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Abstract—Automating the localization of software bugs that do
not lead to crashes is a difficult task that has drawn the attention
of several researchers. Several popular methods follow the same
approach; function call traces are collected and represented as
graphs, which are subsequently mined using subgraph mining
algorithms in order to provide a ranking of potentially buggy
functions-nodes. Recent work has indicated that the scalability of
state-of-the-art methods can be improved by reducing the graph
dataset using tree edit distance algorithms. The call traces that
are closer to each other, but belong to different sets, are the
ones that are most significant in localizing bugs. In this work, we
further explore the task of selecting the most significant traces, by
proposing different call trace selection techniques, based on the
Stable Marriage problem, and testing their effectiveness against
current solutions. Upon evaluating our methods on a real-world
dataset, we prove that our methodology is scalable and effective
enough to be applied on dynamic bug detection scenarios.

Keywords-automated debugging, dynamic bug detection, frequent
subgraph mining, tree edit distance, Stable Marriage problem.

I. INTRODUCTION

During the latest few decades, software reliability has grown
to be a major concern for both academia and the industry.
Software bugs can lead to faulty software and dissatisfied
customers, since testing and debugging are quite costly even
compared to the software development phase. As software
grows more and more complex, though, identifying and elim-
inating software bugs has become a challenging task.

There are two types of software bugs: crashing bugs and
non-crashing bugs. The former, as their name implies, lead
to program crashes, thus they are easier to locate by tracing
the call stack at the time of the crash. The latter, however, are
logic errors that do not lead to crashes. The problem of locating
non-crashing bugs is quite difficult, since no stack trace of the
failure is available. Thus, finding a bug would usually involve
careful examination of the source code, thorough testing, even
pure intuition as to where the bug might reside. An interesting
line of research aims towards automating the bug locating
procedure by applying Data Mining (DM) techniques on call
traces of correct and incorrect program executions. Hence,
since dynamic analysis is performed to detect such bugs, the
field is known as dynamic bug detection.

As noted in [1], dynamic bug detection techniques may be
broadly classified according to the granularity of the source
code instrumentation approach. Highly granular approaches

involve inserting checks in different source code positions,
either in the form of counters or boolean predicates. Indica-
tively, Liblit et al. [2] heuristically eliminate counters and
apply logistic regression (or statistics as in [3]) to identify
the attributes that affect the class (bug vs no bug). On the
other hand, Liu et al. [4] employ boolean predicate statistics
on correct and incorrect executions to localize bugs.

A more coarse-grained approach concerns inserting checks
at block level, where blocks are fragments of code between
branches. Renieris and Reiss [5] follow this approach and per-
form nearest neighbor queries to identify incorrect execution
traces that are close to correct ones and compare these couples
to detect potentially buggy blocks of code.

Counter-level and block-level approaches are quite precise
in localizing bugs. However, the rise of Object Oriented
and Functional Programming has led to preference for small
comprehensive functions, indicating that instrumenting func-
tions can also be effective. Mining traces at function level,
and thus identifying potentially buggy functions is generally
fine-grained enough for localizing a bug, as long as proper
programming paradigms are employed. Approaches in this
category employ Graph Mining techniques to call traces to
identify which subgraphs are more frequent in incorrect than
in correct runs [6]–[8]. Current approaches include also ef-
forts towards improving the Graph Mining procedure [9], or
using different representations such as N-grams (subsequences
of length N) [10], or even reformulating the problem as a
search/optimization problem [11]. Although these approaches
are effective, their scalability is arguable.

The procedure of bug localization is similar for all ap-
proaches. The generated call traces constitute a dataset that
has to be mined in order to detect bugs; and this is where
the problems start. Even at function-level, datasets are usually
huge. For a small application, with, e.g., 150 functions, there
may be couples of thousands of transitions among them. In this
context, creating an effective, yet also scalable, solution is a
challenging problem. And, though it has been broadly studied,
most literature approaches focus on reducing the size of each
trace, without reducing the number of traces in the dataset.

Previous work [1] on reducing the size of the dataset
has indicated considerable improvement on both scalability
and effectiveness. We extend this work by reformulating the
problem and providing different methodologies that focus on
achieving effectiveness without compromising scalability. As
in [1], the methodology involves performing Graph Mining
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techniques to a subset of the dataset, thus the main focus lies
on determining that subset. The similarity between any two
call traces of the dataset can be defined as their edit distance,
i.e., the cost of turning the one trace to the other. Given the
distances between all combinations of traces, the problem is
reduced to designing a call trace selector algorithm that suc-
cessfully determines the most “useful” traces, i.e., the ones that
successfully isolate the bug. In this paper, we further explore
the effect of the call trace selector algorithm, by proposing two
new algorithms, and comparing the different methodologies
with respect to scalability and effectiveness. Furthermore, we
benchmark our methods against known function-level dynamic
bug detection techniques in order to discuss their applicability
in real applications and evaluate their effectiveness against the
current state-of-the-art.

Section II of the paper reviews current literature on function-
level dynamic bug detection, illustrating the general procedure
followed to mine the traces and identify the Graph Mining
problems. Section III provides insight for reducing the call
trace dataset and explores the tasks of comparing call traces
and selecting the most “useful” subset of the call trace dataset.
The construction of a realistic dataset that illustrates our
contribution is explained in Section IV. Finally, our implemen-
tation is evaluated in terms of efficiency and effectiveness in
Section V, while Section VI concludes the paper and provides
insight for further research.

II. FUNCTION-LEVEL DYNAMIC BUG DETECTION

In this section, we discuss the basic steps followed in
function-level bug localization techniques, while denoting the
different approaches. The following subsections correspond
to the main phases of constructing a graph dataset, reducing
the graphs to improve scalability, and applying Graph Mining
techniques to provide the final ranking of possibly buggy
functions.

A. Graph Dataset Construction
Assuming there is a set of test cases, program functions

are instrumented and the test cases are executed to produce a
set of call traces (or scenarios) S. A call trace is initially a
rooted ordered tree, with the main function as its root. Two
more sets, Scorrect and Sincorrect are defined, corresponding
to correct and incorrect program executions. The correctness of
an execution can be determined by the developer. In generated
datasets such as the one used in this paper, one can also
determine it automatically by comparing the output of the
erroneous versions of the program with the correct version.
Thus, upon collecting the execution traces, the graph dataset1
is constructed.

B. Graph Reduction
At this point, the graphs of the dataset are quite large, with

thousands of nodes and respective edges. Applying a Graph

1Any tree is obviously also a graph. The terms are used interchangeably
concerning the class of techniques that may be applied to the dataset.

Mining algorithm to such a dataset would be highly inefficient.
Thus, graph reduction is performed on each graph in order to
keep only useful information while discarding all redundant
data, to reduce its size. Figure 1 depicts several state-of-the-
art graph reduction techniques.
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Figure 1. An example call graph (a) and four different reduced graphs with
respect to the reduction techniques, including (b) total reduction, (c) one-two-
many reduction, (d) subtree reduction and (e) simple tree reduction.

