
A Text Retrieval Approach to Recover Links among E-Mails and Source Code Classes

Giuseppe Scanniello and Licio Mazzeo
Universitá della Basilicata, Macchia Romana,
Viale Dell’Ateneo, 85100, Potenza, ITALY,

Email: giuseppe.scanniello@unibas.it, licio.mazzeo@gmail.com

Abstract—During software development and evolution, the com-
munication among stakeholders is one of the most important
activities. Stakeholders communicate to discuss various topics,
ranging from low-level concerns (e.g., refactoring) to high-level
resolutions (e.g., design rationale). To support such a commu-
nication, e-mails are widely used in both commercial and open
source software projects. Although several approaches have been
proposed to recover links among software artifacts, very few are
concerned with e-mails. Recovering links between e-mails and
software artifacts discussed in these e-mails is a non trivial task.
The main issue is related to the nature of the communication
that is scarcely structured and mostly informal. Many of the
proposed approaches are based on text search or text retrieval
and reformulate the link recovery as a document retrieval
problem. We refine and improve such solutions by leveraging
the parts of which an e-mail is composed of: header, current
message, and previous messages. The relevance of these parts is
weighted by a probabilistic approach based on text retrieval. The
results of an empirical study conducted on a public benchmark
indicate that the new approach in many cases outperforms the
baselines: text retrieval and lightweight text search approaches.
This paper is built on [1].

Keywords-Information retrieval, software maintenance; traceabil-
ity recovery; BM25F

I. INTRODUCTION

SOFTWARE maintenance is one of the most expensive,
time consuming, and challenging phase of the development

process. In contrast with software development, that typically
can last for 1-2 years, the maintenance phase typically lasts
for many years. It has been estimated that the costs needed to
perform maintenance operations range from 85% to 90% of
the total cost of a software project [2]. This is due to the fact
that maintenance starts after the delivery of the first version of
a system and lasts until that system is dismissed [3].

A software system is continuously changed and enhanced
during the maintenance phase. Maintenance operations are
carried out for several reasons [4]. Corrective, perfective, and
adaptive are typical examples [5]. Independently from the kind
of maintenance operation, the greater part of the cost and
effort to its execution is due to the comprehension of source
code [6]. Pfleeger and Atlee [7] estimated that up to 60%
of software maintenance is spent on the comprehension of
source code. There are several reasons that make the source
code comprehension even more costly and complex and range
from the size of a subject software to its overall quality.
Other reasons are related to the knowledge of a subject system

that is implicitly expressed in software artifacts (i.e., models,
documentation, source code, e-mails, and so on) [8]. This
knowledge is very difficult to retrieve and it is very often
enclosed in non-source artifacts [9].

Among non-source artifacts, free-form natural language arti-
facts (e.g., documentation, wikis, forums, e-mails) are intended
to be read by stakeholders with different experience and
knowledge (e.g., managers, developers, testers, and end-users).
This kind of artifacts often implicitly or explicitly references
to other forms of artifacts, such as source code [10]. Linking
e-mails and source code could improve the comprehension of
a system and could help to understand the justification behind
decisions taken during design and development. Then, links
between e-mails and source code could be worthwhile within
the entire software lifecycle and in software maintenance, in
particular [8], [11], [12]. However, linking free-form natural
language artifacts to source code is a critical task [9], [13].

Although several approaches have been proposed to recover
links among software artifacts (e.g., [13], [14], [15], [16]),
a very few are concerned with e-mails [17], [18]. These
approaches are based on text search or text retrieval and
reformulate the problem of recovering links among e-mails
and source code artifacts as a document retrieval problem. We
refine and improve such solutions by leveraging the parts of
which an e-mail is composed of, namely the header, the current
message (body, from here on), and the sentences from previous
messages (quote in the following). The relevance of these parts
has been weighted by means of a text retrieval probabilistic
model. In particular, we implemented our solution exploiting
the BM25F model [19], [20]. To assess the validity of our
proposal, we have conducted an empirical study on the public
benchmark presented by Bacchelli et al. [17].

The work presented here is based on the paper presented
in [1]. With respect to this paper, we provide hereafter the
following new contributions:

1) The approach has been better described;
2) Related work has been discussed and differences with

respect to our approach have been highlighted;
3) An extended data analysis to strengthen the achieved

results has been provided;
4) An extended discussion of results and of their practical

implications has been given;
5) A prototype of a supporting tool for our approach has

been described.
Structure of the paper. In Section II, we discuss related

work and motivations, while we illustrate our approach in

318

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Section III. In Section IV, we present the design of the
empirical evaluation, while we discuss the achieved results
and possible threats to validity in Section V. Final remarks
and future work conclude the paper.

II. RELATED WORK AND MOTIVATION

Many standards include traceability as a recommended
or legally required activity for software development (e.g.,
IEEE Std. 830-1998 [21]). Unfortunately, in projects where
traceability management is not initially a systematic part of the
development process, it is very difficult to establish traceability
links among software artifacts [22]. Automated traceability
recovery methods deal with these problems reducing the effort
to construct and maintain traceability links among software ar-
tifacts (e.g., requirements and test cases) and source code [23].

In the following, we first discuss methods that use infor-
mation retrieval (IR) techniques to retrieve links among any
kind of software artifact and then we focus on approaches and
methods to recover links between e-mails and source code.

A. IR-Based Traceability Recovery
IR-based traceability recovery approaches use IR techniques

to compare a set of source artifacts with a set of target artifacts.
All the possible pairs of target and source artifacts are ranked
with respect to their textual/lexical similarity that is computed
using an IR method. The pairs of software artifacts and their
similarity form a ranked list, which is in turn analyzed by
a software engineer to establish correct and false recovered
traceability links. Different IR methods can be used to compute
the similarity between two artifacts. The widely used methods
are: vector space model (VSM) [24] and latent semantic
indexing (LSI) [25]. For example, Antoniol et al. [16] apply
VSM and a probabilistic model to trace source code onto
software documentation. The first model calculates the cosine
similarity of the angle between the vectors corresponding to the
source and target artifacts. The probabilistic model computes
a ranking score based on the probability that a document is
related to a specific source code component. It is worth noting
that this model is not a text retrieval probabilistic model. The
authors compare these models on two small software systems.
The obtained results show that the two models exhibit similar
accuracy. This study is the first one in which IR methods are
applied to the problem of recovering traceability links between
software artifacts.

To recover traceability links between source code and docu-
mentation, Marcus and Maletic [26] use an extension of VSM,
namely LSI. The validity of their approach is assessed on the
same software as those in [16]. The results indicate that LSI
performs at least as well as the probabilistic model and VSM
and in some cases outperforms them.

To compute the similarity between software artifacts, Abadi
et al. [27] propose the use of the Jensen-Shannon (JS)
Divergence. The authors perform a comparison among IR
methods (including VSM, LSI, and JS). The experimental
results indicate that VSM and JS provide best results.

Capobianco et al. [28] propose an IR method based on
numerical analysis principles. Artifacts are represented with

interpolation curves. The distance between pairs of interpo-
lation curves indicates the similarity between the artifacts
represented with these curves. The authors also report an
empirical evaluation, whose results suggest that their method
outperforms VSM, LSI, and JS.

A work complementary to the ones highlighted above is pre-
sented by De Luciaet al. [29]. The authors investigate whether
the use of smoothing filters improves the performances of
existing traceability recovery techniques based on IR methods.
The results suggest that the use of these filters significantly
improves the performances of VSM and LSI.

De Lucia et al. [30] analyze incremental methods for trace-
ability recovery, namely relevance feedbacks. An empirical
evaluation is conducted to assess strengths and limitations of
relevance feedbacks within a traceability recovery process. The
achieved results suggest that even using feedbacks a part of
correct links are not retrieved. However, feedbacks mostly
improve retrieval performances and can be used within an
incremental traceability recovery process.

