International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http.//www.iariajournals.org/software/

224

Dynamic Reverse Engineering of Graphical User
Interfaces

Inés Coimbra Morgado and Ana C. R. Paiva
Department of Informatics Engineering,
Faculty of Engineering, University of Porto,
rua Dr. Roberto Frias, 4200-465 Porto, Portugal
{prol1016, apaiva}@fe.up.pt

Abstract—This paper presents a dynamic reverse engineering
approach and a tool, ReGUI, developed to reduce the effort of
obtaining models of the structure and behaviour of a software
applications Graphical User Interface (GUI). It describes, in more
detail, the architecture of the REGUI tool, the process followed to
extract information and the different types of models produced
to represent such information. Each model describes different
characteristics of the GUI. Besides graphical representations,
which allow checking visually properties of the GUI, the tool
also generates a textual model in Spec# to be used in the
context of model based GUI testing and a Symbolic Model
Verification model, which enables the verification of several
properties expressed in computation tree logic. The models
produced must be completed and validated in order to ensure that
they faithfully describe the intended behaviour. This validation
process may be performed by manually analysing the graphical
models produced or automatically by proving properties, such
as reachability, through model checking. A feasibility study is
described to illustrate the overall approach, the tool and the
results obtained.

Keywords-ReGUI; Dynamic Reverse Engineering; GUI Testing;
Properties Verification; CTL; Model Checking; SMV

I. INTRODUCTION

This paper extends the research work presented in [1], which
describes a reverse engineering tool to extract a model from the
execution of a Graphical User Interface (GUI). In particular,
the state of the art is improved and the overall approach
is described in more detail. Moreover, a new module was
implemented in order to automatically generate a Symbolic
Model Verification (SMV) model for model checking. The
case study was extended in order to illustrate the additional
features.

GUI models are key inputs for several advanced techniques,
such as Model Based GUI Testing (MBGT) [2], [3], [4],
which enables the automatic test case generation, increasing
the systematisation and automation of the GUI testing process,
and model checking, which enables an automatic verification
and validation of some properties of the system. However,
the manual construction of such models is a time consuming
and error prone activity. One way of diminishing this effort
is to automatically construct part of the model by a reverse
engineering process.

Jodo Pascoal Faria
Department of Informatics Engineering,
Faculty of Engineering, University of Porto
rua Dr. Roberto Frias, 4200-465 Porto, Portugal
INESC TEC, Porto, Portugal
jpf@fe.up.pt

The challenge tackled in this research work is the automatic
construction of part of the software’s GUI model (structure
and behaviour) using a dynamic reverse engineering technique.
The extracted information is presented in several formats that
allow performing different types of analysis, such as, visual
inspection, model checking and MBGT.

The term reverse engineering was firstly defined in 1985 by
Rekoff [5] as “the process of developing a set of specifications
for a complex hardware system by an orderly examination of
specimens of that system”. Five years later, Chikofsky and
Cross [6] adapted this definition to software systems: “Reverse
Engineering is the process of analysing a subject system to (1)
identify the system’s components and interrelationships and (2)
to create representations of the system in another form or at
a higher level of abstraction”.

The origin of software reverse engineering lies on the
necessity of improving and automating software maintenance.
It is estimated that program comprehension [7], i.e., under-
standing the structure and the behaviour of the software,
corresponds to over 50% of software maintenance [8]. As
such, developing tools which may aid software engineers on
this task is of the utmost importance. Reverse engineering
has already proved to be useful on this subject. For example,
reverse engineering helped coping with the Y2K problem, with
the European currency conversion and with the migration of
information systems to the web and towards the electronic
commerce [9]. For such reasons, the IEEE-1219 standard!,
which was replaced by the IEEE-14764 one?, recommends
reverse engineering as a key supporting technology to software
maintenance [9].

In the last two decades, reverse engineering tools have
evolved considerably and, nowadays, reverse engineering is
useful for other fields of study rather than software main-
tenance, such as, software testing and auditing security and
vulnerability.

According to Canfora et al. [10], nowadays, the main goals
of reverse engineering are:

o recovering architectures and design patterns;

'IEEE Standard for Software Maintenance
2Standard for Software Engineering - Software Life Cycle Processes -
Maintenance

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

« re-documenting programs and databases;

« identifying reusable assets;

« building traceability between software artefacts;

o computing change impacts;

o re-modularising existing systems;

« renewing user interfaces;

o migrating towards new architectures and platforms;

« testing and maintenance.

