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Abstract—The container storage problem is one of the most
studied issues regarding seaports. It is a relevant problem due
to the fact that the effectiveness of a storage yard management
affects the global productivity of the port. Therefore, various
attempts were done in order to elaborate efficient decision support
systems, which concern specific container terminals and specific
transfer and handing equipments. Most of the existing proposed
methods use heuristic or meta-heuristic algorithms because the
NP-hardness of the container storage problem makes it difficult
to solve using exact optimization methods mainly when there are
a lot of containers. In this paper, we combine an exact resolution
method (branch-and-cut) and a meta-heuristic algorithm (ant
colony) in a hybrid ant colony and branch-and-cut algorithm
(HACBC). Numerical simulations prove the efficiency and the
effectiveness of our algorithm.
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I. INTRODUCTION

In a seaport, the container terminal manages all actions
concerning containers. Generally, three types of containers
are distinguished: outbound, inbound, and transshipment con-
tainers. All these containers are temporarily stacked in the
container yard, before leaving the port. Outbound containers
are brought by External Trucks (ETs), also picked up by the
Straddle Carriers (SCs), which store them in their storage
locations, and then loaded onto vessels. Inbound containers are
unloaded from vessels by the Quai Cranes (QCs), transported
to their storage locations by the SCs, and then recuperated
later by ETs. Transshipment containers come to the port by
ship and also leave the port by ship, after spending their dwell
times in the storage yard.

Nowadays, the competition between ports is very high.
Therefore, each of them tries to improve continuously the
quality of its service in order to attract more customers. The
most important criteria to measure service level, include the
waiting time of ETs, which collect inbound containers. In fact,
when an ET arrives at port and claims a specific container, it
waits during all the time required to retrieve it. If the desired
container is under others, it may be necessary to move firstly
these containers. This kind of movements, named reshuffles,

are unproductive and time consuming. Therefore, it is very
important to optimally store containers. Another important
criterion to measure the quality of service is the time required
to unload ships. The importance of this factor is justified by
the fact that it is more beneficial for both the port and the
customers to shorten the stay of vessels. On one hand, it is
better for the port authorities to quickly free the berths in
order to allocate them to others incoming vessels. On other
hand, generally shipowners rent vessels. Therefore, they tend
to minimize the berthing durations in order to increase their
profits. These two issues are addressed in this paper.

We consider a modern container terminal, which uses SCs
instead of Internal Trucks (ITs). The advantage of a SC is
the fact that it is able to lift and to store a container itself.
Therefore, it is not necessary to use Yard Cranes (YCs). A
storage yard is composed of several blocks. In order to enable
the circulation of the SCs, each block is made up of several
bays, which are separated by small spaces. In every bay, there
are stacks wherein containers are stored. A stack must have a
height inferior or equal to the limit fixed by the port authorities.
Figure 1 shows an example of block wherein circulate straddle
carriers.

Figure 1. Straddle carriers circulating in a containers yard

In this paper, we tackle the storage of inbound containers
in a seaport terminal. We propose an efficient storage method,
which enables to store the containers without causing no
reshuffle. A linear mathematical model, which determines an
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accurate storage location for each container is designed for this
purpose. This mathematical model minimizes the total distance
travelled by the straddle carriers from the quays to the storage
yard. A branch-and-cut algorithm (BC-CSP) was proposed in
[1] for the resolution of this problem. In this paper, we improve
this algorithm by combining it with an ant colony algorithm.

The remainder of the paper is organized as follows: a
literature review is given in Section II, a detailed descrip-
tion of the addressed problem is exposed in Section III, the
mathematical model is explained in Section IV, the complexity
of the problem is discussed in Section V, the branch-and-cut
algorithm is itemized in Section VI, the ant colony algorithm
is explained in Section VII, the hybrid ant colony and branch-
and-cut algorithm is detailed in Section VIII, the numerical
results are presented in Section IX, a conclusion is given in
Section X.

II. LITERATURE REVIEW

There are more papers addressing the storage of outbound
containers than inbound containers. However, there are some
papers that deal with both simultaneously. In [2], Zhang et al.
considered in addition to these two categories of container,
those that are in transition, that means the containers that are
unloaded from some vessels and are waiting for being loaded
onto other ships. They used the rolling-horizon approach
to solve the storage space allocation problem. For each
planing horizon, they solved the problem in two steps that
are formulated as mathematical programs. In the first step,
they determined the total number of containers that must be
assigned to each block at a period so that the workload of
loading and unloading of each vessel are balanced. Then, in
the second step they determined the number of containers that
must be associated to every vessel in order to minimize the
total distance travelled to transport these containers from the
quays to the storage blocks. In [3], Bazzazi et al. proposed a
genetic algorithm to solve an extended version of the storage
space allocation problem (SSAP). It consisted to allocate
temporarily locations to the inbound and outbound containers
in the storage yard according to their types (regular, empty,
and refrigerated). They aimed to balance the workloads of
the blocks with the goal to minimize the time required to
store or to retrieve containers. In [4], Park et al. dealt with
the planar storage location assignment problem (PSLAP), in
which only planar movements were allowed. The purpose of
the PSLAP was to store inbound and outbound containers so
as to minimize the number of moving obstructive objects.
The authors made a mathematical formulation of the PSLAP
and proposed a genetic algorithm to solve it. In [5], Lee et
al. combined the truck scheduling and the storage allocation
problems. They considered inbound and outbound containers,
and attempted to minimize the weighted sum of the total
delay of requests and the total travel time of the yard trucks.
For the numerical resolution, they proposed a hybrid insertion
algorithm. In [6], Kozan et al. developed an iterative search
algorithm by using a transfer model and an assignment model.
At first, the algorithm determined cyclically the optimum
storage locations for inbound and outbound containers, and
secondly it found the corresponding handling schedule. They
solved the problem by a genetic algorithm, a tabu search
algorithm and a hybrid algorithm.

Concerning inbound containers, most of the papers dealt
with the management of reshuffles. In [7], Sauri et al.

proposed three different strategies to store inbound containers.
The purpose of their work was to determine the best strategy
that minimizes re-handles in an import container yard.
For this, they developed a mathematical model based on
probabilistic distribution functions to evaluate the number of
reshuffles. In [8], Kim et al. considered a segregation strategy
to store inbound containers. This method did not allow to
place newly arriving containers over those that arrived earlier.
Therefore, storage spaces are allocated to each vessel in order
to minimize the number of expected reshuffles during the
loading operations. In [9], Cao et al. proposed an integer
programming model, which addressed the trucks scheduling
and the storage of inbound containers. They minimized
simultaneously the number of congestions, the waiting
time of trucks, and the unloading time of containers. The
authors designed a genetic algorithm to solve the model, and
another heuristic algorithm, which outperformed their genetic
algorithm. In [10], Yu et al. treated the storage problem of
inbound containers in a modern automatic container terminal.
They aimed to minimize the number of reshuffles in two
steps. For this, they firstly resolved the block space allocation
problem for the newly arriving inbound containers, and
then, after the retrieving of some containers, they tackled
the re-marshalling processes in order to re-organize the
block space allocation. They suggested three mathematical
models of storage containers, the first was a non-segregation
model, the second was a single-period segregation model,
and the third was a multiple-period segregation model. They
conceived a convex cost network flow algorithm for the first
and the second models, and a dynamic programming for
the third. They found out that the re-marshalling problem is
NP-hard, and then, they designed a heuristic algorithm to
solve it. In [11], Moussi et al. considered a container terminal
wherein reshuffles are not allowed. They proposed a new
mathematical model to allocate storage spaces to inbound
containers in such a way that no reshuffle will be necessary
to retrieve them later. They designed a hybrid algorithm
including genetic algorithm and simulated annealing to solve
it. Ndiaye et al. strengthened that work by proposing in [1]
a branch-and-cut algorithm, which is an exact optimization
method, unlike the hybrid genetic and simulated annealing
algorithm.