An approach that combines different orthogonal IR tech-
niques is proposed by Gethers et al. et al. [31]. The used
techniques are those that produce dissimilar and complemen-
tary results: VSM, JS, and Relational Topic Modeling (RTM).
An empirical study on six software systems is presented to
assess whether the new approach outperforms stand-alone IR
methods as well as any other combination of non-orthogonal
methods. The results suggest that the retrieval performances
are statistically better when using the new proposed method.

B. Recovery Links between E-Mails and Source Code
Although several approaches have been proposed to recover

links among software artifacts (e.g., [13], [15], [16]), only a
few are concerned with e-mails [17], [18], [1]. In general, these
approaches can be classified as: rule-based and IR-based.

Rule-based. All these approaches are based on text search
or text retrieval and reformulate this problem as a document
retrieval problem. To detect latent links between emails and
source code entities hand-code specific rules (i.e., sets of
regular expressions) have to be specified. These rules are in
turn triggered whenever they match with a portion of email
text (e.g., [10]). For example, if the identifiers in the source
code repository follows the CamelCase naming convention,
we basically know that each identifier is either a single or
a compound name (i.e., a sequence of unseparated single
names). In the case of class names, all the single names
start with a capital letter. Therefore, we can define a regular
expression so that every time we find a string in an e-mail of
the form Foo, FooBar, FooBarXYZ, etc., we can mark it
as a link between the source code and the e-mail. This kind
of approach is computationally lightweight for small/medium
corpora (e.g., repositories with a small number of e-mails)
and easy to implement. Conversely, they lack of flexibility
since they are strictly programming-language-dependent. Even
more, they do not provide any ranking score associated with
the discovered link (i.e., information about a link is binary: a
link is either present or not). For example, Bacchelli et al. [18]
define and evaluate various lightweight methods for recovering

319

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

links between source code and e-mails on their benchmark.
Characteristics and naming conventions of source code were
exploited. The results suggest that lightweight methods can be
successfully used.

IR-based. This kind of approaches (e.g., [1]) reformulate the
problem as a particular instance of the more general document
retrieval problem. They use IR techniques to compare a set
of source artifacts (software entities) with a set of target
artifacts (e-mails). Each source code entity (e.g., the class
name) is used as the query to retrieve the set of most relevant
e-mails. Candidate links are then devised by inspecting the
ranked list of retrieved e-mails. Relevance between any pair
of source and target artifacts (i.e., source code entity and email)
can be determined by their textual/lexical similarity, which is
computed by using a specific IR model in conjunction with a
particular term-weighting score (e.g., cosine similarity using tf-
idf vector space model) [24]. The main advantage of IR-based
approaches is that they are more flexible and associate each
discovered link with a ranking score. Nevertheless, the queries
for retrieving relevant emails mostly consist of the strings iden-
tifying package and/or class names, which are parsed directly
from source code. This leads to “semi-structured” queries,
which are used to retrieve almost “unstructured” documents
(e-mails), organized in a “quasi-unstructured” way. Inverted
indices built on top of free-text documents have proven to work
good when used to answer free-text queries as well (e.g., [13]).
Therefore, using keywords derived from structured source code
that highly likely do not appear in the email index may lead
to poor retrieval results. For example, Bacchelli et al. [17]
evaluate and compare lightweight methods based on regular
expressions with LSI and VSM. This comparison is based on
their benchmark. The effectiveness of the lightweight methods
and LSI and VSM is evaluated on the basis of the measures:
precision, recall, and F-measure. Differently from [27], the
authors observe that LSI outperforms VSM on Java systems.
The results achieved with these methods are close for software
written in C, PHP, and ActionScript. Furthermore, the authors
show that lightweight methods outperform LSI and VSM. The
interpretation of the results is that: e-mails are often referred
to by name, not synonyms, and source code is rare reported
in. One of the concerns related to lightweight methods is
that particular configurations are needed, which depend on the
system understudy. This implies that on that system is required
a specific knowledge to retrieve accurate links. For lightweight
methods, scalability issues could be also present when the
number of e-mails increases. To deal with these concerns, IR-
based link recovery should to be preferred.

III. THE APPROACH

IR-based traceability recovery approaches reformulate trace-
ability recovery as a document retrieval problem. We refine and
improve such solutions by leveraging the parts of which an e-
mail is composed of: object, body, and quote. Our approach
is composed by the following steps:

1) Creating a Corpus. A corpus is created, so that each
e-mail of a subject system will have a corresponding
document in the resulting corpus. Each document has
three fields: header, body, and quote.

2) Corpus Normalization. The corpus is normalized us-
ing a different set of techniques (e.g., stop word removal
and special token elimination).

3) Corpus Indexing. An IR engine is used to index the
corpus. Different engines work in various ways. Most
of them create a numerical index for each document in
the corpus. In our case, the total number of terms for
each field of an e-mail is determined. This information
is used in our approach. In this work, we exploited VSM
and BM25F.

4) Query Formulation. In a typical text retrieval problem,
a software engineer writes a textual query and retrieves
documents that are similar to that query (e.g., [32]).
Differently, in IR-based traceability recovery a set of
source artifacts (used as the query) are compared with
set of target artifacts (even overlapping) [16]. In this
work, software entities (i.e., source code) are used as the
query. The textual query is normalized in the same way
as the corpus and the boolean operator “AND” is used
with the individual terms of that query. The number of
queries is equal to the number of source code artifacts.

5) Ranking Documents. The index is exploited to de-
termine similarity measures between the queries and
the documents in the corpus (i.e., the e-mails). In
particular, the queries are projected into the document
space generated by the IR engine on the corpus. Then
lexical similarities between each query and the e-mails
are computed. The pairs of source and target artifacts
are ranked in descending order with respect to their
lexical similarity.

6) Examining Results. The software engineer investigates
the ranked list and classifies the pairs of source and
target artifacts as true or false links.

Although all these steps are part of a baseline IR-Based
Traceability Recovery approaches (e.g., [13]), we sensibly
change here the steps 3 and 5. In the remainder of this
section, we describe how we instantiated all the steps above.
Investigating alternative instances for these steps is the subject
of our future work.

A. Creating a Corpus

Each e-mail results in one document in the corpus. Each
document has three well defined fields: header, body, and
quote. The header field contains the subject, while the body
the sentences of the current message. All the sentences from
previous messages are within the quote field. In particular,
it includes a chain of messages (e.g., ideas, opinions, issues,
or possible solutions) exchanged among stakeholders (mostly
developers) linked in the sequence in which they espoused that
discussion. We also consider the quote because IR approaches
produce better results when a huge amount of lexical informa-
tion is available [24]. Moreover, the body and the quote fields
are separately considered since the lexical information within
the body is on the current focus of a discussion, while the quote
field includes the text that might provide useful information on
the entire discussion thread.

320

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Corpus Normalization
The corpus is normalized: (i) deleting non-textual tokens

(i.e., operators, special symbols, numbers, etc.), (ii) splitting
terms composed of two or more words (e.g., first_name
and firstName are both turned into first and name),
and (iii) eliminating all the terms within a stop word list
(including the keywords of the programming languages: Java,
C, ActionScript, and PHP) and with a length less than three
characters. We applied these normalization rules because they
have been widely applied in IR-based traceability recovery
approaches (e.g., [16]).

Splitting identifiers could produce some noises in the corpus.
For example, if the name of a class is FileBuffer, it is
possible that a software engineer talks about FileBuffer in an e-
mail rather than File and Buffer. However, if the identifiers
are not split the things could go from bad to worse: the class
name is not in the text of the e-mails (e.g., [17] and [18]), while
that name is used as the query. To deal with this issue, we apply
the same normalization process on both the corpus and the
queries. In addition, the “AND” operator is used to formulate
each query. That is, we use the “AND” operator between each
pair of words in the query (e.g., A Sample Query is seen
as A “AND” Sample “AND” Query).