As every technology, reverse engineering techniques can
also be used with malicious intent [11], like removing software
protection and limitations or allowing unauthorised access
to systems/data. However, the developers may use the same
techniques in order to assure software’s safety.

Yet in 1990, Chikofsky and Cross [6] divided the reverse
engineering process in two parts: an analyser, which collects
and stores the information, and an abstractor, which represents
that information at a higher level of abstraction, i.e., a model,
either graphical or textual. Figure 1 depicts the representation
of a common reverse engineering process.

View
COMPOser(s) [t New view(s)
of product
' * Graphics
Information « Documentation
bese * Metrics

» Logic
« Reports

Parser,
Semantic
o analyzer

Software
work
product

e

« Format

Fig. 1. Model of reverse engineering tools’ architecture [6]

In Figure 1 the analyser is referred to as a Parser, Semantic
analyser because, in the early years of reverse engineering,
these were the most common techniques. Nowadays, be-
sides static techniques [12], which extract information from
the source code, there are other three different approaches
[13], [14] for reverse engineering: dynamic, which extracts
information from a running software system; hybrid, which
mixes both static and dynamic approaches; and historical,
which extracts information about the evolution of the system
from version control systems, like SVN® or GIT*. Dynamic
approaches have the advantages of being independent of the
GUI implementation language and of not requiring access to
source code. However, the existing dynamic approaches have
limitations in terms of the behavioural information they are
able to extract.

This paper describes a dynamic reverse engineering tool,
ReGUI, developed to automatically extract structural and be-
havioural information from a GUI, including some behavioural
information not obtained by other tools, like dependencies
between GUI controls. ReGUI also distinguishes from other
tools by producing multiple views and formats of the gathered
information for different kinds of analysis: visual models

3svn.apache.org

4git-scm.com

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http.//www.iariajournals.org/software/

225

enable a visual inspection of some properties, such as the
number of windows of the GUI; textual models can be used
for MBGT (Spec# [15] model) and to prove properties (SMV
[16] model).

ReGUI v2.0 is fully automatic and uses a different approach
from its previous version [17] so the results achieved, such
as the extracted dependencies and the produced graphs, are
different.

The rest of this paper is organised as follows. Section
IT presents the state of the art on user interface reverse
engineering. Section III presents the proposed approach and
the developed tool, ReGUI. Section IV presents the exploration
process and the challenges faced during the development of
ReGUI. Section V describes the outputs that can be obtained.
Section VI presents a feasibility study on Microsoft Notepad
v6.1, presenting the results obtained. Section VII presents
some conclusions about this research work, along with the
limitations of the approach and future work.

II. STATE OF THE ART

This Section presents the state of the art on reverse en-
gineering, mainly on GUI reverse engineering, regarding the
time interval from 2000 to 2011.

A. Static Analysis

As stated in Section I, static reverse engineering extracts
information from textual sources, usually the source code,
of the Application Under Analysis (AUA) [12]. The main
techniques used in static analysis are code parsers, which are
used to analyse the source code itself, query engines, which
are used to verify certain facts of the code, and presentation
engines, which are used to depict the query results [18].

Staiger’s Approach: Staiger [19] presented, in 2007, an
approach for the Bauhaus tool suite® [20] to statically reverse
engineer the source code of a GUI, in order to support program
understanding, maintenance and standards’ analysis. Staiger
claimed researchers had not focused their work on the static
analysis of GUIs, even though most applications provided
one. Staiger’s approach is divided in three different phases:
detecting the GUI elements, detecting widget hierarchies and
detecting event connections. For the first phase, Staiger detects
which data types on the source code had any connection to
the GUI. Having detected these data types, he identifies the
variables and respective parameters, as well as the functions
or methods that are part of the GUI. After the source code
elements are identified, the next phase finds the actual GUI
elements, by identifying when each of the elements was
created and the relationships among them. This provides the
hierarchy of the elements. The third phase of the approach
detects the different event handlers, the event they are handling
and the element which triggers them. Along the execution,
a window graph is generated containing all the extracted
information on the several windows of the GUI. This approach

Shttp://www.bauhaus-stuttgart.de/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

was intended for C/C++ applications with a GUI implemented
with GUI libraries, such as GTK® or Qt’.