In most container terminals, the departure time of
an inbound container is generally unknown. Kim et al.
considered in [12] a container terminal, in which there is
a limited free time storage for inbound containers, beyond
which customers have to pay storage costs. The authors
proposed a mathematical model to find the optimal price
schedule.

Papers that dealt with the storage problem of outbound
containers have generally different goals. In [13], Preston
et al. proposed a container location model (CLM) to store
outbound containers in a manner that minimised the time
service of container ships. They designed a genetic algorithm
for the numerical resolution. In [14], Kim et al. developed a
dynamic programming model to determine storage locations
for outbound containers according to their weights. They
minimized the number of relocations expected during the
loading operations of ships. They also made a decision
tree using the set of optimal solutions to support real-time
decisions. In [15], Chen et al. addressed in two steps the
storage space allocation problem of outbound containers. In
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the first step, they used a mixed integer programming model to
calculate the number of yard bays and the number of locations
in each of them. So, in the second step, they determined, for
each container, the exact location where it will be stored. In
[16], Woo et al. proposed a method to allocate storage spaces
to groups of outbound containers. They reserved, for each
group of containers that have the same attributes, a collection
of adjacent stacks. At the end, the authors proposed a method
to determine the necessary amount of storage spaces expected
for all the outbound containers. In [17], Kim et al. gave two
linear mathematical models to store outbound containers. In
the first, they considered a direct transfer system. And then, in
the second, they dealt with an indirect transfer system. They
designed two heuristic algorithms to solve these models. The
one was based on the duration-of-stay of containers, while
they used the sub-gradient optimization technique in the other.

One of the few papers that dealt only with transshipment
containers is that of Nishimura et al. [18]. The authors
developed an optimization model to store temporarily
transshipment containers in the storage yard, and proposed
a heuristic based on Lagrangian relaxation method for the
numerical resolution.

To the best of our knowledge, there is no paper that
combines a meta-heuristic algorithm and an exact optimization
method for the resolution of the container storage problem.
Since the exact methods are not able to solve quickly large
instances due to the NP-hardness of the problem, hybridization
with meta-heuristic is a way to speed up the computation
processes. So, in this paper, we exploit this idea by proposing
a hybridization concerning a branch-and-cut algorithm and an
ant colony algorithm.

III. CONTEXT

When a container ship arrives at port, the QCs unload the
inbound containers and then place them on quays. After that,
they are picked up by the SCs, which carry and store them
in the container yard. The containers are picked up following
the same order that they are unloaded from the ships. In order
to avoid congestion at quays, which could increase the time
required to unload the ships, we minimize the total distance
travelled by the SCs between the quays and the container
yard. In this study, we consider the following five hypotheses:
(1) reshuffles are not allowed,
(2) in each stack, the containers are stored following:

(2.a) the same order that they are unloaded from the
ships,

(2.b) and the descending order of their departure times,
(3) in a stack, the containers have similar dimensions,
(4) we take into account the containers that are already
present in the storage yard at the beginning of the current
storage period,
(5) we do not exceed the maximum capacity of each stack.

Notice that the unloading order of the containers from a
ship is decided by the port authorities before the arrival of this
later at port. The role of such unloading plan is to ensure the
stability of the ship during the unloading operations. However,
the determination of the unloading plan and the storage plan
(of inbound containers in the yard) are done separately, even
if the results of the first problem are used for the resolution

of the second. In this paper, we focus on the determination of
the optimal storage plan of inbound containers in the yard.

IV. MATHEMATICAL MODELLING

In this section, we present a mathematical model that
allocates an accurate storage location to every container. For
this, we use the following indices, parameters, and decision
variables.

Indices
k : container.
p : stack.
i : location in a stack.

Parameters
Np : total number of stacks in the terminal.
cp : number of available locations in the stack p.
rp : size of the stack p, (20-feet, 40-feet, 45-feet, etc.).
tp : departure time of the container that is at the top

of the stack p at the beginning of the current storage
period. It is equal to M if the stack is empty.

N : total number of inbound containers at quays.
Tk : departure time of the container k.
Rk : size of the container k, (20-feet, 40-feet, 45-feet,

etc.).
dkp : distance between the stack p and the quay where is the

inbound container k.
Ok : unloading order of the container k from ships.
M : a great integer.

Decision variables

xkp,i =

{
1 If the location i of the stack p is allocated to

the container k.
0 Otherwise.

Model

min

N∑
k=1

Np∑
p=1

cp∑
i=1

dkpx
k
p,i (1)

The objective function (1) minimises the total distance trav-
elled by the straddle carriers between the quays and the storage
yard.

Np∑
p=1

cp∑
i=1

xkp,i = 1, ∀ k = 1, ..., N (2)

Constraint (2) ensures that each container is assigned to a
single storage location.

N∑
k=1

xkp,i ≤ 1, ∀ p = 1, ..., Np, i = 1, ..., cp (3)

Constraint (3) secures that several containers are not assigned
simultaneously to a same storage location.

Np∑
p=1

cp∑
i=1

xkp,i = 0, ∀ k = 1, ..., N : Rk 6= rp or Tk > tp (4)
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Constraint (4) guarantees that a container can be assigned to
a stack only if they are compatible. In other words, if the
container and the stack have similar dimensions (20-feet, 40-
feet, 45-feet, etc.), and if the departure time of the container is
inferior or equal to that of the container that is already at the
top of the stack (at the beginning of the new storage period).

N∑
k=1

(N −Ok + 1)xkp,i ≥
N∑
k=1

(N −Ok + 1)xkp,i+1

∀ p = 1, ..., Np, i = 1, ..., cp − 1

(5)

Constraint (5) has two roles. The first is to enforce that, in
every stack, the containers are stored following the ascending
order of their unloading numbers. This avoids congestion at
quays. The second is to secure that each stack is filled from
bottom to top without omitting no location. This enables to
satisfy the gravity’s law, and excludes unrealisable assignments
like the one that is shown in the example bellow.

Figure 2. Unrealisable storage

N∑
k=1

Tkx
k
p,i ≥

N∑
k=1

Tkx
k
p,i+1

∀ p = 1, ..., Np; i = 1, ..., cp − 1

(6)

Constraint (6) ensures that, in every stack, the containers are
stored following the descending order of their departure times.
This avoids reshuffles when extracting containers.

xkp,i ∈ {0, 1}, ∀ p = 1, ..., Np

∀ i = 1, ..., cp, k = 1, ..., N
(7)

Constraint (7) states that the decision variables are boolean.

V. COMPLEXITY OF THE PROBLEM

In this section, we study the complexity of the container
storage problem (CSP). In particular, we show that it is equi-
valent to the bounded colouring problem (BCP). Therefore, it
is NP-hard in the general case.

A. Some reminders about the BCP
Let us begin by recalling some concepts and definitions

that will be useful for the following.

