
Conceptual Modelling in UML and OWL-2

Jesper Zedlitz and Norbert Luttenberger
Christian-Albrechts-Universität

Kiel, Germany
Email: {j.zedlitz, n.luttenberger}@email.uni-kiel.de

Abstract—Both OWL-2 and UML static class diagrams lend
themselves very well for conceptual modelling of complex in-
formation systems. Both languages have their advantages. In
order to benefit from the advantages and software tools of
both languages, it is usually necessary to repeat the modelling
process for each language. We have investigated whether and how
conceptual models written in one language can be automatically
transformed into models written in the other language. For this
purpose we investigated differences and similarities of various
model elements (such as element type, data types, relationship
types) in static UML data models and OWL-2 ontologies. We
provide a transformation for similar elements.

Keywords—UML; OWL; conceptual modelling; model transfor-
mation; meta modelling

I. INTRODUCTION

The Web Ontology Language (OWL) is mostly considered
as a language for knowledge representation. However, it can
also be used as a language for conceptual modelling of
complex information systems. It can be used as a language
to represent the entities of a certain domain, to express the
meaning of various, usually ambiguous terms and to identify
the relationships between them.

In this respect, OWL can be seen as a direct “competitor”
to static class diagrams from Unified Modeling Language
(UML). This kind of diagrams is often used for conceptual
modelling, for example in the ISO 191xx series of standards.
Both languages have their benefits. UML’s visual syntax is
easy to understand and there is a variety of software tools to
choose from. OWL is backed up by formal logic and logical
conclusions can be drawn on models using inference software
(a.k.a. reasoner). In order to be benefited from the advantages
and software tools of both languages, it is usually necessary
to repeat the modelling process for each language. We have
investigated whether and how conceptual models written in
one language can be automatically transformed into models
written in the other language.

In contrast to existing approaches, our transformation ab-
stracts from the concrete syntax—in most cases a serialisation
based on the Extensible Markup Language (XML)—and op-
erates on the level of UML’s and OWL’s meta-models. This
allows to show which model elements can be transformed and
which cannot—independent of individual examples.

This article is the extended version of the paper published
at SEMAPRO 2013 [1]. It is organized as follows. We start
with a general overview of our approach. The following
sections deal with certain kind of constituents: element types
(Section III), data types (Section IV), relationship types (Sec-
tion V), and constraints (Section VI). Each section describes

how the particular kinds of model element is represented in
UML and OWL and how it can be transformed from one
language into the other. Section VII deals with the question
of whether the transformation rules presented in the previous
sections are correct and—within their previously specified
limits—complete. Section VIII gives an overview of existing
approaches for transformations between UML and OWL. In
Section IX, we summarize our work and point out fields of
future work.

II. OUR APPROACH

In this section, we present the main ideas of a transforma-
tion of conceptual models on the meta model level by using a
standardized declarative model transformation language.

In order to transform between OWL and UML models,
it is necessary to find a “common third”. This common
third might be a transfer format, i.e., a common syntax. It
might also be a common meta model, which permits a syntax
independent transformation of model elements of one language
into corresponding model elements of the other language.

A fundamental difference between OWL-2 and its prede-
cessors is the fact that OWL-2 has a MOF-compliant meta
model. OWL-2 ontologies can be processed not only as
serialized XML documents, but also as MOF-based models.
Therefore, all tools that are available for model transformations
in the context of MOF can also be used to process ontologies.

A model-based transformation only operates on a syntac-
tical level. In contrast, a model transformation offers access
to both the models as well as the meta models [2, p. 28].
The transformation rules refer to the meta models only—hence
the term “processing on meta model level”. When writing
the transformation rules, it is not necessary to know which
models are going to be transformed later. Every model that is
compliant with the (input) meta model can be processed using
these transformation rules.

As a transformation language for MOF-based models, the
Object Management Group (OMG) introduced the “Meta Ob-
ject Facility (MOF) 2.0 Query/View/Transformation (QVT)”.
It is particularly well suited for our purposes. The fact that
the name of the language contains “MOF” makes the close
connection obvious. QVT includes two different language
versions. For our purposes, the declarative QVT Relations
(QVT-R) is more suitable:

• A declarative notation leads to compact transformation
rules that require less code duplication.

• The developed rules, their interaction with each other-
as well as the connection between the source and

182

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the target model, may subsequently be analysed more
effectively.

• During the execution of a QVT-R transformation so
called trace classes are generated. These are useful
for later analysis.

• QVT-R has a graphical syntax allowing a clear and
easy to understand presentation of the transformation
rules.

UML
model

UML
meta modell

OWL
meta modell

OWL
model

QVT-R
processor

transformation rules
UML → OWL

OWL
model

UML
model

transformation rules
OWL → UML

input

output

UML → OWL

OWL → UML

instance of

instance of

input

output

instance of

instance of

Fig. 1. Sketch of the transformation UML↔OWL. The upper part of the
figure is read from left to right. The lower part is read from left to right.

Figure 1 sketches the complete transformation process for
UML and OWL used in the context of this work. The upper
half shows the UML → OWL transformation, the lower half
the OWL→ UML transformation. Common for both directions
of transformation is the use of UML and OWL meta models.
Before and after the actual model-to-model transformations,
certain pre-transformations need to be done, especially when
dealing with OWL ontologies. These pre-transformations map
between concrete and abstract syntax. This can easily be done
using the OWL API [3] or an XSLT script.

III. ELEMENT TYPES

Element types are among the most important components
of a conceptual model: “Defining the entity types [. . .] is
a crucial task in conceptual modeling” [4, p. 41]. Element
types are also known as concepts and are eponymous for the
term “conceptual model”. Element types are used to group
individual objects with the same or similar characteristics.

Both UML and OWL make an equal distinction between
classes on the one side and “instances” resp. “individuals” on
the other side. Because of this similarity, a transformation from
UML classes into OWL classes is straight forward.

For the transformation from OWL to UML, one must
distinguish between named—i.e, declared—classes on the one
hand and unnamed class expressions (CE) on the other hand.
A named class is the simplest case. In this case, a UML class
is created with its name derived from the identifier of the
class. Transformations of unnamed CE will be covered in later
sections about generalization (ObjectUnionOf) and intersection
(ObjectIntersectionOf).

A. Names

For an unambiguous identification, each element type must
have a unique name within a model. The UML specification
demands that every model element must have a unique name
within its package. This ensures that each model element can
be uniquely identified by specifying its name and the position
in the package hierarchy. OWL uses Internationalized Resource
Identifier (IRI) conforming to RFC 3987 to name element types
as well as other elements of an ontology—instances of the
OWL meta class Entity. All assigned names have global
scope, regardless of the context in which they are used.

Since—unlike in UML—an OWL model element must
have a unique name not only within a package but globally,
such a globally unique name must be assigned during the trans-
formation of any model element. Therefore, corresponding
globally unique IRIs are generated during the transformation.
For the transformation OWL → UML it is sensible to use
the remaining characters of an IRI written in short form as the
name of UML elements—assuming the prefix IRI is associated
with the package. As a result the generated UML models will
be easier to read. This is possible, because names in the UML
must be unique only within a package.

B. Inheritance

A common situation in conceptual modelling is that the
population of one element type is neccessarily also the pop-
ulation of a another element type. This is referred to as an
inheritance relationship between these two element types.

Due to the very similar structure and semantics—especially
the transitivity—of Generalization elements on the one hand
and SubClassOf axioms on the other hand, a transformation
from UML to OWL is easily possible. If both of the elements
that are connected via an instance of the UML meta class
Generalization can be transformed to OWL, the transformation
of the Generalization instance is simple. An instance of the
OWL meta class SubClassOf must be created during the
transformation process. Since the newly created SubClassOf
element is an axiom, it is necessary to connect it to the
containing ontology.

For the transformation of an axiom of the form
SubClassOf(Cc Cp) in the direction OWL → UML the
following cases must be distinguished:

(a) Both sub-class Cc and super class Cp can be trans-
formed into a UML class.

(b) At least one of the element types is a CE and the
membership to that CE is described by necessary and
sufficient conditions.

(c) Al least one of the element types cannot be trans-
formed into a UML class due to other reasons (e.g.
complementing).

In case (a) in which both element types can be mapped, a
transformation is simple. Figure 2 shows an example for the
transformation of a SubClassOf axiom in this simplest case.
An instance of the UML meta class Generalization is used to
create an inheritance relationship between the two transformed
UML classes.

183

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Territory

Province

Declaration(Class(:Province))
Declaration(Class(:Territory))

SubClassOf(:Province :Territory)

Fig. 2. Example for the transformation of a SubClassOf axiom.

If in case (b) one of the two element types is a CE defined
by necessary and sufficient conditions, one has to distinguish
whether it is the sub-class Cc or super-class Cp. If it is the
sub-class Cc it is a case as shown in this example:

SubClassOf(
DataMinCardinality(1 :hasISBN)
:Book

)

The element type Cc is defined by a formula φ. Every
individual e is an instance of this element type if, and only if,
it satisfies the formula:

Cc(e)↔ φ(e)

The fact that an individual e is an instance of Cp is denoted
by Cp(e). From the inheritance relationship

Cc(e)→ Cp(e)

immediately follow (by substituting Cc(e))

φ(e)→ Cp(e)

Meeting the formula φ(e) is therefore a sufficient condition
that an object is an instance of the element type Cp. Since
UML does not support automatic classification on the basis of
sufficient conditions, this case is not transformable.