Lutteroth’s Approach: Lutteroth [21] presented, in 2008,
an approach whose goal was to automatically improve the
layout of hard-coded GUIs. The approach extracts the GUI’s
structure and transforms it into a formal layout, Auckland
Layout Model (ALM), which was defined by Lutteroth and
Weber [22] in 2006. This approach extracts the structure of the
GUI, by identifying its root element and navigating through
its descendants. During this process, the position of each of
the elements is mapped to a tabstop, which is a ALM property
that represents a position in the coordinate system of a GUI.

Afterwards, the properties of each element, such as size
and position, are updated, according to what best fits the GUIL
For example, if an element has static content, a button for
instance, then its size remains unaltered; otherwise, the best
size is calculated according to its possible contents. In the
end, the obtained layout may even be automatically improved.
This may be done, for example, with the aid of some layout
standards.

GUISurfer: In 2010, Silva et al. [23] developed the
GUISurfer framework to test GUI-based Java applications, by
following a static reverse engineering approach. The frame-
work is composed by three tools: File Parser, ASTAnalyser and
Graph. The first tool is responsible for the reverse engineering
process, by parsing the GUI’s source code and extracting
behavioural information into an Abstract Syntax Tree (AST)
[24]. Then, the second tool slices the information contained in
the AST, focusing on the interface layer. In order to do so, the
ASTAnalyser requires, besides the AST, the entry point of the
application (the main method) and the set of GUI elements,
which are part of the slicing process. In the end of this second
phase, two files are generated: one containing the initial state
of the GUI and one containing the events that may occur
from the initial state. The third tool processes these two files
and generates two Haskell specification files, which map the
different events and conditions to actions on the GUIL

B. Dynamic Analysis

This Section describes existing dynamic reverse engineering
approaches without and with code instrumentation.

1) Approaches Without Instrumentation:

GUIRipper: In 2003, Memon et al. [25] presented GUIRip-
per, a dynamic reverse engineering tool, which extracts be-
havioural information from the GUI of Java systems for testing
purposes [26].

GUIRipper automatically interacts with the system’s GUI,
attempting to open as many windows as it can and, during
this process, it extracts the GUI’s structure and behaviour,
producing three different artefacts. The GUI Forest is a graph
representing the structure of the GUI. Each node represents a
window of the GUI, containing the structure of its elements;
an edge from a node a to a node b indicates that the window

Swww.gtk.org

7qt.digia.com/

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http.//www.iariajournals.org/software/

226

represented by the node b is accessible from the window
represented by the node a. The second artefact is an event
flow graph (EFG), which represents the behaviour of the GUIL
Each node represents an event, such as click on the button
OK; an edge from a node a to a node b indicates event b can
follow event a. The third artefact is an integration tree, which
relates the different components of the GUI. This last artefact
is necessary to rip off the GUI into several components,
generating EFGs for each one.

Amalfitano et al.’s Approach: Amalfitano et al.’s [27]
presented, in 2008, an approach to reverse engineer Ajax
[28] based Rich Internet Applications (RIAs) [29] as they
claimed the problematic of modelling and validating this
type of applications had not yet been explored thoroughly.
They intended to fill this gap by dynamically extracting the
behaviour of an application and representing it as a finite state
machine (FSM) [30].

The analyser runs the RIA under analysis within a controlled
environment and an event analysis takes place, i.e., information
on the sequence of events is extracted. The state chart diagram
depicted in Figure 2 models this first phase, which includes
two main states: waiting for an event to occur (Event Waiting)
and waiting for an event handler to be complete (Event
Handling Completion Waiting). Whenever an event is raised,
information such as the type of the event, at what time it
occurred and on which element it occurred is recorded. This
process begins when the application starts.

End Tracing
. Start Tracing r Event Waiting] Raised Event | Event Handling Completion Wait|ng|

entry/Transition Tracing

entry/DOM Extraction : ! a
\ex it/End transition Tracing

Event Handling Completed

Fig. 2. The trace activity for the extraction step [27]

The second phase, abstraction, is composed by three steps.
Initially, the information is transformed into a graph (a tran-
sition graph), which models the flow of client interfaces. The
second step consists on using a clustering technique to analyse
the transition graph in order to group equivalent nodes and
edges. The clustering is based on the evaluation of several
interface equivalence criteria, such as, the DOM structures
including the same set of active element nodes and offering
the same interaction behaviour to the users. This way, the
issue of state explosion is dealt with. Finally, the FSM is
generated with each state corresponding to each node of the
clustered transition graph. This approach was validated by the
development of a Java tool, RE-RIA, which implements both
phases of the process.

