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Abstract— The effort-based model of usability is used for 

evaluating user interface (UI), de velopment of usable software, 

and pinpointing software usability defects. In this context, the 

term pinpoint analysis refers to identifying and locating 
software usability deficiencies and correlating these 

deficiencies with the UI software code. For example, often, 

when users are in a state of confusion and not sure how to 

proceed using the software, they tend to gaze around the 

screen trying to find the best way to complete a task. This 
behavior is referred to as excessive effort. In this paper, the 

underlying theory of effort-based usability evaluation along 

with pattern recognition techniques are used to produce an 

innovative framework for the objective of identifying usability 

deficiencies in software. Pattern recognition techniques and 
methods are applied to data gathered throughout user 

interaction with software in an attempt to identify excessive 

effort segments via automatic classification of segments of 

video files containing eye-tracking results. The video files are 

automatically divided into segments using event-based 
segmentation, where a segment is the time between two 

consecutive keyboard/mouse clicks. Subsequently, data 

reduction programs are run on the segments for generating 

feature vectors. Several different classification procedures are 

applied to the features in order to automatically classify each 
segment into excessive and non-excessive effort segments. This 

allows developers to focus on the excessive effort segments and 

further analyze usability deficiencies in these segments. To 

verify the results of the pattern recognition procedures, the 

video is manually classified into excessive and non-excessive 
segments and the results of automatic and manual 

classification are compared. The paper details the theory of 

effort-based pinpoint analysis and reports on experiments 

performed to evaluate the utility of this theory. Experiment 

results show more than 40% reduction in time for usability 

testing.  

Keywords- Software Development; Software Usability; 

Human Computer Interaction; Pinpoint Analysis; Pattern  

Recognition; Clustering  

I. INTRODUCTION  

One of the primary goals of software is to simplify  

various tasks and enable users to accomplish tasks with ease 

and efficiency. Numerous fields have recently witnessed an 

increase in software development and deployment. 

Nevertheless, feedback from software applications end-

users consistently shows that software is at times non-

productive, confusing, counter-intuitive, and unsatisfactory 

[1]-[5]. Clearly, if the users experience problems or 

difficulty, it is highly unlikely that they will use that 

software again. Hence, it is very important for software 

engineers to place significant emphasis on usability 

evaluation and testing in order to eliminate user complaints 

and provide the user with a good experience [1]-[5].  

Software engineers use a wide variety of tools , such as 

prototyping, inspection, usability testing, and iterat ive 

processes to ensure that the software they produce is usable 

[1]-[5]. St ill, these tools may not address the usability 

problem efficiently, resulting in  a low ranking on usability 

for several systems [1][5]. The classical methods used in 

identifying usability techniques have not proven to be very 

proficient in accurately locating the specific segment of 

code that could be leading to the usability problems. 

Without proper data to understand which part of code is 

faulty, developers would have a hard time identifying and 

fixing code that leads to usability issues. 

The usability testing process involves observing users 

engaged with a software application and obtain ing a set of 

characteristics of the user experience. This methodology 

requires an expert to construct, conduct, and assess the tests; as 

well as devoted laboratory facilities  and several users that 

participate in the tests. Despite all of these efforts, generally 

usability testing indicates that a problem exists but does not 

identify the root cause for the problem [1][5]. This makes 

usability-testing time consuming, expensive, and frustrating 

for both developers and managers. Hence, it is often 

ignored.  

Most of the tools used to evaluate the usability of a 

software application use ‘time to complete a task’, referred 

to as              (    ), as a measure for evaluating  

usability [1]-[12]. This approach of giv ing high weight to 

    may not produce accurate results when factors like 

system performance, network delays, and interface design, 

which are d ifficu lt to avoid, play a role. An alternate 

approach is to measure usability in terms of user-effort, 

which eliminates some of the system issues mentioned 

earlier, allowing software engineers to focus on the interface 

design [1][5].  

The Effort-Based Usability Model of [1][5][6][9]-[12] 

can be used for setting usability requirements, evaluating 
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user interface (UI), development of usable software, and 

pinpointing software usability defects . It is developed using 

the principle that usability is an inverse function of effort. 

The model is used for comparison of d ifferent 

implementations of the same application. The results of 

several experiments conducted on the effort-based model 

show a strong relationship between effort and usability 

[1][5][6][9]-[12]. 

The underlying theory of the Effort-based Model is 

used to produce a framework for identifying usability 

deficiencies in the software. Accurately locating software 

usability issues and correlating these issues with UI 

software code is referred to as Pinpoint Analysis  [1][9]-[12]. 

For example, users who are in a state of confusion, and 

users that are not sure how to use the software, tend to look 

around the screen to determine the best way to accomplish a 

task. This behavior, which can be observed by eye tracking 

[13][14], is referred to as an excessive search or as 

excessive effort [1][5][9]-[12]. Identifying and pinpointing 

excessive effort behavior helps UI designers to rectify 

numerous usability related issues.  

The hypothesis of this research is that it is feasible to 

devise a framework that can automatically identify excessive 

effort  segments by apply ing pattern recognition techniques , 

such as K-means clustering algorithm, thresholding, 

principal component analysis (PCA), and feature selection 

[15]-[17]. Usability  experts can fu rther inspect the excessive 

effort segments. Hence, the automatic part can save experts’ 

time and increase experts’ accuracy. 

To validate the hypothesis, this research, attempts to 

evaluate the utility of pinpointing UI deficiencies using 

pattern recognition techniques for identifying excessive 

effort in temporal segments of user software interaction. The 

process of segmentation of user’s software interaction 

session and linking segments is done automatically using 

the time slice between two consecutive mouse/keyboard 

clicks. Automat ic identification of segments with  excessive 

effort  behavior reduces the time required for UI designers to 

analyze and rearrange the interface at the pinpointed time 

snapshot. The last phase of the pinpoint process involves an 

expert evaluating excessive effort segments. Nevertheless, 

the process of identifying these segments is automatic and 

non-supervised. 

The main contribution of this work is the development 

of a new methodology for assessing the usability of 

software. Th is methodology helps optimizing the t ime spent 

on usability testing while also more accurately identify ing 

specific segments of code that could be leading to the 

usability issues. 

Several experiments were conducted to validate the 

hypothesis and evaluate the new framework for pinpointing 

software usability issues. Experiment results show more 

than 40% reduction in time for usability testing. 

The rest of this paper, which is an expanded version of 

[1], is organized as follows. Section II contains background 

informat ion. Sect ion III summarizes related work. Section 

IV presents the experimental setup. Section V details the 

experiments performed. Sect ion VI presents experiment 

results and Section VII contains results evaluation. Section 

VIII concludes the paper with a summary of findings and 

proposals for further research. 