1) Preliminary notions: Let G(V,E) be an undirected
graph, V is the set of vertices and E is the set of edges.

G is a comparability graph if and only if there is a
sequence of vertices v1, ..., vn of V such that for each
(p, q, r) checking 1 < p < q < r < n, if (vp, vq) ∈ E and
(vq, vr) ∈ E, then (vp, vr) ∈ E.

A co-comparability graph is the complement of a
comparability graph.

An undirected graph G = (V,E) is a permutation graph if
and only if there is a sequence of vertices v1, ..., vn of V and
a permutation σ of the vertices such that: ∀ i, j ∈ {1, ..., n},
satisfying 1 ≤ i < j ≤ n, we have (vi, vj) ∈ E if and only if
σ(i) > σ(j).

Theorem 1: A graph G is a permutation graph if and only
if G and its complement are comparability graphs [19].

2) The bounded colouring problem: Given an undirected
graph G = (V,E), a set of s colours l1, ..., ls, an integer H
and a vector that gives the weight of assigning a colour li to
a vertex of the graph. Solve the bounded colouring problem
with minimum weight consists to determine a minimum
weight colouring of G by using at most s colours in such a
way that a colour is assigned to at most H vertices.

Theorem 2: The bounded colouring problem with mini-
mum weight is NP-hard in the case of permutation graphs
if H ≥ 6 [20].

B. Case of storage where the stacks are empty at the beginning
In this section, we consider a case of storage where each

stack of the storage yard is empty at the begin of the current
storage period. We show that the CSP is NP-hard. For this,
we introduce an undirected graph G(N,O, T ) = (V,E),
which is constructed using an instance of the CSP, where N
is the set of containers and O and T are two vectors that
give respectively the unloading order and the departure time
of each container. The graph G is constructed as follows. A
vertex of the graph corresponds to a container. To simplify the
notations, the index k is used to denote as well a container
as the vertex that corresponds to it in the graph. There is an
edge between two vertices k and k′ if at least one of these
two following conditions is satisfied:
• Ok < Ok′ and Tk < Tk′ ,
• Rk 6= rp.

Figure 3. is an example of graph constructed using an
instance of the CSP.

We have the following lemma.

Lemma 1: In the case where the containers have similar
dimensions, the graph G(N,O, T ) obtained from an instance
of the CSP is a permutation graph.

Proof: To prove the fact that the graph G(N,O, T ) is a
permutation graph, it suffices to show that it is a comparability
graph as well as its complement (see Theorem 1).
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Figure 3. Graph constructed using an instance of the CSP.

Firstly, we show that G(N,O, T ) is a comparability graph.
The vertices are ordered following the same order that the
containers are unloaded from the ships. If two containers k
and k′ are unloaded from different ships at the same time (that
is to say: Ok = Ok′ ), then the vertices k and k′ are ordered in
the ascending order of their departure times. If Ok = Ok′ and
Tk = Tk′ then the vertices are ordered in the lexicographical
order. Without loss of generality, we consider that the vertices
are arranged in the order that is previously determined. Now,
consider any three vertices k, k′ and k′′ of the graph, such that
k < k′ < k′′, (k, k′) ∈ E and (k′, k′′) ∈ E. We will prove that
necessarily (k, k′′) ∈ E. As (k, k′) ∈ E and (k′, k′′) ∈ E, we
have Ok < Ok′ and Tk < Tk′ , and we have also Ok′ < Ok′′
and Tk′ < Tk′′ . We thus obtain that Ok < Ok′ < Ok′′ and
Tk < Tk′ < Tk′′ , which implies that the graph G(N,O, T )
has an edge between the vertices k and k′′. So G(N,O, T ) is
a comparability graph.

At present, we will prove that the complement of
G(N,O, T ), denoted Ḡ(N,O, T ) is also a comparability
graph. Firstly, notice that there is an edge between two vertices
k and k′ of Ḡ(N,O, T ) if and only if there is no edge in
G(N,O, T ) between k and k′ (in other words Ok < Ok′
and Tk > Tk′ ). The vertices of Ḡ are ordered in the same
order as those of G. As before, for any three vertices k, k′,
and k′′ of the graph Ḡ(N,O, T ), such that k < k′ < k′′,
(k, k′) ∈ E and (k′, k′′) ∈ E, we have Ok < Ok′ < Ok′′
and Tk > Tk′ > Tk′′ . So, Ok < Ok′′ and Tk > Tk′′ , thus,
there is an edge between k and k′′ in Ḡ(N,O, T ). Therefore,
Ḡ(N,O, T ) is also a comparability graph.

Now, it is easy to see that a solution of the container
storage problem is a solution of the corresponding bounded
colouring problem. In fact, a similar result is given in [21].
Consider an instance ICSP = (N,O, T,Np, H, r,R, d) of
the CSP and the graph G(N,O, T ) associated to it, H is the

maximum number of containers allowed in a stack. Consider a
H-colouring of G(N,O, T ), which has s colours. Each colour
of the bounded colouring problem is matched to a stack of the
CSP. Indeed, as all vertices that have the same colour form
a stable set, in other words they are not connected by any
edges. Therefore, any two containers k and k′ corresponding
to two vertices of this stable set can be stored in a same stack
because they satisfy these two inequalities: Ok < Ok′ and
Tk ≥ Tk′ . The unloading order as well as the departure times
of the containers that correspond to the vertices of a stable
set are compatible, thereby they can be stored in a same stack
if it has enough empty slots. In addition, there are at most H
vertices in this stable set. So the number of containers assigned
to the corresponding stack is inferior or equal to H . Therefore,
a H-colouring corresponds to a valid assignment for the CSP.
Similarly, it is easy to see that a solution of the CSP is a
solution of the H-bounded colouring problem in the graph
G(N,O, T ). We have the following lemma.

Lemma 2: Let ICSP = (N,O, T,Np, H, r,R, d) an in-
stance of the container storage problem. The CSP has a
solution for this instance if and only if the bounded H-
colouring problem, considering the graph G(N,O, T ), has a
solution.

Now, we give the main result of this section.

Theorem 3: The container storage problem is equivalent to
the bounded colouring problem with minimum weight.

Proof: To establish this result, we prove that an instance of
the CSP is equivalent to an instance of the BCP and vice versa.
Let ICSP = (N,O, T,Np, H, r,R, d) an instance of the stor-
age container problem and G(N,O, T ) the permutation graph
associated to it. Consider IBCP = (G(N,O, T ), H,Np, d) an
instance of the BCP, which concerns the graph G(N,O, T ).
Np is the number of colours, H is the bound, and d is a matrix
containing the weights. According to Lemma 2, a solution of
the CSP is a solution of the BCP, and similarly a stack of the
CSP corresponds to a colour of the BCP and vice versa. It
follows then that the cost dkp of assigning a container k ∈ N
to the stack p ∈ Np, is the same as the assignment of the
vertex k to the colour corresponding to the stack p. So, the
cost of a H-colouring of the graph G(N,O, T ) is similar to the
cost of the solution of the corresponding CSP and vice versa.
Therefore, we can find the optimal solution of the CSP if and
only if we find the optimal solution of BCP.

According to Theorem 2, the bounded colouring problem is
NP-hard in the case of permutation graphs if H ≥ 6. Therefore,
it follows from Theorem 3 that the CSP is NP-hard if H ≥ 6.