The first technique, known as total reduction, is presented by
Liu et al. [6]. The authors create a graph using each edge of the
initial call graph once and discard any structural information
(i.e., tree levels). Total reduction, shown in Figure 1b, is the
most efficient reduction method since it actually preserves
minimum information.

However, total reduction fails to capture the structure of
the call graph, thus different alternatives have been applied to
preserve more information, while keeping the graph as small
as possible. A straightforward solution is the one proposed
by Di Fatta et al. [7]; the authors perform one-two-many
reduction, preserving tree structure by keeping exactly two
child nodes whenever the children of a node are more than
two (see Figure 1c).

Eichinger et al. [8] claim that total reduction and one-
two-many reduction are not sufficient, since they discard call
frequency information. According to the authors, the number
of times (i.e., frequency) that a function calls another function
is crucial since it can capture bugs that may occur in, e.g., the
third or fourth time the function is called. Thus, they propose
subtree reduction, a technique that preserves both the structure
of the tree and the frequency of function calls (see Figure 1d).

As one might observe, the reduction techniques are based
on a compromise between information loss and scalability.
Although subtree reduction maintains most information, it is
quite inefficient since it immediately adds a weight parameter
to the graph. Since the scope of this work lies in scalability,
we decided to use a reduction technique called simple tree
reduction, shown in Figure 1e, which was originally introduced
in [1]. Reducing a graph using simple tree reduction involves
traversing all the nodes once and deleting any duplicates as
long as they are on the same level. The reduced graph is a
satisfactory representation of the original one since large part
of its structure is preserved.

C. Graph Mining
Upon reduction, the problem lies in determining the nodes

(functions) that are frequent in the incorrect set Sincorrect and
infrequent in the correct set Scorrect. Intuitively, if a function
is called every time the result is incorrect, it is highly possible
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to have a bug. However, having more than one function with
the same frequency is also possible. Thus, the Graph Mining
algorithm should find the closed frequent subgraphs, i.e., the
subgraphs for which no supergraph has greater support in
Sincorrect.

Finding frequent subgraphs in a graph dataset is a well-
known problem, defined as Frequent Subgraph Mining (FSM).
State-of-the-art algorithms include gSpan [12] and Gaston [13].
Furthermore, since these graphs are actually trees, several Fre-
quent Subtree Mining (FTM) algorithms, such as FreeTreeM-
iner [14], may be used as well. Although those algorithms
are applicable to the problem, there is strong preference for
CloseGraph [15], an algorithm that is highly scalable since
it prunes unnecessary input and outputs only closed frequent
subgraphs.

D. Ranking
The output of the CloseGraph algorithm is a set of frequent

subgraphs, along with their support in the correct and the incor-
rect set. Hence, the question is how can a ranking of possibly
buggy functions be created by such a set. It is typical to use
DM techniques based on support and confidence to determine
which subgraphs are actually interesting. For instance, Di Fatta
et al. [7] suggest ranking the functions according to their
support in the failing set. According to Eichinger et al. [8],
this type of ranking can be called structural. The structural
ranking for each function f is defined as:

Ps(f) = support(f, Sincorrect) (1)

The support of each function in the failing set Sincorrect

provides a fairly effective ranking. However, the scoring de-
fined in equation (1) is not sufficient, since it does not take
confidence into account. Furthermore, finding the support only
on incorrect executions yields skewed results, since a function
with large support in both Scorrect and Sincorrect would be
ranked high, even though it may be insignificant with respect
to the bug.

Several variations of the structural ranking have emerged
in order to overcome the aforementioned issues [4][7]. In this
paper, we use an entropy-based ranking technique proposed by
Eichinger et al. [8] since it is proven to outperform the other
techniques. The main intuition behind this ranking technique is
to identify the edges that are most significant to discriminate
between correct and incorrect call traces. A table is created
with columns corresponding to subgraph edges and rows
corresponding to graphs. The table holds the support of each
edge in every graph. Consider the example of Table I.

TABLE I. ENTROPY-BASED RANKING EXAMPLE

Graph f1 → f2 f1 → f3 f2 → f4 . . . Class
G1 4 7 2 . . . correct
G2 9 5 8 . . . incorrect
G3 6 3 1 . . . correct
. . . . . . . . . . . . . . . . . .

In Table I, F = f1, f2, . . . is the set of functions and
G = G1, G2, . . . is the set of graphs. The table is constructed
given the support of each subgraph in the graphs. Thus,

supposing subgraph SG1 appears 4 times in graph G1 and
edge f1 → f2 ∈ SG1, the support of the edge in graph G1

is 4. If, e.g, both SG2 and SG3 contain the edge f1 → f2
and they appear 5 and 4 times respectively in graph G2, then
the support of this edge in graph G1 is 9. As one might
observe, the problem is actually a feature selection problem,
i.e., defining the features (edges) that discriminate between
the values of the class feature (correct, incorrect). Thus,
any feature selection algorithm may be used to determine the
most significant features. Eichinger et al. [8] calculate the
information gain for each feature, and interpret the result for
each feature (ranging from 0 to 1) as the probability of it being
responsible for a bug. The respective probability Pe(f) for a
node (function) is determined by the maximum probability of
all the edges it is connected to.

Finally, one can calculate the combined ranking for a
function f by averaging over its structural ranking Ps(f) and
its entropy-based ranking Pe(f). However, since Ps(f) and
Pe(f) may have different maximum values, it is necessary
that their values are normalized by dividing each ranking
by its maximum value. Thus, the combined ranking P (f) is
calculated as follows:

P (f) =
1

2
·

 Pe(f)

max
f∈F

Pe(f)
+

Ps(f)

max
f∈F

Ps(f)

 (2)

where the maximum values at the denominators are used in
order to normalize the weighting of each ranking. Finally,P (f)
provides the probability that a function f contains a bug in the
range [0, 1].

III. REDUCING THE GRAPH DATASET

The steps defined in Section II are common for all function-
level bug detection algorithms. Several researchers have in-
dicated the need for scalable solutions, which is generally
accomplished by reducing the graphs (see Subsection II-B).
Ideally, graph reduction captures the most important informa-
tion of the graph while minimizing its size. However, even
upon reduction, the number of graphs in the dataset is quite
large, thus making the mining step quite inefficient.

When a dataset of several graphs is given, not all of them are
equally useful in locating the bug. Consider a simple scenario
for the grep program. Assume the program has a bug that
results in faulty executions when the ? character is used in
a Regular Expression (RE), such that the appropriate words
are not returned, if the preceding element appears 0 times.
Normally, if a symbol is succeeded by the ? character, then it
may be found 0 or 1 times exactly. Consider running the grep
program for one word at a time for the following phrase:

there once was a cat that ate a rat
and then it sat on a yellow mat

In this text, the RE [a-z]*c?at should match the words in
the set Smatched = {cat, that, rat, sat, mat}, i.e., all
words having any letter from a to z 0 or more times, followed
by the letter c 0 or 1 times exactly, and followed by letters a
and t. Instead it only matches the word cat. Consider also
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the set of words that are not matched Sunmatched = {there,
once, was, a(1), ate, a(2), and, then, it, on, a(3),
yellow}. Assuming that all the possible traces are created,
several of them, such as the ones created from the Smatched

set, are actually much more significant in identifying the bug,
since it actually resides only on the Smatched set. Thus, traces
of cat and rat should be more similar than traces of cat and
yellow. In fact, when executing the cat and rat scenarios,
many function calls coincide. However, this is also true for the
traces of was and it. Intuitively, determining which traces
are highly indicative of the bug can be based on the similarity
between them as well as whether they are correct or incorrect.
Thus, correct executions that are similar to the incorrect ones
(e.g., rat may be close to cat) should isolate more easily
the buggy functions. On the other hand, when two correct (or
incorrect) executions are quite close to each other (e.g., the
traces from was and it could be quite similar), then one of
them should provide all necessary information.