The situation in case (b) is different, if the element type
defined by necessary and sufficient conditions appears as
super-type Cp. Here is an example for this case:

SubClassOf(
:Book
DataMinCardinality(1 :hasISBN)

)

Taken alone, the element type Cp could not be transformed
into a UML class. However, the fact that the element type Cp

occurs within in SubClassOf axiom as super-type makes
the necessary condition of the CE a necessary condition of the
sub element type Cc. This is shown in the following:

The element type Cp is defined by a formula φ. Every
individual e is instance of this element type if, and only if, it
satisfies the formula:

Cp(e)↔ φ(e)

The fact that an individual e is an instance of Cc is denoted
by Cc(e). From the inheritance relationship

Cc(e)→ Cp(e)

immediately follow (by substituting Cp(e))

Cc(e)→ φ(e)

To meet the formula φ(e), it is therefore a necessary
condition that an object is an instance of the element type
Cc. The example shown in the listing above can be read as:
“Every book must have at least one ISBN.” Such necessary
conditions are in turn easily transformable into UML.

C. Abstract Elements

An element type is called abstract if it cannot be instan-
tiated. Thus, one might assume, models containing abstract
classes are by definition inconsistent. Wahler et al. provide
a solution to this apparent problem in [5]. UML allows
the definition of abstract classes that must not have direct
instances. Instantiation is only allowed for subclasses. OWL
knows no language construct to define that a class must not
contain any individual directly, and only one of its subclasses
is allowed to contain individuals.

Usually, abstract classes appear in connection to gener-
alizations. In that context, it is possible to treat them as
“normal” classes. However, the limitation remains that after
the transformation from UML to OWL, it cannot be assured
that an abstract class does not contain any direct instances.

During the transformation of instances of the OWL meta
class ObjectUnionOf in connection with inheritance rela-
tionships, abstract element types play a role. This is discussed
in the section about generalizations below.

D. Element types with fixed population

An element type with a fixed population consists of a
predefined set of objects that make up the population of this
element type. It is not possible to classify more objects as
instances of the element type. UML has no way to specify
that the population of an element type may only consist of
a fixed set of objects. For data types, it is possible to define
element types with fixed population by using an enumeration.

In OWL, elements with a fixed population can be defined
for both individuals as well as for values of data types. For a
fixed set of individuals, this is a CE. A predefined set of values
is a data range. It is not necessary that the listed individuals
are instances of the same element type. Similarly, the values
listed do not have to belong to the same data type. Since, in
UML one can only defined data types with fixed population,
a transformation of the ObjectOneOf-CE is not possible.
Both transformation directions for data types are described in
the corresponding sections about enumerations.

E. Generalization

A generalization is an extension of the inheritance concept
discussed above. Usually, more than two element types are
put into relation. It is also possible to specify whether it is a
complete and/or non-overlapping generalization.

In UML, the generalization of element types is represented
similarly to the the inheritance of element types. Also, in-
formation about whether a generalization is complete and/or
non-overlapping (disjoint) can be expressed in UML. Four

184

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

characteristics can be used for this: complete, incomplete,
disjoint, or overlapping.

In addition to simple inheritance with the help of
a SubClassOf axiom, OWL knows another axiom that
can be used to define that the element types E2 . . . En

constitute a complete, non-overlapping partition of E1:
DisjointUnion(E1, E2, . . . , En).

Because of the different possibilities in UML to specify
completeness or non-overlapping of generalization relation-
ships, different cases for the transformation UML → OWL
can be identified:

• general case

• non-overlapping generalization

• non-overlapping and complete generalization

• complete (but not non-overlapping) generalization

• generalization of data types—treated in the section on
data types

General case: The concepts of specialization and gen-
eralization in UML and OWL are very similar. If E′ is
a specialized sub-type of an element type E and i is an
instance resp. individual, E′(i) → E(i) holds true in both
cases. Therefore, the transformation is quite simple. For every
generalization relationship “E is generalization of E′ (resp. E′

is specialization of E)”, the axiom SubClassOf(E′ E)
is added to the ontology.

Non-overlapping generalization: A generalization is non-
overlapping (disjunct), if an instance of a sub-type must not
be an instance of another sub-type of the same generalization
at the same time. This restriction can be enforced by adding a
DisjointClasses axiom (instance of the OWL meta class
DisjointClasses), which contains all sub element types
of the generalization.

Class 2

Class 1

Class 3

{disjoint}

Declaration(Class(:Class1))
Declaration(Class(:Class2))
Declaration(Class(:Class3))

SubClassOf(:Class2 :Class1)
SubClassOf(:Class3 :Class1)
DisjointClasses(:Class2 :Class3)

Fig. 3. Example for the transformation of non-overlapping (but not neces-
sarily complete) generalization.

Non-overlapping and complete generalization: If a gener-
alization is non-overlapping and complete, a stronger axiom
can be used. A DisjointUnion(E E′

1 . . . E′
n) axioms–

which is actually only a shorthand notation—states that every
individual, which is an instance of element type E, is an
instance of exactly one element type Ei and every individual,
which is an instance of element type Ei, automatically belongs
to the population of E.

Complete generalization: The situation is similar when
the generalization is complete, but not overlapping. In this
case, the DisjointClasses axiom contained in the axioms
combined in the shorthand notation of a DisjointUnion
axiom is not necessary. This results in the solution shown
in Figure 5, which uses an ObjectUnionOf-CE and a
EquivalentClasses axiom.

{disjoint,complete}
Declaration(Class(:Class1))
Declaration(Class(:Class2))
Declaration(Class(:Class3))

DisjointUnion(:Class1 :Class2 :Class3)
Class 2

Class 1

Class 3

Fig. 4. Example for the transformation of a non-overlapping and complete
generalization.

Class 2

Class 1

Class 3

{complete}

Declaration(Class(:Class1))
Declaration(Class(:Class2))
Declaration(Class(:Class3))

EquivalentClasses(
 :Class1
 ObjectUnionOf(
 :Class2
 :Class3
))

Fig. 5. Example for the transformation of a complete but not non-overlapping
generalization.

1) ObjectUnionOf: An ObjectUnionOf(E1 . . . En)
defines an element type with a population consisting of those
individuals that are instance of one or more element types
E1 . . . En. If E1 . . . En can be transformed into UML classes
C1 . . . Cn, the ObjectUnionOf can be represented as ab-
stract class.

Between the abstract class and each member of the union
C1 . . . Cn generalization relations (instances of the UML meta
class Generalization) must be created during the transforma-
tion process. The generalizations are combined into an instance
of the UML meta class GeneralizationSet. It is marked as
complete. This is possible, because in UML the definition of
a union of element types E1 . . . En is semantically equivalent
to an abstract element type and the specification of subtypes.

Person

LegalPersonNaturalPerson

UnionOf_NaturalPerson_LegalPerson

{complete}

SubClassOf(
 :Person
 ObjectUnionOf (
 :NaturalPerson
 :LegalPerson
))

Fig. 6. Example for the transformation of an instance of the OWL meta
class ObjectUnionOf into an abstract class (instance of the UML meta
class Class) and inheritance relationships with GeneralizationSet.

DisjointUnion: The DisjointUnion axiom is a syn-
tactical shortcut. The axiom DisjointUnion(A B1 . . .
Bn) is semantically equivalent to the three axioms

SubClassOf(A ObjectUnionOf(B1 . . . Bn))
SubClassOf(ObjectUnionOf(B1 . . . Bn) A)
DisjointClasses(B1 . . . Bn)

In this particular case, the above mentioned problems of
SubClassOf axioms and sufficient conditions for class mem-
bership can be circumvented and the semantics of the expres-
sion can be transformed. The long notation of a Disjoint-
Union axiom contains a ObjectUnionOf(B1 . . . Bn)
CE. As described above, this CE is transformed into n + 1
UML classes, n generalization relations and an instance of

185

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the UML meta class GeneralizationSet which is marked as
complete. However, in this case the superclass is not abstract.
A name is assigned to this class that corresponds with the
IRI of the OWL class. Additionally, the instance of the UML
meta class GeneralizationSet is marked disjoint to reflect the
disjointness of the classes B1 . . . Bn.

F. Intersection

An element type can be defined by the intersection of other
element types. An object is an instance of that element type if
it is an instance of a set of other element types.

Since UML has no model element similar to General-
izationSet for specializations, the semantic of this construct
cannot be expressed completely. If it is possible to transform
the element types E1 . . . En that are part of the ObjectIn-
tersectionOf-CE into UML classes C1 . . . Cn, it is only
possible to define an abstract class, which is a subclass of the
classes C1 . . . Cn. Since UML does not allow an automatic
classification by sufficient conditions, it is not possible to
enforce that an object, which is a instance of all classes
C1 . . . Cn, is also an instance of the abstract subclass.