Corollary 1: In the case where the containers have similar
dimensions, the container storage problem is NP-hard if the
maximum capacity of each stack is superior or equal to six.

If the containers have different sizes, we suppose that
they are divided into groups, each having similar containers.
Similarly, the stack are also divided into groups, each
containing stacks that have equal measures. So, the CSP can
be solved by considering separately several sub-problems,
each consisting of allocating storage spaces to a group of
containers that have similar sizes. For example, if there are
three sizes of containers (20-feet, 40-feet, and 45-feet), we
have three groups of container (K20, K40, K45) and three
groups of stack (P20, P40, P45). In this example, to solve
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the CPS, we can solve three sub-problems (CSP20, CSP40,
CSP45) by considering respectively (K20, P20), (K40, P40),
and (K45, P45). So, the solutions of these sub-problems
constitute the solution of the initial problem, as shown in
Figure 4.

Since there is one size of container in each sub-problem,
the corresponding graphs are permutation graphs (see Lemma
1). So, the container storage problem stills NP-hard even if
the sizes of the containers are not similar.

Corollary 2: In the case where there are several dimen-
sions of container, the container storage problem is NP-hard
if the maximum number of containers allowed in a stack is
superior or equal to six.

Figure 4. Case with three measures

C. Case of storage where some stacks are not empty at the
beginning

In the case where some stacks are not empty at the
beginning of the current storage period, the CSP can be
formulated as a colouring problem with capacity (CPC),
which is a generalization of the bounded colouring problem
[21]. In the CPC, each colour p has a capacity cp, which is
the maximum number of nodes that can receive this colour.
Different colours may have different capacities.

If we have an instance of the CSP, in which each stack has
a capacity cp, we can construct the corresponding graph and
solve the CPC by considering that each colour can be used at
most cp times.

VI. BRANCH-AND-CUT ALGORITHM

In the branch-and-cut algorithm, we consider the graph
depicted in Section V-B, in which each node represents a
container, and each edge connects two containers (nodes) that
does not have similar dimensions or two containers that have
conflicting arrival orders and departure times. So, as we know
the fact that two adjacent containers cannot be stored into a
same stack, we exploit this propriety in the branch-and-cut
algorithm and we use the simplified mathematical model that
follows.

The former decision variable xkp,i is simplified and
becomes xkp , which is defined as follows.

xkp =

{
1 If the container k is assigned to the stack p
0 Otherwise

As can be seen, this decision variable specifies the stack
that is allocated to each container, but it does not point out
the exact storage location of a container in a stack. This does
not cause any problems, because the method that is used to
construct the graph ensures that the unloading order and the
departure times of the containers that are assigned to a same
stack are compatible.

The new mathematical model is:

Minimize

N∑
k=1

Np∑
p=1

dkpx
k
p (8)

The objective function (8) minimizes the total distance travel-
led by the straddle carriers between the ships and the container
yard.

Np∑
p=1

xkp = 1, ∀ k = 1, ..., N (9)

Constraint (9) requires that each container is assigned to a
single stack.

xkp + xk
′

p ≤ 1, ∀ (k, k′) ∈ E, p = 1, ..., Np (10)

Constraint (10) ensures that the containers of each stack can
be arranged following the same order that they were unloaded
from ships, and the decreasing order of their departure times.

N∑
k=1

xkp ≤ cp, ∀ p = 1, ..., Np (11)

Constraint (11) enforces that the capacity of each stack is not
exceeded.

N∑
k=1

xkp = 0, ∀ p = 1, ..., Np : Tk > tp or Rk 6= rp (12)

Constraint (12) secures that each container can be assigned
only to a compatible stack.

xkp ∈ {0, 1} , ∀ k = 1, ..., N, p = 1, ..., Np (13)

Constraint (13) states that the decision variables are boolean.

A. Description of the algorithm
The branch-and-cut algorithm is an exact resolution

method, which combines the branch-and-bound method
and the cutting plane method. Each of them proceeds by
solving a sequence of relaxations of the mixed integer linear
problem. The cutting plane methods improve the relaxation
of a problem in order to ameliorate the approximation, while
the branch-and-bound methods use a well known approach
named “divide and conquer”.

The branch-and-cut algorithm uses a search tree whose
root node is the integer problem that needs to be solved. The
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other nodes of the search tree are created sequentially by
partitioning the search space, in other words, by creating new
branches. The major difference between the branch-and-cut
and the branch-and-bound is the fact that the former uses
valid inequalities (cutting planes) to improve the solution
found at each node of the search tree before performing
branching. Notice that, a valid inequality is an inequality
that must be satisfied by each solution of the mixed integer
problem, but that is not necessarily satisfied by the solutions
of the relaxations.

To perform a branch-and-cut, it is necessary to have these
elements: one or several valid inequalities, a relaxation method,
a technique to find an upper bound, a branching rule, and a
method to look for violated valid inequalities (this method is
called separation method).

In the following, we will explain them, before describing
the algorithm.

1) Creation of a valid inequality: Let k a node (container)
of the graph, such that 1 ≤ k ≤ N. N(k) the set of the
neighbours of k, and p a colour (stack) such that 1 ≤ p ≤ Np.

After calculating the sum of constraints (10) in the neigh-
bourhood N(k), we get the following valid inequality named
neighbourhood inequality.∑

k′∈N(k)

xk
′

p + |N(k)|xkp ≤ |N(k)| (14)

Proposition 1: For a solution of the integer program, the
inequalities (10) and (14) are equivalent.

Proof: It suffices to prove that (14) implies (10), because
the reverse is highlighted by the definition of (14).
As xkp is a binary variable, it can be equal to either 0 or 1.
• If xkp = 1, then

∑
k′∈N(k) x

k′

p = 0. Therefore, for all k′

neighbour of k, we have xk
′

p = 0. Thereby, xkp + xk
′

p =
1, ∀ k′ ∈ N(k).
• If xkp = 0, then

∑
k′∈N(k) x

k′

p ≤ |N(k)|, which means that
for all k′ belonging to N(k), xk

′

p can be equal to either 0 or
1. Thus, xk

′

p + xkp ≤ 1, ∀ k′ ∈ N(k).

2) Relaxation of the problem: Generally, in a branch-and-
cut algorithm, the integrity constraints (6) are relaxed by
replacing them with (xkp ≥ 0, ∀ k = 1, ..., N ; p = 1, ..., Np).
However, in our case, we go further by removing to the relaxed
problem the constraint (10). This does not affect the optimality
of the final solution, because at each node of the search tree,
valid inequalities (14) are added to the program, in order to
ensure the correctness of the solutions.

3) Preprocessing: The number of variables increases de-
pending on the number of stacks (Np) and the number of
containers (N ). In the case where all stacks were empty at the
beginning of the storage period, if all containers are discharged
from a same vessel, we can reduce the number of variables,
because the containers are equidistant to the stacks. In such
case, we only use the N stacks that are closer to the quay.
This allows to significantly reduce the number of variables
and to speed up the computation.

4) Upper bound: To find an upper bound, we solve the
bounded vertex colouring problem applied on the graph de-
fined in Section V-B. Each colour corresponds to a stack. We
use a heuristic algorithm, which colours vertices one by one
following the descending order of their number of uncoloured
neighbours. For each vertex, it chooses among the admissible
colours the one that fits to the nearest stack. The eligible
colours are those that are not assigned to a vertex that is a
neighbour of the considering vertex, and correspond to the
stacks that are not full and satisfy the compatibility constraints
(12). Whenever a vertex is coloured, the number of empty slot
of the stack corresponding to the used colour is reduced.