The above example is formed such that it is easy to under-
stand. One could ask why not select test cases by hand, so that
they are discriminating. However, this is usually impossible
since real scenarios are much more complex, e.g., for the grep
case there may be passages instead of words. In addition,
certain executions may seem similar, yet be significantly
different with respect to the call traces. Thus, at first, there
is the need for a similarity metric between two traces. Having
such a metric, one can apply an algorithm to select the most
discriminating call traces based on the aforementioned intuitive
remarks. Similarly to [1], the metric used to compare the
similarity between two trees is the edit distance between them.
Subsection III-A provides different alternatives for computing
this metric, while Subsection III-B illustrates our proposed
algorithms for using it to reduce the size of the dataset.

A. The Tree Edit Distance Problem
A metric widely used to represent the similarity between

two strings is the String Edit Distance (SED) between them.
SED is defined as the number of edit operations required
to transform one string to the other. SED operations usually
contain insertion or deletion of characters. Concerning trees,
such as the ones of our dataset, Tree Edit Distance (TED)
algorithms can be used to calculate the distance between two
of them. The following paragraphs provide a definition of the
TED problem as well as two well known algorithms of current
literature in finding TED.

The TED problem was originally posed by Tai [16] in 1979.
The possible edit operations are defined in Figure 2.
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Figure 2. An example tree (a) and three different edit operations: (b) node
relabeling, (c) node deletion, and (d) node insertion.

The first operation, node relabeling, concerns simply changing
the label of a node (see Figure 2b). Node deletion is performed
by deleting a node of the tree and reassigning any children it
had so that they become children of the deleted node’s parent.
For example, in Figure 2c, the children of deleted node C are
reassigned to C’s parent A. Finally, node insertion concerns
inserting a new node in a position in the tree, such as inserting
node F in Figure 2d. Assuming a cost function is defined for
each edit operation, an edit script between two trees T1, T2
is a sequence of operations required to turn T1 into T2, and
its cost is the aggregate cost of these operations. Thus, the
TED problem is defined as determining the optimal edit script,
i.e., the one with the minimum cost.

1) Zhang-Shasha Algorithm: One of the most well known
TED algorithms is the Zhang-Shasha algorithm, which was
named after its authors, K. Zhang and D. Shasha [17]. Let
δ(T1, T2) be the edit distance between trees T1 and T2, and
γ(l1 → l2) be the cost of the edit operation from l1 to l2.
A simple recursive algorithm for computing TED is defined
using the following equations:

δ(θ, θ) = 0 (3)
δ(T1, θ) = δ(T1 − u, θ) + γ(u→ λ) (4)
δ(θ, T2) = δ(θ, T2 − v) + γ(λ→ v) (5)

δ(T1, T2) = min


δ(T1 − u, T2) + γ(u→ λ)

δ(T1, T2 − v) + γ(λ→ v)

δ(T1(u), T2(v)) + δ(T1 − T1(u),
(6)

T2 − T2(v)) + γ(λ→ v)

where T − u denotes tree T without node u and T − T (u)
denotes tree T without u or any of each children. Parameter λ
is the performed edit operation. The Zhang-Shasha algorithm
uses Dynamic Programming (DP) in order to compute the
TED. The keyroots of a tree T are defined as:

keyroots(T ) = {root(T )}∪ {u ∈ T : u has left siblings} (7)

Given (7), the relevant subtrees of T are defined as:

relevant subtrees(T ) =
⋃
u

{T (u)}, ∀u ∈ keyroots(T ) (8)

Thus, the algorithm recursively computes the TED by finding
the relevant subtrees and applying equations (3)–(6).

2) pq-Grams Algorithm: Several algorithms solve the TED
problem effectively. However, even the most efficient ones lack
scalability, since the polynomial order of the problem is high.
A promising way of reducing the complexity of the problem
and improving efficiency is by approximating the TED instead
of computing its exact value. Approximate TED algorithms can
generally be effective enough when results do not need to be
exact. In the call trace scenario, the TED is a value denoting
the similarity of two trees, thus, even if it is approximate,
it shall be sufficient for the call trace selector algorithms of
Subsection III-B.

Such an approximate TED algorithm is the pq-Grams based
algorithm proposed by Augsten et al. [18]. The authors de-
fine pq-Grams as a port of known string q-grams to trees.
An example tree and its pq-Grams are shown in Figure 3.
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Figure 3. A pq-Grams example for p = 2 and q = 3, containing (a) an
example tree, (b) its extended form for p = 2 and q = 3, and (c) its pq-Grams.

Parameters p and q define the stem and the base of the pq-
Gram, respectively. Let p = 2 and q = 3, the stem of the
first pq-Gram of Figure 3c is {∗, A} and its base is {∗, ∗, B}.
Since the pq-Grams for the tree of Figure 3a cannot be directly
created, an intermediate step of extending the tree with dummy
nodes is shown in Figure 3b. Finally, The pq-Gram profile is
the set of all pq-Grams of a tree (see Figure 3c), while the
pq-Gram index of the tree is defined as the bag of all label
tuples for the tree. For example, the pq-Gram index for the
tree of Figure 3 is defined as:

I(T ) = {∗A∗∗B, ∗A∗BC, ∗ABC∗, ∗AC∗∗, AB∗∗∗,
AC∗∗D,AC∗DE,ACDE∗, ACE∗∗, CD∗∗∗, CE∗∗∗} (9)

According to Augsten et al. [18], the TED between two
trees is effectively approximated by the distance between their
pq-Gram indexes. Let I(T ) be the pq-Gram index of tree T ,
the pq-Gram distance between trees T1 and T2 is defined as:

δ(T1, T2) = |I(T1) ∪ I(T2)| − 2|I(T1) ∩ I(T2)| (10)

Equation (10) provides a fast way of approximating the TED
between any pair of trees of the dataset.

B. The Call Trace Selection Problem
In the previous subsection, we provided two different meth-

ods for defining and computing the similarity between two
call traces. Assuming that the similarity between all correct-
incorrect pairs of the dataset is computed, the problem lies

in using this information to determine which call traces can
successfully isolate the bug. Formally, assuming that our
input consists of the correct and incorrect sets, Scorrect and
Sincorrect, we must design an algorithm that shall output
two new sets S′correct and S′incorrect. Let n be the size of
each of the new sets, where set S′correct contains the n most
important correct graphs and set S′incorrect contains the n
most important incorrect graphs. The following paragraphs
describe three different call trace selector algorithms that we
implemented to solve the problem.

