datastead, shown in Figure 2. Loosely analogous to the
concept of homesteading or seasteading, it provides an entity
with both a certain degree of data isolation and control for
some area. In this case, some entity (be it an individual or
some unit) manages and controls clearly delineated data
resources in the cloud for which they have or receive
responsibility and ownership rights. The technical
implementation of a datastead can be in the form of a
personal cloud in the case of an individual, or an area within
a private cloud for an organization. It is thus clear to the
individual or entity that they have complete control over
personal (or entity) event and data storage that is kept
separate under their personal (or entity) jurisdiction. Each
datastead can pass data to one or more other datasteads (such
as one belonging to a team) or directly to (usually one)
community cloud where it can be processed and utilized to
enhance collaboration. A configuration with successive,
staged, or pipelined datasteads, while not required, can
support the need for entity level privacy and disclosure
control from the lowest levels to the highest levels in
organizations (bottom-up). Community clouds may also
successively pass data on to larger community clouds if
desirable to the providing community. For instance,
academic research communities could access and analyze
this data for multiple projects.

Community Cloud

Datastead

Community Channel

Compute
Trust

Broker

Collaborator

Event
Service

Group
Event

Storage

 Compute
Trust

Broker

Event
Service

Inter-Cloud Channel

Trusting
Tool

Personal ChannelPersonal
Event

Storage

Data
Service

Tool
Service

Collaboration & Tool
Services Layer

Event & Data
Services Layer

Collaboration
Servic e

Client
Sensor

Server
Sensor

Figure 2. Generic Solution Concept.

The third principle is the inclusion of a Trust Broker that
mediates between service and data access, acting as both a
cloud service broker (for interoperability with various tools)
and cloud security broker (for security) between layers. Akin
to the Trusted Proxy pattern [28] and Policy Enforcement
Point [29], it constrains access to protected resources and
allows custom, finely-tuned policies to be enforced
(R:EntityCtrl). Rules can be used to configure and
distinguish/filter access by event types, timeframes, projects,
etc. It provides secure communication mechanisms
(R:SecComm) to authenticate and authorize data acquisition
and data dissemination in the datastead, as well as
interoperability mechanisms for various collaboration and
tool services. Only client requests from preconfigured known
addresses are accepted. A management interface to the Trust
Broker provides the datastead owner with policy
management capabilities. It also supports data
anonymization on a per request basis if so configured. For
secure storage, the Trust Broker encrypts (R:Encrypt)
acquired events and data (Encrypted Storage pattern [28]) to
prevent unauthorized access by administrators or intruders,
and protects access to the encrypted storage typically on a
single port (Single Access Point pattern [29]). The Trusting
Broker supports runtime code integrity (R:Intgrty) via
remote attestation, and a client, called the Trusting Tool, can
be invoked periodically or based on certain events to ensure
that the Trust Broker has not been tampered with.

As to transmission, a Personal Channel transmits events
from sensors to the personal datastead. The Inter-Cloud
Channel transmits personal or anonymized events to one or
more Community Clouds. The Community Channel is
optional and can be used, e.g., for impersonal sensors (e.g.,
team build server) or perhaps in special situations when
duplication and parallel transmission of personal events for
reliability or performance is desired and approved. Secure
Channels and Secure Sessions [29] are used to protect the
transmission between the sensors and the datastead (the
Personal Channel), between sensors and the Community
Cloud (Community Channel), as well as between the
datastead and any collaboration and tool services (Inter-
cloud Channel). For a community cloud, a VPN is used to
limit network access to collaborators in the community only.

V. TECHNICAL IMPLEMENTATION
To determine the technical feasibility of the solution

concept and provide a concrete case study, the solution
concept was applied to an existing heterogeneous CDE
called the Context-aware Software Engineering Environment
Event-driven framework (CoSEEEK) [30], which had
hitherto not incorporated privacy or security techniques.
CoSEEEK's architecture and integrated technologies are
shown in Figure 3. Its suitability is based on its portability
(use of mainly Java and web-based languages), use of non-
commercial technologies described below, its reliance on
common distributed communication mechanisms such as
RESTful web services, and its heterogeneous tool support.
Additional technical details on CoSEEEK can be found in
[31][32].