5) Branching rule: We use the classical branching rule.
At each node of the search tree, we create two branches by
rounding the most fractional variable. Let xkp this variable.
We put xkp = 0 in a branch, it means that the container k will
not be assigned to the stack p in this branch. Then, in the
other branch, we put xkp = 1, which means that the container
k will be inevitably assigned to the stack p in this branch.

The most fractional variable is the one that is mostly
half-way to the largest integer that is not greater than it and
the smallest integer that is not lesser than it. For example, if
we have {0.25, 0.45, 0.75}, the most fractional variable is 0.45.

To search the most fractional variable, we use this
following algorithm.

1. select = 1;
2. For (k = 1, ..., N) do

2.a. For (p = 1, ..., Np) do
2.a.1. If (| 12 + bxkpc − xkp| < select) then

select = xkp
2.a.2 End If

2.b. End For
3. End For

6) Separation method: At each node of the search tree,
before creating branches, we use a simple algorithm to look
for neighbourhood inequalities that are violated. To do this,
we treat one by one each variable that is superior to 0.5
in the optimal solution of the current node. Let xkp one of
these variables and S an integer that is initialized to zero.
We calculate the number |N(k)| of neighbours of the vertex
k. Then, we add to S the value of xkp multiplied by |N(k)|.
After that, we seek every variable xk

′

p′ , which is such that k
and k′ are neighbours and p = p′, and we add the sum of
their values to S. If S > |N(k)|, there is a violated inequality;
therefore, we add to the sub-problem a constraint to avoid this.

7) Algorithm: The branch-and-cut algorithm that we pro-
pose to solve the container storage problem (BC-CSP) is as
follows.

a. Initialization: We note P 0 the initial integer program.
And then, we initialize the search tree T = {P 0}. After
that, we use the algorithm depicted in Section VI-A3 to find
an upper bound UB. If no solution is found, we set UB = +∞.

b. Stop criterion: If T = ∅, the optimal solution is the one
whose value equals UB. If UB = +∞, there is no realizable
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solution.

c. Selection: Choose a node P l of T . This node will be
removed from T after being explored.

d. Relaxation: Relax P l, and then, solve it using the CPLEX
solver. If there is no solution, set LBl = +∞, after that, go
to Step f. Otherwise, denominate SRl the optimal solution of
the relaxation of P l, and then, use its value to update LBl.

e. Separation: Seek all the valid inequalities that are violated
by SRl, add them to the relaxation of P l, and then, go back
to Step d.

f. Fathoming and Pruning: If LBl ≥ UB, then go back to
Step b. If LBl < UB and SRl is a realizable integer solution,
then update UB = LBl and remove from T every node j that
satisfies LBj ≥ UB, after that, go back to Step b.

g. Branching: If SRl is fractional, then use the most fractional
variable to perform a branching, in order to get two new sub-
problems P l,1 and P l,2, after that, add them to T .

B. Example

Suppose that we need to store five containers in three
empty stacks. The maximum number of containers allowed
in a stack is equal to 3. We want to find the optimal storage
plan, which does not lead to reshuffles and, which minimizes
the total distance travelled by the straddle carriers between
the quays and the storage yard. Table I and Table II show the
distances and the characteristics of the containers, respectively.
We consider that each container and each stack measures 20-
feet.

TABLE I. Distances.

p d1p d2p d3p d4p d5p
1 105 378 205 378 400
2 118 391 118 291 413
3 106 378 165 332 314

dkp is the distance between the stack p and the quay where is the container k.

TABLE II. Characteristics of the containers.

Container Departure time Unloading order
1 10 1
2 13 2
3 8 3
4 16 4
5 10 5

From these data we have the graph represented in Figure
5.

Figure 5. Graph constructed using the instance depicted in the Table II.

Firstly, we use the algorithm described in Section VI-A4
to look for an upper bound (in other words an integer solution
that is not necessarily optimal). For this, we begin by the
container 4, because it has most neighbours, we assign it to the
stack 2, which is the nearest. After that, we remark that each
of the remaining containers has one unassigned neighbour.
Thereby, we realise these assignments, following the same
order: container 1 to the stack 1, container 3 to stack 3,
container 2 to stack 3, and container 5 to stack 1. The obtained
upper bound is UB=1339, which equals d42+d11+d33+d23+d51.

From the graph represented in Figure 5 and the data of
Table I and Table II, we have the following linear integer
program.

P 0 =



Minimize
d : 105x11 + 118x12 + 106x13 + 378x21 + 391x22+

378x23 + 205x31 + 118x32 + 165x33 + 378x41+
291x42 + 332x43 + 400x51 + 413x52 + 314x53

subject to
(1) : x11 + x12 + x13 = 1
(2) : x21 + x22 + x23 = 1
(3) : x31 + x32 + x33 = 1
(4) : x41 + x42 + x43 = 1
(5) : x51 + x52 + x53 = 1
(6) : x11 + x41 ≤ 1
(7) : x12 + x42 ≤ 1
(8) : x13 + x43 ≤ 1
(9) : x11 + x21 ≤ 1
(10) : x12 + x22 ≤ 1
(11) : x13 + x23 ≤ 1
(12) : x21 + x41 ≤ 1
(13) : x22 + x42 ≤ 1
(14) : x23 + x43 ≤ 1
(15) : x31 + x41 ≤ 1
(16) : x32 + x42 ≤ 1
(17) : x33 + x43 ≤ 1
(18) : x31 + x51 ≤ 1
(19) : x32 + x52 ≤ 1
(20) : x33 + x53 ≤ 1
(21) : x11 + x21 + x31 + x41 + x51 ≤ 3
(22) : x12 + x22 + x32 + x42 + x52 ≤ 3
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{
(23) : x13 + x23 + x33 + x43 + x53 ≤ 3
(24) : xkp ∈ {0, 1}, ∀ k = 1, ..., 5; p = 1, 2, 3

We initialize the search tree T = {P 0}. After that, we
relax P 0, so we get R0 that is as follows.

R0 =



Minimize
d : 105x11 + 118x12 + 106x13 + 378x21 + 391x22+

378x23 + 205x31 + 118x32 + 165x33 + 378x41+
291x42 + 332x43 + 400x51 + 413x52 + 314x53

subject to
(1) : x11 + x12 + x13 = 1
(2) : x21 + x22 + x23 = 1
(3) : x31 + x32 + x33 = 1
(4) : x41 + x42 + x43 = 1
(5) : x51 + x52 + x53 = 1
(21) : x11 + x21 + x31 + x41 + x51 ≤ 3
(22) : x12 + x22 + x32 + x42 + x52 ≤ 3
(23) : x13 + x23 + x33 + x43 + x53 ≤ 3
(24) : xkp ≥ 0, ∀ k = 1, ..., 5; p = 1, 2, 3

After that, we solve R0, using the CPLEX solver (version
12.5). And then, we get (x11 = 1, x12 = 0, x21 = 1, x22 =
0, x31 = 0, x32 = 1, x41 = 0, x42 = 1, x51 = 0, x52 = 0, x13 =
0, x23 = 0, x33 = 0, x43 = 0, x53 = 1), which equals 1206. This
is not a realizable solution, because it does not satisfy the
following valid inequalities.