1) The SimpleSelector algorithm: The first algorithm imple-
mented is the SimpleSelector algorithm, which was originally
described in [1]. The application of the algorithm is shown in
Figure 4.

Input: n, Scorrect, Sincorrect

Output: S′
correct, S′

incorrect

D = {(gc, gi) ∀gc ∈ Scorrect, gi ∈ Sincorrect}
sort(D, key=similarity(gc, gi))

S′
correct =First(n, {gc : gc ∈ d ∈ D})

S′
incorrect =First(n, {gi : gi ∈ d ∈ D})

Figure 4. The SimpleSelector algorithm that sorts the pairs of (correct,
incorrect) traces and outputs the first n correct and the first n incorrect traces.

As shown in the figure, the algorithm requires as input the
correct and incorrect sets, Scorrect and Sincorrect, along with
parameter n, which controls how many graphs are going to be
retained per set. Initially, the set D, which contains all correct-
incorrect pairs of graphs, is sorted according to the similarity
of each pair. The set S′correct contains the first n correct unique
graphs that are found in the sorted set D, i.e., the n correct
graphs that belong to the most similar pairs d of D. The set
S′incorrect contains the first n incorrect unique graphs that are
found in the sorted set D. For example, given n = 2 and
D = {d1, d2, d3} = {(g1, g3), (g1, g4), (g2, g5)} so that the
similarity of pair d1 is larger than that of d2 and the similarity
of d2 is larger than that of d3, the sets S′correct and S′incorrect
are {g1, g2} and {g3, g4} respectively. Function sort sorts the
set according to the key. Finally, function similarity can
be easily determined using either of the two methods presented
in Subsection III-A.

Previous work [1] has indicated that the SimpleSelector
algorithm is adequate in terms of effectiveness. Intuitively,
since the algorithm selects the most similar pairs of traces, it
certainly captures some of the most important traces. However,
the algorithm does not account for similar graphs of the same
set. In specific, given the above example, graphs g3 and g4
could potentially be quite similar to each other. Assuming g3
and g4 have identical similarity metrics with g1, keeping both
of them on the final set could produce redundant information.
Thus, the second call trace selector algorithm was implemented
in order to eliminate this redundancy.

2) The StableMarriage algorithm: The second algorithm
implemented is based on the stable marriage (or stable match-
ing) problem. The problem, first introduced by D. Gale and
L. S. Shapley [19] in 1962, has many variants (see [20] for an
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extensive survey) since it has numerous applications to real-
life problems. According to its original definition, there are
N men and N women, and every person ranks the members
of the opposite sex in a strict order of preference, i.e., with
no equal preference for any member of the opposite sex. The
problem is to find a matching between men and women so that
there are no two people of opposite sex who would both rather
be matched to each other than their current partners. If there
are no such people, the matching (marriage) is considered to
be stable.

The call trace selection problem can be formulated as a
stable marriage problem. In this case, the two sexes are the
traces of the correct and the traces of the incorrect set. For any
trace, given its similarity with the traces of the opposite set,
a ranked preference list is formed. Given that the probability
two pairs having the same similarity value is too low, we can
safely assume that the lists are strictly ordered. Upon forming
all the preference lists, the Gale-Shapley algorithm [19] can
be applied to our problem. The application of the algorithm is
shown in Figure 5.

Input: n, Scorrect, Sincorrect

Output: S′
correct, S′

incorrect

Find preference list ∀g ∈ {Scorrect ∪ Sincorrect}
Set all gc ∈ Scorrect and gi ∈ Sincorrect to unmatched

while ∃ free gc that has a gi to try to match

gi = gc’s highest ranked incorrect trace

that gc has not yet tried to match

if gi is unmatched

(gc, gi) are matched together

else there is a matching (g′c, gi)

if gi prefers gc to g′c
(gc, gi) are matched together

g′c becomes unmatched

D = {all pairs (gc, gi) of stable matching}
sort(D, key=similarity(gc, gi))

S′
correct =First(n, {gc : gc ∈ d ∈ D})

S′
incorrect =First(n, {gi : gi ∈ d ∈ D})

Figure 5. The StableMarriage algorithm that finds the stable matching among
the traces of the correct and the incorrect sets, and outputs the traces of the
first n (correct, incorrect) pairs.

Functions sort and similarity work similarly to the
SimpleSelector algorithm. The algorithm of Figure 5 initially
creates the preference lists for each graph of the sets Scorrect

and Sincorrect. Note that this step can be reduced to minimum
complexity using suitable data structures. At the beginning
of the algorithm, all graphs of both sets are unmatched. The
algorithm iterates over all correct graphs and tries to match
each correct graph gc to its most preferred incorrect graph gi
for which there was not yet an attempt to match. Any incorrect
graph accepts a proposal to match if it is unmatched or if the
proposed matching is preferable to its current matching. Given
sets Scorrect = {g1, g2, g3} and Sincorrect = {g4, g5, g6}
and the similarity between all correct-incorrect pairs one can

construct the ranked preference lists of Figure 6.

g1 : g5 > g4 > g6
g2 : g5 > g6 > g4
g3 : g6 > g4 > g5

(a)

g4 : g2 > g1 > g3
g5 : g1 > g2 > g3
g6 : g2 > g3 > g1

(b)

Figure 6. Example preference lists for the graphs of (a) the correct set
Scorrect = {g1, g2, g3} and (b) the incorrect set Sincorrect = {g4, g5, g6}.

Iterating over the correct graphs, g1 initially is matched to
g5 since it is in the top of its preference list. After that, g2
tries also to match with g5, and since the g5 preference list
indicates preference for g2 over g1, the new pair is (g2, g5)
and g1 becomes unmatched. After that, g3 gets matched
with g6. Since there is still an unmatched graph g1, and it
already tried to match with its first choice it tries to match
with its second choice g4, which is accepted since g4 is
unmatched. Thus, the final pairs that form the set D are
sorted according to their similarity, for example resulting in
D = {(g1, g4), (g3, g6), (g2, g5)}. Given, e.g., that the number
of retained graphs per set is n = 2, the sets S′correct and
S′incorrect are {g1, g3} and {g4, g6} respectively.

The Gale-Shapley algorithm is proven to converge to a male-
optimal solution [19], indicating in our case that there is no
better matching for the correct graphs of the set. Furthermore,
since the final list of the algorithm has no duplicates, any
redundant data, i.e., graphs that belong to the same set, are
discarded. Although the StableMarriage algorithm seems well
adapted to the problem, the algorithm disregards the fact
that the pairs are not only ranked but also weighted. Thus,
StableMarriage can actually provide a sub-optimal solution
to the problem. As a result, we have implemented another
algorithm that accounts for the weights and is better suited to
the problem at hand.