439

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Process
Management

Governance

Context Management
(Semantic Module)

Data Storage

Pellet

XML Tuple Space

Jena

Ontology Storage

Multi-Agent System
JADE

Integration Apache
Camel

Routing

Knowledge
Management

Semantic
MediaWiki

Quality
Assessment

ApacheDS Apache Server

AristaFlow

Collaboration
Complex Event

Processing

Esper

Event Extraction

Hackystat

Tool
Sensors

JBoss Drools

Protégé

Joseki SPARQL

Quality GUI
Advisor

AJAX JQuery
RIA Client

MySQL

eXist
XML DB

Service Mgmt
OSGi Equinox

Event Storage
(sensorbase)

Figure 3. CoSEEEK Architecture (affected areas shown in red).

For event acquisition, CoSEEEK relies on the Hackystat
framework [33] and its SE tool-based sensors (e.g., Ant,
Eclipse, Visual Studio) for event extraction and event storage
(shown in red in Figure 3). Hackystat does not currently
provide extensive security and privacy mechanisms. For an
insight, [34] briefly describes some of its security issues.

Service Layer Separation: the Hackystat-related elements
(shown in red) were hereby separated into the Event and
Data Services Layer and the remaining elements were placed
in the Collaboration and Tools Services Layer.

Cloud configuration: To meet (R:MultCld, R:CldCmpat,
R:CldPort), two different cloud platforms were utilized in
isolation. To represent a public IaaS cloud provider
configuration (R:PubCld), Amazon Web Services (AWS)
was used, using Elastic Compute Cloud (EC2) for computing
services, the Elastic Block Store (EBS) for storing
configuration files and XML database, and the Relational
Database Service (RDS) that holds the sensorbase.

To represent a private cloud (R:PrivCld) or community
cloud (R:CmtyCld) deployment, OpenStack was used with
Compute used for computing and Object Storage used in
place of EBS storage. Since nothing directly equivalent to
AWS RDS was available, we configured a Compute instance
with Object Storage that contains a MySQL Server database
and for single tenancy (R:1Tenant) one Compute instance
per developer with access restricted to the developer.

Trust Broker: the Trust Broker supports (R:Dsclsr) was
implemented in Java using a REST framework. An example
of a query that can be sent is the following, specifying the
project via the sensorbase_id, the timeframe, the sensor data
type, the tool, and its uri source.

GET

/trustbroker/sensordata/{sensorbase_id}?
startTime={startTime}&endTime={endTime}&
sdt_name={sdt_name}&tool={tool}

&uriPatterns={uriPatterns}

Encryption of events (R:Encrypt) can be optionally
configured. For encryption of arriving events and decryption
of events on authenticated and authorized retrieval, Java's
AES 128 and the SHA-256 hash algorithm were used
(R:BscSec). One reason for encrypting the storage is that it
provides an additional form of protection, should, e.g., a
provider's agent or intruder gain access.

The measurement database, called sensorbase in
Hackystat, required a few minor adaptations. For (R:Dsclsr)
to support anonymization, the HACKYUSER table was
extended to include an anonymization flag that is checked
before responding, replacing a userid with anonymous. In
order to support HTTPS connections, the sensorbase client
(R:SnsPriv) was modified and rebuilt, requiring any sensors
to utilize this modified jar file. HTTPS (R:BscSec) was used
to secure all three communication channels (personal,
community, and inter-cloud) (R:SecComm). Additional
properties were added to indicate the location of the
keystore. SSH was used to configure and manage each cloud.
Security groups were used in both AWS and OpenStack.

A. Aggregator
To improve cloud-based performance, we adapted the

solution concept from our initial paper to remove the
ongoing querying of the datastead by the Trust Broker in the
community cloud. Instead, a client-based push approach for
event transmission was implemented. A blacklist within the
client Trust Broker filters or anonymizes the types of events
that are passed on and made available. The aggregation of
the events now avoids polling the clients. For this, the client
Trust Broker is responsible for tracking which events were
already successfully transferred and which still need to be
sent to any Aggregator in the Trust Broker on a Community
Cloud.

The interaction between components for the transfer of
events is shown in Figure 4. Sensors send their events on a
push basis to the Hackystat sensorbase located in the
datastead. The datastead Trust Broker periodically queries
the sensorbase for events newer than its last transmission to
any particular Aggregator. Once an event is fetched, it is
checked against a blacklist to determine if it should be
blocked or anonymized. Then the datastead Trust Broker
pushes the event via its REST connection to the Aggregator
within the Trust Broker residing on the Community Cloud,
where it is persisted and can be processed by various upper-
level services in CoSEEEK. This is repeated in a loop until
the latest event has been sent.