IV. DATA TYPES

In general, a datatype consists of three components: the
value space, the lexical space, and a well-defined mapping
from the lexical into the value space. The value space is the—
possible infinite—set of values that can be represented by
the datatype. The lexical space describes the syntax of the
datatype’s values. The mapping is used to map syntactically
correct values to elements of the value spaces. It is possible
that many, even infinite many, syntactically different values are
mapped to the same element of the values space.

Primitive datatypes do not have an internal structure.
Examples of primitive types are character strings, logical
values, and numbers.

Enumerations are a special kind of datatypes with no
internal structure. In contrast to general primitive types the
lexical space and the value space of an enumeration are equal-
sized, well-defined finite sets. The mapping from lexical to
value space is a one-to-one mapping. An example for an
enumeration datatype are the English names of the days of
the week which consist of seven possible values.

In contrast to primitive data types, complex data types
have an internal structure. The following are examples for
complex data types:

• a person’s name consisting of a given name and a
family name

• a physical measurement consisting of value and unit
of measurement

• an address consisting of street name, house number,
postal code and city name

Generalization of datatypes can be defined similarly to
the generalization of element types. If a datatype A generalizes
a datatype B each date that is instance of B (i.e., its lexical
representation belongs to the lexical space of B and its value
belongs to the value space of B) is also instance of datatype

A. For example the integers generalize natural numbers. Each
natural number is also an integer.

A. Representation in UML

Apart from a few pre-defined primitive types UML allows
the definition of additional datatypes in class diagrams. These
can be primitive types, complex datatypes, and enumerations.
In UML, datatypes—similar to classes—can have owned at-
tributes (as well as operations which are not discussed here).
Therefore, they can be used to describe structures. Figure 7
shows examples for the three kind of datatypes.

Weekday
«enumeration»

Monday
Tuesday
Wednesday

Date
«primitive»Name

«datatype»

firstname : String
lastname : String

Fig. 7. Examples for datatypes in UML. Left: user-defined datatype with
two components. Center: user-defined primitive datatype. Right: Enumeration
with three allowed values.

In contrast to instances of classes, “any instances of that
data type with the same value are considered to be equal
instances.”[6, p. 63] Although the graphical representations
of datatypes in general (instances of DataType) as well as
primitive types (instances of PrimitiveType and enumerations
(instances of Enumeration) in particular look similar to the
representation of classes (instances of Class), they are different
elements of the meta model as shown in Figure 8.

DataType

Classifier

Enumeration Class

EncapsulatedClassifier BehavioredClassifier

StructuredClassifier

PrimitiveType

Fig. 8. Extract from the UML meta model, showing the difference between
classes and datatypes.

In UML, generalizations are defined for Classifier and
therefore also for DataType. Thus, inheritance/generalization
relations between datatypes can be defined in a UML class
diagram.

B. Representation in OWL-2

In OWL-2, three different kinds of datatypes can be dis-
tinguished:

1) rdfs:Literal as base datatype
2) datatypes of the OWL-2 datatype map, which is

basically a subset of the XML Schema datatypes [7].
3) datatypes that have been defined within an ontology

using DatatypeDefinition

The value space of the base datatype rdfs:Literal
is the union of the value spaces of all other datatypes.
The OWL-2 datatype map adopts the value space, lexical
space, and the restrictions for user-defined datatypes from

186

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the XML Schema specification. Sets of values (instances of
datatypes)—so called Data Ranges—can be defined by com-
bining datatypes via common set-theoretic operations. A set
of values consisting exactly of one pre-defined list can be de-
scribed by using DataOneOf. A DatatypeRestriction
allows to define a set of values by restricting the value space of
a datatype with constraining facets. The OWL-2 datatype map
defines which restrictions are allowed. For example a number
datatype can be restricted by: less equal, greater equal, equal,
and greater.

An OWL-2 datatype is defined by assigning an Inter-
nationalized Resource Identifier (IRI) to a DataRange us-
ing a DatatypeDefinition axiom. According to the
OWL-2 DL specification this IRI must have been declared to
be the name of a datatype.

Declaration

Axiom

1

Datatype

DatatypeDefinition

DataRange

datatype

entity

Entity
dataRange1 1

Fig. 9. Extract relevant for datatypes from the OWL-2 meta model.

The abstract syntax (see Figure 9) shows that a datatype
is linked indirectly (via an instance of DatatypeDefi-
nition) to its value space (an instance of a subclass of
DataRange. Therefore, it is possible to use a datatype with
no assigned value space. By definition this datatype has the
value space of rdfs:Literal.

Subclasses of DataRange (e.g., DataUnionOf), which
are used for the definition of value sets (and therefore
datatypes), have references to DataRange. Datatype is a
subclass of DataRange, too. Thus, arbitrarily nested con-
structions of datatype-defining elements are possible.

C. Primitive Types

Three cases have to be considered for the UML→ OWL-2
transformation of primitive types:

1) The datatype is one of the four pre-defined datatypes
“Boolean”, “Integer”, “String”, or “UnlimitedNatu-
ral”.

2) The datatype is one of the XML Schema datatypes.
3) The definition of the (user-defined) datatype is part

of the UML-model.

Since OWL-2 uses the datatype-definitions from XML
Schema, a datatype in case (1) can be transformed into its
corresponding datatype from XML Schema. Primitive types
can be recognized by the fact that they are contained in a
package “UMLPrimitiveTypes”.

The transformation in case (2) is even more obvious
because a datatype is used that is also present in OWL-2. The
name of the package containing the primitive types depends

on the UML type library used. A common package name is
“XMLPrimitiveTypes”. This name can be used to recognize
primitive types that fall under case (2). The XML Schema
datatype can be referenced in the ontology by adding the XSD
namespace to the type’s name.

For user-defined datatypes in case (3), a new datatype is
defined in the ontology by using a Datatype axiom. OWL-2
datatypes—like all OWL-2 model elements—are identified by
unique IRIs. Therefore, an appropriate IRI must be gener-
ated during the transformation. In UML, elements (including
datatypes) are uniquely identified by their name and package
hierarchy. Therefore, a combination of package and datatype
name can be used for the IRI.

For the transformation OWL-2→ UML, primitive types are
difficult. OWL-2 offers a variety of possibilities to define new
datatypes. However, some primitive types—and probably the
most common ones—can be transformed. The primitive types
of OWL-2 derive from the XML Schema datatypes. There are
established UML-libraries for the XML datatypes. Therefore,
it is sufficient to include such a library into the transformation
process. An instance of a primitive type contained in the library
can be looked up by the IRI of the OWL-2-datatype and
references as necessary.

D. Enumerations

As mentioned in Section VIII, several authors have already
discussed how to transform enumerations. In OWL-2 the
data range DataOneOf is suitable to define a datatype with
a fixed pre-defined value space. Each lexical value of the
DataOneOf data range is transformed into an Enumera-
tionLiteral instance and vice-versa. OWL-2 as well as UML
support the specification of datatypes for the elements of
an enumeration: An OWL-2 Literal instance has a datatype
attribute, an UML EnumerationLiteral instance has a classifier
attribute referencing the datatype.

Declaration(DataType(:Weekday))

DatatypeDefinition(
 :Weekday
 DataOneOf("Monday" "Tuesday" "Wednesday")
)

Weekday
«enumeration»

Monday
Tuesday
Wednesday

Fig. 10. Example for the transformation of an enumeration.

For the transformation OWL-2→ UML one has to consider
the fact that in OWL-2 the data range DataOneOf can be used
without a DatatypeDefinition which assigns a name to
it. Since an UML Enumeration necessarily needs a name, it
can be generated based on the literals contained in the data
range.

E. Complex Data Types

OWL-2 datatypes consist of exactly one literal and are
therefore not further structured. Since OWL-2 is built upon the
Resource Description Framework (RDF), there is the theoret-
ical possibility to use a blank node and the RDF-instruction
parseType="Resource" to implement complex data as
shown in this listing:

<rdf:RDF xml:base="http://example.com/persons/"

187

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

xmlns="http://example.com/persons/"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<owl:Ontology rdf:about="http://example.com/persons/"/>

<owl:Class rdf:about="Person" />

<owl:NamedIndividual rdf:about="Timmi">
<rdf:type rdf:resource="Person"/>
<hasName rdf:parseType="Resource">

<first>Timmi</first>
<last>Tester</last>

</hasName>
</owl:NamedIndividual>

</rdf:RDF>

However, neither the OWL-1 nor the OWL-2 specification
mention parseType="Resource". Therefore, it is proba-
bly not a valid construct for OWL-2. Even if this notation was
valid for OWL-2 and an element type could be assigned to such
an anonymous individual, the definition of the element type
would be indistinguishable from the definition of a “normal”
element type.

The UML→ OWL-2 transformation of complex datatypes,
i.e., datatypes with owned attributes, is similar to the transfor-
mation of UML classes with owned attributes into OWL-2
classes and properties. There are two characteristics of UML
datatypes that have to be considered:

1) Values do not have an identity.
2) Every value exists only once.