3) The MaxLinkMax algorithm: The third algorithm that
we implemented was initially proposed as a solution to an
extension of the stable marriage problem, based on the concept
of defining a different form of stability for the problem [21].
One can define different notions of stability for a stable
matching problem with weighted preferences (see [21] for an
extensive definition of several alternatives). In our case, we
used the link-max stability as a criterion denoting whether the
matching is stable. Returning to the marriage metaphor, given
a man and a woman, their link-max strength is the maximum
between the preference value that the man gives to the woman
and the preference value that the woman gives to the man.
Given a stable marriage problem with weights, a matching is
said to be link-max stable if there are no two people of the
opposite sex of which the marriage would have larger link-
max strength than either of the current matchings that each
partner has. Formally, let lm(m,w) be the link-max strength
of a man m and a woman w, a link-max stable marriage does
not contain any pair (m,w) such that:

lm(m,w) > lm(m′, w) (11)
lm(m,w) > lm(m,w′) (12)

where m′ is the current partner of w and w′ is the current
partner of m.
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The call trace selection problem can be formulated as a link-
max stable matching problem, where the weighted preferences
are the similarity values that were determined in Subsec-
tion III-A. Thus, one can easily calculate the link-max strength
for any pair of (correct, incorrect) graphs, in our case defined as
the similarity of the pair. After that, the problem can be solved
similarly to the Max-link-max algorithm, which was introduced
in [21] as a solution to link-max stable marriage problems. The
application of the algorithm is shown in Figure 7.

Input: n, Scorrect, Sincorrect

Output: S′
correct, S′

incorrect

Find preference list ∀g ∈ {Scorrect ∪ Sincorrect}
D = ∅
M = {(gc, gi) ∀gc ∈ Scorrect, gi ∈ Sincorrect}
while M 6= ∅

(gc, gi) = arg max
(gc,gi)∈M

lm((gc, gi))

D = D ∪ (gc, gi)

M = M \ {(gc, g′i), (g′c, gi) ∀g′c ∈ Scorrect, g
′
i ∈ Sincorrect}

S′
correct =First(n, {gc : gc ∈ d ∈ D})

S′
incorrect =First(n, {gi : gi ∈ d ∈ D})

Figure 7. The MaxLinkMax algorithm that finds the link-max stable matching
among the traces of the correct and the incorrect sets, and outputs the traces
of the first n (correct, incorrect) pairs.

The first step of the algorithm shown in Figure 7 is to create
a weighted preference list for each graph in the dataset. After
that, two sets are defined: the initial set M , which contains
all possible correct-incorrect pairs of graphs and the set D,
which is initially empty. The algorithm iterates until the set
M is empty. For each iteration, the correct-incorrect pair with
the maximum link-max strength is found and added to set
D. Let (gc, gi) be the selected pair, all the pairs of set M
that contain either gc or gi are removed from graph M . After
all the iterations are over, i.e., the set M is empty, the set
D contains the final matching. By contrast with the other
algorithms, the pairs are already sorted, thus the final sets
S′correct and S′incorrect are immediately defined as the first
n correct graphs and the first n incorrect graphs that belong
to the first n pairs of D.

The MaxLinkMax algorithm is rather more complex than
the other two, since it requires not only a ranking but also
the weighted preference for each pair of graphs in the dataset.
In line with the remarks of [21], one can find the pair with
the maximum link-max strength by saving only the maximum
weight for every correct and for every incorrect graph in the
dataset. This indicates that the complexity of the algorithm is
no higher than that of the two previous algorithms that we
implemented. For example, given the graphs of Figure 6, and
the weights of the pairs (g1, g5), (g2, g5), (g3, g6), (g4, g2),
(g5, g1) (which is equal to (g1, g5)), and (g6, g2), one requires
to compare only these six values in order to find the pair
with the maximum link-max strength. Assuming this pair
is the (g1, g5), the new pairs are immediately reduced to
(g2, g6), (g3, g6), (g4, g2), and (g6, g2) (which is equal to

(g2, g6)). Let lm(g2, g6) > lm(g3, g6) > lm(g4, g2), the
pairs are reduced to the minimum (g3, g4) and (g4, g3) which
are equal, directly providing with the final sorted set D =
{(g1, g5), (g2, g6), (g3, g4)}.

In terms of the computational complexity of the algorithms,
one could argue that it is quite satisfactory. However, since the
expected number of call traces is usually small (e.g., usually
less than a hundred), the main scope of these approaches lies
in improving effectiveness rather than performance.

IV. DATASET

The bug detection techniques analyzed in Section II are
quite effective for bug localization in small applications. For
example, Eichinger et al. [8] evaluate their method against
two known literature bug localization techniques ([6] and [7])
using a small dataset, generated using a diff implementation
in Java. Although the effectiveness of the techniques is
irrefutable, their efficiency is not thoroughly tested since the
dataset is too small to resemble a real application. Indicatively,
the size of the program is almost 2 pages of code, leading to
call graphs of roughly 20 nodes after the reduction step.

A much more realistic dataset was used in [1]. The dataset
was generated using the source code of daisydiff [22],
a Java application that compares html files. daisydiff
provides a more suitable benchmark since it has almost 70
files with 9500 lines of code. Thus, concerning scalability in
a real application, that dataset is certainly sufficient. In this
work, we have further extended the daisydiff dataset to
test more thoroughly the scalability and the effectiveness of our
methodology. We have planted 6 different bugs in the code of
the 1.2 version of daisydiff, which are shown in Table II.

TABLE II. PLANTED BUGS

Bugs Description # Functions

1 Wrong limit conditions (Forgot +1) 637
2 Missing AND condition (Forgot a < check) 737
3 Wrong condition (> instead of <) 777
4 Missing OR condition (Forgot a != check) 723
5 Missing 1 of 3 AND conditions (Forgot a == check) 756
6 Missing 1 of 2 AND conditions (Forgot a == check) 638

The table contains the description of each bug as well as
the average number of unique functions that are called in
the respective runs. The dataset covers common types of
bugs, such as missing boolean conditions, wrong conditions
and wrong limit conditions. As mentioned above, the aim of
these bugs is twofold. Experiments on different bug cases
shall provide insight on the effectiveness of our algorithms,
while the scalability of our methodology will be evaluated on
different scenarios. The initial bug-free version of the program
and the six buggy versions were all run 100 times given
different inputs. The dataset can be found online in [23].