There are valid arguments for maintaining either a
whitelist or blacklist, depending on what standpoint one
takes (send most data vs. send almost no data), the extent of
the associated rules, as well as the consideration of what
should happen if something is not specified. In the case of a
blacklist where something is missing or was misconfigured,
that would imply that events would slip through.

While a whitelist could have been used, for simplification
of the implementation for demonstration purposes we chose
to use a blacklist, since we presume that developers will
more likely know exactly what sensors they want to block or
anonymize (i.e., blacklist) from the community more than

440

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

they will care to know and manage all the diverse and
possible sensors (whitelist).

Figure 4. Sequence diagram showing push-based aggregation.

The file blacklist.xml specifies which events should be
blocked or anonymized, whereby blocking is the default. The
boolean tag <Anonymize> controls anonymization, but can
be explicitly set to false as a kind of "unblock" to allow a
specific event to be unblocked when most others are
blocked.

If no events should be anonymized or blocked, then the
list is empty as shown below.

<Blacklist>
</Blacklist>

By default, if a tool is listed all events from that tool

sensor are blocked and remain in the datastead. For example,
to block all events from the eclipse tool sensor, it would be
specified as follows:

<Blacklist>
 <Tool>
 <Name>Eclipse</Name>
 </Tool>
</Blacklist>

To anonymize, for example, all events from the eclipse

tool sensor, it would be specified as follows:

<Blacklist>
 <Tool>
 <Name>Eclipse</Name>
 <Anonymize>true</Anonymize>
 </Tool>
</Blacklist>

For example, to by default block all the other Eclipse tool

events, but anonymize only the Eclipse File Open events, it
would be specified as follows:

<Blacklist>
 <Tool>
 <Name>Eclipse</Name>
 <Property>
 <Anonymize>true</Anonymize>
 <Key>Subtype</Key>
 <Value>Open</Value>
 </Property>
 </Tool>
</Blacklist>

To anonymize all Eclipse events, and by default block

the Eclipse File Open events, one specifies additional
properties, as shown here:

<Blacklist>
 <Tool>
 <Name>Eclipse</Name>
 <Anonymize>true</Anonymize>
 <Property>
 <Key>Subtype</Key>
 <Value>Open</Value>
 </Property>
 </Tool>
</Blacklist>

To anonymize all Eclipse events except the File Open

events, for example, the following would be specified:

<Blacklist>
 <Tool>
 <Name>Eclipse</Name>
 <Anonymize>true</Anonymize>
 <Property>
 <Anonymize>false</Anonymize>
 <Key>Subtype</Key>
 <Value>Open</Value>
 </Property>
 </Tool>
</Blacklist>

To manage what event to push, a simple event timestamp

reference that is persisted tracks the last event successfully
retrieved from the Hackystat sensorbase and that was either
blocked due to the blacklist or transmitted to a specific
Aggregator on a per event basis. Should an error during
transmission occur, the client is responsible for
retransmitting. Should the Aggregator become unavailable,
the client will continue to retry rebuilding a connection until
it succeeds in pushing the events not yet successfully
transmitted in the order of their occurrence (timestamp). No
separate queue is maintained and all events are stored in the
sensorbase.

B. Remote Attestation
To implement remote attestation, on the client-side, a

user configures the Trusting Tool with the expected
checksum value (provided, e.g., by the admin or a trusted
website), version, and the interval for rechecking. On the

441

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

service side, a REST interface sensorbase/checksum was
added that loads the local adapted sensorbase.jar file,
computes the SHA-256 hash value using
java.security.MessageDigest, and returns this
value and the sensorbase version to the Trusting Tool. While
not foolproof, since any unauthorized access on the server or
client could allow spoofing, it provides an additional level of
confidence. Various stronger jar file tampering technologies
could be employed if needed, such as componio JarCryp
bytecode encryption.

VI. EVALUATION
The case study evaluated the technical feasibility of the

concept based on the technical implementation. However,
security and privacy are highly contextually dependent on
the expectations, requirements, environment, risks, policies,
training, available attack mechanisms, implementation
details (bugs), configuration settings, etc. Therefore, making
a comprehensive formal assessment in this area is difficult.
So the assumption is made that the prescribed privacy and
security mechanisms suffice or are balanced for current
developer needs in developer settings.