II. BACKGROUND 

A. Software Usability  

According to the International Organization  for 

Standardization/International Electro -technical Commission 

(ISO/IEC) 9126 standard, software usability is: “The 

capability of a software product to be understood, learned, 

used, and be attractive to the user when used under specified 

conditions” [8][9]. The standard lists several characteristics 

that play an important role  in  defin ing software usability: 

understandability, learnability, operability, and 

attractiveness [8][9]. The effort-based theory focuses on the 

first three characteristics.  

Understandability helps determine how easy it is to 

comprehend and use the software. It is the ability of a user 

to understand the capabilities of the software and its 

suitability to accomplish specific goals. Learnability 

indicates the ease with which a user learns to use specific 

software. Operability is the capability of a user to use the 

software to accomplish a specific goal. Generally, the end-

goal of a software application is to enable performing a task 

efficiently. As such, operability plays an important role in  

usability. Attractiveness relates to the requirement that the 

end-user’s experience is pleasant and rewarding. The next  

section discusses several classical usability evaluation 

methodologies. 

B. Classical Methods for Measuring Usability 

The classical usability measurements methods are 

broadly classified into methods that make use of data 

gathered from users and methods that rely on usability 

experts. There are usability evaluation methods that apply to 

all stages of design and development, fro m product 

definit ion to final design modificat ions. Usability methods 

are further classified into cognitive modeling methods, 

inspection methods, inquiry methods, prototyping methods, 

and testing methods.  

Cognitive models are based on psychological principles 

and experimental studies to determine times for cognitive 

processing and motor movements. They are used to improve 

user interfaces or predict problem areas during the design 

process. In general, cognitive modeling involves creating a 

computational model to estimate how long it takes for users 

to perform a g iven task [1]-[5]. It involves one or more 

evaluators inspecting a user interface by going through a set 

of tasks by which understandability  and ease of learn ing are 

evaluated. The user interface is often presented in the form 

of a paper mock-up or a working prototype; but it might be 

a fully developed interface.  

The inspection method involves cognition with 

emphasis on a hands-on approach. Under the inspection 

45

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



method, experimenters observe users while they are using 

the software. The testing and evaluation of programs is done 

by an expert reviewer. Th is provides quantitative data, as 

tasks can be timed and recorded. In addition to quantitative 

data, qualitative user experience data are collected. 

Although some of the data collected is qualitative and 

potentially  subjective, it provides valuable information [2]-

[4]. 

Experts obtain information about users' likes, dislikes, 

needs, and understanding of the system by talking to them, 

observing them using the system, and through verbal or 

written questionnaires. Since this information is collected by 

inquiring and getting direct feedback from users, this model 

is called the inquiry method [1]-[5].  

While the above methods focus on usability testing at 

an advanced stage in the development, the prototyping 

method tries to improve usability by refining and providing 

feedback as the software is being developed. Rapid  

prototyping is a method used in early stages of development 

to validate and refine the usability of a system. It is used to 

quickly and efficiently evaluate user-interface designs 

without the need for an expensive working model. This 

helps to remove the developer’s resistance to design 

changes since it is conducted before any actual 

programming begins. Testing methods provide usability 

evaluation through testing of users for the most quantitative 

data. User interaction sessions are observed via two way 

mirrors or recorded on video that provides task complet ion 

time and allows for evaluation of user attitudes [1]-[5].  

C. The Effort-based Usability Model 

Several studies indicate that many system users 

associate the physical and mental effort required for 

accomplishing tasks with the usability of the software 

[1][5][6][9]-[12]. The effort-based usability model for 

software usability  stems from the notion that the usability is 

an inverse function of effo rt. For example, an eye t racking 

device can be used to measure the effort expanded by the 

user in navigating through the user interface of software. 

According to the effort-based usability theory, the eye effort  

is inversely proportional to the operability of the software.  

Physical and mental effort  are obtained and inferred 

from logging user activity such as manual activities in the 

form of mouse movements and eye activities. For this 

model, E denotes the total effort  required to complete a task 

with computer software and is defined as: 

  (
        

         
) 

        (
           

             

) 

          (

                

               

                 

)  

 

            denotes the amount of mental effort to 

complete the task measured by eye related metrics. 

              denotes the amount of mental effort 

measured by other metrics. 

          denotes the amount of physical effort needed to 

complete the task. 

                 denotes the amount of manual effort 

required to complete the task. Manual effort includes, but is 

not limited to, the movement of fingers, hands, arms, etc. 

              denotes the amount of physical  

effort invested in the process of interaction, 

measured by eye movement related metrics  [13].  

                denotes the amount of physical effort 

measured by other metrics. 

Consequently, the effort required to complete tasks is 

associated with software usability [1][5][9]-[12]. Physical 

effort includes manual effort and physical eye effort. In the 

case of interactive computer tasks, it is possible to calculate 

effort as a linear combination or a weighted sum of metrics 

such as the number of mouse clicks, number of keyboard 

clicks, average eye path traversed as well as other eye 

activity measures, and mouse path traversed [1][9]-[12].  

Mental effort is essentially the amount of brain activity 

required to complete a task. To some extent, brain activity, 

related to a task, can be approximated by processing eye 

movement data recorded by an eye tracker [1][5][9]-[14]. 

Eye trackers acquire eye position data and enable 

classifying the data into several eye movement types useful 

for eye related effort assessment. The main types of eye 

movements are [13][14]:  

1) Fixation – eye movement that keeps an eye gaze 

stable with regard to a stationary target providing visual 

pictures with high acuity.  Fixat ions might be a result of 

“interest” or a result of confusion. In the context of task 

completion, fixations are generally correlated to confusion.   

2) Saccade – rapid eye movement from one fixat ion 

point to another. 

3) Pursuit – stabilizing the retina with regard to a 

moving  object of interest. Usually, however, the Human 

Visual System (HVS) does not exhib it pursuits when 

dynamically moving targets are not a part of the interface 

[13][14].  

In addition, some eye trackers supply informat ion about 

    as well as user manual activity  including mouse and 

keyboard clicks. 

In this research, we concentrate on the correlation 

between physical effort  and usability. The following 

metrics, which have been identified as the most important 

effort-based metrics, are used as a measure of the physical 

effort [1][5][6][9]-[14]: 

1) Average fixation duration,  

2) Average saccade amplitude,  

3) Number of fixations,  

4) Number of saccades, and  

5) Average eye path traversed.  
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Figure 1. Learnability-based usability model 

Additional commonly used metrics such as  the number 

of keyboard clicks and the number of mouse clicks are used 

for identify ing segments of interaction rather than 

classifying segments.  

The effort -based software usability evaluation is 

divided into three phases: Measurement, Analysis, and 

Assessment  [1]. In the Measurement phase, a group of users 

executes a set of tasks referred to as identical independent 

tasks, due to the fact that they share characteristics with an 

identical independent distribution (iid) used in probability 

theory. The tasks emerge from a single scenario; however, 

several parameters change from task to task in a pseudo 

random fashion. Hence, these tasks differ in  key parameters , 

which prevent the users from memorizing a sequence of 

interaction activities. Throughout the interaction process, 

certain user actions such as eye movement,    , keyboard 

activities, and mouse activities are logged. 