Since the transformation is similar to the transformation of
classes the instances of the resulting element in the ontology
will be individuals. In OWL-2, every (typed) individual must
have a name. Therefore, the semantics for characteristic (1)
is changed: in UML, the instance of the datatype does not
have an identity. The corresponding individual in OWL-2 is
assigned with an IRI by which it can be referenced (and also
identified).

Characteristic (2) requiring that every value must exist not
more than once, can be ensured by using HasKey axioms.
For every UML datatype D with owned attributes a1 . . . an
that is transformed into a OWL-2 class C with data property
dp1 . . . dpn, the following axiom is added to the ontology:

HasKey(C () (dp1 . . . dpn))

This axiom ensures that every occurrence of an individual with
the same values for dp1 . . . dpn is one and the same individual.

Declaration(Class(:Name))

Declaration(DataProperty(:Name_firstname))
DataPropertyDomain(:Name_firstname :Name)
DataPropertyRange(:Name_firstname xsd:string)

Declaration(DataProperty(:Name_lastname))
DataPropertyDomain(:Name_lastname :Name)
DataPropertyRange(:Name_lastname xsd:string)

HasKey(:Name () (:Name_firstname :Name_lastname))

Name

firstname : String
lastname: String

«datatype»

Fig. 11. Example for the transformation of a complex datatype.

F. Generalization of datatypes

In general, the transformation of a datatype generalization
in a UML class diagram is not possible, since OWL-2 has

no support for inheritance/generalization of datatypes. In the
special case of a complete generalization of datatypes with
no internal strcuture (e.g., enumerations), a transformation
is possible: While the generalization of UML classes can
be transformed into an OWL-2 ObjectUnionOf class ex-
pression, this is not possible for datatypes. As the name
suggest, an ObjectUnionOf can only be used for classes.
Instead, an instance of DataUnionOf is used. The sub-
datatypes combined in the DataUnionOf constitute a new
data range. By using a DatatypeDefinition axiom a
name is assigned to this set of datatypes. This name is the
name of the super-datatype from UML. Figure 12 shows an
example for such a transformation.

Declaration(Datatype(:Weekday))
Declaration(Datatype(:WeekdayDE))
Declaration(Datatype(:WeekdayEN))

DatatypeDefinition(:WeekdayDE
 DataOneOf("Montag" "Dienstag" "Mittwoch" ...)
)

DatatypeDefinition(:WeekdayEN
 DataOneOf("Monday" "Tuesday" "Wednesday" ...)
)

DatatypeDefinition(
 :Weekday
 DataUnionOf(:WeekdayDE :WeekdayEN)
)

WeekdayDE

Montag
Dienstag
Mittwoch
…

«enumeration»
WeekdayEN

Monday
Tuesday
Wednesday
…

«enumeration»

Weekday
«datatype»

{complete}

Fig. 12. Example for the transformation of a generalization relation between
datatypes.

V. RELATIONSHIP TYPES

In a software system one can typically find a variety
of relations between instances of the element types. The
characteristics of these relations are described by means of
relationship types. Instead of the term “relationship type”
the term “relation” is often used. This is not quite correct,
as a relation refers to a concrete instance of a relationship
type between instances of element types. A relationship type
describes which characteristics apply to all of its relations in
general.

A relation includes participants (=participating instances
of an element type) that play a certain role. Applied to
relationship types, these participants are element types that
play a certain role within the relationship type. It is possible to
omit the indication of roles for a relation and the relationship
type, respectively.

A relationship type with two members is called binary
relationship type. Corresponding relations are called binary
relations, accordingly. Since arbitrary n-ary relations can be
transformed into binary relations [4, Chap. 6][8], only binary
relationship types are considered in the following.

In UML, binary relationship types can be presented in
two different ways—as associations or as class-dependent
attributes. Associations are depicted by lines between element
types. The name of the relationship type can be written close
to the line, maybe with an arrow indicating the direction.
Class-dependent attributes are listed in the middle section
of an element type. Although the concrete graphical syntax
of associations and attributes differs significantly from each
other, both are represented in the abstract syntax by the same
UML meta class Property. Because of this similarity, it is

188

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

useful to consider the transformation of associations and class-
dependent attributes together, since they differ only within a
few aspects.

OWL knows two different constructs to connect elements:

• Object Properties – for relations between instances of
classes

• DataProperties – for relations between an instance of
a class and an instance of a datatype.

At the declaration of an OWL property—i.e., an indication
that a property with this name exists—initially no information
on the related element types E1 and E2 is made. Therefore,
an instance of such a relationship type can be used for the
connection of arbitrary objects. Only by the use of further
axioms statements about the domain and the range of the
property are made. Thus, the element types E1 and E2 are
determined.

Since the UML meta class Association that represents an
association is a sub-type of Classifier, all associations are
direct components of a UML package. The OWL concept most
similar to an association is an object property. Via its declara-
tion it is also a component of the ontology. The transformation
of class-dependent attributes is a bit more complicated because
there is no obvious corresponding concept to them in OWL.
The main issue is that in OWL classes do not contain any
other model elements—as it is the case in UML. But again,
the connection can be mapped to an object property or a data
property. In both cases, the decision on whether an instance of
the UML meta class Property is mapped to an object property
or a data property depends on the kind of element type the
Property instance points to. If it is an instance of the UML
meta class Class or a complex datatype—i.e., an instance of
the UML meta class DataType with dependent attributes—an
object property will be used. If however, it is an instance of a
simple data type—i.e., an instance of the UML meta classes
PrimitiveDataType or Enumeration—, a data property will be
used.

In contrast to UML, where the types of an association
(domain and range) are always specified, it is optional to
specify domain and range for properties in OWL. Per defini-
tion, the domain and range of such properties is owl:Thing
(respectively owl:Literal for the range of a data property).
Such properties can be used to connect instances of arbitrary
element types. In order to restrict the properties like in an UML
model, it is necessary to add appropriate axioms that specify
the allowed classes and datatypes for domain and range of the
property. The range of an instance of the UML meta class
Property can be determined as follows: it is the element type
that is connected to the Property instance via an instance of the
UML meta class Type appearing in the role type. To determine
the domain one has to distinguish between associations and
class-dependent attributes.

• In case of a class-dependent attribute a connection
exists between the Property instance and a instance
of Class in role class. The element type represented
by this Class instance is the wanted type.

• If the Property instance is part of an association (i.e.,
a connection to an instance of Association where the

role association exists), the type of the other member-
end of the association has to be chosen.

Figure 13 illustrates this selection of domain and range.

:Type

:Association

:Property :Property

association association

memberEnd memberEnd
type type

other end-
point of the
association

domain
connection
is present

range

:Type

Fig. 13. Selection of the domain and range in case of an association. The
focus is on the thicker bordered Property instance.

In order to avoid that two OWL properties that are the
transformation result of different instance of the UML meta
class Property are interpreted as a single property, all those
properties that are not in an inheritance relationship will be
marked as disjoint. For this purpose, DisjointObject-
Properties and DisjointDataProperties axioms
are added to the ontology.

As described above, OWL distinguishes between data prop-
erties connecting classes with datatypes, and object properties
connecting classes with classes. Data properties are mapped
onto class-dependent attributes in UML. With a few exceptions
object properties are also transformed into class-dependent at-
tributes. Object properties to which there is an inverse relation
within the ontology are treated seperately. Such an inverse rela-
tion may be specified in several ways: by explicit specification
using an InverseObjectProperties axiom, by using
an anonymous inverse InverseObjectProperty or by
marking an object property as symmetric or inverse-functional.

It must be expected that more than one class is specified
as domain or range of a property. UML does not allow this
notation. In such cases, a helper class is added, which inherits
from all classes in the domain or range. Figure 14 illustrates
such a construction. At those places where the affected object
property is used, the new auxiliary class will be used in the
UML model, accordingly.

Person Author

Range_hasAuthor

ObjectPropertyRange(:hasAuthor :Person)
ObjectPropertyRange(:hasAuthor :Author)

Fig. 14. Example for the transformation of multiple axioms indicating the
range of an object property into UML classes with inheritance relations.

One possibility to transform object properties with
owl:Thing as domain and/or range is to define a single
base class Csuper within the UML model. Csuper is defined
as super-class of all other classes in the model and thus
corresponds to owl:Thing. In this particular case of a single
base class, an object property without definition of domain and
range can be mapped to an instance of the UML meta type
Association with two member ends of type Csuper.

A. Inheritance

Sometimes it is necessary that from one relationship be-
tween two objects, another relationship follows automatically.

189

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In other words, the population of a relationship type R2

includes the population of another relationship type R1. All
instances of R2 are automatically also instances of R1.

In UML, the inheritance of relationship types is realized
similarly to the inheritances between element types. If both
relationship types are represented by an association, a gener-
alization between these two associations can be created. In the
case of class-dependent attributes, a subsetted attribute can be
specified. Also, OWL allows to express that two relationship
types are in an inheritance relationship. For this purpose, the
axioms SubObjectPropertyOf and SubDataProper-
tyOf exist. An example of such a transformation is shown in
Figure 15.