Since CoSEEEK is a reactive system, the ability to
respond adequately to contextual changes via events is
dependent primarily on event latency. Cloud networking,
additional network security mechanisms, and the additional
delay incurred by inserting datastead nodes could negatively
affect responsiveness, and thus this infrastructural level of
event latency was the primary focus of the evaluation.

To elaborate, as CoSEEEK is a process-centered
software engineering environment, any events that arrive too
late to be contextually relevant can cause CoSEEEK-
triggered actions or responses to be irrelevant and thus
ignored. Developers also tend to be impatient when a
guidance system is not providing relevant and applicable
guidance for the context when expected, and they will
continue on without it and perhaps begin to ignore it. As to
event volume, events generated by any single developer's
actions are typically sporadic and not highly voluminous. If a
sensor is overly vociferous in relation to the amount of
developer activity, it can typically be configured to eliminate
redundant events or to summarize events. If this capability is
not built in, a complex event processor (e.g., Esper) can be
utilized to reduce the load on the network and aggregator in
larger project environments.

A subjective evaluation by developers in an industrial
setting was considered but not feasible at this time due to
resource and schedule constraints, and is included in future
work.

A. Security Overheads
To determine security overheads, the Client PC (for use

by a developer) has an i5-2410M (2.3-2.9 GHz) dual core
CPU and 6GB RAM with 32-bit Windows XP SP3. The
network consists of gigabit Ethernet and two 1 Gbit
connections from the university campus in Germany to the
Internet Provider.

Representative for a private (R:PrivCld) or community
cloud where a datastead could also be placed, the OpenStack

configuration (OSCfg) consisted of a local intranet server
with an i5-650 (3.2-3.4GHz) dual core CPU, 8GB RAM, and
64-bit Ubuntu Server 12.04. The OpenStack Cloud Essex
Release was installed on the Server via DevStack and the
Compute instances also ran Ubuntu Server 12.04. MySQL v.
5.5.24 was used for Hackystat sensorbase storage in a
Compute instance.

As a public cloud provider (R:PubCld) representative, a
free AWS configuration (AWSCfg) was chosen. It consisted
of t1.micro EC2 instance types located in US-EAST-1d
(Virginia) with 613 MiB memory, up to 2 EC2 units (for
short periodic bursts) with low I/O performance running 64-
bit Ubuntu Server 12.04. MySQL v. 5.5.27 was used for the
Hackystat sensorbase storage in AWS RDS.

Common software included Hackystat 8.4 with the
Noelios Restlet Engine 1.1.5 and JDK 1.6.

Typical network usage scenarios were considered, thus
no optimizations were applied to any configurations nor was
an artificially quiet network state created. All results are the
average of 10 repeated measurements (with one exception
noted below). A secure configuration denotes using the
TrustBroker via HTTPS (R:SecComm) with encrypted
storage (R:Encrypt), and an insecure configuration means
HTTP without a TrustBroker. VPN (R:R:PrivNtwk)
overheads were not measured.

To determine delays from the client to the datastead in
cloud variants, on the client PC the Ant build tool was
invoked, causing the Hackystat Ant sensor to send one XML
event to the Server (a write in the remote sensorbase)
consisting of 235 bytes of event data plus 73 bytes of
network protocol overhead. The measured latency values are
shown in Table I and Figure 5.

TABLE I. LATENCY (IN MS) FOR SENDING AN EVENT (235 BYTES)
FROM THE CLIENT PC TO THE SERVER SENSORBASE

Insecure Private
Cloud (ms)

Secure Private
Cloud (ms)

Secure AWS
Cloud (ms)

214 389 608

Figure 5. Latency (in ms) for sending an event (235 bytes)

from the client PC to the server sensorbase.

Once events are in the datastead, then latencies incurred
between cloud computing instances are of interest, since
collaboration services or tool services will require this data.
The measured values are shown in Table II and grouped by
security mechanisms in Figure 6.