The Analysis phase involves accumulating data for 

several physical effort-based metrics such as the number of 

saccades, average saccade amplitude, number of fixations, 

average fixation duration, and average eye path traversed. 

Another metric is the    . The average task completion  

time and/or an  effo rt-based metric are compared to a 

learning curve, which reflects users’ mastery of software.  

The final step is the Assessment. Using the above steps, 

the learnability of software systems is assessed and the point 

of users’ mastery of the software is identified. In addition, 

as detailed in section D, the learnability curve is used to 

obtain operability and understandability of various software 

systems or different groups of users using the same system. 

Effort-based metrics provide interface designers with means 

to evaluate their designs [1][5].  

D. The Learnability based Usability Model 

Typically, as users become familiar with an application, 

the effort and/or the t ime to complete tasks, which emerge 

from the same scenario, become smaller or shorter [18]. 

Often, a graph of the averages of Effort-On-Task  (   ) or 

Time-On-Task  (   ), also known as effort average (Eavg), 

for the users fits well into an exponential decay curve that 

represents the average effort on task expended by the group 

of users. Figure 1 depicts a typical graph. The Eexp line is the 

effort that the interface designer expects an expert to expend 

in order to complete a specific task. The point  where the 

user’s effort reaches the acceptable level is the learning 

point Lp. The learn ing time (LT) is calculated by adding the 

average task duration to the left of the learn ing point. Data 

to the right of the learning point relates to the amount of 

effort required by a trained user to complete tasks.  

Understandability can be inferred from the graph by 

investigating the difference between the expert curve and 

the average user curve; while operability can be inferred 

from the distance between the expert curve (Eexp) and the   
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axis. Thus, the effort-based usability model enables the 

evaluation of the understandability learnability, and 

operability of a specific system. In addition, comparing the 

plots representing the results of tests with different systems 

or different user populations (e.g., students vs. novice 

employees) can be used to evaluate the relative usability of 

these systems [1]. Th is is referred to as “system A vs. 

system B” or “population A vs. population B” experiments 

[1]. Moreover, this model is further used to identify outlier 

tasks, which are studied to find usability shortfalls [1]. 

Outlier tasks are good candidates for a specific type of 

pinpoint analysis referred to as inter-pinpoint analysis. 

E. Pinpoint Analysis 
Software usability testing is one of the most expensive, 

tedious, and least rewarding tests to implement [1]-[5]. This 

perception is likely  to change if the usability testing is made 

less expensive and more rewarding. This requires accurate 

means through which an engineer can identify and pinpoint 

issues in the software or the interface. Th is process is called 

pinpoint analysis. Pinpoint analysis is one of two types; 

inter-pinpoint analysis deals with identifying issues with 

tasks performed  by the users in a specific system, whereas 

intra-pinpoint analysis refers to identifying issues within 

tasks in a specific system. For example, outlier tasks might 

be identified through inter-pinpoint analysis and used for 

intra-pinpoint analysis. This analysis can help graphical user 

interface (GUI) designers to make decisions about element 

placement on displays and determine the level of effort that 

is related to different widgets [1][5]. 

 

1) Inter-pinpoint Analysis 

Inter-pinpoint analysis involves detecting tasks that 

present anomalies and identifying  the reasons for these 

anomalies at a high level. The mouse is used as an example 

to illustrate inter-p inpoint analysis. In  a part icular task, the 

right mouse button helps users complete a task effectively; 

however, some of the users are unaware of it. It is possible 

that anomalies like this can be identified in inter-pinpoint 

analysis [1][5].  

Inter-pinpoint analysis helps in identifying alternative 

methods to perform a task effectively with less effort; 

however, it does not provide users with a hint of the 

alternative method. Other issues like the necessity of help 

facilit ies in software are identified  by the high level analysis 

of tasks that present anomalies.  

Figure 2 is a plot of the average     of five subjects for 

seven identical but independent tasks. The   axis shows a 

data point for each of the seven tasks, while the   axis  

shows information related to the      The curve fitted to the 

individual bars representing the average     is an 

exponential curve that actually corresponds to the 

learnability model. The high correlation value (       ) 

shows that the exponential curve well fits the data. Again, 

placing the plot of more than one systems’ test in the same 

graph can be used for a “system/population A vs. 

system/population B” comparison. In this case, task-3 that 

does not fit  well in the curve shows an anomalistic behavior 

and calls for further analysis and study [1][5].  

2) Intra-pinpoint Analysis 

Intra-pinpoint analysis is a  detailed  method for 

analyzing tasks and identifying specific is sues with the 

software. The analysis can be done manually by watching 

video recordings of users’ interactions with software and/or 

watching videos obtained from an eye-tracking device. The 

review helps in identify ing interaction issues and areas 

where the user has difficulty while performing tasks . For 

example, the analysis might reveal that most of the users go 

into a state of confusion in a specific part of a task, and are 

searching the screen to identify the best way to proceed with 

 

Figure 2. – Time-on-Task (TOT) for the use case of interest. 
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the task. This might prompt the designers to rearrange the 

interface where a snapshot identifies excessive effort. 

Clearly, the manual record ing inspection is tedious and 

potentially expensive. An alternative is to use automatic 

methods utilizing pattern recognition techniques. This 

method eliminates the need for a person to watch the entire 

video in order to identify interaction issues , thereby cutting 

down the cost and time. It  enables automatic identification 

of areas where the user has difficulty and marking these 

areas for further evaluation.  

F. Pattern Recognition  

One of the applications of pattern recognition is the 

assignment of labels to a given input value, or instance, 

according to a specific algorithm. An example of pattern 

recognition procedure is classificat ion, which attempts to 

assign each input value to one of a given set of classes.  

Pattern recognition is generally categorized  according 

to the type of learn ing procedure used to generate the output 

value. Supervised learning assumes that training data (the 

training set), consisting of a set of instances that have been 

properly manually labeled  by an expert with the correct 

output, has been provided. Next, a learn ing procedure 

generates a model that attempts to meet two, somet imes 

conflicting, ob jectives: Perform as well as possible on the 

training data, and generalize as well as possible to new data. 

On the other hand, unsupervised learning assumes the 

availability of training data that has not been hand-labeled 

and attempts to find inherent patterns that are used to 

determine the correct classificat ion value for new data 

instances [15]-[17]. 

Algorithms for pattern recognition depend on several 

parameters, such as the type of output labels, and on the 

training/learn ing methods that are supervised or 

unsupervised. Additionally, the algorithms differ in the way 

that inference is performed. For example, inference might 

be based on probability, non-parametric clustering, fuzzy  

logic, etc. [15]-[17]. The following are various relevant 

pattern recognition techniques.  

 

1) Segmentation 

Pattern recognition procedures require the definition of 

patterns (i.e ., segmentation). In this research, segments of 

user activities records serve as the basic patterns. A segment 

is defined  as the time between two consecutive 

keyboard/mouse clicks.  