Differently from the greater part of the traceability recovery
approaches (e.g., [13], [16]), we did not apply any stemming
technique [24] to reduce words to their root forms (e.g., the
words designing and designer have design as the
common radix). This is because we experimentally observed
that the use of a Porter stemmer [33] led to worse results.
Also, in [17] the stemming was not used for similar reasons.
Investigating alternative normalization techniques and possible
combinations of them is a future direction for our work.

C. Corpus Indexing
We adopt here a probabilistic IR-based model, namely

BM25F [19]. This model extends BM25 [20] to handle
semistructured documents from a corpus. The BM25 model
was originally devised to pay attention to term frequency and
document length, while not introducing a huge number of
parameters to set [34]. BM25 showed very good performances
[20] and then widely used specially in web document retrieval
applications [35], [36]. BM25F was successively proposed to
build a term weighting scheme considering the fact that doc-
uments from a corpus can be composed of fields (e.g., [35]).
Each document is in the corpus and contains information on
the contained fields. Then, the fields of a document differently
contribute to its representation. We used BM25F because it has
been successfully used on very large corpuses [36] in terms of
both scalability and quality of the retrieved documents [37].
The use of other probabilistic models (e.g., the Expectation-
Maximization algorithm [38]) could lead to different results.
This point is subject of future work.

The difference between “vector space” and “probabilistic”
IR methods is not that great. In both the cases, an information
retrieval scheme is built for considering each document as
a point in a multi-dimensional geometrical space. Therefore,
BM25F is based on the bag-of-words model, where each

document in the corpus is considered as a collection of words
disregarding all information about their order, morphology, or
syntactic structure. A word could appear in different fields
of the same document. In this case, that word is differently
considered according to the field in which it appears. Applying
BM25F, each e-mail in the corpus is represented by an array
of real numbers, where each element is associated to an item
in a dictionary of terms. BM25F does not use a predefined
vocabulary or grammar, so it can be easily applied to any kind
of corpora.

BM25F works on the occurrence of each term in the fields
of all the documents in the corpus. These occurrences are used
to build a term-by-document matrix. In the current instantiation
of this step we modified the original definition of BM25F to
better handle the problem at the hand. In the model a generic
entry of the table is computed as follows:

idf(t, d) = log(
N − df(t) + 0.5

df(t) + 0.5
+ 1) ∗ weight(t, d) (1)

where N is the total number of documents in the corpus, while
df is the number of documents where the term t appears.
The weight of the term t with respect to the document d is
computed by weight(t, d) as follows:

weight(t, d) =
∑

c in d

occursdt,c ∗ boostc
((1− bc) + bc ∗ lc

avlc
)

(2)

lc is the length of the field c in the document d; avlc is the
average length of the field c in the all documents; and bc is
a constant related to the field length; and boostc is the boost
factor applied to the field c. occursdt,c is the number of terms
t that occur in the field c of the document d. This equation is
dependent on the field and document relevance and it is similar
to a mapping probability. This is because BM25F is considered
a probabilistic IR-based model. Regarding the constants of the
equation (1), we chose 0.75 as the value for bc, while 1 is the
boost value applied to each field (i.e., header, body, and quote).
These values were experimentally chosen and are customary
in the IR field [37]. In the future, we plan to automate the
choice of the boost values using supervised machine learning
techniques [39]. For example, we could divide the benchmark
in test and training sets and then the training set could be used
to determine the best boost values.

In the original definition of BM25F [36], if a term occurs
in over half the documents in the corpus, the model gives
a negative weight to the term. This undesirable phenomena
is well established in the literature [24]. It is rare in some
applicative contexts, while it is common in others as for an
example in the recovery of links between e-mails and source
code. In such a context, in fact, e-mails quote sentences from
previous messages and then the difference among e-mails (in
the same discussion thread) is not that great with respect to
the terms contained. To deal with this concern, we modified
the computation of idf . The adopted solution is that shown in
the equation (1), which is based on that suggested in [40]. The
main difference with respect to the canonical computation of
idf is that 1 is added to the argument of the logarithm.

321

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Query Formulation

In the traceability recovery field, source artifacts are used
as the query [13]. The number of queries is then equal to
the number of source artifacts. In this work, we used source
code entities as the source artifacts and applied the following
two instantiations for Query Formulation: (i) class names
and (ii) class and package names. In both the cases, the
queries are normalized in the same way as the corpus. When
the textual query is composed of more than one term (e.g.,
ArgoStatusBar), the boolean operator “AND” is used with
the individual terms of that query (Argo, Status, and Bar).
This implies that all the individual terms have also to exist
anywhere in the text of a document.

E. Ranking Documents

For a probabilistic IR method, the similarity score between
a query with the documents in the corpus is not computed by
the cosine similarity and tf − idf in a vector space [41], but
by a different formula motivated by probability theory [24]. In
this work, we used a formula based on a non-linear saturation
to reduce the effect of term frequency. This means that the
term weights do not grow linearly with term frequency but
rather are saturated after a few occurrences:

score(q, d) =
∑

t in q

idf(t) ∗ weight(t, d)

k1 + weight(t, d)
(3)

where q is the textual query and d is a document in the corpus.
The values for idf(t) and weight(t, d) are computed as shown
in the equations (1) and (2), respectively. The parameter k1
usually assumes values in the interval [1.2, 2]. We used 2 as
the value because experiments suggested that it is a reasonable
value [24] to maximize retrieval performances.

F. Examining Results

A set of source artifacts is compared with set of target arti-
facts (even overlapping). Then, all the possible pairs (candidate
links) are reported in a ranked list (sorted in descending order).
The software engineer investigates the ranked list of candidate
links to classify them as actual or false links.

IV. EMPIRICAL EVALUATION

The presentation of the study is based on the guideline
suggested in [42].

A. Definition

Using the Goal Question Metrics (GQM) template [43], the
goal of our empirical investigation can be defined as follows:
“Analyze the adoption of our approach for the purpose of
evaluating it with respect to the links between e-mails and
source code from the point of view of the researcher in the
context of open source systems and from the point of view of
the project manager, who wants to evaluate the possibility of
adopting that approach in his/her own company.”

We have then formulated and investigated the following
research question: Does our proposal outperform baseline
approaches based on text search or text retrieval methods?

We considered the following baselines in our empirical
investigation:

1) BM25F with the “OR” operator: We apply the
BM25F model and the “OR” operator in the step
Query Formulation. The Corpus Indexing step is
executed by considering the e-mails as composed of
header, body, and quote. The only difference with
respect to our proposal is that the “OR” operator is
used against the “AND” operator;

2) BM25F considering body and quote together: We
apply the BM25F model and the operators “AND”
and “OR”. Furthermore, the Corpus Indexing step is
performed considered two fields: (i) header and (ii)
body and quote together;

3) Lucene1 with “AND” and “OR” operators: In
the Corpus Indexing step, we use Lucene. It uses
a combination of VSM and the Boolean model to
determine how relevant a document is to a query.
We here apply both the operators “AND” and “OR”.
Since Lucene is based on VSM, more times a query
term appears in a document relative to the number of
times the term appears in all the documents in the
corpus, the more relevant that document to the query is;

4) VSM: It represents the documents in the corpus as
term vectors, whose size is the number of terms present
in the vocabulary. Term vectors are aggregated and
transposed to form a term-document matrix. To take
into account the relevance of terms in each document
and in all the corpus, many weighting schema are
available. In our empirical evaluation, we employed the
tf-idf (term frequency - inverse document frequency)
weighting;

5) LSI: Even for a corpus of modest size, the term-
document matrix is likely to have several tens of
thousand of rows and columns, and a rank in the tens
of thousands as well. LSI is an extension of VSM
developed to overcome the synonymy and polysemy
problems [25]. SVD (Singular Value Decomposition)
is used to construct a low-rank approximation matrix
to the term-document matrix [44]. In LSI there is no
way to enforce Boolean conditions [24];

6) Lightweight linking technique (LLT) - case sensitive
(CS): To reference software entities from e-mails, the
names of the software entities are used as text search
queries. There exists a link between a software entity
and an e-mail, when there is a case sensitive match on
the entity name;

1lucene.apache.org

322

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

7) LLT - mixed approach (MA): In case the name
of software entities are compounded words, they are
split (e.g., ClassName becomes Class Name). The
compounded words are then used for the case sensitive
match on the entity name, otherwise it is used a regular
expression based on class and package name;

8) LLT - MA with regular expression (RE): This
approach is based on that above. A different regular
expression is used to better handle non-Java systems.
Further details about Lightweight linking techniques
can be found in [17].