A grouping by cloud type is shown in Figure 7. For
AWSCfg, a single query for 67 events (15818 bytes)
between two EC2 instances took 78 ms on average via HTTP
and 84 ms over HTTPS. In a secure configuration the
retrieval took 347 ms. For OSCfg between two Compute

0 100 200 300 400 500 600
Latency (ms)

Secure AWSCfg
Secure OSCfg
Insecure OSCfg

442

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

instances, a single query took 38 ms to return 22 events
(5243 bytes). Note that HTTP insecure reads in the private
cloud had two anomaly values (178 and 210 ms) that would
have changed the average from 38 to 69, and were also far
larger than any secure value measurements. Thus, these two
measurement values were removed, and the average created
from the remaining 8 values. These large latencies could
perhaps be attributed to a network, disk, operating system, or
OpenStack related issue. Continuing with the measurements
with 39 events (9238 bytes), HTTPS requests took 60 ms
while in the secure configuration it averaged 61ms. The
overhead of the privacy approach is the addition of SSL,
brokering a second SSL connection, and encryption. For the
OSCfg, the difference of TrustBroker and decryption showed
on average only a 1ms difference to that with purely SSL.
One explanation could be that the extra overhead is minimal
compared to the data transfer delays between OpenStack
instances, but further investigation of OpenStack internals
and performance profiling would be needed to clarify this.

TABLE II. PRIVATE VS. PUBLIC CLOUD INTER-COMPUTING INSTANCE
QUERY LATENCIES (IN MS)

Inter-OSCfg
Latency (ms)

Inter-AWSCfg
Latency (ms)

Insecure 38 78
HTTPS 60 84
Secure 61 347

Figure 6. Private vs. public cloud inter-computing instance query
latencies grouped by security (in ms).

Based on the results shown in the above figures, the use
of the secure configuration of the OSCfg within a private or
even a community cloud setting would appear to have
acceptable performance overhead for cloud-centric
collaborative development work, and distributed retrieval
from datasteads is viable for responding to changes in the
collaborative situation. On the other hand, the use of the
secure configuration in the public cloud (AWSCfg), as
shown in this perhaps worst case as a free offshore minimal
public cloud setting, incurs substantially higher network
latencies. Obviously, choosing geographically close
locations when possible is recommended. Also, provisioning
sufficient computing and I/O resources support to deal with
the additional inter-cloud and security mechanism overheads
would also reduce such lags in public cloud configurations.
Optimizing this area could yield performance improvements
but may incur additional financial costs.

Figure 7. Inter-cloud query latency grouped by cloud type

for different degrees of security (in ms).

To determine the remote attestation overhead, the
Trusting Tool was measured on the PC using the AWSCfg
over SSL. The average request-response latency was 702 ms.
On the server, this involved loading and calculating the
SHA-256 hash value for the 5.5 MB large sensorbase.jar file.
Thus, the attestation mechanism of the remote cloud instance
could be configured to be automatically invoked periodically
by client-side sensors at regular intervals in a separate thread
or process so as not to interfere with other network
communication.

B. Aggregator Performance
In order to remove the query of datasteads by the Trust

Broker Aggregator, the implementation was changed to a
client-based push approach as mentioned in the previous
section. The aggregator push implementation was measured
separately to determine its performance and adequacy. For
this a client PC served as the datastead. The following
hardware setup was used for these measurements: the client
was a Lenovo ThinkPad X201T with 2GHz Intel Core i7
L620 and 4GB RAM. The local server consisted of a PC
with a 3.30GHz Intel Core i3-3220 CPU with 4GB RAM.
Amazon AWS T2.micro consisted of 1 VCPU with 1GB
RAM. All used a 64-Bit Ubuntu version 14.04. The network
connection consisted of a 1 Gbit LAN between the PC and
server locally and 2.5Mbit upstream and 50Mbit downstream
to the internet provider. HTTP with REST was used for these
measurements using Jersey 2.10 and the Java Runtime
Environment 7.

Since the filtering of events will not consume significant
wall clock time in comparison to the network aggregation,
event filtering and anonymization were disabled. 128 events
were pushed to the Aggregator from the client. Since events
are not likely to be excessively large, events of 256 and 512
bytes in total length were used for comparison. The results
are shown in Table III and Figure 8.

No significant latency differences due to a larger event
size were detected on the local network. This can be
explained in that the primary overheads involved are not
related to content analysis or processing of data within the
packets or events since this was not performed, and that the
high network transmission rate available made the additional
payload insignificant.