V. EVALUATION

This section presents the results of applying the algorithms
to the dataset described in Section IV. Upon creating the traces,
the executions were crosschecked against the correct versions
of the traces to provide the correct and incorrect sets.
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TABLE III. ELAPSED TIME (IN SECONDS) FOR THE DIFFERENT PHASES OF THE ALGORITHMS FOR THE SIMPLESELECTOR APPROACH

pq-Grams ZhangShasha

5 10 15 20 25 30 35
NoTED

5 10 15 20 25 30 35

Graph Parsing 16.71 6.57 6.45 6.38 6.35 6.34 6.86 8.94 6.86 6.39 6.40 6.46 6.42 6.48 6.41
Graph Reduction 3.43 3.20 3.21 3.18 3.19 3.17 3.18 4.15 3.18 3.18 3.14 3.29 3.15 3.24 3.23

Dataset Reduction 70.84 70.49 70.53 70.03 69.72 69.64 69.74 0.00 162.50 162.31 161.54 162.38 162.00 162.78 160.75
Subgraph Mining 19.24 45.64 178.63 538.78 1391.44 1675.24 1973.72 24296.94 22.95 85.56 94.87 447.33 1319.32 714.84 1974.36

Ranking Calculation 0.51 1.75 6.87 17.75 42.61 75.08 97.47 2003.99 0.48 2.08 7.79 23.37 50.05 71.84 113.04
Total 110.73 127.65 265.69 636.12 1513.31 1829.47 2150.97 26314.02 195.97 259.52 273.74 642.83 1540.94 959.18 2257.79

TABLE IV. ELAPSED TIME (IN SECONDS) FOR THE DIFFERENT PHASES OF THE ALGORITHMS FOR THE STABLEMARRIAGE APPROACH

pq-Grams ZhangShasha

5 10 15 20 25 30 35
NoTED

5 10 15 20 25 30 35

Graph Parsing 6.78 6.40 6.33 6.28 6.27 6.38 6.29 8.94 6.38 6.46 6.32 6.45 6.36 6.38 6.39
Graph Reduction 3.19 3.23 3.17 3.14 3.17 3.18 3.24 4.15 3.14 3.19 3.17 3.16 3.15 3.15 3.21

Dataset Reduction 69.33 70.05 69.88 69.93 69.65 69.27 69.62 0.00 161.10 161.22 161.28 160.78 161.15 160.74 163.28
Subgraph Mining 35.51 111.15 334.84 322.36 884.47 998.60 827.78 24296.94 21.81 154.33 376.75 630.86 822.89 678.92 917.49

Ranking Calculation 0.57 3.63 12.07 21.77 32.34 38.72 42.68 2003.99 0.60 4.05 15.16 28.29 40.79 45.99 54.72
Total 115.38 194.46 426.29 423.48 995.90 1116.15 949.61 26314.02 193.03 329.25 562.68 829.54 1034.34 895.18 1145.09

TABLE V. ELAPSED TIME (IN SECONDS) FOR THE DIFFERENT PHASES OF THE ALGORITHMS FOR THE MAXLINKMAX APPROACH

pq-Grams ZhangShasha

5 10 15 20 25 30 35
NoTED

5 10 15 20 25 30 35

Graph Parsing 6.64 6.45 6.46 6.38 6.60 6.48 6.86 8.94 6.86 6.49 6.44 6.55 6.48 7.51 7.15
Graph Reduction 3.21 3.18 3.21 3.18 3.35 3.29 3.39 4.15 3.28 3.27 3.28 3.27 3.32 3.30 3.37

Dataset Reduction 70.79 70.66 71.66 70.85 74.41 74.35 74.79 0.00 169.19 168.89 168.29 168.24 168.29 168.56 168.53
Subgraph Mining 15.43 42.54 162.40 386.40 514.70 742.17 798.19 24296.94 19.13 226.84 379.05 412.76 844.61 1345.54 1439.16

Ranking Calculation 0.53 2.24 9.66 31.33 42.29 51.66 50.89 2003.99 0.54 3.07 12.95 28.67 55.16 75.43 74.60
Total 96.60 125.07 253.39 498.14 641.35 877.95 934.12 26314.02 199.00 408.56 570.01 619.49 1077.86 1600.34 1692.81

A. Experimental Setup
Several methods were implemented in order to test the

validity of our dataset reduction hypothesis. An initial test was
performed by applying the algorithm by Eichinger et al. [8]
as discussed in Section II. However, due to performance lim-
itations, subtree reduction (see Subsection II-B) could not be
applied in such a large dataset. Thus, simple tree reduction is
used in its place (refer to [1] for more details). In the conducted
tests, the graph mining step is performed through the Parallel
and Sequential Mining Suite (ParSeMiS) [24] implementation
of CloseGraph, while the InfoGain algorithm of the ranking
step was implemented using the Waikato Environment for
Knowledge Analysis (WEKA) [25].

We implemented six more algorithms, accounting for all
possible combinations of similarity metrics: ZhangShasha
and pq-Grams implementations combined with all three call
trace selection algorithms (SimpleSelector, StableMarriage and
MaxLinkMax). For comparison reasons, all algorithms were
implemented using the same libraries stated above. The ex-
periments were conducted using 7 different values for the n
parameter (5, 10, 15, 20, 25, 30, and 35) in order to explore its
effect on performance and effectiveness. Concerning efficiency,
the selection of these values for n is reasonable; the algorithms
would be inefficient if they took into account more than 35
traces per set, i.e., 70 traces overall when the total number
of traces is 100. In contrast, smaller values of n would
compromise effectiveness. When few traces are retained per
set, the bugs may not be distinguishable between these traces.

All experiments were performed using an 8-core i7 pro-
cessor with 8 GBs of memory. The graph reduction, dataset
reduction and subgraph mining steps were performed in par-
allel. Graph reduction was performed on 8 threads, where
each thread performed simple tree reduction to a fragment
of the dataset. The TED algorithms were applied in parallel
using 4 threads (using more threads was impossible due to
memory limitations) that calculated the TED for each correct-
incorrect pair of the dataset. The call trace selection algorithms
were executed sequentially. Finally, CloseGraph was executed
using 8 threads, while the trace parsing and ranking steps were
sequential.

B. Experimental Results

The algorithms are evaluated both in terms of effectiveness
and performance. Concerning certain parameters, p and q of
the pq-Grams approach were given the values 2 and 3 respec-
tively, having little impact on performance and effectiveness,
and CloseGraph was run with a 20% support threshold.

The performance results for all edit distance methods are
shown in Tables III, IV and V for the SimpleSelector, Sta-
bleMarriage and MaxLinkMax approaches respectively. These
tables contain the average measurements for all six bugs of
the dataset. Although the elapsed time required to localize a
bug can be significantly different for two different bugs (e.g.,
bug 3 required 5 times more time than bug 1), the trend for
all bugs is similar. Each table contains measurements for the
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TABLE VI. RANKING POSITION AND PERCENTAGE OF FUNCTIONS TO BE EXAMINED TO FIND THE BUGS

pq-Grams ZhangShasha

5 10 15 20 25 30 35
NoTED

5 10 15 20 25 30 35

SS 7 (1.1%) 9 (1.4%) 31 (4.9%) 9 (1.4%) 8 (1.3%) 8 (1.3%) 8 (1.3%) 5 (0.8%) 7 (1.1%) 8 (1.3%) 9 (1.4%) 8 (1.3%) 9 (1.4%) 8 (1.3%) 8 (1.3%)
SM 6 (0.9%) 8 (1.3%) 10 (1.6%) 8 (1.3%) 8 (1.3%) 8 (1.3%) 8 (1.3%) 5 (0.8%) 6 (0.9%) 8 (1.3%) 13 (2.0%) 12 (1.9%) 12 (1.9%) 12 (1.9%) 12 (1.9%)

B
ug

1

MLM 6 (0.9%) 8 (1.3%) 9 (1.4%) 8 (1.3%) 8 (1.3%) 8 (1.3%) 8 (1.3%) 5 (0.8%) 6 (0.9%) 8 (1.3%) 10 (1.6%) 8 (1.3%) 8 (1.3%) 8 (1.3%) 8 (1.3%)