2) Approaches With Instrumentation: There are some dy-
namic techniques that require source code (or byte code)
instrumentation. Code instrumentation consists in inserting
logging code into the existing one. As this is achieved during

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

run time and without access to the code, they are considered
dynamic approaches instead of hybrid ones.

Briand et al.’s Approach: Briand et al. proposed, in 2006
[31], an approach to dynamically extract behavioural informa-
tion from Java distributed communications, namely Remote
Method Invocation applications. The extracted information is
represented as UML sequence diagrams. Even though there
may be several applications to these diagrams, they intended
to test the consistency of the code with the design.

Briand ef al. divided their approach in two phases. The first
phase consists in the instrumentation of the source code. In
order to make their approach as little intrusive as possible,
Briand at al. used Aspect Oriented Programming [32]. The
second phase analyses the execution traces, creates the corre-
sponding models and transforms them into scenario diagrams.

As in every dynamic analysis strategy, the extracted infor-
mation is limited to the extent of the system’s exploration and
to the context in which each action was executed. This way,
Briand et al. defined two meta-models: one to describe the
information extracted from the execution traces and another to
describe what they called scenario diagrams, which are UML
sequence diagrams but limited to the context (scenario) of the
execution. In order to transform the first meta-model into the
second, they defined rules in the Object Constraint Language.

Finally, Briand et al. claimed that one of the biggest
advantages of their approach was the usage of meta-models
and transformation rules as these are formalised and can be
easily improved and compared to others.

Safyallah and Sartipi: In 2006, Safyallah and Sartipi [33]
presented an approach to identify the features of a system by
identifying sequential patterns in the execution traces of the
system. In order to do so, Safyallah and Sartipi divided their
approach into two phases. In the first phase, the execution
traces are extracted. This is achieved by setting scenarios,
which are based in the domain of the application, the doc-
umentation and the familiarity of the user with the system,
to examine each feature, and by source code instrumentation
(inserting the name of the function at the beginning and at
the end of each of them). Executing the scenarios provided
the execution traces. In the second phase, a sequential pattern
mining algorithm was applied to the extracted traces in order to
obtain the most frequent sequential patterns. Figure 3 depicts
the type of patterns identified: with this type of analysis, it
is possible to identify, for example, that a lock is eventually
followed by an unlock.

1 ABCDEAXBC
2 AGXBC
3 AXBC

Fig. 3. Sequential pattern: the sequence ABC is repeated [34]

This enabled the identification of generic functionalities
(common to the different features of the system) and the ones
that were feature-specific. With this approach, Safyallah and

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http.//www.iariajournals.org/software/

227

Sartipi were able to ease program comprehension and feature
to source code assignment.

Alafi’s Approach: In 2009, Alalfi [35] also presented an
approach and a tool (PHP2XMI), which intended to extract
behavioural information by instrumentation of the source code
of the AUA and analysing the generated event traces. The
ultimate goal of this approach is to ease the security analysis
and testing of PHP-based® web applications.

The PHP2XMI tool functions in three steps. The first step
corresponds to the code instrumentation. This step enables
the extraction of information on page URLs, http variables,
sessions and cookies. The second step executes the application,
generating the execution traces, which are then filtered to
ignore redundant information, and storing the relevant infor-
mation in a SQL database. The third and final step transforms
the stored data into UML 2.1 sequence diagrams [36]. These
diagrams can be depicted by any UML 2.1 tool set.

C. Hybrid Analysis

Hybrid analysis provides an improvement of the complete-
ness, scope and precision of the extraction as it mixes both
static and dynamic approaches, trying to maximise the amount
of extracted information [13]. This Section presents some of
the works that follow this line of research.

Systd’s Approach: In 2000, in her dissertation, Systd [37]
presented an approach combining the advantages of both static
and dynamic analyses, with special focus on the dynamic part,
for reverse engineering a Java software system.

The static part consists in parsing the system’s byte code
with a byte code extractor in order to extract the system’s
structure. This information is represented as a graph, which
can be visualised with the Rigi reverse engineering environ-
ment, developed by Miiller ef al. [38]. Afterwards, the system
is run under a customised jdk debugger, JDebugger, producing
dynamic event trace information, control flow data, which was
represented as scenario diagrams. These diagrams could be
visualised with the SCED dynamic modelling tool [39], which
transforms them into a single state diagram.