An inheritance relationship (instance of the UML meta
class Generalization) between two instances of the UML meta
class Association can be transformed into OWL by using
instances of the OWL meta classes SubPropertyOf. Since a
bidirectional association is transformed into two object proper-
ties, the generalization between two bidirectional associations
must be transformed into two instances of the OWL meta class
SubPropertyOf as well.

C1

C3

C2

C4

A21 A12

A43 A34

SubClassOf(:C3 :C1)
SubClassOf(:C4 :C2)

[…]

SubPropertyOf(:A34 :A21)
SubPropertyOf(:A43 :A12)

Fig. 15. Example for the transformation of generalized associations.

For the transformation of a SubObjectPropertyOf
axiom the class-dependent attribute subsettedProperty of the
UML meta class Property can be used. It specifies the parent
Property instance.

B. Cardinality Constraints

Cardinality constraints are one of the most important types
of restrictions for conceptual modelling. They allow a technical
limitation of the quantity of relations that an object can have
with other objects. In UML, cardinality constraints are called
multiplicities and can be specified for both associations as well
as class-dependent attributes.

OWL also knows constructs to describe cardinalities. Class
expressions (CE) are used to describe certain sets of individ-
uals. In the following, a binary relation R(x, y) between two
individuals x and y is considered.

The CE ObjectMinCardinality(n R) describes
the set of individuals that are in a relation R to more than n
individuals: {x : |{y : R(x, y)}| ≥ n}. Corresponding CEs
exist for sets of individuals that are linked with less than n
individuals (ObjectMaxCardinality) or exactly n indi-
viduals (ObjectExactCardinality). If y is a datatype,
the CEs DataMinCardinality, DataMaxCardinatl-
ity, or DataExactCardinatliy are used.

ExactCardinality is only a shortcut for a pair of
MinCardinality and MaxCardinality elements. How-
ever, using this shortcut improves the readability of the ontol-
ogy. Therefore, a UML cardinality constraint with the value

for upper and lower bound is tranformed into an instance of
the UML meta class ExactCardinality with a equivalent
value.

If the value of the upper bound is 1, an additional instance
of the OWL meta class FunctionalObjectProperty or
FunctionalDataProperty is created. Again, although
this is only a abbreviating notation, the additional axiom
improves the comprehensiveness of the ontology, because the
type of property is easier to recognize.

However, it is not possible and sufficient to add the
corresponding CE for the cardinality constraints directly to
the ontology. On the one hand, CEs are not axioms and
can therefore not be added to the ontology directly. On the
other hand, in UML, cardinality constraints of class-dependent
attributes and associations always refer to a specific class.
In OWL properties are not directly contained in classes (see
above). Therefore, cardinality constraints defined for properties
as CE do not affect classes.

These difficulties can be solved by adding an instance of
the OWL meta class SubClassOf to the ontology for every
cardinality constraint. The sub-type is defined as the OWL
class that corresponds to the UML class for which the rela-
tionship type and its cardinality constraint were defined. The
super-type is the CE that represents the cardinality constraint.
Thus, the cardinality constraints of the CE are inherited by the
class that is related to the association or the class-dependent
attribute.

Class 1

attrA : Class2 [0..2]
attrB : string [1]

Class 2

Declaration(Class(:Class1))
Declaration(Class(:Class2))
DisjointClasses(:Class1 :Class2)

Declaration(ObjectProperty(:Class1_attrA))
ObjectPropertyDomain(:Class1_attrA :Class1)
ObjectPropertyRange(:Class1_attrA :Class2)
SubClassOf(
 :Class1
 ObjectMinCardinality(0 :Class1_attrA :Class2))
SubClassOf(
 :Class1
 ObjectMaxCardinality(2 :Class1_attrA :Class2))

Declaration(DataProperty(:Class1_attrB))
DataPropertyDomain(:Class1_attrB :Class1))
DataPropertyRange(:Class1_attrB xsd:string)
SubClassOf(
 :Class1
 DataExactCardinality(1 :Class1_attrB xsd:string))

Fig. 16. Example for the transformation of klass-dependent attributes and
associations with cardinality constraints.

For the direction OWL → UML it has to be considered
that the CE ObjectMinCardinality and ObjectMax-
Cardinality—and those for data properties, respectively—
define anonymous element types that specify restrictions on
the occurrence of a property. If an anonymous element type,
defined by such cardinality constraints is used as superclass
Cp within an SubClassOf(Cc Cp) axiom, the cardinality
constraints become constraints of the class-dependent attributes
of the subclass Cc. Figure 17 illustrates this case.

OWL offers two axioms to characterize properties as
functional. However, both axioms are only syntactic shortcuts
for a subclass axiom and a cardinality CE. Therefore, they
can be transformed into cardinality constrains 0..1 of the
corresponding instance of the UML meta class Property. The
InverseFunctionalObjectProperty axiom to char-

190

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Book
author : Person [1..5]
title : string [1]

Declaration(Class(:Book))
Declaration(Class(:Person))
Declaration(ObjectProperty(:author))
Declaration(DataProperty(:title))

SubClassOf(:Book
 ObjectMinCardinality(1 :author :Person))
SubClassOf(:Book
 ObjectMaxCardinality(5 :author :Person))
SubClassOf(:Book
 DataExactCardinatliy(1 :title xsd:string))

Fig. 17. Example for the transformation of various cardinality restricting
axioms into cardinality constrains of class-dependent attributes.

acterize an object property as inverse-functional is also a
syntactic shortcut. However, the problems with SubClassOf
axioms and sufficient conditions for class membership men-
tioned above prevent a similar transformation. The restriction
can be preserved by mapping the OWL property onto one
member-end of an instance of the UML meta class Association
and by setting a cardinality constraint 0..1 for the other
member-end of that association.

C. Value constraints

In case of a value restriction, the second participant of
a relationship type is set to exactly one value or an object.
In UML, it can be defined that a class-dependent attribute
is pre-set to a fixed value during the instantiation. In order
to prevent the change of this value even during dynamic
use, this value can also be marked as immutable. For both,
object properties as well as data properties, OWL offers the
possibility to set the second participant to a fixed value. The
value constraint can also be achieved by defining a one-element
element type and a corresponding cardinality axiom. However,
with ObjectHasValue and DataHasValue, OWL offers
shortcuts, which make the semantics clearer to a human reader.

Similar to the transformation of class-dependent attributes
with cardinality constraints into SubClassOf axioms of the
containing class, as a value constraint is transformed into a
SubClassOf axiom as well. The super-type will be an in-
stance of the OWL meta class DataHasValue (a data range).
Within that data range, the fixed value and the data property
generated from the class-dependent attribute are defined.

In the transformation OWL → UML, one can use the fact
that if an element type defined by a DataHasValue CE is
used as super-type Cp within SubClassOf(Cc Cp) axiom
the fixed value becomes a necessary condition for instances
of the class Cc. Every single instance of that class will have
exactly this fixed value. In a UML model, this value can be
defined for an instance of the UM meta class Property by
setting the class-dependent attribute default.

Book
title : string [1]
printed : boolean = true

Declaration(Class(:Book))
Declaration(DataProperty(:title))
Declaration(DataProperty(:printed))

SubClassOf(:Book
 DataExactCardinatliy(1 :title xsd:string))
SubClassOf(:Book
 DataHasValue(:printed "true"^^xsd:boolean))

Fig. 18. Example for the transformation of an axiom for a value constraint
into a value constraint of a class-dependent attribute.

D. Part-Whole-Relationships

Part-whole relations (also known as composition and ag-
gregation) are a special kind of relationship types. They play
an important role in modelling [4, p. 137]. They can be used to
express a certain semantic of the relationship. Additionally, fur-
ther restrictions can be imposed on the respective relationship
type. A part-whole relation is antisymmetric—i.e., if T is part
of G, G can not be part of T . There is disagreement on whether
part-whole relations are transitive or not [4, p. 142]. Since a
part-whole relation is a binary relationship type, the previously
made statements and observations for general relationship
types also apply to this kind of relationship types.

UML knows two kinds of part-whole relations: aggregation
and composition. They differ in both, (graphical) syntax and
their semantics. An aggregation is anti-symmetric and transi-
tive. Objects linked by it form an acyclic graph [9, p. 171].
It is allowed that a “part” is part of more than one “whole”.
Composition is a stronger form of aggregation. In addition to
anti-symmetry and transitivity, a “part” may—at a time—be
only part of a single ‘’whole”. Futhermore, the existence of a
“part” depends on the existence of the “whole”. It can not exist
without something it is part of. OWL has no special constructs
to identify part-whole relationships.

Like other associations between two classes, part-whole
relation types are transformed into object properties. Moreover,
the additional restrictions mentioned above are taken into
account:

a) aggregations are antisymmetric

b) an object must not be in an aggregation relation to
itself—that would be a contradiction to the antisym-
metry,

c) an object must not be part of more than one compo-
sition,

d) an instance of a class that is part of a composition
must not exist alone.

The asymmetry can be achieved by adding an Asymmet-
ricObjectProperty axiom to the object property that has
been transformed from the association with aggregation or
composition characteristic.