SS 5 (0.7%) 5 (0.7%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 5 (0.7%) 5 (0.7%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%)
SM 5 (0.7%) 5 (0.7%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 5 (0.7%) 5 (0.7%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%)

B
ug

2

MLM 5 (0.7%) 5 (0.7%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 5 (0.7%) 5 (0.7%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%) 9 (1.2%)

SS 254 (32%) 252 (32%) 342 (44%) 27 (3.5%) 3 (0.4%) 1 (0.1%) 16 (2.1%) 17 (2.2%) 259 (33%) 253 (32%) 346 (44%) 355 (45%) 1 (0.1%) 1 (0.1%) 2 (0.3%)
SM 168 (21%) 336 (43%) 341 (43%) 215 (27%) 3 (0.4%) 2 (0.3%) 16 (2.1%) 17 (2.2%) 246 (31%) 261 (33%) 353 (45%) 360 (46%) 9 (1.2%) 2 (0.3%) 4 (0.5%)

B
ug

3

MLM 256 (32%) 336 (43%) 6 (0.8%) 2 (0.3%) 1 (0.1%) 1 (0.1%) 1 (0.1%) 17 (2.2%) 256 (32%) 251 (32%) 3 (0.4%) 2 (0.3%) 2 (0.3%) 1 (0.1%) 1 (0.1%)

SS 270 (37%) 371 (51%) 18 (2.5%) 24 (3.3%) 29 (4.0%) 23 (3.2%) 51 (7.1%) 65 (9.0%) 268 (37%) 363 (50%) 27 (3.7%) 28 (3.9%) 35 (4.8%) 43 (5.9%) 29 (4.0%)
SM 223 (30%) 391 (54%) 23 (3.2%) 23 (3.2%) 25 (3.5%) 24 (3.3%) 41 (5.7%) 65 (9.0%) 47 (6.5%) 399 (55%) 41 (5.7%) 17 (2.4%) 30 (4.1%) 35 (4.8%) 35 (4.8%)

B
ug

4

MLM 270 (37%) 35 (4.8%) 25 (3.5%) 25 (3.5%) 25 (3.5%) 25 (3.5%) 25 (3.5%) 65 (9.0%) 269 (37%) 33 (4.6%) 20 (2.8%) 20 (2.8%) 20 (2.8%) 20 (2.8%) 20 (2.8%)

SS 12 (1.6%) 6 (0.8%) 6 (0.8%) 6 (0.8%) 5 (0.7%) 5 (0.7%) 5 (0.7%) 5 (0.7%) 12 (1.6%) 6 (0.8%) 6 (0.8%) 6 (0.8%) 6 (0.8%) 6 (0.8%) 5 (0.7%)
SM 19 (2.5%) 7 (0.9%) 6 (0.8%) 6 (0.8%) 6 (0.8%) 6 (0.8%) 6 (0.8%) 5 (0.7%) 19 (2.5%) 13 (1.7%) 7 (0.9%) 6 (0.8%) 6 (0.8%) 6 (0.8%) 6 (0.8%)

B
ug

5

MLM 12 (1.6%) 6 (0.8%) 6 (0.8%) 5 (0.7%) 5 (0.7%) 5 (0.7%) 5 (0.7%) 5 (0.7%) 12 (1.6%) 6 (0.8%) 6 (0.8%) 5 (0.7%) 5 (0.7%) 5 (0.7%) 5 (0.7%)

SS 6 (0.9%) 3 (0.5%) 4 (0.6%) 11 (1.7%) 9 (1.4%) 18 (2.8%) 15 (2.4%) 15 (2.4%) 22 (3.4%) 3 (0.5%) 3 (0.5%) 18 (2.8%) 9 (1.4%) 17 (2.7%) 15 (2.4%)
SM 3 (0.5%) 3 (0.5%) 17 (2.7%) 18 (2.8%) 18 (2.8%) 18 (2.8%) 18 (2.8%) 15 (2.4%) 17 (2.7%) 3 (0.5%) 17 (2.7%) 15 (2.4%) 15 (2.4%) 15 (2.4%) 15 (2.4%)

B
ug

6

MLM 3 (0.5%) 3 (0.5%) 3 (0.5%) 18 (2.8%) 18 (2.8%) 18 (2.8%) 18 (2.8%) 15 (2.4%) 17 (2.7%) 17 (2.7%) 3 (0.5%) 15 (2.4%) 15 (2.4%) 15 (2.4%) 15 (2.4%)

∗SS: SimpleSelector, SM: StableMarriage, MLM: MaxLinkMax

different values of n for each of the two similarity algorithms,
pq-Grams and ZhangShasha, as well as the NoTED approach,
which is the one not using any TED algorithm to reduce the
size of the dataset.

In terms of total execution time, the proposed implementa-
tions clearly outperform the NoTED approach. In particular,
even when n equals 35, the pq-Grams and ZhangShasha ap-
proaches require roughly 30 minutes using the SimpleSelector
call trace selection algorithm. For the StableMarriage and
MaxLinkMax algorithms, the respective value is even below 25
minutes. By contrast, the NoTED approach requires more than
7 hours in order to provide the final ranked list of functions.
In relative terms, the proposed approaches are approximately
15 times faster than the NoTED approach.

Concerning all approaches, the mining step is indeed the
most inefficient. Although ranking might also seem inefficient,
its elapsed time depends mainly on the output of the min-
ing step. Concerning the graph reduction step, simple tree
reduction performs quite efficiently. The difference between
the execution times of the tree edit distance algorithms pq-
Grams and ZhangShasha is quite significant since the former
is twice as faster as the latter. However, their contribution to the
total execution time is rather insignificant with respect to the
mining step. Using either of the proposed TED techniques, the
choice of a call trace selection algorithm seems also irrelevant
to the performance of the different implementations. Note,
however, that since graph mining algorithms depend highly on
the graphs that are given to them, dataset reduction could affect
the measurement. Finally, although graph reduction techniques
deviate from the scope of this paper, note that subtree reduction
required many hours to reduce the graphs.

Table VI provides effectiveness measurements for locating
the six bugs, for all different algorithms. The value inside each
each cell of the table indicates how many functions should the
developer examine in order to locate the bug. This metric is

created using the final ranking of the functions and identifying
the position of the “buggy” function. Using the total number
of functions, which is shown in Table II for each bug, the
percentage of the program’s functions that should be examined
to locate the bug is also provided. This is given inside a
parenthesis in the value of each cell.

Our approaches seem to perform not only closely, but also
even more effectively than the NoTED approach. In particular,
our approaches provide a better ranking for bugs 2, 3, 4, and
6. The effectiveness metrics for bugs 3, 4, and 6 are very
promising; these bugs seem to be the most “difficult” to locate.
They are localized ineffectively by the NoTED approach,
requiring 17, 65, and 15 functions respectively to be examined
in order to find them. Our approaches outperform these results
for bugs 3 and 4, as long as n is large enough. Concerning
the sixth bug, the localization is even more satisfactory; our
algorithms manage to localize the bug even when the values
of n are small. This is also true for bugs 1 and 2, where the
bug is localized either almost as good as the NoTED approach
(for bug 1) or even better (for bug 2). Finally, the results for
the fifth bug are also quite encouraging since our algorithms
perform no worse than the NoTED one.