The latency durations indicates that potential exists here
for performance optimization, but due to time and resource
constraints a more thorough analysis of these initial results

0 50 100 150 200 250 300 350

Insecure

HTTPS

Secure

Latency (ms)

Inter-AWSCfg

Inter-OSCfg

0 50 100 150 200 250 300 350

Inter-OSCfg

Inter-AWSCfg

Latency (ms)

Secure

HTTPS

Insecure

443

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

using CPU profiling and network sniffers could not be
performed.

TABLE III. LOCAL VS. PUBLIC CLOUD NETWORK AGGREGATION
LATENCIES (IN MS) FOR 128 EVENTS

Event size
(bytes)

Local Aggregator
Duration (ms)

AWS Aggregator
Duration (ms)

256 7528 10448
512 7527 10617

Figure 8. Aggregation network latencies (in ms) in local vs. public cloud

settings for 128 events.

In summary, the evaluation showed that network
latencies incurred by the solution concept are most likely
insignificant for collaboration in PrC settings, but that
security overheads in global PuC settings may require
optimization attention to minimize their effects.

VII. DISCUSSION
Telemetry and metrics play a vital role in providing a

data basis for assessing areas for improvement, for
benchmarking against other organizations or projects, as a
basis for root cause analysis, and for determining the effects
of any improvement initiatives.

When the trust environment in an organization or project
is healthy, then the sharing of event data and associated
metrics can be used to support tighter collaboration,
streamline interactions, and be used in retrospectives for
analysis to support and verify improvements and best
practices. However, when the trust environment is degraded
or non-existent, then a forced sharing of detailed personal-
level data may result in additional inefficiencies due to
psychological or motivational effects, circumvention or
abuse of such a system, or adapting behaviors or sensors to
intentionally providing misleading data to make certain
people look good and/or others look worse.

The Tuckman model [35] for the development of small
groups may be useful to illustrate the difficulties as teams
transition in their interactions and the associated change in
the trust among members, from forming to storming,
norming, performing, and then adjourning. The concept in
this paper can adjust for increasing trust, from blocked to
anonymous to personalized events. Should the trust situation
decline, it can support adjustments in the policies from that
point on for new events. Any events already disclosed will
however remain so unless the community cloud is manually
cleansed by an administrator.

If we look beyond software developers and at the broader
picture of employees in organizations that intentionally
monitor their employees, they are then likely to utilize
surveillance products that were intentionally built for this
purpose and will likely not explicitly involve their
employees. Addressing privacy in such situations is beyond
the technical scope of the concept and approach in this paper
and will likely need to rely on regulatory mechanisms to
balance the rights and responsibilities of the parties involved.

However, due to the dynamics of projects and
development environments, and the freedom and influence
or empowerment developers often have, software developers
are in a unique position to influence the use of measurements
for team improvement while balancing the amount of
transparency and personal measurement to the shifting trust
environment. Personal empowerment over personal
measurement data may allow developers to embrace the
adoption and inclusion of personal metrics and enhance the
productivity of teams without the negative impacts of forced
submission to measurement collection. The adoption in open
source projects, for example, would allow deeper analysis
and understanding, even if the metrics and events were
anonymous. In the larger scheme of things, this could
provide the software engineering research community with
valuable additional data for (meta-)analysis and
improvements in the hitherto semi-inaccessible data
collection area associated with software development
processes.

The approach in this paper intended to provide personal
control mechanisms to developers to deal with privacy and
trust reservations of developers towards the integration of
sensors in their environments needed by collaboration and
telemetry systems similar to CoSEEEK.

VIII. CONCLUSION AND FUTURE WORK
To address security and privacy in collaborative cloud

development, this paper presented a practical concept with
entity-level control of non-, anonymized-, and personally-
identifiable disclosure for multiple cloud configurations. It
can further both collaboration and trust by giving individuals
transparency and control and allowing them to adjust
disclosure to the changing trust situation. The paper
contributes a practical basis for illustrating issues, eliciting
awareness, community discussion, and may increase self-
regulation and infrastructural privacy offerings.
Organizations adopting such a privacy infrastructure show
that they value and trust their employees, enabling them to
reap mutual trust rewards. Also, one could envision, for
instance, that an audited "we don't spy here" seal might help
attract and retain developers for certain organizations.