Restriction (b) can be transformed to OWL by adding an
IrreflexiveObjectProperty to the ontology for each
association with aggregation or composition characteristic.
This axiom prohibits the use of the corresponding object
property to connect an individual with itself.

Restriction (c) can be achieved by adding a Function-
alObjectProperty or an InverseFunctionalOb-
jectProperty axiom. If the association with composition
characteristic is bidirectionally navigable, it makes no differ-
ence what type of axiom is used. However, if the association
is only navigable from one direction the following distinction
has to be made. If the association is navigable from “part”
to “whole”, a FunctionalObjectProperty is used. A
connection between an individual of the “part”-class to more
than one individual of the “whole”-class would make the
ontology inconsistent. An InverseFunctionalObject-
Property axiom is used if the association is navigable from
“whole” to “part”.

191

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The enforcement of a constraint of the form (d) is not
possible, since the open world assumption is used for OWL.
The individual in question could be part of a composition that
is not explicitly listed in the ontology.

E. Inverse

If a conceptual model contains an relationship type
R(E1, E2) with two participating element types E1 and E2,
a common wish is to have the choice to use instances of
both element types as first or second participant. To make
this possible, one can define an inverse relationship type
Rinv(E1, E2).

For example, consider a book containing chapters. The
relationship type contains(Book,Chapter) is defined for the
element type Book and Chapter. Instances of type Book must
always appear as the first participant of such a relationship. If
a relationship type isContainedIn(Chapter,Book) that is
inverse to contains is defined, statements equvialent to those
with contains can be made with an instance of type Chapter
as first participant.

Although UML provides no possibility to explicitly mark
two arbitrary associations as inverses of each other, the two
ends of a binary bidirectional association can be seen as two
inverse relations.

The definition of inverse relationship types is only possible
for object property, not for data properties. A value (an instance
of a datatype) must not contain properties itself. OWL offers
three possibilities to use inverse relationship types:

1) An InverseObjectProperties is used to de-
clare two previously defined object properties as
inverses of each other..

2) The inverse of an object property can be used directly
by using the object property expression ObjectIn-
verseOf without assigning a name to it.

3) An object property is marked as inverse-functional.

It should be noted that for two individuals a and b the
inverse object property opinv(b, a) is automatically part of the
ontology if op(a, b) is contained in the ontology.

During the transformation UML → OWL bi-directional
associations are transformed into two—initially independent—
object properties. However, such associations are equivalent to
two directed mutually inverse associations. [9, p. 165] There-
fore, an instance of the OWL meta class InverseObject-
Properties is created and linked with the corresponding
instances of ObjectProperty.

Author

Book

hasAuthor

wrote

0..*

0..*

hasAuthor_wrote

Declaration(ObjectProperty(:hasAuthor))
ObjectPropertyDomain(:hasAuthor :Book)
ObjectPropertyRange(:hasAuthor :Author)

Declaration(ObjectProperty(:wrote))

InverseObjectProperties(:hasAuthor :wrote)

Fig. 19. Example for the transformation of an inverse object property into
an instance of the UML meta class Association.

When transforming inverse object properties in OWL on-
tologies into UML no class-dependent attributes are used—in

contrast to the generic case described above. Otherwise, the
connection between the two links could not be seen. Instead,
an instance of the UML meta class Association is used as
transformation target. The two instance of the UML meta class
Property occurring as member-ends are mutually set as the
value of the opposite attribute.

VI. CONSTRAINTS

Some very common constraints have been discussed in
the previous sections, such as cardinality constraints or non-
overlapping generalizations. In this section, further restrictions
on element types and relationship types will be discussed,
namely keys for element types and “conditional relationship
types” that work on a combination of element and relationship
types.

A. Key Constraints

Key constraints can be used to enforce that there are no two
different instances of an element type for which all relations
specified in the key have an identical value, or point to the
same object. There are simple keys that are based on only one
relationship, as well as composite keys, which are based on
multiple relations.

UML offers the possibility to define a single key per
element type. Class-dependent attributes (instances of the meta
class Property) can be marked that are part of this key. These
marked attributes can be used to identify an instance of the
element type.

OWL offers the HasKey axiom to define composite keys.
Such a key can not only be defined for named element type but
also for any CE. The relationship types to be considered are
divided into two sets, the object properties and the data proper-
ties. With the axioms FunctionalObjectProperty and
FunctionalDataProperty OWL provides yet another
way to define especially strong simple keys. An identity is
defined independently of the element type of the object, on
the basis of the relationship alone.

To transform a UML class with a key, i.e., some of its
class-dependent attributes are marked with isID=true, a
corresponding instance of the OWL meta class HasKey is
added to the ontology.

Town

name : String
latitude : double {ID}
lontigude : double {ID}

Declaration(Class(:Town))
Declaration(DataProperty(:name))
Declaration(DataProperty(:latitude))
Declaration(DataProperty(:longitude))

HasKey(:Town () (:latitude :longitude)

Fig. 20. Transformation of a composite key constraint.

The information that the properties appearing within
HasKey axioms of an OWL ontology form a key can be
transformed into an UML model by setting the value of the
class-dependent attribute isID for the instances of the UML
meta class Property that have been generated from those
properties. The transformation of functional object and data
properties has already been discussed above.

192

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Conditional relationship types

A conditional relationship type consists of a set of rela-
tionship types. An object must not appear more than once as
a member of an instance of these relationship types. As an
example, consider an address which might include either a
visiting address or a postbox, but not both.

UML does not provide a special construct to defined such
conditional relationship types. However, the ISO 19100 “UML
profile” defines a new meta class Union with the desired
semantics. Only one of a Union’s properties must be used.
In an UML diagram an instance of a Union is depicted by
adding the stereotype «Union» to a class symbol. However,
this is not a “real” UML stereotype, as the semantics of the
model element is changed. The set of the Union’s properties
is defined by the set of class-dependent attributes.

Two different mappings have been developed to transform
an instance of the meta class Union into OWL. The first
mapping is only valid if the types of all class-dependent
attribute are ether datatypes or classes— but not a mixture
of both. In that case the attribute are transformed into object
properties or data properties. By contrast, the second mapping
also allows the transformation of a mixture of classes and
datatypes. However, a larger number of axioms is required
to reproduce the semantics.

Mapping 1: Let C be a class representing an instance
of Union. Let p1 . . . pn be its properties. It must be ensured
that only a single property px ∈ p1 . . . pn is specified for
an individual. To achieve this, a helper property pUnion with
domain C and the axioms pi v pUnion∀i ∈ 1..n are added to
the ontology.

A DataExactCardinality axiom is used to restrict
the number of pUnion properties for each individual of class
C to exactly one. This prevents the setting of two or more
different properties. Due to OWL’s OWA it cannot be guaran-
teed that a property has been specified explicitly at all. This
problem has been discussed above in the section on cardinality
constraints.

Class1

name : String
uri: anyURI

«Union»

Declaration(Class(:Class1))

Declaration(DataProperty(:name))
DataPropertyDomain(:name :Class1)
DataPropertyRange(:name xsd:string)
SubDataPropertyOf(:name :Class1_UnionProperty)

Declaration(DataProperty(:uri))
DataPropertyDomain(:uri :Class1)
DataPropertyRange(:uri xsd:anyURI)
SubDataPropertyOf(:uri :Class1_UnionProperty)

Declaration(DataProperty(:Class1_UnionProperty))
DataPropertyDomain(:Class1_UnionProperty :Class1)

SubClassOf(
 :Class1
 DataExactCardinality(1 :Class1_UnionProperty))

Fig. 21. First approach for a transformation of an ISO 19100 Union.

Mapping 2: For each property pi ∈ p1 . . . pn of the Union
an OWL helper class Ci is defined. By using a Disjoint-
Classes axiom, it is stated that these n classes are disjoint in
pairs. For each class, it is additionally stated that it is equivalent
to the set of those individuals that are connected to exactly one
individual or literal via pi:

EquivalentClasses(Ci

DataExactCardinality(1 pi)) bzw.
EquivalentClasses(Ci

ObjectExactCardinality(1 pi))

By using the first mapping only (n+3) per UML property
will be added to the ontology. The second mapping requires
(2n+1) additional axioms per property. Therefore, it is smart
to use the first option if an instance of the meta class Union
is composed exclusively of data types or classes, and to use
the second option only when a mixture of both is present.

Class1

name : String
resource : Class2

«Union»

Declaration(Class(:Class1))
Declaration(Class(:Class2))

Declaration(DataProperty(:name))
DataPropertyDomain(:name :Class1)
DataPropertyRange(:name xsd:string)

Declaration(ObjectProperty(:resource))
ObjectPropertyDomain(:resource :Class1)
ObjectPropertyRange(:resource :Class2)

Declaration(Class(:Union_Class1_name))
EquivalentClasses(
 :Union_Class1_name
 DataExactCardinality(1 :name))

Declaration(Class(:Union_Class1_resource))
EquivalentClasses(
 :Union_Class1_resource
 ObjectExactCardinality(1 :resource :Class2))

DisjointClasses(:Union_Class1_name
 :Union_Class1_resource)

Fig. 22. Second approach for a transformation of an ISO 19100 Union.