The baselines from 1 to 5 are different instantiations of the
recovery process shown in Section III, while the others are
lightweight approaches based on regular expressions. In all the
IR-based baseline approaches, with the exception of the first
and second one, the corpus was indexed considering together
header, body, and quote. For the baselines from 4 to 8, we
used the results published in [17]. For these baselines, there
were available only the results, when using the class names as
the queries.

B. Planning
1) Context: Many IR-based traceability recovery approaches

depend on users’ choices: the software engineer analyzes a
subset of the ranked list to determine whether each traceability
link has been correctly retrieved. It is the software engineer
who makes the decision to conclude this process. The lower
the number of false traceability links retrieved, the better the
approach is. The best case scenario is that all the retrieved links
are correct. IR-based traceability recovery methods are far
from this desirable behavior [13]. In fact, IR-based traceability
recovery approaches might retrieve links between source and
target artifacts that do not coincide with correct ones: some are
correct and others not. To remove erroneously recovered links
from the candidate ones, a subset of top links in the ranked
list (i.e., retrieved links) should be presented to the software
engineer. This is possible by selecting a threshold to cut the
ranked list (e.g., [16], [26]).

There are methods that do not take into account the simi-
larity between source and target artifacts: Constant Cut Point,
it imposes a threshold on the number of recovered links, and
Variable Cut Point, it consists in specifying the percentage of
the links of the ranked list to be considered correctly retrieved.
Alternative possible strategies for threshold selection are based
on the similarity between source and target artifacts: Constant
Threshold, a constant threshold is chosen, Scale Threshold, a
threshold is computed as the percentage of the best similarity
value between two vectors, and Variable Threshold, all the
links among those candidate are retrieved links whether their
similarity values are in a fixed interval. In our experiment,
we used the Constant Threshold method. This is the standard
method used in the literature [13]. We applied this method
employing thresholds assuming values between 0 and 1. The
increment used was 0.01.

For each software entity, the Query Formulation step was
instantiated using either the original class name or the con-
catenation of class and package names. The order with which

class and package names were concatenated is indifferent. We
opted for these query formulations because used in [17]. Other
instantiations for the Query Formulation step are possible. This
point is subject of future work.

2) Variable selection: The traceability links retrieved by
applying both our approach and the baselines are analyzed in
terms of correctness and completeness. Correctness reflects the
fact that an approach is able to retrieve links that are correct. To
estimate the correctness, we used (as customary) the precision
measure. On the other hand, completeness reflects how much
the set of retrieved links is complete with respect to the all
actual links. The recall measure is used to estimate this aspect.
We used here the following definitions:

precision =
|TP |

|TP |+ |FP |
recall =

|TP |
|TP |+ |FN |

(4)

where TP (true positives) is the set of links correctly retrieved.
The set FN (false negatives) contains the correct links not
retrieved, while FP (false positives) the links incorrectly
presented as correct ones.

When the e-mails in the benchmark do not have any
reference to source code artifacts, the union of TP and FN is
empty (i.e., |TP |+ |FN | = 0). In all these cases, we cannot
calculate the values for the recall measure. The values for
precision could not be computed in case the approach found
no link between an e-mail and the source code. Similar to
[17], we avoided these issues calculating the average of |TP |,
|FP |, and |FN |, on the entire dataset. We then computed the
average values for precision and recall. Precision and recall
assume values in the interval [0, 1]. The higher the precision
value, the more correct the approach is. Similarly, the higher
the recall value, the better the approach is.

To get a trade-off between correctness and completeness,
we applied the balanced F-measure (F1):

F1 =
2 ∗ precision ∗ recall
precision+ recall

(5)

We applied this formula because we would like to emphasize
neither recall nor precision. F1 was used to estimate the
accuracy of the approach. This is the main criterion we
considered in the study. This measure has values in the interval
[0, 1]. When comparing two approaches, the one with higher
F1 value is considered the best, namely the most accurate.

3) Instrumentation: Regarding the baselines from 1 to 3,
we implemented the underlying instances of the process in
a prototype of a supporting software tool. This tool was
intended as an Eclipse plug-in. It can be downloaded at
www.scienzemfn.unisa.it/scanniello/LASCO/. We named that
plug-in LASCO (Linking e-mAils and Source Code). In the
following, we highlight this tool prototype. The interested
reader can find more details on LASCO in [45]. It is worth
mentioning that the baselines from 1 to 3 are different instanti-
ations of our process shown in Section III. These instantiations
have been implemented in our prototype, but they are not
available in the current distribution of LASCO.

In Table I, we report the steps needed to recover links
between e-mail and source code (steps 4.a and 4.b) with
LASCO. The steps to search e-mails that are similar to a given

323

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. USAGE STEPS OF LASCO

Usage Step Expected Output Description
1. Selecting the
e-mail repository
(steps 1 and 2 of
the approach)

The e-mail reposi-
tory is loaded.

In this step, an e-mail repository is
loaded and the corpus is created.
The corpus is also normalized.

2. Indexing the cor-
pus (step 3 of the
approach)

An index of the cor-
pus is created using
an IR engine.

Most of IR methods create a nu-
merical index for each document in
the corpus. LASCO supports both
Lucene and BM25F (two fields,
namely header, body and quote
together, and three fields, namely
header, body and quote). The cor-
pus is also normalized.

3.a Recovering the
links (steps 4 and 5
of the approach)

The ranked list for
the system/s is com-
puted.

The class name or package and
class names are are used as the
query. These names are compared
with set of target artifacts: the e-
mails. The textual query is normal-
ized in the same way as the corpus.
The user can use the boolean oper-
ators AND and “OR”. The ranked
list is then computed.

3.b Formulating a
textual query (steps
4 and 5 of the ap-
proach)

The user exploits
LASCO to write a
textual query.

The user writes a query and the
system retrieves the e-mails that
are more similar to that query.
The textual query is normalized in
the same way as the corpus. The
boolean operators AND and “OR”
can be used.

4.a The ranked list
is shown (step 6 of
the approach)

Links between e-
mails and source
code are shown.

The links between e-mails and soft-
ware entities (e.g., class names) are
reported in a ranked list. The e-
mails more similar to the software
entities are shown first.

4.b The list of e-
mails is shown (step
6 of the approach)

The e-mails similar
to the textual query
are shown.

The e-mails are reported in a
ranked list. The e-mails in that list
are in decreasing order with respect
to their similarity with the textual
query.

textual query (steps 3.b and 4.b) are reported as well. The
expected output for each step is mentioned together with its
description. We made also clear the connection between each
step of the approach shown in Section III and the usage steps
of our tool.