Since the nature of each bug is complex, no safe assumption
can be made concerning the effectiveness of any algorithm
with respect to the type of each bug or the number of function
calls. In other words, the effectiveness is highly dependent on
the selected dataset. Removing or switching certain boolean
conditions can lead to bugs that are very difficult to locate,
such as bugs 3, 4, and 6, or to easier cases, such as bugs 2
and 5. This is expected since the structure of the call traces
can be considerably altered by any bug. Notice, for instance,
how bugs 5 and 6, though similar, result to traces with 756
and 638 (unique) function calls respectively. In any case, the
planted bugs are quite indicative of those arising in realistic
scenarios.
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Figure 8. Average performance and effectiveness diagrams for the bugs of the dataset. Diagrams (a), (b) and (c) illustrate the performance for each phase of
the algorithms in logarithmic scale versus the value of n (which denotes the number of traces retained from each of the two sets, correct and incorrect). The
three diagrams correspond to the SimpleSelector, StableMarriage and MaxLinkMax algorithms. Diagram (d) depicts the total elapsed time of all combinations
of the TED approaches, pq-Grams and ZhangShasha, with the call trace selection approaches, SimpleSelector, StableMarriage and MaxLinkMax. Diagrams (e)
and (f) illustrate the percentage of functions to be examined in order to detect the bug versus n, for the pq-Grams and ZhangShasha approaches respectively.

Our conclusions regarding both effectiveness and perfor-
mance are also confirmed by plotting the results, as in Fig-
ure 8. Figures 8a, 8b, and 8c illustrate the performance of
our methodology for the SimpleSelector, StableMarriage and
MaxLinkMax approaches respectively. Note that the vertical
axis in these figures is in logarithmic scale in order to
sufficiently illustrate the steps of the algorithms. As expected,
performance is largely affected by the number of graphs taken
into account, i.e., the n parameter. The impact of the number
of graphs is better depicted in Figure 8d; the execution time
of all approaches is high-order-polynomial with respect to
consecutive values of n. This is expected since subgraph
mining algorithms, such as CloseGraph, are largely affected
by the size of the graphs and the size of the dataset.

Further analyzing Figure 8d, pq-Grams seems to execute
faster than ZhangShasha for most values of n, regardless of
which call trace selection algorithm is used. Peaks such as the
one of the ZhangShasha with SimpleSelector approach are not
totally unexpected since the performance of subgraph mining
algorithms may be affected by numerous properties, such as
the structure of the graph. In any case, useful conclusions can
also be drawn for the performance of the three different call

trace selection approaches. MaxLinkMax is both efficient and
stable, indicating that it is robust and fits the problem better
than the other two algorithms.

Concerning effectiveness, the impact of n is illustrated in
Figures 8e and 8f, which depict the percentage of functions
required to be examined versus n for the three call trace
selection algorithms, and the NoTED approach. These figures
correspond to the pq-Grams and the ZhangShasha approaches
respectively. As shown in this figures, the effectiveness of our
algorithms is indeed significant for large enough values of n.
In specific, these average values indicate that our algorithms
outperform the NoTED approach as long as n is larger than
or equal to 15, while the MaxLinkMax approach outperforms
it even for values larger than 10.

Given that n is the number of traces retained from the
two sets (correct and incorrect), its impact on effectiveness
is rather expected. In specific, when few traces are kept from
each set (e.g., for n values lower than 15), the algorithms
may not effectively isolate the bug since it may not be clearly
distinguishable between these few traces. On the other hand,
large values of n ensure that at least some of the retained
traces will be highly relevant for isolating the bug. However,
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since larger n values result also in larger execution times, it is
preferable to select values near 25 or 30 where the algorithms
exhibit high effectiveness while also being efficient.

Figures 8e and 8f illustrate the relative effectiveness of the
call trace selection techniques. In particular, the MaxLinkMax
approach outperforms the other techniques in terms of both
effectiveness and stability. The algorithm seems to converge
to satisfactory values faster than its opposing techniques. In
Figure 8e, the percentage of functions to be examined for
the MaxLinkMax approach drops below 2% for all n values
that are lower than or equal to 15. The SimpleSelector and
StableMarriage approaches require values lower than or equal
to 20 and 25, respectively, to exhibit similar effectiveness.
The results for the ZhangShasha algorithm are even more
characteristic, with the SimpleSelector and StableMarriage
requiring both at least 25 call traces per set in order to approach
the effectiveness achieved by MaxLinkMax when the number
of kept call traces is at least 15.

As a result of the above analysis, the effect of the call trace
selection algorithm on localizing the bugs is quite significant.
The MaxLinkMax algorithm was actually expected to prevail
since it is the most well adapted algorithm to the problem
at hand; intuitively, determining the unique graph pairs with
the maximum pair weights should provide satisfactory results.
Allowing duplicates and disregarding weights, as done by
SimpleSelector and StableMarriage respectively, can be seen
as drawbacks, therefore, leading to suboptimal solutions. As
expected, however, these algorithms perform satisfactorily for
large n values, since useful trace information is then retained.

The relative effectiveness among the approaches using pq-
Grams and the three ones using ZhangShasha may seem
slightly surprising. The approximate pq-Grams implementa-
tions seem more stable and more effective than their exact
ZhangShasha counterparts. However, the difference between
the MaxLinkMax approaches is not significant, and the ef-
fectiveness for the other two call trace selection algorithms
differs only for small values of n. This indicates that both pq-
Grams and ZhangShasha provide satisfactory results, as long
as the call trace selection algorithm properly utilizes the weight
values provided by them.

VI. CONCLUSION AND FUTURE WORK

Current approaches in the field of dynamic bug detection
suffer from scalability issues. In this paper, we have expanded
on previous work [1], further testing the effect of reducing
the size of the call trace dataset on both performance and
effectiveness. With support from the experimental results of
Subsection V-B, we argue that our approaches exhibit consid-
erable improvement on the current state-of-the-art, even more
so since they are tested on a realistic dataset.

Concerning the dataset reduction step, both TED algorithms
are effective in terms of finding relative edit distances between
graphs. Thus, the main scope of this work focused on exploring
different possibilities for selecting the most useful call traces.
We provided three call trace selection algorithms and explored
how they affect the effectiveness of our methodology. The
third algorithm we proposed, MaxLinkMax, proved to be

the most stable and effective, since it outperformed all other
implementations, while also being highly efficient.

Although the field of locating non-crashing bugs is far from
exhausted, we argue that our methodology provides an interest-
ing perspective on the problem. In specific, this work indicates
that analyzing the call trace dataset to isolate useful traces
yields quite promising results. Hence, future research includes
further exploring the applicability and effectiveness of our
techniques on different datasets. Furthermore, the parameters
of our techniques (mainly the number of retained traces) could
be optimized or automatically derived for each dataset. Finally,
further analysis of the newly defined problem of call trace
selection with respect also to the subgraph mining step could
lead to more effective solutions.
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