 

2) Feature Extraction and Feature Selection 

Generally, the objects that are subject to classification, 

i.e., the patterns (segments in the case of this research), are 

represented through a set of measurements (say   

measurements) or characteristics referred  to as features. 

Hence, the objects are considered as vectors in an  -

dimensional space referred to as the feature space. Feature 

selection is a technique for selecting a subset of relevant 

features for build ing robust learning and inference models 

[15][16]. Feature selection algorithms attempt to reduce the 

dimensionality of the feature space and reduce the 

complexity of the recognition process by pruning out 

redundant, correlated, and irrelevant features. There are 

several feature selection algorithms, some of which are 

discussed below [16]. 

Exhaustive search is a brute-force feature selection 

method where all possible subsets of the features are 

exhaustively evaluated and the best subset is selected. The 

number of combinations of r objects from a set of n features 

is  
  

      ) 
). Th is might result in  a very  large set of 

combinations of features to examine. Hence, generally the 

exhaustive search’s computational cost is prohibitively high. 

Thus, this method is impractical if the number of features in  

the subset is large or the processing and evaluation time for 

each subset is long [11][16]. Because of the problems 

associated with exhaustive search, researchers resort to 

adopting heuristic feature selection algorithms. In this paper, 

there are five features of interest. This is a relat ively s mall 

number of features. Nevertheless, each evaluation session 

requires significant computation time. Hence, due to the 

complexity o f the evaluation process, exhaustive search is 

not a viable option. For these reasons, a heuristic approach 

is adapted. 

Heuristic search refers to selecting a feature subset by 

making an educated guess and finding out if the selection 

yields good results. Otherwise, the heuristic procedure 

examines other subsets [16]. 

 

3) Principal Component Analysis 

PCA is an unsupervised regression procedure that 

analyzes data samples, such as the set of training patterns, in 

order to identify a coordinate transformat ion that de-

correlates the data and “orders” the informat ion (or 

variance) associated with the data in  the axes of the new 

space in a monotonically  non-increasing fashion. In  general, 

as a result of the transformation, most of the informat ion 

associated with the data is concentrated in the first few 

components of the new space. This enables ignoring 

components (axes) that do not carry  significant information, 

thereby reducing the dimensionality of the space used for 

pattern representation and recognition. Each  principal 

component is a linear combination of the original variab les. 

The principal components as a whole form an orthogonal 

basis for the data space [16]. 

The distinction between PCA and feature selection is 

that following the PCA the resulting features are different 

from the original features; they do not correspond directly to 

the set of measurements, and are not easily interpretable, 

while the features left  after feature selection are simply a 

subset of the original features. 

Following the feature selection and/or PCA, 

classification is applied via different methods including 

thresholding, discriminant analysis, decision functions, and 

clustering [15]-[17]. 
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In this research, heuristic based greedy feature selection 

techniques as well as PCA are used to reduce the 

dimensionality of the data set consisting of a number of 

interrelated variables, such as the number of saccades and 

the average saccade amplitude, number of fixations and 

average fixation duration while retain ing as much as 

possible of the variat ion present in the data set. In the case 

of PCA, this is achieved by transforming the data set into 

principal components, The principal components are then 

subjected to thresholding and/or clustering algorithms to 

find segments of excessive effort. 

 

4) The Threshold Method 

The threshold method can be used to classify input data 

based on a threshold value. In this research, the threshold 

value for each feature is the  average of the values of the 

feature over the entire set of segments. All values greater 

than the threshold are p laced into the “excessive effo rt” 

group while input values below the threshold are placed into 

the “non-excessive effort” group. One problem with the 

threshold method is that it is limited to one dimensional 

data. Hence, it is only applied to individual features, or a 

combination of features, such as linear combination or a 

specific component of the principle components . Clustering 

techniques, however, are used to efficiently classify 

multidimensional data. 

 

5) Clustering 

Clustering is a multi-disciplinary, widely-used, 

unsupervised method for classifying data. It involves the 

assignment of a set of patterns into subsets (called clusters) 

so that patterns in the same cluster are similar in some 

sense. To define a cluster, it is necessary to first define a 

measure of similarity or distance, which establishes a rule 

for assigning patterns to the domain of a particular cluster 

center. Generally, and in this paper, Euclidian distance is 

used as the distance measure. In Cartesian coordinates, if 

               and                are two points in  an 

  dimensional space, the Euclidean distance between   and 

  is:  






n

i

ii pqqpD

1

2)(),(
 

The Euclidean distance is used as the measure of 

similarity; the smaller the distance, the greater the 

similarity. There are several clustering algorithms , such as 

the hierarchical, part itional, density based, and subspace 

clustering algorithms [15]-[17]. In this research, however, 

partitional algorithms are of interest. Partit ional clustering 

involves partitioning of   observations (patterns) into   

clusters where each observation belongs to the nearest 

cluster. The K-means algorithm, used in this research, is a 

partitional algorithm that attempts to min imize the mean 

square distance between patterns and cluster centers, where 

the cluster center is the centroid of the cluster patterns. The 

algorithm consists of the following steps [15]: 

Step 1 (seeding): Choose   initial cluster centers 

    )     )         ) . The seeds can be chosen in many 

different ways[13][15]. In  this research,   random centers 

serve as seeds. The set of cluster centers at the      iterat ion 

is denoted by     ), where,          . 

Step 2: At the     iterative step, distribute the patterns 
{ }  among the   cluster domains, using the following 

decision rule       ) if ‖      )‖  ‖      )‖  for 

all          ,    , where     ) denotes the set of 

patterns whose cluster center is     ). 

Step 3: Using the results of step 2, compute the new 

cluster centers, such that the sum of the squared distances 

from all points in     ) to the new cluster center is  

minimized. The new cluster centers are given by  

      )  
 

  

 ∑  
      )

 

For          , where    is the number of samples in 

    ). 

Step 4: Repeat step 2 and step 3 until there is no change 

in the cluster centers, i.e., if       )      )  for 

         , then the algorithm has converged and the 

procedure is terminated. 

The advantage of the clustering technique is its ability 

to classify excessive effort segments by considering a 

number of features such as saccade count, average saccade 

amplitude, fixation duration, and average eye path 

traversed. In addition, the K-means clustering can be used 

to identify thresholds. MATLAB, a high-level programming 

language and interactive environment for numerical 

computation, visualizat ion, and programming [19], has a 

built in function for K-means that operates exactly as 

described in this section. This function has been used in our 

project.  

III. LITERATURE REVIEW 

Usability is a highly researched topic with much 

literature available [1-6][21]-[23]. Nevertheless, extensive 

review did not reveal any research papers related to 

pinpointing usability issues  (except for our p rior work 

described in [1][9]-[12]. There are some papers on effort-

based usability evaluation that are discussed below.  

Tamir et al. concluded that effort and usability are 

related but they did not address pinpointing issues  [5]. 