Figure 1 shows the top of the ranked list attained on the
system Freenet. Each link in that list is characterized by a
source artifact (i.e., the class name in this case) and the target
artifact (i.e., the e-mail). The similarity score between these
two artifact is also reported. LASCO also shows the e-mail
(i.e., header, body, and quote) associated to a link double
clicking that link in the ranked list. On the other hand, Figure
2 shows the screenshot that allows a user to specify a textual
query (step 3.b).

To estimate the correctness, the completeness, and the accu-
racy of our approach and to compare it with the baselines, we
used the benchmark proposed in [18]. To build the benchmark,
the authors manually analyzed the e-mails of six unrelated
software systems written in four different languages: Java,
ActionScript, PHP, and C. 99 versions for these systems were
considered. The systems are all open-source and both the
code and the e-mails are freely accessible on the web. The
benchmark was built on development mailing lists and consid-
ered a reliable sample set from all the e-mails in these lists.
Some information on the benchmark is shown in Table II. In
particular, the first column shows the name of the open source

Figure 1. Ranked list attained on Freenet

Figure 2. Formulating a textual query in LASCO

software system. A short summary of the functionality of the
system and the programming language used to implement it are
presented in the second and third columns, respectively. The
total number of e-mails for each system are reported in the
fourth column. Details on the sample are presented in the last
three columns. In particular, these columns shows the size of
the statistically significant sample set of e-mails, the number of
e-mails in the sample with at least one reference to a software
entity, and the total number of links from the e-mails in the
sample. Further details can be found in [18].

For each system and all the threshold values, we computed
the values of precision, recall, and F1. To this end, we have
implemented and used a tool to automatically collect TP ,
FP , and FN . To compare our approach with the baselines,
we selected the constant threshold that produced the best
accuracy. The values of precision, recall, and F1 are computed
in LASCO for our approach and the baselines from 1 to 3.

V. RESULTS AND DISCUSSION

In this section, we present and discuss the results and
some lesson learned. The section concludes presenting possible
threats that could affect the validity of the results.

TABLE II. SUMMARY INFORMATION ON THE USED BENCHMARK [18]

System Language E-mails Sample E-mails Total links
Size with a link

ArgoUML Java 29,112 355 108 290
Freenet Java 26,412 379 148 570
JMeter Java 20,554 380 207 617

Away3D Action Script 3 9,757 370 243 747
Habari PHP 5 13,095 374 135 252
Augeas C 2,219 281 140 273

324

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. BM25F RESULTS INDEXING THE CORPUS USING: (i) HEADER, (ii) BODY, AND (iii) QUOTE

Class Name + “AND” Class Name + “OR” Class and Package Names + “AND” Class and Package Names + “OR”
System Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

ArgoUML 0.32 0.53 0.40 0.05 0.55 0.10 0.41 0.72 0.52 0.04 0.48 0.07
Freenet 0.23 0.49 0.31 0.03 0.23 0.06 0.30 0.52 0.39 0.02 0.40 0.05
JMeter 0.32 0.41 0.36 0.10 0.41 0.16 0.49 0.62 0.55 0.06 0.43 0.10

Away3D 0.31 0.51 0.39 0.15 0.24 0.18 0.39 0.44 0.41 0.12 0.24 0.16
Habari 0.77 0.48 0.59 0.29 0.35 0.32 0.77 0.48 0.59 0.29 0.35 0.32
Augeas 0.12 0.27 0.16 0.04 0.32 0.08 0.12 0.26 0.16 0.04 0.32 0.08

Average value 0.35 0.45 0.37 0.11 0.35 0.15 0.41 0.51 0.44 0.10 0.37 0.13

TABLE IV. BM25F RESULTS INDEXING THE CORPUS USING: (i) HEADER AND (ii) BODY AND QUOTE TOGETHER

Class Name + “AND” Class Name + “OR” Class and Package Names + “AND” Class and Package Names + “OR”
System Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

ArgoUML 0.34 0.51 0.41 0.07 0.58 0.12 0.40 0.46 0.43 0.05 0.55 0.09
Freenet 0.22 0.54 0.31 0.08 0.45 0.14 0.29 0.62 0.40 0.07 0.5 0.13
JMeter 0.29 0.45 0.36 0.14 0.41 0.21 0.34 0.66 0.45 0.12 0.45 0.19

Away3D 0.29 0.76 0.42 0.21 0.24 0.22 0.37 0.44 0.40 0.16 0.23 0.19
Habari 0.74 0.52 0.61 0.46 0.45 0.46 0.74 0.52 0.61 0.46 0.45 0.46
Augeas 0.11 0.35 0.17 0.10 0.17 0.13 0.11 0.35 0.17 0.06 0.35 0.10

Average value 0.33 0.52 0.38 0.18 0.38 0.21 0.38 0.5 0.41 0.15 0.42 0.19

TABLE V. LUCENE RESULTS

Class Name + “AND” Class Name + “OR” Class and Package Names + “AND” Class and Package Names+ “OR”
System Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

ArgoUML 0.32 0.50 0.39 0.06 0.50 0.11 0.39 0.47 0.43 0.03 0.53 0.06
Freenet 0.20 0.59 0.30 0.07 0.47 0.11 0.27 0.64 0.38 0.05 0.56 0.10
Jmeter 0.27 0.46 0.34 0.10 0.36 0.15 0.34 0.70 0.46 0.07 0.49 0.13

Away3D 0.29 0.77 0.42 0.17 0.22 0.19 0.37 0.44 0.40 0.13 0.24 0.17
Habari 0.61 0.55 0.58 0.45 0.40 0.43 0.61 0.55 0.58 0.45 0.40 0.42
Augeas 0.10 0.27 0.15 0.05 0.21 0.08 0.10 0.27 0.15 0.05 0.20 0.08

Average value 0.30 0.52 0.36 0.15 0.36 0.18 0.35 0.51 0.40 0.13 0.40 0.16

TABLE VI. RESULTS BY BACCHELLI et al. [17]

VSM with tf − idf LSI LLT - case sensitive LLT - mixed approach LLT - mixed approach with RE
System Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

ArgoUML 0.25 0.34 0.29 0.60 0.48 0.53 0.27 0.68 0.38 0.64 0.61 0.63 0.35 0.68 0.46
Freenet 0.15 0.25 0.19 0.62 0.43 0.51 0.17 0.70 0.27 0.59 0.59 0.59 0.27 0.69 0.39
JMeter 0.21 0.34 0.26 0.52 0.40 0.45 0.15 0.73 0.25 0.59 0.65 0.62 0.30 0.72 0.42

Away3D 0.35 0.31 0.33 0.35 0.33 0.34 0.32 0.74 0.44 0.40 0.54 0.46 0.41 0.72 0.52
Habari 0.34 0.39 0.36 0.36 0.41 0.38 0.40 0.41 0.41 0.83 0.09 0.17 0.49 0.38 0.43
Augeas 0.10 0.20 0.14 0.10 0.28 0.14 0.09 0.72 0.15 0.14 0.02 0.04 0.15 0.64 0.24

Average value 0.23 0.31 0.26 0.43 0.39 0.39 0.23 0.66 0.32 0.53 0.42 0.42 0.33 0.64 0.41

A. Results
The results achieved by applying our approach are summa-

rized in Table III. The table also reports the results achieved by
applying the “OR” operator. The results are grouped according
to the two different instantiations of the step Query Formula-
tion: (i) class name and (ii) class and package names. The last
row reports the average values for each measure. Better average
accuracy was achieved using class and package names and the
“AND” operator (F1 = 0.44). With respect to each individual
system, we obtained the higher accuracy for Habari, namely
the system implemented in PHP (F1 = 0.59). On that system,
the higher value of correctness was also obtained (precision =
0.77). It is worth mentioning that the results for that system are
the same both using class name alone and class and package
names together. This is because PHP 5 did not have packages.
Namespaces (i.e., packages) where only introduced in PHP
5.3. The same held for Augeas (the C software system).