The evaluation showed its technical feasibility and
practicality, requiring only minimal adaptation of the
CoSEEEK CDE. The Trust Broker enables fine granularity
access control to personal data. Performance was sufficient
in private cloud configurations, while public cloud
configurations using additional security and privacy
mechanisms may require optimization to ensure fluid
collaboration situational response. The push-based
aggregation supports black-list filtering and anonymization

444

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

on a fine-grained event basis and better supports aggregating
events when many clients are involved. The current
implementation relies on the clients to avoid retransmission
of events. Should this not suffice in practice, the Aggregator
could be adapted to ensure that duplicates are not stored, e.g.,
by using a hash value or checksum for each received event,
and any new events compared with all previous event hash
values, although this would add some additional overhead.

Limitations and risks include: extending privacy/trust
support within and across collaboration layer tools, non-
detection/discovery of (un)intentionally unspecified/hidden
sensors, data manipulation risk by datastead owners
themselves, and provider-side access or manipulation risk. In
the case of trust issues with the service provider, building
your own datastead cloud server site could be considered. A
concept for reliably maintaining and updating the software
across the various datasteads in a trustworthy and efficient
manner, with or without manual intervention by the
datastead owner, should also be considered. Perhaps the
updates should require some certification and could then be
performed automatically if desired by the owning entity. In
the end, developers will likely prefer low hassle solutions
that still provide adequate privacy transparency and controls.

Future work includes an industrial field study, the
inclusion of various data provenance and data integrity
mechanisms to mitigate manipulation risk, and the
investigation of enhanced remote attestation mechanisms. In
the face of shifting privacy norms, infrastructural support for
data confidentiality is needed to limit disclosure of
distribution data beyond its original intent, like lifetime
constraints, transitivity bounds, and claims-based access
[36]. One challenge here is to deal with annulment or
revocation of data already shared in the past when the trust
situation degrades. Since service privacy is also a broader
issue, development and adoption of global industry service
privacy standards combined with independent privacy audits
involving all service layers would enhance the trust of cloud-
based data acquisition and service offerings.

ACKNOWLEDGMENT
The author wishes to acknowledge Roman Pisarew and

Jürgen Drotleff and for their assistance with the concept,
implementation, and measurements.

REFERENCES
[1] R. Oberhauser, "Towards cloud-based collaborative software

development: A developer-centric concept for managing
privacy, security, and trust," Proceedings of the Eighth
International Conference on Software Engineering Advances
(ICSEA 2013), pp. 533-538.

[2] S. Hashmi et al., "Using the cloud to facilitate global software
development challenges," in Proceedings of the Sixth IEEE
International Conference on Global Software Engineering
Workshop (ICGSEW), IEEE, 2011, pp. 70-77.

[3] R. Grossman, "The case for cloud computing," IT
professional, 11(2), 2009, pp. 23-27.

[4] M. Chauhan and M. Babar, "Cloud infrastructure for
providing tools as a service: Quality attributes and potential
solutions," in Proceedings of the WICSA/ECSA 2012
Companion Volume, ACM, 2012, pp. 5-13.

[5] M. Singhal et al., "Collaboration in multicloud computing
environments: Framework and security issues," Computer,
46(2), IEEE Computer Society, New York, 2013, pp. 76-84.

[6] G. Nord, T. McCubbins, and J. Nord, "E-monitoring in the
workplace: Privacy, legislation, and surveillance software,"
Communications of the ACM, 49(8), 2006, pp. 72-77.

[7] C. Team, "CMMI for development, version 1.3, improving
processes for developing better products and services," no.
CMU/SEI-2010-TR-033, Software Engineering Institute,
2010.

[8] P. Johnson, H. Kou, M. Paulding, Q. Zhang, A. Kagawa, and
T. Yamashita, "Improving software development management
through software project telemetry," IEEE Software, 22(4),
2005, pp. 76-85.

[9] W. Humphrey, "The personal software process: Status and
trends," IEEE Software, 17(6), 2000, pp. 71-75.

[10] P. Johnson et al., "Beyond the personal software process:
Metrics collection and analysis for the differently
disciplined," Proceedings of the 25th international Conference
on Software Engineering, IEEE Computer Society, May 2003,
pp. 641-646.

[11] R. Irving, C. Higgins, and F. Safayeni, "Computerized
performance monitoring systems: Use and abuse,"
Communications of the ACM, 29(8), 1986, pp. 794-801.