Mueller et al. use effort metrics to evaluate software 

usability [6]. Their method allows comparison of two or 

more implementations of the same application, but does not 

identify where exact ly the problem lies. Hvannberg et al. 

described the design and test of a defect classification 

scheme that extracts informat ion from usability problem 

[20], but is limited since it  does not define the causes 

underlying usability problems. Nakamich i et  al. investigate 

the relations between quantitative data, viewing behavior of 
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users, and web usability evaluation by subjects  [21]. They 

conclude that the moving speed of the gazing points is 

effective in  detecting low usability. Makoto et al. use a 

Web-Tracer to evaluate web usability [22]. Web-Tracer is 

an integrated environment for web usability testing that 

collects the operation log of users on the Web pages . 

However, the reasons for low usability are not identified 

using this approach. Our paper thoroughly addresses and 

resolves all of the issues listed above.  

IV. EXPERIMENTAL SETUP 

A. Manual Input Devices 

The subject performs the tasks on a computer using a 

standard keyboard and a mouse as input devices. An event 
driven logging program is used to obtain details of mouse 

and keystroke activities from the operating system event 

queue. The program saves each event along with a time 
stamp into a file. The logged events are: mickeys (mouse 

pixels), keystrokes, mouse button clicks, mouse wheel 
rolling, and mouse wheel clicks. 

The eye tracker used for the experiments is Tobii X120 

Eye Tracker with Tobii Studio version 2.2.5 [23] as well as 

“in-house” developed software fo r estimat ing user’s gaze. 

The Tobii device is a standalone eye tracking unit designed 

for eye tracking studies. It provides raw eye gaze positional 

data and is able to log mouse and keyboard events. The data 

collected by the eye tracker is logged into a file, which is 

referred to as a log file. The eye tracker also records a video 

version of the user interaction session and is referred to as a 

video file, which  is very helpful in  verifying experiment 

results. In addition, the Tobii X120 eye tracker can log 

mouse/keyboard clicks. The combination of the log file and 

video file are referred to in this paper as the data file.  

B. Software Environment for Analysis 

A software program developed in MATLAB is used to 

perform data analysis of the experiments reported in this 

paper [19]. In addition, the program is responsible for 

features collection and extraction. 

C. Test Procedure 

Experiments conducted to evaluate the capability of 

pattern recognition techniques to identify software usability 

issues are done using the steps depicted in Figure 3. As the 

figure shows, the main steps are: data gathering, 

segmentation, data reduction, feature extract ion and 

selection. These actions are followed by several different 

classification techniques. The sequence of actions depicted 

in the figure is further described in the next three 

subsections: data gathering, data reduction, and 

identification of excessive effort segments. 

1) Data Gathering 

A group of five users executes a set of seven identical 

independent tasks, which emerge from a single scenario. 

Throughout the interaction process, certain user activities 

such as eye movement,    , keyboard, and mouse activities 

are logged using the eye-tracking  device. According to the 

learnability-based usability model, the point at which the 

user’s effort reaches the acceptable level is called the 

learning point. Based on this model, and inspection of the 

learning curve of the subjects, it is assumed that the users’ 

effort reaches the acceptable level by the time they perform 

task-5. Hence, in this paper, task-5 of each subject is used 

for conducting the pinpoint analysis experiments.  

2) Data Reduction 

Phase-2 includes activities such as segmentation, data 

reduction, and feature extraction. The data logged 

throughout the user interaction session is used for automatic 

event based segmentation where the events are consecutive 

keyboard/mouse clicks. Metrics such as:      

(a) segment duration (for event based  

      segmentation),  

(b) the average fixation duration,  

(c) the average saccade amplitude,  

(d) the number of fixations,  

(e) the number of saccades, and 

(h) the average eye path traversed  

are inferred for each segment. These metrics are used to 

generate a feature set, which is obtained by applying data 

reduction programs to the data file . The features data is 

calculated for all features within each segment and this data 

is used to identify excessive effort segments.  

 

2) Identification of Excessive Effort Segments 

Pattern recognition techniques are applied to the feature 

set obtained from the data reduction process to identify 

segments that exh ibit excessive effort. The techniques used 

and applied on the feature set are thresholding, K-means 

clustering, and PCA. 
Thresholding - a threshold value is calculated for each 

feature in the feature set. For a given feature, all the 

segments that have a feature value that is less than the 

threshold value are classified as non-excessive effort 

segments and segments with a feature values above the 

threshold are considered as excessive effort segments.  In the 

current research, the threshold is the average value of the 

feature in the segment.   
K-means clustering - the segments are grouped into 

clusters. Based on the value of cluster centers, the cluster is 

classified as excessive effort cluster or non-excessive effort 

cluster.  
PCA - the first, the second, and the third principal 

components of the feature data are obtained. The threshold 

classification, where the threshold is the average value of 

the first princip le component computed over the set of 

features extracted for the current segment, is applied on the 

first principal component and K-means clustering is applied 

on the first, second, and third components to classify the 

segments into excessive effort or non-excessive effort 

segments.  

 By the end of phase-3, the software program identifies 

the excessive effort segments. To verify the results, the video  
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Figure 3. Experiment procedure 

 

file is carefully watched segment by segment and classified 

into excessive or non-excessive effort segments manually. 

The manual analysis results are used as ground truth and 

serve as the input for error analysis that further supports the 

reliability of our results.  The manual classification process 

of the video file is described in the following section. 

D. Manual Classification 

The manual classification process involves automatic 

event based segmentation on the entire video file. Each 

segment is carefully watched and classified into the 

following categories: 
Idle behavior segments:  Idle behavior is due to system 

response. Waiting for a progress bar to complete or wait ing 

for a page to load are examples of idle behavior. Segments 

with such behaviors are classified as idle behavior segments. 
Excessive effort segments:  Segments without any 

useful user actions are classified as excessive effort 

segments. A subject looking at  different components on an 

interface instead of the actual target component, which help 

in accomplishing the task, is an example of excessive effort 

behavior. Such behavior can be eliminated without 

sacrificing task completion quality. 

Non-Excessive effort segments: Segments with useful 

action that result in task completion are classified as non-

excessive segments. 
Off screen behavior segments:  Intervals of t ime where 

the subject’s view is not within the screen for more than one 

second, with no meaningful user action, are classified  as off 

screen behavior segments. 

Attention segments: Segments with frequent on screen 

behavior, e.g., segments with very frequent mouse/keyboard 

clicks are classified as attention segments. 

Once the video file is classified into one of the above 

five segment categories, the manual classificat ion results are 

compared with the automatic classificat ion results. 

Nevertheless, idle behavior, off screen behavior, and 

attention segments can be accurately identified  by the 

software tool and are discarded from further analysis  in this 

work.  In this sense, our results are conservative as we so 

not measure the additional time saving obtained via the 

identification these types of segments. 