Table IV shows the results achieved by indexing the corpus
using: (i) header and (ii) body and quote together. With respect

to accuracy, better results were achieved using the operator
“AND” and class and package names. The best average accu-
racy value was 0.41. Among the analyzed software systems,
the best accuracy was obtained for Habari (F1 = 0.61). Figure
3 summarizes the accuracy results achieved by indexing the
corpus considering header, body, and quote (three fields) and
header and body and quote together (two fields). This figure
shows that: it is better to use the “AND” operator, the use of
three fields produces better results, and formulating the query
as class and package names is better.

The results achieved with Lucene are shown in Table V. The
best average accuracy value was reached using the operator
“AND” and class and package names (i.e., 0.40). The better
accuracy was achieved for Habari (F1 = 0.58).

These results are presented for each system in the bench-
mark and are grouped according to the operator used in the
Query Formulation step. The average values are reported in the
last row. As for BM25F, we obtained on average better results
by applying the “AND” operator and using class name and

325

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0	

0,1	

0,2	

0,3	

0,4	

0,5	

0,6	

0,7	

ArgoUML	
 Freenet	
 JMeter	
 Away3D	
 Habari	
 Augeas	

3	
 Fields	
 -­‐	
 Class	
 Name	
 +	
 "AND"	

3	
 Fields	
 -­‐	
 Class	
 Name	
 +	
 "OR"	

3	
 Fields	
 -­‐	
 Class	
 and	
 Package	
 Names	
 +	
 "AND"	
 	

3	
 Fields	
 -­‐	
 Class	
 and	
 Package	
 Names	
 +	
 "OR"	

2	
 Fields	
 -­‐	
 Class	
 Name	
 +	
 "AND"	

2	
 Fields	
 -­‐	
 Class	
 Name	
 +	
 "OR"	

2	
 Fields	
 -­‐	
 Class	
 and	
 Package	
 Names	
 +	
 "AND"	

2	
 Fields	
 -­‐	
 Class	
 and	
 Package	
 Names	
 +	
 "OR"	

Figure 3. Accuracy results achieved with the “AND” and “OR” operators and indexing the corpus using: (i) header, body and quote and (ii) header and body
and quote together

package. The comparison of these results with those achieved
with our approach suggests that the use of BM25F improves
the correctness and the accuracy of the retrieved traceability
links. The main effect of the probabilistic model used is on the
precision values. The average improvement ranges from 3%
to 5%. The improvement on the accuracy is on average 2%
with class name and the “AND” operator, while is 1% class
name and package and the “AND” operator. The use of that
model does not improve completeness. The benefit deriving
from the instantiation based on the probabilistic model are
still better, when using the “OR” operator. The retrieved links
are more precise, complete, and then accurate.

Table VI summarizes the results presented in [17], instanti-
ating Query Formulation step with class name. As mentioned
before, the results for class and package names together are not
reported for VSM and LSI because the authors observed that
better results were achieved using only class names. Table VI
also shows the results for the lightweight linking techniques.

The results indicate that our proposal is more accurate than
BM25F using two fields (header and body and quote together)
on all the Java systems with the exception of Freenet (the
F1 values were 0.39 and 0.40, respectively). On the non-Java
systems, the use of BM25F indexing the corpus with three or
two fields did not produce remarkable differences in accuracy
(see the Tables III and IV and Figure 3).

Our approach using class and package names as the queries
is more accurate than VSM. Similar results were achieved for
Lucene using both the operators and class name and class and
package names together as the queries. Indeed, our proposal
did not outperform Lucene only on Away3D when using the
“AND” operator and class name as the query. The F1 values
were 0.41 and 0.42, respectively.

As far as LSI is concerned, our approach is more accurate
on all the non-Java system and Jmeter. For ArgoUML the
difference in favor of LSI was negligible (the F1 values was
0.52 with respect to 0.53). A larger difference in accuracy was

obtained for Freenet.
Regarding the lightweight approaches, our proposal out-

performed LLT-CS in accuracy on all the systems with the
exception of Away3D (the F1 values were 0.44 and 0.41,
respectively). BM25F with three fields was on average more
accurate than LLT MA with and without RE (see the average
values of F1). With respect to LLT MA, we achieved better
F1 values results on Habari and Augeas (0.59 vs. 0.17 and
0.16 vs. 0.04, respectively). On the Java systems, LLT MA
was more accurate than our approach. For LLT MA RE, we
reached better results on the Java systems and Habari.

Regarding the correctness and completeness of the retrieved
links, we can observe an interesting pattern in the data: our
approach mostly allowed obtaining a more complete set of
retrieved links that are correct. This result is desirable when
you are interested in the recovery of links among software
artifacts (e.g., [13]).

B. Discussion
Several aspects must be taken into account before drawing

conclusions. We discuss IR-based approaches first and than
the lightweight ones. The section concludes with our overall
recommendation.

1) IR-Based recovery: For the Java systems, LSI outper-
formed other approaches based on IR techniques with respect
to the accuracy of the retrieved links. A possible reasons is that
each e-mail in the corpus quotes a large number of sentences
from previous messages. This is the best scenario for using
LSI [24]. In fact, this technique is used to disclose the latent
semantic structure of the corpus and to recognize its topics,
so dealing with synonymy and polysemy problems. Further,
each document in the corpus has a large size as compared
with the entities used as the queries. This might also represent
another possible reason for having achieved better results for
the Java systems. The considerations above and the fact that
LSI outperformed our approach in terms of accuracy only on

326

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Freenet (this difference was 0.04, while this difference was in
favor of our approach on ArgoUML and JMeter and was 0.01
and 0.1, respectively) suggest that BM25F represents a viable
alternative also when dealing with large documents in the
corpus. It is also possible that differently tuning the parameters
of our solution (e.g., the non-linear saturation) the difference
with LSI could decrease on Freenet. This represents a possible
future extension for our study.

In case the e-mails in the corpus quote a small number
of sentences from previous e-mails, our approach outper-
formed other baseline approaches based on IR techniques.
This happened for all the non-Java systems. For the Habari
system, the e-mails were very short and then BM25F made
the difference also considering the information in the body
and quote together.

For the system implemented in C (i.e., Augeas), the ap-
plication of the IR-Based approaches mostly produced worse
results in terms of correctness, completeness, and accuracy. As
also suggested in [17], a possible justification is related to the
names of the entities. However, our approach outperformed the
IR based baselines. Again, indexing the e-mails considering
two or three fields did not produce remarkable differences.

The instantiation of the Query Formulation step with class
and package names improved the correctness and completeness
when our technique was used. Then, it is possible that the
choice of the source artifact can make the difference in the
accuracy of the links recovered. This point needs future and
special conceived investigations.

The use of a stemming technique in the Normalization step
produced worse results. Then, this technique seems useless in
the recovery of links between source code and e-mails, when
using BM25F (with two and three fields) and Lucene. On these
instances, the use of the “AND” operator led to better results
in terms of accuracy and correctness of the retrieved links
with respect to the “OR” operator. This result held for all
the systems. For completeness, the results achieved with the
“AND” operator were mostly better than those achieved with
the “OR” operator. Only in four cases the use of the “OR”
operator led to better recall values.

The use of source code (program statements and/or source
code comment) as the query was also analyzed. The results re-
vealed that this kind of instantiation for the Query Formulation
step led to worse results with respect to the other two kinds of
queries considered here. This result is in line with that shown
in [17] and has the following implication: it is better to use
class name and class and package names as the queries.