VII. EVALUATION

This section deals with the question of whether the trans-
formation rules presented in the previous sections are correct
and—within their previously specified limits—complete. For
this purpose, three different kind of analysis were conducted:

1) Coverage of the meta models
2) Analysis of individual transformation rules
3) Check the transformations automatically

Due to space limitations, only the third analysis is pre-
sented in detail.

One advantage of using QVT-R for the transformation is
the generation of so-called “trace classes” and their instances
during the execution of the transformation rules. Instances of
the trace classes depend on the input models. In contrast, the
trace classes itself are independent of the processed models.
They are determined only by the transformation rules and the
meta models. These recordings are used for tests 1) and 2).

Test 1 deals with the coverage of the meta models. It
shows which part of the UML and OWL meta models is
captured by the transformations at all. Further investigations
are necessary, as an examination of the coverage of the meta-
models is not sufficient for the evaluation of transformations.
Even a complete coverage of the meta models cannot guaran-
tee semantically preserving transformations. Such a complete
coverage could actually be achieved by trivial and meaningless
transformations. Consider the following example: all element
types of the meta model M1 are mapped to a single element
type B of the target meta model M2. Thus, a complete cov-
erage is achieved for M1. To also achieve complete coverage

193

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for the element types of M2, a second transformation rule is
needed. For each instance of the element type A in meta model
M1 it creates an instance of every element type in meta model
M2. As a result a complete coverage of of M2 is also achieved.

Therefore, it is necessary to investigate the transformation
rules further. For this purpose, individual, mutually inverse
transformation rules with their mutual dependencies and the
dependencies to the meta element types are analysed in test 2.
Rules that only artificially increase the coverage of the meta
models would be detected by this test. Such a rule would attract
attention because

• it is connected to instances of unusual many element
types or

• it creates instances of unusual many element types.

Due to the complexity of a manual analysis of the trans-
formation rules and the risk to overlook errors, an automatic
verification of transformations is desirable. Such a verification
is presented by test 3.

tra
nsf

orm
ati

on transformation

check semantic
equivalence

UML
model

OWL-2
model

OWL-2
model

Fig. 23. Procedure for checking the correctness of the transformations.

Figure 23 shows a sketch of how to show the correctness
of the transformation rules for certain parts of the meta model.
The transformation rules are executed in both directions. After
that input model and output model are compared appropriately.

It is advantageous to use an OWL ontology as input
model (and thus also as output model). During the following
comparison, available software tools such as reasoners can be
used. The following shows how an “ appropriate” comparison
might look like.

Set U be the UML meta model, O the OWL meta model,
u a model conforming to U , and o a model conforming the
O. Let ~TUO and ~TOU be the transformations UML → OWL
respective OWL → UML described above. Ideally, the con-
secutive execution of the transformations o2 = ~TUO(~TOU (o1))
should create an ontology such that o1 and o2 are semantically
equivalent.

What does semantically equivalent mean? It can be ob-
served that there are models M1 and M2 with a different
structure, for which each instance m that conforms to M1

also conforms to M2. Thus, the models describe the same
(static) semantics. Similarly, models can be found that have
the same informational content and differ only by the names
of the elements. With a simple renaming, any instance that
conforms to the first model, can be be transferred to an instance

conforming to the second model. Overall, the checking for
semantic equivalence can be cut down to the question of
whether a Total Ontology Mapping [10] exists between both
ontologies.

An ontology is a pair O = (S,A) with S being the
signature of the ontology and A its set of axioms. The signature
describes the vocabulary used within the ontology. The set of
axioms describes how the elements of S are put into relation.

A Total Ontology Mapping between an ontology O1 =
(S1, A1) and an ontology O2 = (S2, A2) is a morphism
f : S1 → S2 that maps both signatures of the ontology in
a way such that A2 |= f(A1). All interpretations that satisfy
the axioms of O2 also satisfy the renamed axioms of O1.

A. Computation of a Total Ontology Mapping for OWL-2

In OWL, the signature of the ontology is formed by
the instances of the meta class Entity. The elements of
the signature are divided into disjoint sets Class, Ob-
jectProperty, DataProperty, AnnotationProp-
erty, Datatype, NamedIndividual. Thus, the signature
has the formS = (SC , SOP , SDP , SDT , SI). Annotations are
ignored as they do not carry any semantic information. Since
the sets are disjoint, the search for renaming can be restricted
to one set. That significantly reduces the complexity of the
search.

For simplicity, it is assumed that S1 only contains elements
that are used in A1 and S2 only contains elements that are
used in A2. Otherwise, unused items can be deleted without
changing the statement of the axioms.

It is further assumed that the components of the signatures
of the two ontologies have the same size: |SX1| = |SX2|, X ∈
{C,OP,DP,DT, I}. If this is not the case, an appropriate
amount of previously unused elements is added to the smaller
set.

In order to maintain a clear notation, only the subsets SC1

and SC2for the classes are considered in details. The other
four subsets SOP , SDP ,SDT , and SI are handled similarly.

The algorithm works as follows. Put the elements of SC1

and SC2 into an arbitrary order. The result are two ordered
lists SC1 = (c1, . . . , cn) and SC2 = (d1, . . . , dn). For all
possible permutations σC : N → N , N = {1, . . . n} check
if every axiom a ∈ f(A1) can be inferred from A2 with
f : (SC1, . . .)→ (SC2, . . .) and σC(ci) = di ∀i ∈ {1, . . . n}.
If such a permutation can be found, a Total Ontology Mapping
between the ontologies O1 and O2 exists.

The procedure described in the previous paragraphs:

1) Apply the transformation ~TOU to the input ontology
o. The result is m = ~TOU (o).

2) Apply the transformation ~TUO to the UML model m.
The result is o′ = ~TUO(m).

3) Use the algorithm to test if a Total Ontology Mapping
between o and o′ exists.

4) Use the algorithm to test if a Total Ontology Mapping
between o′ and o exists.

can be applied in instances of single meta classes or an
arbitrary combination of meta class elements.

194

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VIII. RELATED WORK

Two fundamentally different approaches for a transfor-
mation between UML and OWL-2 can be identified: XML-
based transformations and transformations that are not based
on XML.

A. Transformations based on XML

All XML-based approaches have a number of disadvan-
tages in common. When working with documents containing
a serialization of a model in concrete syntax only one model
level is visible. Usually, only the names of meta models
elements are available. The internal structure of the meta
model and internal connections are inaccessible. XML-based
transformations that use XML Metadata Interchange (XMI)
documents and/or ontologies written in XML-based syntaxes
of OWL and RDF lead to further problems. For example, the
sequence of XML elements in two different serialization of
one model can be almost completely different. It is easy to see
that this leads to unnecessarily complex transformation rules.
Besides others, [11][12] point out these problems as well.

Cranefield has addressed the connection between UML
and ontologies in two articles: Cranefield and Purvis have
examined how the UML and the Object Constraint Language
(OCL) can be used to model ontologies [13] in general. The
objective in this early work was not the transformation from
UML to OWL, but rather the use of UML as an ontology mod-
elling language. A transformation from UML class diagrams
into Java code as well as into RDF-Schema is presented by
Cranefield in a later article [14].

Falkovych presents a transformation of UML models into
DAML + OIL (a predecessor of OWL) and RDFS using XSLT
[15].

Gaševi Djuri et al. describe the transformation of a UML
class diagram into an OWL ontology by using XSLT [16].
In the creation of the class model, a special UML profile
"Ontology UML Profile"—defined by Djurić et al. in [17]—
must be used.

Leinhos describes two variants for the transformation of
UML models into OWL ontologies [18]. The UML models are
serialized as XMI files. For the OWL ontologies the RDF/XML
syntax is used. In one variant, specially constructed UML class
diagrams are transformed into OWL ontologies. In the other
variant, elements are added to the ontology that are not present
in the original UML model and that do not match the semantics
of the UML model.

B. Transformations not based on XML

Milanovic, Gasevic et al. describe the transformation of
OCL rules into Semantic Web Rule Language (SWRL) rules,
using the Atlas Transformation Language (ATL) [12][19].
It should be noted, that their approach is built upon meta
models for OCL and SWRL. As the focus of our paper is
on the transformation UML models and OWL-2 ontologies
we consider the meta models for UML and OWL-2.

Hart et al. identify three groups of features. First, features
that are more or less present in both languages. Second,
features that are only available in UML and third, features

only offered by OWL [20]. With respect to common features,
examples are used to demonstrate how these examples would
appear in both languages. This collection has been incorpo-
rated in some modified form as Chapter 16 of OMG’s Ontology
Definition Metamodel (ODM) specification [21]. However,
only part of the model elements have been considered.

Höglund et al. use MOFScript to perform a transformation
from UML to OWL-2 [22]. The aim of the work is the
validation of meta models. Their transformation is a model-
to-text transformation. Therefore, the OWL-2 meta model is
not part of the transformation.