E. Result Verification 

The number of Excessive (E) vs. Excessive, Excessive 

vs. Non-Excessive (NE), NE vs. E and NE vs. NE segments, 

Clustering 
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as well as related error rates , are calculated for each  result 

file and graphs are plotted to visualize the results and enable 

comparing the performance of d ifferent methods and 

features. Classifying NE segments as E segments is regarded 

as false positive or type-I error.  

It is assumed that all the segments classified as 

Excessive Effort Segments are due for an additional process 

of manual evaluation. Hence, in the case of type-I error, the 

software program is highlighting ext ra segments for further 

review but is not missing segments that need attention.  

On a similar note, segments that show excessive effort  

per manual classification but are identified as non-excessive 

effort segments by the software program are regarded as 

false negative or type-II error segments. These segments 

require extra attention as the software program has 

misidentified segments that require the stage of manual 

inspection. The total time of segments classified as 

excessive by the software program is referred as the 

inspection time. It is the sum of the time interval o f each of 

the excessive effort segments automatically identified by the 

program. In this research, type-II errors and inspection time 

are considered as the most important factors for analyzing 

experiment results. 

V. EXPERIMENTS 

The automatic part o f the p rocess is used to analyze the 

five data files by apply ing the different pattern recognition 

techniques discussed. Each of the data files is a log file (log 

of effort metrics expanded) and an eye tracking video file  

that contains the entire data collected by the eye tracker 

throughout each experiment. The fo llowing is a list of the 

classification experiments performed: 1) Applying the 

threshold method,    2) Applying heuristic feature selection 

and K-means clustering, 3) Using PCA, and 4) Applying K-

means clustering on principal components. 

Each experiment procedure is discussed in detail in the 

following sections. 

A. Experiment 1: Applying the threshold method 

In this experiment, automatic event based segmentation 

is applied to the eye tracking video and data file generated 

by the eye tracker. Next, a feature set is generated for the 

data file . All the segments are classified into excessive or 

non-excessive effort segments by the software program, 

which applies the threshold method on the following 

features:  1) number of fixations,    2) average fixation 

duration, 3) number of saccades, 4) average saccade 

amplitude, and 5) average eye path traversed.  

Figure  4 presents the sequence of steps for identify ing 

excessive effort segments using the threshold method.  

The steps described in Figure 4 are used for identifying 

the excessive and non-excessive effort segments. Next, the 

video file  segments are manually classified into excessive or 

non-excessive effort segments based on the specifications 

described above. The excessive effort segments identified 

through the software program and manual process are 

verified using the five data files and their corresponding 

video files. Th is step of manual classificat ion and result 

verification is done in each of the experiments described in 

this section. 

 

B. Experiment-2: Applying heuristic feature selection and 

K-means clustering 

The evaluation process of a subset requires a long 

execution time . Hence, evaluating all the possible subsets of 

the feature set is prohibitively t ime consuming, we have 

adopted a heuristic greedy-based feature selection method. 

The following subsets have been selected: 1) Number of 

fixations, 2) Number of saccades,   3) Average eye path 

traversed,   4) Number o f fixations, number of saccades, and 

eye path traversed, and  5) Number of fixations, number of 

saccades, eye path traversed, average fixation duration and 

average saccade amplitude. 
Figure 5 illustrates the sequence of steps followed  in  

identifying excessive effort segments using exhaustive 

feature selection and K-means clustering. 

 

C. Experiment-3: Using PCA. 

In this experiment, the feature set is transformed 

into principal components by a MATLAB function. Only 

the first principal component is considered, as it carries the 

most significant information related to the feature set. The 

first principal component is subjected to the threshold 

method for identifying segments exhib iting excessive effort 

and non-excessive effort. Figure 6 depicts the sequence of 

steps applied for identifying excessive effort, the method 

 

Figure 4. Sequence of steps for identifying excessive effort segments using the threshold method 
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for identifying segments exh ibiting  excessive effort, and 

non-excessive effort. 

D. Experiment-4: Applying K-means clustering on 

principal components 

In this experiment, K-means clustering is applied  to 

different combinations of principal components for 

identifying segments exhib iting excessive effort and non-

excessive effort. The following constitute the feature set for 

this experiment: 1) 1
st

 principal component, 2) 1
st

 and 2
nd

 

principal components, and 3) 1
st

, 2
nd

, and 3
rd

 principal 

components. 

Figure 7 includes a diagram of the sequence of steps 

followed for identifying excessive effort segments using the 

K-means clustering on principal components.  

VI. RESULTS. 

In this section, the results obtained from the 

experiments are discussed. The results of each data file in  

the experiments are given in [11]. A sample of these results 

is presented here. For clarity, the notation used for the 

feature values in the graphs is presented below:  

1) # Fix – denotes the number of fixations,  

2) Avg. Fix Dur. – denotes the average    

    fixation duration,  

3) # Sacc – denotes the number of saccades,  

4) Sacc Amp. – denotes the average saccade   

    amplitude,  

5) Eye Path - denotes the average eye path traversed,  
6) FPC - denotes the first principal component: 

A. Identifying excessive effort segments using the 

threshold method 

In this section, we show the results obtained with data 

file-1. Results with other files are availab le in [11]. Section 

VII shows and analyzes the average results for all the files. 

The video file corresponding to data file-1 is 6.09 minutes in 

length. Figure 8 shows the results  of an experiment using 

the threshold method on data file-1. 

When the graph in Figure 8 is ext rapolated and as seen 

from the E vs. NE bars, the feature value, number of 

 
 

Figure 7. Sequence of steps for identifying excessive effort through K-means clustering on the 1st principal component. 
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Figure 6. Sequence of steps for identifying excessive effort segments using the threshold method on the first principal component. 

 

Figure 5. Sequence of steps for identifying excessive effort segments using the K-means clustering. 
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fixations, demonstrates a small percentage of E  vs. NE  

segments. This shows that the number of fixations has the 

least number of type-II errors. Number of saccades and 

average eye path traversed follows the number of fixations 

in terms of type-II errors.  

Figure 9 shows the total time of segments classified as 

excessive by the software program and the manual process 

after the threshold method is applied on each of the 

following features:        1) number o f fixations, 2) average 

fixation duration, 3) number of saccades, 4) average 

saccade amplitude, and 5) average eye path traversed.  

The light black bars in Figure 9 represent the total video 

time recorded by the eye tracker. Manual classification of 

the video file , depicted by the dark black bars, shows 1.71 

minutes of excessive effort. The average fixation duration 

and average saccade amplitude show a relatively low value 

for time of segments classified as excessive by the software 

program when compared with the total video time. This is 

depicted by the bright bars present in the figure. From 

Figure 9, it is observed that the percentage of type-II errors 

is 15.05% for average fixation duration and 12.9% for 

average saccade amplitude. However, the feature value with 

a reasonable type-II errors and lower percentage of time of  

segments classified as excessive is average saccade 

amplitude. 

It should be noted that we are considering a 15% e rror 

of type-II as acceptable. This is explained in section VII. 