We also performed an analysis to get indications on whether
BM25F might introduce scalability issues. We used a laptop
equipped by a processor Intel Core i7-2630QM with 4 GB
of RAM and Windows Seven Home Premium SP-1 64bit as
operating system. This analysis was performed on each system
and the baseline processes implemented for our experiment
(see Section IV-A). The results indicated that the time to build,
normalize, and index the e-mails of the entire benchmark was
twice when using three fields (i.e., 5033 milliseconds) with
respect to the use of two fields (i.e., 2668 milliseconds). For
Lucene, the average execution time on all the systems in the
benchmark was 2660 milliseconds. For the Query Formulation

step, nearly the same pattern was observed. Further details are
not provided for space reason.

2) Lightweight Approaches: Regarding the accuracy of the
retrieved links, LLT MA outperformed other lightweight tech-
niques and our approach on the Java systems. On the non-
Java system with the exception of Away 3D, LLT MA did not
outperform our approach and the differences in the F1 values
were significant (0.59 vs. 0.17 and 0.16 vs. 0.04, respectively).
The difference on Away3D was small (F1 values were 0.41 and
0.44, respectively). Similarly, LLT MA did not outperform LLT
MA RE on the non-Java systems. The achieved results suggest
that our approach and LLT MA RE are more independent from
the kind of documents in the corpus. Since our approach was
more accurate, we can then conclude that it is the best and can
be applied without making any assumption on the mailing list
and the programming language of the understudy system. The
same did not hold for lightweight techniques based on regular
expressions because they heavily rely on common conventions
and intrinsic syntactical characteristics of the corpus [17].

C. Lesson Learned
The accuracy of our approach increased when e-mails con-

tain a huge amount of text and the entity names are carefully
chosen and naming conventions are used. Furthermore, when
e-mails did not contain a huge amount of text, the application
of BM25F on two or three fields did not produce noteworthy
differences. Then, BM25F on header, body, and quote with the
operator “AND” is the best alternative (see Figure 3).

We experimentally observed that, in terms of accuracy, our
approach outperformed on 5 out of 6 systems the lightweight
technique that is more independent from the kind of e-mails
in the corpus (i.e., LLT MA RE) [17]. To apply our approach,
any assumption on the system understudy has to be made and
any particular configuration setting is required. Therefore, our
approach is easier to use than lightweight approaches and it is
accurate enough to be worth the costs it may introduce in the
corpus preprocessing and indexing phases. Furthermore, IR-
based approaches, such as the one we introduce here, are more
scalable. They are more efficient than lightweight techniques
when the number of e-mails in the corpus increases. Finally,
lightweight techniques return documents without any ranking:
an e-mail either matches or not a regular expression. As a
consequence, all the retrieved links have to be analyzed. To
deal with this issue, text retrieval and text search techniques
could be used in combination. This point could be the subject
of future work.

1) Pieces of evidences: We distilled the achieved findings
and lesson learned into the following pieces of evidence (PoE):

PoE1. Accuracy increases when using class and package
names as the queries;

PoE2. Applying our approach on three fields (i.e., header,
body, and quote) improves the results when the
corpus contains e-mails with a huge amount of
text and the entity names are carefully chosen by
developers;

PoE3. Using the “AND” operator leads to better results in
terms of correctness, completeness, and accuracy;

327

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

PoE4. The corpus normalization by using stemming tech-
niques reduces the accuracy of the recovered links;

PoE5. Our approach scales reasonable well also when the
number of documents in the corpus increases;

PoE6. Our approach is more independent from the mailing
list than lightweight approaches.

D. Threats to Validity
To comprehend the strengths and limitations of our study,

we present here the threats that could affect the validity of
the results and their generalizability. Although our efforts in
mitigating as many threats as possible, some threats are un-
avoidable. For example, a possible threat to the validity of the
results is related to the used benchmark. It is built on human
judgement and then links in the benchmark could be wrong. To
alleviate this threat to the construct validity, the authors of the
benchmark applied several strategies (see Section 6.1 in [17]).
Another threat related is that the researchers involved in the
creation of the benchmark were unfamiliar with the systems
and then they could have missed implicit references to software
entities that an actual developer might understand. The use of
a sample set of the entire dataset may also affect the validity
of the results.

The use of open source software represents another threat
to validity. To alleviate this threat, the benchmark was built
on 6 different systems developed from separate communities
and implemented in 4 programming languages based on two
paradigms: object-oriented and procedural. Despite this effort,
there are some differences between commercial and open
source software systems. For example, open source software
is usually developed outside companies mostly by volunteers
and the development methodologies used are different from
the ones commonly applied in the software industry. Although
many large companies are using open source software in their
own work or as a part of their marketed software, it will be
worth replicating the study on real project. These replications
will help us to confirm or contradict the achieved results.

The instantiation of the Query Formulation step represents
another threat. We used class names or class and package
names. The observed results suggest that this aspect influences
the accuracy, correctness, and completeness of the results. In
this work, we used the instantiations above to compare our
approach with those in [17]. Empirical studies are needed to
better assess how different kinds of queries affect the quality
of the retrieved links.

Further threats concern the validity of the comparison
between the results achieved with our approach and those
obtained with the baselines. In the experiment presented in this
paper, we could not perform statistical analyses because the
results presented in [17] were not provided in an adequate form
and replications were not possible (e.g., regular expressions
were not described at an adequate level of detail). Although
a comparison was possible between our approach and the
baselines from 1 to 3, at this step of our research we preferred
to propose a new approach and compare it with the lightweight
approaches proposed in [17], namely the state of the art in the
recovery of links between e-mails and source code.

VI. CONCLUSION

For software maintainers, who are unfamiliar with a soft-
ware system, the recovery of links among free-form natural
language software artifacts can be a laborious task if per-
formed manually. We proposed, implemented, and evaluated
an approach to recover links between e-mails and source code.
The approach is based on text retrieval techniques combined
with the BM25F probabilistic model. We used this model
because it showed very good performances [20], [35], [36].
The defined approach is general and can be applied to software
implemented with any programming language and to any
kind of documents (i.e., e-mails) in the corpus. To assess the
validity of our proposal, we conducted an empirical study
using a public benchmark [18]. Based on this benchmark,
we performed a comparison between our approach and 8
baselines. The results indicated that our approach in many
cases outperformed the IR-based baseline approaches and the
lightweight techniques proposed in [17].

Furthermore, our approach scales well when the number of
e-mails increases and it does not require any assumption on the
system understudy. Traditionally, probabilistic IR has had neat
ideas but the methods have never won on performance [24].
This is possibly due to the severity of the modeling assump-
tions that makes achieving good performance difficult. Things
changed when the BM25 weighting method was introduced.
Our results confirm that in a different context.

ACKNOWLEDGMENT

The authors would like to thank the Michele Lanza and
the Alberto Bacchelli for their support and for having made
available the benchmark used in this work. Special thanks are
due to the Anna Tolve and the Raffaele Branda, who developed
some of the software modules of the prototype implementing
the approach presented here.

REFERENCES

[1] R. Branda, A. Tolve, L. Mazzeo, and G. Scanniello, “Linking e-mails
and source code using bm25f,” in International Conference on Software
Engineering Advances, 2013, pp. 271–277.

[2] L. Erlikh, “Leveraging legacy system dollars for e-business,” IT Pro-
fessional, vol. 2, pp. 17–23, 2000.

[3] M. V. Zelkowitz, A. C. Shaw, and J. D. Gannon, “Principles of software
engineering and design,” 1979.

[4] M. M. Lehman, “Program evolution,” vol. 19, no. 1, pp. 19–36, 1984.
[5] E. B. Swanson, “The dimensions of maintenance,” in Proc. of Interna-

tional Conference on Software Engineering. IEEE CS Press, 1976, pp.
492–497.