The idea of a model transformation between UML and
OWL-2 was presented by the authors in [23] und [24]. How-
ever, these publications only present the idea and cover very
few selected modelling elements. Very important to us is a
very careful evaluation of the transformation rules which we
presented in Section VII of this article.

IX. CONCLUSION AND FUTURE WORK

In this paper, a systematic approach for an automatic trans-
formation of conceptual models between the Model-Driven
Architecture Technology Space and the Ontology Engineering
Space Technology is presented. In contrast to previous works,
an approach was chosen which abstracts from the concrete
syntax or XML serialization and works on the level of the
meta models of UML and OWL. As a result, it was possible
to show independently of individual sample models, which
model elements can be transformed and which can not be
transformed.

It has been found that data models written in UML can be
represented as OWL Ontologies quite well. Especially when
certain restrictive rules—for example those the ISO 19100
family of standards specifies— are observed, the semantics
of the data model will translate well. To be mentioned as
problematic are: UML’s possibility to restrict the visibility
of model elements, abstract classes, certain kinds of gener-
alization (non-overlapping but not complete), aggregation and
composition (which can with minor exceptions be treated as
ordinary relationship types), and the extension by stereotypes.

The different extent of the meta-models clearly suggests
that OWL provides much more complex means of modelling
already. The transformation of general ontologies in UML
data models is not always possible. Particularly problematic is
the definition of element types using nested class expressions
as well as sufficient conditions. But even in these cases a
transformation is often possible—e.g., cardinality constraints
that appear as super-types. OWL constructs such as comple-
mentation and global properties can not be transformed in
general. Only under the special condition that a single element
type was defined as a super-type of all other element types, a
transformation is still possible.

We applied the transformation technology presented in this
article to improve the quality of historic statistical data, namely
the so-called "Digital Reich Statistics" (1873-1883) of the
German National Library of Economics. After digitization of
the original data the library established a UML model for some
economic data. The transformation of this model into an OWL-
2 ontology allowed us to check the consistency of the UML
model and the data.

195

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In many cases modelling concepts can be implemented in
UML data models by the use of Object Constraint Language
(OCL) expressions. For example, OWL constructs such as the
definition of element types via sufficient conditions can be
realized using OCL expressions. As a MOF-compliant abstract
syntax exists for OCL, that transformation could be carried out
on meta model level—like the transformations described in this
article. However, the additional use of OCL results in some
difficulties, such as the question of whether even all atomic
OCL expressions can be represented with OWL. It might be
necessary to use rule languages, e.g., the Semantic Web Rule
Language (SWRL) with its built-ins. However, this would
make the transformation OWL → UML more complicated.
OCL is a very rich language. By nesting expressions, arbitrar-
ily complex OCL expressions can be generated. On the one
hand, the transformation of these nested expressions becomes
very complex. On the other hand, it is unclear whether these
complex expressions can be expressed in an OWL ontology.

In the field of comprehensibility, UML is currently supe-
rior. If there was a corresponding intuitive graphical syntax
for OWL with a selection of software tools for dealing with
this syntax, it would certainly contribute to increase the use of
OWL in the creation of conceptual models.

REFERENCES

[1] J. Zedlitz and N. Luttenberger, “Data types in UML and OWL-2,” in
SEMAPRO 2013, The Seventh International Conference on Advances
in Semantic Processing, 2013, pp. 32–35.

[2] C. Eisenhut and T. Kutzner, Vergleichende Untersuchungen zur Model-
lierung und Modelltransformation in der Region Bodensee im Kontext
von INSPIRE, München, 2010.

[3] M. Horridge and S. Bechhofer, “The OWL API: A Java API
for OWL Ontologies,” in Proceedings of the 6th International
Workshop on OWL: Experiences and Directions (OWLED 2009),
R. Hoekstra and P. Patel-Schneider, Eds., 2009. [Online]. Available:
http://ceur-ws.org/Vol-529/owled2009_submission_29.pdf

[4] A. Olivé, Conceptual Modeling of Information Systems,
Berlin/Heidelberg/New York, 2007.

[5] M. Wahler, D. Basin, A. D. Brucker, and J. Koehler, “Efficient analysis
of pattern-based constraint specifications,” Software and Systems
Modeling, vol. 9/2„ pp. S. 225–255, Heidelberg 2010. [Online].
Available: http://dx.doi.org/10.1007/s10270-009-0123-6

[6] OMG, “Unified Modeling Language, Superstructure Version 2.4,” 2011.
[Online]. Available: http://www.omg.org/spec/UML/2.4/Superstructure

[7] XMLSchema-2, “XML Schema Part 2: Datatypes,” 2004. [Online].
Available: http://www.w3.org/TR/xmlschema-2/

[8] W. Hesse and H. Mayr, “Modellierung in der softwaretechnik: eine
bestandsaufnahme,” Informatik-Spektrum, vol. 31/5„ pp. S. 377–393,
Berlin/Heidelberg 2008.

[9] H. Balzert, Lehrbuch der Softwaretechnik: Basiskonzepte und Require-
ments Engineering, Heidelberg„ 3. Auflage 2009, vol. 1.

[10] Y. Kalfoglou and M. Schorlemmer, “Ontology Mapping:
The State of the Art” in The Knowledge Engineering
Review, vol. 18/1, pp. S. 1–31, 2003. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2005/40

[11] K. Falkovych, M. Sabou, and H. Stuckenschmidt, “UML for the Se-
mantic Web: Transformation-based Approaches,” in Knowledge Trans-
formation for the Semantic Web, vol. 95„ pp. S. 92–107, 2003.

[12] M. Milanović, D. Gašević, A. Guirca, G. Wagner, and V. Devedžić, “On
Interchanging Between OWL/SWRL and UML/OCL,” in Proceedings
of 6th Workshop on OCL for (Meta-) Models in Multiple Application
Domains (OCLApps), 2006, pp. S. 81–95.

[13] S. Cranefield and M. Purvis, “UML as an Ontology Modelling Lan-
guage,” in The Information Science Discussion Paper Series, vol. 99/01,
Dunedin 1999.

[14] S. Cranefield, “Networked Knowledge Representation and Exchange
using UML and RDF,” in Journal of Digital information, vol. 1/8,
Austin 2001.

[15] K. Falkovych, “Ontology Extraction from UML Diagram,”, Amsterdam,
2002.

[16] D. Gašević, D. Djuric, V. Devedzic, and V. Damjanovi, “Converting
UML to OWL Ontologies,” in Proceedings of the 13th international
World Wide Web conference on Alternate track papers & posters. New
York: ACM, 2004, pp. S. 488–489.

[17] D. Djurić, D. Gašević, V. Devedžić, and V. Damjanović, “A
UML Profile for OWL Ontologies,” in Model Driven Architecture.
European MDA Workshops: Foundations and Applications, MDAFA
2003 and MDAFA 2004, Twente, The Netherlands, June 26-27,
2003 and Linköping, Sweden, June 10-11, 2004. Revised Selected
Papers, Berlin/Heidelberg, 2005, pp. S. 204–219. [Online]. Available:
http://www.springerlink.com/content/49yb6365gymtryfg/

[18] S. Leinhos, “OWL Ontologieextraktion und -modellierung auf der
Basis von UML Klassendiagrammen,” Diplomarbeit, Universität der
Bundeswehr München, München, 2006.

[19] M. Milanović, D. Gašević, A. Giurca, G. Wagner, and V. Devedžić,
“Towards Sharing Rules Between OWL/SWRL and UML/OCL,” in
Electronic Communications of the EASST Volume 5,, 2006.

[20] L. Hart, P. Emery, B. Colomb, K. Raymond, S. Taraporewall a,
D. Chang, Y. Ye, E. Kendall, and M. Dutra, “OWL
Full and UML 2.0 Compared,” 2004. [Online]. Available:
http://www.omg.org/docs/ontology/04-03-01.pdf

[21] OMG, “Ontology Definition Metamodel,” Object Management Group,
2009. [Online]. Available: http://www.omg.org/spec/ODM/1.0/

[22] S. Höglund, A. Khan, Y. Liu, and I. Porres, “Representing and
Validating Metamodels using the Web Ontology Language OWL 2.
TUCS Technical Report No. 973,” Turku 2010. [Online]. Available:
http://tucs.fi/publications/attachment.php?fname=TR973.full.pdf

[23] J. Zedlitz, J. Jörke, and N. Luttenberger, “From UML to OWL 2,” in
Proceedings of Knowledge Technology Week 2011, D. Lukose, A. R.
Ahmad, and A. Suliman, Eds., Berlin/Heidelberg, 2012, pp. p. 154–163.

[24] J. Zedlitz and N. Luttenberger, “Transforming Between UML
Conceptual Models and OWL 2 Ontologies,” in Proceedings of
the Terra Cognita Workshop on Foundations, Technologies and
Applications of the Geospatial Web, in conjunction with the 11th
International Semantic Web Conference (ISWC 2012), D. Kolas,
M. Perry, R. Grütter, and M. Koubarakis, Eds., 2012, pp. p. 15–26.
[Online]. Available: http://ceur-ws.org/Vol-901/paper2.pdf

196

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