B. Identifying excessive effort segments using heuristic 

feature selection and K-means clustering 

In this section, we show the results obtained with data 

file-2. Results with other files are available in [11]. The 

 

Figure 8. Percent of segments of each type (file-1, experiment-1). 
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Figure 9. Total time of excessive effort segments (file-1, experiment-1). 
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video file corresponding to data file-2 is 3.27 minutes in 

length. Figure  10 shows the results of an experiment using 

the K-means clustering on data file-2.  

When the graph in Figure 10 is ext rapolated and as seen 

from the E vs. NE bars, feature subset-1 (defined above) 

demonstrates a small percentage of E  vs. NE  segments. This 

shows that the subset-1 has the least number of type-II 

errors. Subset-2 follows subset-1 in terms of type-II errors. 

Figure 11 shows the total time of segments classified as 

excessive by the software program and the manual process 

for the above defined five feature subsets.  

The light dark bars in Figure 11 represent the total time 

of video recorded by the eye t racker. Manual classification 

of the video file, depicted by the brightest bars, shows 0.36 

minutes of excessive effort. Subset-3 shows a relatively low 

value for time of segments classified as excessive by the 

software program when compared with the total video time.  

This is depicted by the dark bars in the graph. From Figure  

11 it is observed that the percentage of type-II erro rs is 8.5% 

for subset-3. Therefore, the feature value with  an acceptable 

error of type-II and lower percentage of time of segments 

classified as excessive is subset-3. 

C. Identifying excessive effort segments using PCA 

The results of all the data files are consolidated into a 

single graph. Figure 12 shows the percentage of segments  of 

each type when applying the threshold method on the first 

principal component for all five data files. 

From the graph in Figure 12, it is clear that using the 

threshold method on the first  principal components 

produces a small percentage of E vs. NE segments. This 

means a lower type-II of errors as seen from the respective 

bars in the graph.  

 

Figure 11. Total time of excessive effort segments (file 2, experiment-2). 

 

Figure 10. Percent of segments of each type (file 2, experiment-2). 
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 Figure 13 shows the total time of segments classified 

as excessive by the software program and the manual 

process for the first principal component. The results of all 

five data files are plotted in a single graph. 

The “light dark” bars in Figure 13 represent the total 

video time recorded by the eye tracker for each of the five 

data files. Manual classification of the video files is depicted 

by the dark bars. The bright bars represent the total time of 

video classified as excessive by the software program. The 

percentage of time of segments classified as excessive is 

relatively high when applying thresholding on the first 

principal component. 

D. Identifying excessive effort segments using K-means 

clustering on principal components 

In this section, we show the results obtained with data 

file 3. Results with other files are available in [11]. The 

video file corresponding to data file 3 is 3.8 minutes in 

length. Figure 14 shows the percentage of E vs. E, E vs. NE, 

NE vs. NE, and NE vs. E segments for the features 

mentioned in the experiment description. 

From the graph in Figure 14, it is clear that all three  

features have same percentage of E vs. E, E vs. NE, NE vs. 

NE and NE vs. E  segments. This signifies that most of the 

informat ion is concentrated in the first principal component 

 

Figure 12. Percent of segments of each type (experiment-3). 

 

Figure 13. Total time of segments classified as excessive (Experiment-3). 
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and all the feature values have the same percentage of type-I 

and type-II errors. 

 Figure 15 shows the total time of segments classified 

as excessive by the software program and the manual 

process for the three features. 

The “light dark” bars in Figure 15 represent the total 

video time recorded by the eye tracker. Manual 

classification of the video file, depicted by the dark bars, 

shows 0.92 minutes of excessive effort. The automatic 

classification of the video file for all three features shows 

1.95 minutes of excessive effort time, which is depicted by 

the light bars in  Figure 15. A ll the features have an 

acceptable value of type-II errors at 8.57%. 

The entire set of experiments including all the data files 

is detailed in [11]. 

VII. RESULT EVALUATION 

In this section, we evaluate and discuss the results of 

the experiments conducted in this work. Our criteria for 

success are based on 1) the number of type-II errors and   2) 

the minimal time to investigate the usability issues with an 

acceptable level of type-II errors. Based on discussions with 

several engineers in the company sponsoring this work and 

other companies, we are assuming that 15% of error of type-

II is the upper bound for being considered as acceptable. 

This is also consistent with a two-step approach where after 

a first pinpoint analysis stage, which allows for h igh rate of 

errors but provides significant reduction in evaluation t ime, 

the errors identified  are fixed, leading to a more rigorous 

pinpoint analysis with lower erro r bound. The results are 

evaluated based on the performance of each pattern 

recognition method on individual features. In addition, the 

 

Figure 15. Total time of excessive effort segments (file 3, experiment-4). 
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Figure 14. Graph of percentage of segments of each type (file 3, experiment-4). 
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overall performance of each pattern recognition method is 

evaluated.  

Tables I to IV summarize the results of the experiments. 

An additional set of tables, which contains the entire results , 

can be found in [11]. 

A. Applying the threshold method 

The following observations are derived from Table I: 

1. The results of Table I show that the threshold 

method on the feature value, number of fixations, 

gives good results in terms of type-II errors but, the 

average inspection time is relat ively h igh when 

compared to other feature values. The average 

value of type-II erro rs for the number of fixations is 

3.3%. The average saccade amplitude and the 

average eye path traversed follow the number of 

fixations in terms of type-II errors. 

2. A threshold on the average fixation duration 

performs well in terms of min imal inspection time 

with an acceptable value of 9.8% for type-II errors.  

3. A feature value with minimum number of total 

errors is average eye path traversed. This feature 

value is a good choice when inspection time is not 

a crucial factor. 

4. The inspection time is not completely correlated to 

type-I errors. In the case of average fixation 

duration, the inspection time is 1.67 minutes with 

29.4% of type-I errors. On the other hand, the 

average saccade amplitude with almost the same 

percentage of type-I errors has higher inspection 

time than average fixation duration.  

5. The values of the average number of excessive 

effort segments for all features are in close 

proximity to each other. However, the percentage 

of type-I and type-II errors differs invariably. 

Indicating that the segments classified as excessive 

are different for each feature value. 

6. Despite the fact that the percentages of total errors 

for each feature value are in close proximity to 

each other, the inspection time varies. This 

delineates that the segments classified as excessive 

are different for each  feature value. 

B. Applying heuristic feature selection and K-means 

clustering. 

The following observations are derived from Table II: 

1. The results of Table II show that the K-means 

clustering on the feature subset - number of 

fixations, number of saccades, average eye path 

traversed, average fixation duration, and average 

saccade amplitude, gives good results in terms of 

type-II errors with an average value of 5.4%. 

TABLE I. AVERAGE VALUES OF EXPERIMENT -1 RESULTS. 