[6] A. V. Mayrhauser, “Program comprehension during software mainte-
nance and evolution,” IEEE Computer, vol. 28, pp. 44–55, 1995.

[7] S. Pfleeger and J. Atlee, Software Engineering - Theory and Practice.
Pearson, 2006.

[8] A. De Lucia, F. Fasano, C. Grieco, and G. Tortora, “Recovering
design rationale from email repositories,” in Proc. of the International
Conference on Software Maintenance. IEEE, 2009, pp. 543–546.

[9] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing candidate
link generation for requirements tracing: The study of methods,” IEEE
Trans. Software Eng., vol. 32, no. 1, pp. 4–19, 2006.

328

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[10] A. Bacchelli, M. Lanza, and M. D’Ambros, “Miler: a toolset for
exploring email data,” in Proceedings of the International Conference
on Software Engineering. ACM, 2011, pp. 1025–1027.

[11] N. Bettenburg, B. Adams, A. E. Hassan, and M. Smidt, “A lightweight
approach to uncover technical artifacts in unstructured data,” Interna-
tional Conference on Program Comprehension, vol. 0, pp. 185–188,
2011.

[12] N. Bettenburg, S. W. Thomas, and A. E. Hassan, “Using code search
to link code fragments in discussions and source code,” in CSMR ’12:
Proceedings of the 16th European Conference on Software Maintenance
and Reengineering, IEEE. IEEE, 2012, pp. 319–329.

[13] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering trace-
ability links in software artifact management systems using information
retrieval methods,” ACM Trans. Softw. Eng. Methodol., vol. 16, no. 4,
2007.

[14] H. Sultanov and J. H. Hayes, “Application of swarm techniques to
requirements engineering: Requirements tracing,” in Proc. of IEEE
International Requirements Engineering Conference, ser. RE ’10. IEEE
CS Press, 2010, pp. 211–220.

[15] S. K. Sundaram, J. H. Hayes, A. Dekhtyar, and E. A. Holbrook,
“Assessing traceability of software engineering artifacts,” Requir. Eng.,
vol. 15, no. 3, pp. 313–335, 2010.

[16] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
Trans. Software Eng., vol. 28, no. 10, pp. 970–983, 2002.

[17] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and source
code artifacts,” in Proc. of International Conference on Software Engi-
neering. ACM, May 2010, pp. 375–384.

[18] A. Bacchelli, M. D’Ambros, M. Lanza, and R. Robbes, “Benchmarking
lightweight techniques to link e-mails and source code,” in Proc. of
Working Conference on Reverse Engineering. IEEE Computer Society,
2009, pp. 205–214.

[19] S. Robertson, H. Zaragoza, and M. Taylor, “Simple bm25 extension
to multiple weighted fields,” in Proc. of International Conference on
Information and Knowledge Management, ser. CIKM ’04. ACM, 2004,
pp. 42–49.

[20] S. Robertson and H. Zaragoza, “The probabilistic relevance framework:
Bm25 and beyond,” Found. Trends Inf. Retr., vol. 3, pp. 333–389,
April 2009. [Online]. Available: http://dx.doi.org/10.1561/1500000019

[21] IEEE, IEEE Recommended Practice for Software Requirements
Specifications, Std., 1998. [Online]. Available: http://ieeexplore.ieee.
org/xpls/abs\ all.jsp?arnumber=720574

[22] J. Cleland-Huang, B. Berenbach, S. Clark, R. Settimi, and E. Romanova,
“Best practices for automated traceability,” Computer, vol. 40, pp.
27–35, June 2007. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1271918.1271947

[23] G. Antoniol, G. Canfora, G. Casazza, and A. D. Lucia, “Maintaining
traceability links during object-oriented software evolution.” Softw.,
Pract. Exper., vol. 31, no. 4, pp. 331–355, 2001.

[24] C. D. Manning, P. Raghavan, and H. Schtze, Introduction to Information
Retrieval. New York, NY, USA: Cambridge University Press, 2008.

[25] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and
R. A. Harshman, “Indexing by latent semantic analysis,” Journal of the
American Society of Information Science, vol. 41, no. 6, pp. 391–407,
1990.

[26] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-
code traceability links using latent semantic indexing,” in Proc. of the
International Conference on Software Engineering. IEEE CS Press,
2003, pp. 125–137.

[27] A. Abadi, M. Nisenson, and Y. Simionovici, “A traceability technique
for specifications,” in Proc. of the International Conference on Program
Comprehension. IEEE CS Press, 2008, pp. 103–112.

[28] G. Capobianco, A. De Lucia, R. Oliveto, A. Panichella, and
S. Panichella, “Traceability recovery using numerical analysis,” in Proc.

of the International Working Conference on Reverse Engineering. IEEE
CS Press, 2009, pp. 195–204.

[29] A. De Lucia, M. D. Penta, R. Oliveto, A. Panichella, and S. Panichella,
“Improving ir-based traceability recovery using smoothing filters,” in
Proc. of the International Conference on Program Comprehension.
IEEE CS Press, 2011, pp. 21–30.

[30] A. De Lucia, R. Oliveto, and P. Sgueglia, “Incremental approach and
user feedbacks: a silver bullet for traceability recovery,” in Proc. of the
International Conference on Software Maintenance. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 299–309.

[31] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. D. Lucia, “On integrat-
ing orthogonal information retrieval methods to improve traceability
recovery,” in Proceedings of the International Conference on Software
Maintenance. IEEE CS Press, 2011, pp. 133–142.

[32] V. Rajlich and N. Wilde, “The role of concepts in program comprehen-
sion,” in Proc. of the International Workshop on Program Comprehen-
sion., 2002, pp. 271–278.

[33] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14,
no. 3, pp. 130–137, 1980.

[34] K. S. Jones, S. Walker, and S. E. Robertson, “A probabilistic model of
information retrieval: development and comparative experiments,” Inf.
Process. Manage., vol. 36, pp. 779–808, November 2000.

[35] K. Y. Itakura and C. L. Clarke, “A framework for bm25f-based
xml retrieval,” in Proc. of International Conference on Research and
Development in Information Retrieval. ACM, 2010, pp. 843–844.

[36] J. R. Pérez-Agüera, J. Arroyo, J. Greenberg, J. P. Iglesias, and V. Fresno,
“Using bm25f for semantic search,” in Proc. of the International
Semantic Search Workshop. ACM, 2010, pp. 2:1–2:8.

[37] J. Pérez-Iglesias, J. R. Pérez-Agüera, V. Fresno, and Y. Z.
Feinstein, “Integrating the Probabilistic Models BM25/BM25F into
Lucene,” CoRR, vol. abs/0911.5046, 2009. [Online]. Available:
http://arxiv.org/abs/0911.5046

[38] G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions,
2nd ed. Wiley-Interscience, March 2008.

[39] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
[Online]. Available: http://books.google.it/books?id=Clc7PwAACAAJ

[40] L. Dolamic and J. Savoy, “When stopword lists make the difference,”
J. Am. Soc. Inf. Sci. Technol., vol. 61, no. 1, pp. 200–203, Jan. 2010.
[Online]. Available: http://dx.doi.org/10.1002/asi.v61:1

[41] R. A. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1999.

[42] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering - An Introduction.
Kluwer, 2000.

[43] V. Basili, G. Caldiera, and D. H. Rombach, The Goal Question Metric
Paradigm, Encyclopedia of Software Engineering. John Wiley and
Sons, 1994.

[44] J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for Large
Symmetric Eigenvalue Computations, Vol. 1. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 2002.

[45] L. Mazzeo, A. Tolve, R. Branda, and G. Scanniello, “Linking e-mails
and source code with lasco,” in Proc. of the European Conference on
Software Maintenance and Reengineering. IEEE Computer Society,
2013.

329

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