(25) : x21 + x41 + 2x11 <= 2
(26) : x11 + x41 + 2x21 <= 2
(27) : x42 + x52 + 2x32 <= 2
(28) : x12 + x22 + x32 + 3x42 <= 3

Then, we add the inequalities (25), (26), (27), and (28)
to R0. After that, we solve it again, and then, we obtain
(x11 = 1, x12 = 0, x21 = 0, x22 = 0, x31 = 0, x32 = 0.6, x41 =
0, x42 = 0.8, x51 = 0, x52 = 0, x13 = 0, x23 = 1, x33 = 0.4, x43 =
0.2, x53 = 0), which equals 1233. This solution is fractional.
In addition, it does not satisfy the following valid inequalities.

(29) : x13 + x43 + 2x23 <= 2
(30) : x33 + x53 <= 1

We add the inequalities (29) and (30) to R0. And then, we
solve it again. So, we get (x11 = 0.666666666666667, x12 =
0, x21 = 0.666666666666667, x22 = 0, x31 = 0, x32 = 1, x41 =
0, x42 = 0, x51 = 0, x52 = 0, x13 = 0.333333333333333, x23 =
0.333333333333333, x33 = 0, x43 = 1, x53 = 1), which equals
1247.33333333333. This solution violates the following valid
inequality.

(31) : x13 + x23 + x33 + 3x43 <= 3

After adding the inequality (31) to R0, we solve it again.
And then, we get (x11 = 0.75, x12 = 0, x21 = 0.5, x22 =
0, x31 = 0.125, x32 = 0.875, x41 = 0, x42 = 0.25, x51 = 0, x52 =
0, x13 = 0.25, x23 = 0.5, x33 = 0, x43 = 0.75, x53 = 1), which
equals 1247.875. This solution does not violate any valid
inequalities, but it is not integer. So, we use the variable
x21 to do a branching. And then, we get two sub-problems
P 00 = P 0 ∪ {x21 = 0} and P 01 = P 0 ∪ {x21 = 1}. After that,

we add the new sub-problems to T , and we remove P 0. So,
we have T = {P 00, P 01}.

Since T is not yet empty, we continuous the algorithm.
So, we select P 00 from T . After that, we relax it, and we
obtain R00. Then, we solve R00 using CPLEX, and we obtain
(x11 = 1, x12 = 0, x21 = 0, x22 = 0.125, x31 = 0.375, x32 =
0.625, x41 = 0, x42 = 0.75, x51 = 0, x52 = 0, x13 = 0, x23 =
0.875, x33 = 0, x43 = 0.25, x53 = 1), which equals 1250.5. This
solution does not violate any valid inequalities. So, we use
x31 to do a branching. Then, we get two new sub-problems
P 000 = P 00 ∪ {x31 = 0} and P 001 = P 00 ∪ {x31 = 1}. We
add these sub-problems to T , and we remove P 00. So, we
have T = {P 01, P 000, P 001}.

We select P 01. After that, we relax and solve it. And
then, we obtain (x11 = 0, x12 = 0, x21 = 1, x22 = 0, x31 =
0.166666666666667, x32 = 0.833333333333333, x41 =
0, x42 = 0.333333333333333, x51 = 0, x52 = 0, x13 = 1, x23 =
0, x33 = 0, x43 = 0.666666666666667, x53 = 1), which equals
1248.83333333333. This solution violates the following valid
inequality.

(32) : x23 + x43 + 2x13 <= 1

We add the inequality (32) to R01. And then, we solve it
again. After that, we get (x11 = 0, x12 = 0.125, x21 = 1, x22 =
0, x31 = 0.375, x32 = 0.625, x41 = 0, x42 = 0.75, x51 = 0, x52 =
0, x13 = 0.875, x23 = 0, x33 = 0, x43 = 0.25, x53 = 1),
which equals 1251.375. This solution does not
violate any valid inequalities. So, we use x31 to
do a branching. Two sub-problems are then created
and added to T , P 010 = P 01 ∪ {x31 = 0} and
P 011 = P 01 ∪ {x31 = 1}. We remove P 01 from T ,
which becomes T = {P 000, P 001, P 010, P 011}.

We select P 000. And then, we relax and solve it. After
that, we get (x11 = 1, x12 = 0, x21 = 0, x22 = 0.375, x31 =
0, x32 = 0.875, x41 = 0, x42 = 0.25, x51 = 0.125, x52 = 0, x13 =
0, x23 = 0.625, x33 = 0.125, x43 = 0.75, x53 = 0.875), which
equals 1258.25. This solution does not violate any valid
inequalities. So, we use x22 to perform a branching. Then,
we get two new sub-problems P 0000 = P 000 ∪ {x22 = 0}
and P 0001 = P 000 ∪ {x22 = 1}. We remove P 000 from T .
After that, we add to T the new sub-problems. So, we have
T = {P 001, P 010, P 011, P 0000, P 0001}.

We select P 001. After that, we relax and solve it. Then,
we get (x11 = 1, x12 = 0, x21 = 0, x22 = 0, x31 = 1, x32 = 0, x41 =
0, x42 = 1, x51 = 0, x52 = 0, x13 = 0, x23 = 1, x33 = 0, x43 =
0, x53 = 1), which equals 1293. This solution is integer and
does not violate any valid inequalities. So, we update the
upper bound UB=1293. And then, we remove P 001 from T ,
which becomes T = {P 010, P 011, P 0000, P 0001}.

We select P 010. Then, we relax and solve it. After that,
we get (x11 = 1, x12 = 0, x21 = 0, x22 = 0, x31 = 1, x32 = 0, x41 =
0, x42 = 1, x51 = 0, x52 = 0, x13 = 0, x23 = 1, x33 = 0, x43 =
0, x53 = 1), which equals 1293. This is an integer solution,
which does not violate any valid inequalities. We remove
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P 010 from T , which becomes T = {P 011, P 0000, P 0001}.

We select P 011. After that, we relax and solve it.
Then, we get (x11 = 0, x12 = 0, x21 = 1, x22 = 0, x31 =
1, x32 = 0, x41 = 0, x42 = 1, x51 = 0, x52 = 0, x13 = 1, x23 =
0, x33 = 0, x43 = 0, x53 = 1), which equals 1294. We remove
P 011 from T , because it gives a solution that has a value
superior to the upper bound. So, we have T = {P 0000, P 0001}.

We select P 0000. After that, we relax and solve it. Then,
we get (x11 = 0.875, x12 = 0.125, x21 = 0, x22 = 0, x31 =
0, x32 = 0.625, x41 = 0.25, x42 = 0.75, x51 = 0.375, x52 =
0, x13 = 0, x23 = 1, x33 = 0.375, x43 = 0, x53 = 0.625), which
equals 1279.25. This solution does not violate any valid
inequalities. So, we use x32 to do a branching. Then, we get
two new sub-problems: P 00000 = P 0000 ∪ {x32 = 0} and
P 00001 = P 0000 ∪ {x32 = 1}. After that, we update the list of
active nodes, T = {P 0001, P 00000, P 00001}.