 
 
 
 

Feature value 

avg. # of 
excessive effort 

segments 

avg. total no. 

of segments 

avg. % type- I 

errors 

avg. % 
type- 

II 

errors 

avg. % of 

total errors 

avg. 
Inspection 

time 

(minutes) 

avg. Inspection 
time as a % of total 

time 

# Fix 17.2 95 28.4 3.3 31.7 2.7 62.1 

Avg. Fix Dur. 18.2 95 29.5 9.9 39.4 1.6 37.4 

#Sacc 32 95 21.8 10.5 32.2 2.9 64.1 

Sacc Amp. 17.6 95 29.1 4.6 33.7 2.5 56.4 

Eye Path 17.8 95 25.7 5.1 30.8 2.6 57.7 

 

TABLE II . AVERAGE VALUES OF EXPERIMENT -2 RESULTS 

Feature value  

avg. # of 
excessive 

effort 
segments 

avg. total 
no. of 

segments 

avg. % 
type -I 
errors 

avg. % 
type -II 
errors 

avg. % of total 
errors 

avg. 
Inspection 

time (minutes) 
avg. Inspection time 
as a % of total time  

#fix 29.1 95 27.2 6.6 33.9 2.4 56.2 

#sacc 23.5 95 17.8 8.9 26.7 2.0 45.1 

eye path 19.7 95 18.0 10.1 28.1 1.6 37.5 

#fix, #sacc, eye 

path 
23.2 95 18.3 8.6 26.9 1.9 44.5 

#fix, #sacc, eye 

path, avg. fix dur., 
avg. sacc amp. 

29.2 95 32.6 5.4 38.0 2.5 56.3 

 

59

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



However, the average inspection time is  relatively  

high when compared to other feature values. The 

number of fixations follows the above identified 

feature value in terms of type-II errors.  

2. Clustering using the average eye path traversed 

performs well in terms of min imal inspection time 

with an acceptable value of 10.1% for type-II 

errors.  

3. A feature value with minimum number of total 

errors is the number of fixations. This feature value 

is a good choice when the inspection time is not a 

crucial factor. 

4. The average number of excessive effort segments 

for the number of fixations and the feature subset 

with the following features: number of saccades, 

average eye path traversed, average fixation 

duration, average saccade amplitude are the same. 

However, the inspection times vary. Indicating that 

the segments classified as excessive are different 

for each feature value. 

5. Unlike the results of the threshold method, the 

percentages of total errors for each feature value 

vary by a wide marg in when applying the K-means 

clustering on different feature subsets. 

C. Using PCA 

The results summarized in Table III are compared with 

the results obtained from Experiment-1 to compare the 

performance of the threshold method on the first principal 

component with the performance of thresholding on all the 

other features including the number of fixations, the average 

fixation duration, etc. Experiment-1 result evaluation shows 

that the feature value, number of fixations, gives good 

results in terms of type-II errors. The average percentage of 

type-II errors for the number o f fixations is 3.3%, whereas it  

is 4.1% for the first principal component. Initially, the 

average saccade amplitude and the average eye path 

traversed succeeded the number of fixations in  terms of 

performance. However, the new results place the threshold 

on the first principal component right after the number of 

fixations with respect to type-II errors.  

The inspection times for the first principal component 

and for the average fixation duration are 2.7 and 1.6 

minutes, respectively. A threshold on the average fixation 

duration performs better than the first principal component 

in terms of lower inspection time and an acceptable 9.8% 

for type-II errors.  

D.  Applying K-means clustering on principal components. 

Table IV shows the average values of all the features 

used in Experiment-4 over the five data files. The average 

type-II erro r is very high when using the K-means on the 

principal components. The average inspection time is only 

1.96%. When taking type-II errors also into consideration, 

this method is not suitable to identify excessive effort 

segments. 

Of all the pattern recognition methods used, a threshold 

on number of fixations yields the best results in terms of 

type-II errors with a reduction of more than 40% in manual 

inspection time and is followed by a threshold on the first 

principal component. The K-means clustering on the feature 

subset with the features: 1) number of fixations, 2) number 

of saccades, 3) average saccade amplitude, 4) average 

fixation duration, and 5) average eye path traversed ranks 

third.  

The K-means clustering on the number of saccades 

yields the best results and precedes the threshold method on 

average fixation duration in performance.

.

TABLE III. AVERAGE VALUES OF EXPERIMENT -3 RESULTS 

Feature value  
avg. # of excessive effort 

segments 

avg. total 

no. of 
segments 

avg. % 

type -I 
errors 

avg. % 

type- II 
errors 

avg. % of 

total 
errors 

avg. 
Inspection 

time 
(minutes) 

avg. Inspection 

time as a % of 
total time  

1st principal 
components 

16.6 95 27.5 4.1 31.6 2.7 61.2 

TABLE IV. AVERAGE VALUES OF EXPERIMENT -4 RESULTS 

Feature value  
avg. # of excessive 
effort segments 

avg. total no. 
of segments 

avg. % 
type- I 
errors 

avg. % 
type- II 
errors 

avg. % of 
total errors 

avg. 

Inspection 
time 

(minutes) 
avg. Inspection time 
as a % of total time  

1st, 2nd & 3rd 
principal 

components 

28.6 95 24.4 12.6 37.0 2.0 43.6 

. 
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VIII. CONCLUSIONS AND FUTURE RESEARCH 

The framework presented in this research enables 

software developers to efficiently identify usability issues 

and deficiencies in numerous types of applications thereby 

optimizing  the time spent on software-usability  testing and 

validation.  

Excessive effort segments, which typically relate to 

usability issues, are identified by applying pattern 

recognition techniques, such as K-means clustering 

algorithm, thresholding, PCA, and feature selection. The 

analysis of the experiments conducted in this paper shows 

that the time taken for software usability testing can be 

reduced by 40% or more. 

In this research, the time between two consecutive 

keyboard/mouse clicks by a user is considered as a segment 

and serves as the basic pattern for the pattern recognition 

techniques. Equal time slicing of user’s software interaction 

session can be used instead and the performance results can 

be analyzed and compared with the results from this 

research.  

Further refinement of pattern recognition techniques can 

be pursued to min imize errors and inspection time. Also, 

more focus can be placed on the criteria for manual 

classification of v ideo segments thus allowing excessive 

effort  segments to be identified more accurately  in  the first 

place.  

Another direction for future research is to automate 

some of the manual steps in this process. This can include 

software that automatically logs the data from users' 

interaction session, manipulates the data, and without 

human intervention, identifies the excessive effort segments. 

This can significantly reduce time taken fo r the usability 

testing. 

In this work, we have concentrated on pattern 

recognition techniques that do not rely on human 

intelligence. Hence, the results are generated using non-

supervised learning procedures. A  surrogate approach can 

use supervised learning procedures. This involves 

conducting experiments using training data sets to manually 

arrive at an archetype that can be applied on any data set to 

generate the output. 

Finally, we plan to investigate the utility of dynamic 

UI, which adapts to the user experience. For example, 

widget placement might change based on usage patterns. 

Pinpoint analysis is expected to be a crucial tool for 

evaluating the effectiveness of the dynamic interface  

approach for identifying related deficiencies.  
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