[12] J. Stanton, "Reactions to employee performance monitoring:
Framework, review, and research directions," Human
Performance, 13(1), 2000, pp. 85-113.

[13] M. Parsons, "The challenge of multicore: A brief history of a
brick wall," EPCC News, Issue 65, University of Edinburgh,
2009, p. 4.

[14] T. Brahm and F. Kunze, "The role of trust climate in virtual
teams," Journal of Managerial Psychology, 27(6), 2012, pp.
595-614.

[15] A. Costa, R. Roe, and T. Taillieu, "Trust within teams: The
relation with performance effectiveness," European journal of
work and organizational psychology, 10(3), 2001, pp. 225-
244.

[16] T. DeMarco and T. Lister, Peopleware. Dorset House, 1987.
[17] D. McGregor, The Human Side of Enterprise. McGrawHill,

New York, 1960.
[18] B. Al-Ani and D. Redmiles, "Trust in distributed teams:

Support through continuous coordination," IEEE Software,
IEEE Computer Society, 26(6), 2009, pp. 35-40.

[19] P. Louridas, "Up in the air: Moving your applications to the
cloud," IEEE Software, 27(4), IEEE Computer Society, New
York, 2010, pp. 6-11.

[20] H. Takabi, J. Joshi, and G. Ahn, "Security and privacy
challenges in cloud computing environments," IEEE Security
& Privacy, IEEE Computer Society, 8(6), 2010, 24-31.

[21] R. Martignoni, "Global sourcing of software development-a
review of tools and services," In Fourth IEEE International
Conference on Global Software Engineering (ICGSE 2009),
IEEE Computer Society, 2009, pp. 303-308.

[22] F. Liu et al., NIST Cloud Computing Reference Architecture.
NIST Special Publication, 500, 292, 2011.

[23] M. Hogan, F. Liu, A. Sokol, and J. Tong, NIST Cloud
Computing Standards Roadmap. NIST Special Publication,
35, 2011.

[24] W. Itani, A. Kayssi, and A. Chehab, "Privacy as a service:
Privacy-aware data storage and processing in cloud
computing architectures," In Eighth IEEE International Conf.
on Dependable, Autonomic and Secure Computing
(DASC'09), IEEE Computer Society, 2009, pp. 711-716.

[25] D. Song, E. Shi, I. Fischer, and U. Shankar, "Cloud data
protection for the masses, " Computer, 45(1), 2012, pp. 39-45.

445

International Journal on Advances in Software, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[26] M. Nabeel and E. Bertino, "Privacy-preserving fine-grained
access control in public clouds," Data Engineering, 21, 2012.

[27] T. Erl, SOA Design Patterns. Pearson Education PTR, 2008.
[28] D. Kienzle, M. Elder, D. Tyree, and J. Edwards-Hewitt,

Security Patterns Repository Version 1.0. DARPA, 2002.
[29] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F.

Buschmann, and P. Sommerlad, Security Patterns: Integrating
Security and Systems Engineering. Wiley, 2006.

[30] G. Grambow, R. Oberhauser, and M. Reichert, "Enabling
automatic process-aware collaboration support in software
engineering projects," in Software and Data Technologies,
Springer, Berlin Heidelberg, 2013, pp. 73-88.

[31] R. Oberhauser, "Leveraging semantic web computing for
context-aware software engineering environments," Semantic
Web, Gang Wu (ed.), In-Tech, Austria, 2010.

[32] G. Grambow, R. Oberhauser, and M. Reichert, "Contextually
injecting quality measures into software engineering
processes," the International Journal On Advances in
Software, ISSN 1942-2628, vol. 4, no. 1 & 2, 2011, pp. 76-99.

[33] P. Johnson, "Requirement and design trade-offs in Hackystat:
An in-process software engineering measurement and analysis
system," Proc. First Intl. Symposium on Empirical Software
Engineering and Measurement, 2007, pp. 81-90.

[34] P. Johnson, C. Moore, J. Miglani, and S. Zhen, Hackystat
Design Notes. 2001.

[35] B. Tuckman, "Developmental sequence in small groups,"
Psychological bulletin, 63(6), 1965, p. 384.

[36] D. Reed, D. Gannon, and J. Larus, "Imagining the future:
Thoughts on computing," Computer, 45(1), 2012, pp. 25-30.