We select P 0001. Then, we relax and solve it. After that,
we get (x11 = 1, x12 = 0, x21 = 0, x22 = 1, x31 = 0, x32 = 1, x41 =
0, x42 = 0, x51 = 0, x52 = 0, x13 = 0, x23 = 0, x33 = 0, x43 =
1, x53 = 1), which equals 1260. This solution is integer and
does not violate any valid inequalities. So, we update the
upper bound, UB=1260. And then, we remove P 0001, P 00000,
and P 00001 from T . Notice that P 00000 and P 00001 are not
explored because their lower bound (1279.25) is superior
to the general upper bound (1260). This is the end of the
algorithm, because T = ∅.

The search tree corresponding to that example is repre-
sented in Figure 6. The red nodes are those that are pruned,
while the green nodes are the ones that allow to update the
upper bound (in other words those that give integer solution,
which is better than the current one). The order, in which the
nodes are explored is specified by the blue writings.

VII. ANT COLONY ALGORITHM

The first ant colony algorithm is invented by Dorigo et al.
[22]. They were inspired by the behaviour of the natural ants
when they are looking for food. These animals communicate
indirectly via a natural substance named pheromone, in order
to discover the shortest path between their anthill and a
location where there is food. This substance is continuously
deposited on the travelled ways. Therefore, since the short
paths lead more quickly to the food, the pheromone will
be accumulated there more quickly. So, they will be more
preferable. In addition to this, the pheromone tends to
disappear on the longer paths due to the evaporation.

To apply an ant colony algorithm to a problem, it is
necessary to define how to represent a solution. So, in the
following, we firstly specify how we encode our solutions,
before detailing the ant colony algorithm that we propose to
solve the container storage problem.

A. Method to represent a solution
In the ant colony algorithm, we represent a solution as an

array that has two rows. The containers are written in the first
row, while the stacks are noted in the second. The number of

columns in the solution is equal to the number of containers
that need to be stored. The following example represents a
solution, in which six containers are assigned to three stacks.

Figure 7. Example of solution

This solution corresponds to the following assignment

Figure 8. Stacking manner

If several containers are assigned to a same stack, they
will be stored following the increasing order of their column
numbers. This enables to take into account the arrival order
constraint (5) and the departure times constraints (6) of the
first mathematical model. For example, the containers 3 and 1
are both assigned to the stack 2, but the container 3 has the
lowest storage location.

B. Algorithm

In the ant colony algorithm, which we propose to solve
the container storage problem (ANTCSP), we use four
parameters, which are: the number of ants (NA), the number
of iterations (NTMax), the minimum threshold of pheromone
(τMin), and the maximum threshold of pheromone (τMax).
This is based on the Min-Max version of the ant colony
algorithm, more informations about the different versions of
ant colony algorithms are available in [23]. The ant colony
algorithm progresses as follows:

1: Initialization of pheromone.
2: Construction of a solution by each ant.
3: Evaluation of the solutions.
4: Initialization of the number of iterations, NT = 1.
5: While (NT < NTMax) do:

5.a: Update pheromone.
5.b: Construction of new solutions by the ants.
5.c: Evaluation of the solutions.
5.d: NT = NT + 1.

End while.
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Figure 6. Search tree.

1) Construction method of a solution by an ant: The
construction of a solution is done sequentially by adding
successively elements. Therefore, before beginning the search
of solutions, we firstly construct the set of options. This
means, the set of couples (container: k, stack: p) that are
compatible. In other words, every pair (k, p) that satisfies
these three conditions:
• cp > 0, (the stack p is not full)
• rp = Rk, (the container k and the stack p have similar

dimensions)
• tp ≥ Tk, (the departure time of the container k is

inferior to that of the container that is already at the
top of the stack p at the beginning of the new storage
period).

All these couples form the set of options (for commodity,
we name it E), and each option (k, p) has a pheromone trail,
which is initialized (τ(k, p) = τMax).

In the step 2 of the ant colony algorithm, we use this
following pseudo-code to construct a solution.

1: Let S = ∅, the solution that is being built.
2: E1 = E.
3: Choose arbitrarily an element of E1 and add it to S.
4: While (E1 is not empty) do:

4.a: Update E1.
4.b: Calculate the probability P(k,p) of every element

(k, p) remaining in E1.

P(k,p) =
(τ(k,p))

α×( 1

dkp
)β∑

(k,p)∈E1
(τ(k,p))α×( 1

dkp
)β

Where α and β are positive real numbers
inferior to 1, and 1

dkp
is the visibility.

4.c: Choose the element of E1 that has the largest
probability and add it to S.

End while.
5: If (the number of couples belonging to S is inferior to

N ) then
5.a: Go back to Step 1.

Whenever a couple is added to the solution S, we remove
it from the set of options E1. After that, we decrease the
capacity of the corresponding stack. And then, we delete from
the set of options every couple that may compromise the
validity of the solution. For example, suppose that we add to
S the option (k, p). So, we update the capacity of the stack p
(this means cp = cp − 1), and we remove from E1 all couple
(k′, p′) that satisfies at least one of these four conditions:
• cp′ = 0, (the stack is full)
• k′ = k, (the container is already assigned)
• Ok > Ok′ , (incompatible unloading numbers)
• Tk < Tk′ , (incompatible departure times).

2) Method to update the pheromone trails: At the end of
each iteration, the pheromone trails are updated in two steps.
Firstly, an evaporation decreases the pheromone of each option,
like follows:

∀ (k, p) ∈ E, τ(k,p) = (1− ρ)τ(k,p)

Where ρ is the evaporation rate, and 0 < ρ < 1.
If τ(k,p) < τMin, we adjust it (τ(k,p) = τMin).

Unlike the evaporation, the augmentation of the pheromone
trails is done only on the couples that belong to the best
solution found during the current iteration. Let Sbc that
solution, the pheromone trails of its couples are increased as
follows:

∀ (k, p) ∈ Sbc, τ(k,p) = τ(k,p) +
1

|Obc −Ob + 1|
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Where Ob is the value of the best solution found since the
beginning of the algorithm until the current iteration, and Obc
is the value of Sbc. If τ(k,p) > τMax, we adjust it (τ(k,p) =
τMax).

VIII. HYBRID ANT COLONY AND BRANCH-AND-CUT
ALGORITHM

In the hybrid ant colony and branch-and-cut algorithm
(HACBC), we use the ant colony algorithm to find an upper
bound (UB) of the container storage problem. This upper
bound is then used in the branch-and-cut algorithm, in order
to accelerate it by only exploring the nodes that have lower
bounds inferior to UB. The Hybrid algorithm is represented in
Figure 9, where P 0 represents the initial integer problem and
S designates the current best integer solution. The starter step
and the final step are coloured in pink.

As can be seen in Figure 9, the HACBC algorithm is
stopped only if the list of active nodes becomes empty. After
the initialization of UB and S, the search tree is initialized
with P 0, and then, these following actions are repeated in the
same order until the stop condition:
• Select an element P j in T .
• Relax and solve P j with CPLEX.
• While there are violated valid inequalities, add them to

the relaxation of P j , and then, solve it again.
• If the solution of P j is integer and better than S, update

UB and S, remove from T every node that has a
lower bound superior or equal to UB.

• If the solution of P j is fractional and has a value inferior
to UB, use the most fractional variable to perform
a branching.

• Remove P j from T .

IX. NUMERICAL RESULTS

In this section, we present the numerical results of
the different algorithms that are proposed in this paper.
The experiments were performed using a computer DELL
PRECISION T3500 Intel Xeon 5 GHz processor. Each
algorithm is implemented in C++ language. In addition,
we use the CPLEX solver version 12.5, and the framework
SCIP that is very useful because it allows a total control
over the different components of the branch-and-cut algorithm.

The details concerning the data used in the numerical
simulations are noted in Table III.

TABLE III. Benchmark set-up

Number of containers 50 ≤ N ≤ 1400

Number of stacks 100 ≤ Np ≤ 3500

Maximum height 3of a stack

Percentage of vacant
50% ≤

100×
∑Np
p=1 cp

3×Npstorage locations

Number of sizes 3 sizes: 20 feet, 40 feet, and 45 feetof containers

Average dwell time 4 daysof a container

Distance between the
300 m ≤ dkp ≤ 800 mstack p and the quay

where is the container k

Before comparing the performances of the algorithms, we
firstly researched the best values of the ant colony algorithm’s
parameters. To do this, we treat them individually. At each
step, we vary the value of one parameter, the values of the
other parameters do not change during the iterations. We
applied this method on different instances, for each parameter,
and then, we obtain the results described in Table IV.

To look for the suitable number of iterations (NTMax), we
considered the integers that are between 20 and 100, and we
choose the number, from which the objective function does
not decrease any more. Similarly, the number of ants (NA)
are searched between 10 and 100. As for the exponent of
the pheromone (α), the exponent of the visibility (β), and
the rate of pheromone evaporation (ρ), they are dealt with
by considering de real numbers that are between 0 and 1. And
finally, the minimum threshold of pheromone (τMin) is sought
by considering the integers that are between 1 and 5, while
the maximum threshold of pheromone (τMax) is looked for
by considering the integers that are between 5 and 10.

TABLE IV. Values of the ant colony algorithm’s parameters.

Parameter Value

Number of iterations NTMax = 40

Number of ants NA = 17

Exponent of the pheromone α = 0.3

Exponent of the visibility β = 0.2

Rate of pheromone evaporation ρ = 0.2

Minimum threshold of pheromone τMin = 1

Maximum threshold of pheromone τMax = 10

Unlike the ant colony algorithm, the branch-and-cut
algorithm and the hybrid algorithm give optimal results.
However, the ant colony algorithm gives good upper bounds
as can be seen in Table V, where the values of the objective
function are mentioned for twenty four instances.

gap is the percentage of deviation, it is calculated using
the following formula:

gap =
Obj(ANTCSP ) −Obj(optimal)

Obj(optimal)
× 100

Obj(ANTCSP ) is the value of the solution found by the ant
colony algorithm, and Obj(optimal) is the value of the optimal
solution found by the CPLEX solver. For the instances that
could not be solved by CPLEX, Obj(optimal) represents the
value of the optimal solution found by HACBC.

val is the value of the objective function.

The symbol · · · means that the execution is interrupted
because it lasted more than 3 hours. Similarly, the symbol —
means that the computer memory is insufficient to enable the
resolution of the instance.
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Figure 9. HACBC.

TABLE V. Comparison of the algorithms’ solutions

N Np ANTCSP CPLEX BC-CSP HACBC
val gap val val val

100 500 53682 0.85% 53230 53230 53230
150 500 62042 3.09% 60483 60483 60483
100 700 46672 4.02% 44867 44867 44867
100 1500 53945 1.81% 52988 52988 52988
50 200 15882 0% 15882 15882 15882
200 200 71682 1.43% 70671 70671 70671
80 100 25608 0% 25608 25608 25608
90 100 34636 0% 34636 34636 34636
100 100 39026 4.5% 37168 37168 37168
150 200 55388 0.69% 55011 55011 55011
100 3500 33035 1.5% — 32547 32547
200 3500 67604 1.97% — 66300 66300
300 3500 92406 1.57% — 90979 90979
400 3500 125145 1.38% — 123438 123438
500 3500 171137 1.33% — 168895 168895
600 3500 184924 0.82% — 183415 183415
700 3500 216424 0.6% — 215138 215138
800 3500 245357 0.59% — 243917 243917
900 3500 276831 0.95% — 274238 274238

1000 3500 323187 0.87% — 320415 320415
1100 3500 338955 0.48% — 337347 337347
1200 3500 375269 0.47% — 373498 373498
1300 3500 405622 0.64% — 403054 403054
1400 3500 432816 0.39% — ... 431116

The results depicted in Table V show that, in some cases,
the ant colony algorithm gives optimal results. In addition, it
gives generally good results that have percentages of deviation
inferior to 5%.

In Table VI, we compare the execution times of CPLEX,
BC-CSP, and HACBC. The ant colony algorithm is fast but
as it does not give optimal results every time, it would not be
relevant to compare its execution times to those of the other
algorithms.

TABLE VI. Comparison of the execution times

N Np HACBC BC-CSP CPLEX
100 500 0 sec 0 sec 2 min 58 sec
150 500 0 sec 1 sec 15 min 45 sec
100 700 0 sec 0 sec 4 min 11 sec
100 1500 0 sec 0 sec 11 min 16 sec
50 200 0 sec 0 sec 2 sec
200 200 1 sec 3 sec 14 min
80 100 0 sec 0 sec 1 min 5 sec
90 100 0 sec 0 sec 1 min 29 sec
100 100 0 sec 0 sec 2 min 11 sec
150 200 0 sec 1 sec 53 min 50 sec
100 3500 0 sec 0 sec —
200 3500 0 sec 3 sec —
300 3500 6 sec 14 sec —
400 3500 11 sec 41 sec —
500 3500 35 sec 1 min 36 sec —
600 3500 2 min 35 sec 6 min 13 sec —
700 3500 1 min 46 sec 5 min 57 sec —
800 3500 3 min 20 sec 9 min 49 sec —
900 3500 6 min 14 sec 15 min 35 sec —
1000 3500 33 min 40 sec 1 h 41 min 26 sec —
1100 3500 34 min 5 sec 1 h 43 min 47 sec —
1200 3500 51 min 12 sec 2 h 5 min 4 sec —
1300 3500 51 min 33 sec 2 h 21 min 20 sec —
1400 3500 1 h 3 sec · · · —

As can be seen in Table VI, our branch-and-cut algorithm
is quicker than the CPLEX solver version 12.5 for the
resolution of the container storage problem. However, these
two methods are outperformed by the hybrid ant colony and
branch-and-cut algorithm.

The results that are contained in Table V and Table VI are
obtained by doing a single execution for each instance.

X. CONCLUSION AND FUTURE WORK

This paper deals with the inbound container storage prob-
lem at seaport terminal. A container terminal that uses straddle
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carriers as handling and transfer equipments is considered. A
mathematical model, which determines an accurate storage lo-
cation for each container is proposed. This mathematical model
takes into account physical and operational constraints, like the
order, in which the containers are unloaded from vessels, and
minimizes the total distance travelled by the straddle carriers
between the quays and the container yard, in order to shorten
the berthing times of the ships. A demonstration of the NP-
hardness of the container storage problem is given. For the
numerical resolution, we propose an efficient hybrid ant colony
and branch-and-cut algorithm. This hybridization allows to
improve the performances of the branch-and-cut algorithm that
was proposed in [1]. In addition, it is an exact resolution
method and is able to solve quickly large instances, which
cannot be solved by the CPLEX solver.

In the future, we plan to test other branching rules and other
valid inequalities. We also plan to study the case of container
terminals that use automatic equipments like automatic guided
vehicles and rail mounted cranes, and to propose other efficient
resolution methods.
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