Systd developed a prototype, Shimba, which applies the
described approach, integrating the Rigi system with the
SCED tool. Without disregarding the other applications of the
extracted information, debugging is presented as being a very
useful one.

Frank et. al’s Approach: In 2001, Frank et al. [40] presented
an approach to dynamically reverse engineer a mobile applica-
tion for Android, iOS or Java ME. They extract a model of the
life cycle, which can be used to detect errors, like verifying
if an application’s information is saved when it has to be
interrupted, e.g., save the text of an e-mail when an incoming
call occurs. Even though the reverse engineering process itself
is processed during run-time, it is necessary to previously alter
the source code, which makes this an hybrid approach.

Frank et al.’s approach was divided in four phases. The first
and second ones are of the responsibility of the developer as

8http://www.php.net/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

they consist in programming the life cycle’s code, overwriting
every call-back method called in life cycle changes, and
inserting logging code to all the overwritten methods. In the
third phase, black-box tests [41] are applied to the mobile
application in order to identify the different triggers. For this, it
is of the utmost importance that the first two phases have been
processed thoroughly. In the fourth phase, the information ex-
tracted in the previous phase is used to derive an application’s
life cycle model and to identify properties of the application
at certain states of the life cycle. The model is a state diagram
of the application. The states can be, for example, running,
paused, background. The transitions are labelled according to
the corresponding actions, e.g., onCreate() and onStop(). This
model may be useful in several contexts, such as verifying
the consistency of the application’s life cycle or identifying
properties of the application at a given state.

D. Discussion

Apart from the work of Lutteroth ef al. [21], which only
extracts structural information from GUIs to improve layout,
the analysed reverse engineering approaches are similar to ours
because they extract both structural and behavioural informa-
tion. However the purpose of each approach may be differ-
ent: program comprehension (for testing and/or maintenance)
[19], [23], [25], [27], [31], [42]; debugging [37]; properties
verification [40]; feature to source code mapping [33]; and
security analysis [35]. The purpose of the presented approach
is program comprehension and properties verification.

Regarding the information extracted, there are similarities
regarding structural information (GUI elements, their proper-
ties and hierarchy relations) the set of approaches extract but
varieties regarding behavioural information. Some approaches
extract events (their handlers and the relations between them)
[19], [23], [25], [27]; sequence of actions [27], [31], [33],
[35], [37]; sequential patterns [33]; and lifecycle of the system
[40]. The presented approach extracts structural information,
alike the remaining approaches, and behavioural information
on navigation and on dependencies between the different GUI
controls.

Another characteristic that distinguishes the several studied
approaches is the representation (abstractor) of the extracted
information. Most of the approaches represent their informa-
tion in only one structure: sequence diagrams [31], [35], [37];
state diagrams [27], [40]; specification file [21]; graphs [19] or
sequence patterns [33]. There are only two approaches which
opt to represent the information in more than one way: Silva
et al. [23] extracted both a specification file and an AST and
Memon et al. [25] extracted a window graph and an event
flow graph. As far as the authors know, there is only one
approach that enables verification of properties [40], but it
focuses strictly on the life cycle of mobile applications.

In addition, most of the approaches can only be applied
to one platform (web [27], [35] or mobile [40]), or to one
language (Java [23], [25], [31], [37] or C/C++ [19]). The ap-
proach described in this paper uses Ul Automation that allows

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http.//www.iariajournals.org/software/

228

extracting information from desktop and web applications,
which increases the range of supported platforms.

III. REGUI OVERVIEW

The goal of this research work is to diminish the effort of
producing visual and formal models of the GUI of a software
application. The approach followed is the extraction of the
information from the GUI under analysis by a dynamic reverse
engineering approach. This way, this approach is independent
of the programming language in which the GUI was written,
broadening its applicability. This Section presents an overview
of the proposed approach.

A. Architecture and Outputs

Figure 4 depicts an overview of the approach proposed in
this paper.

ReGUI

Internal
Representation

%l Abstractor I

Visual Model
Generator SMV Model
Generator
ST

Generator,
Fig. 4. Architecture and outputs obtained with the ReGUI tool

The analyser is responsible for the exploration of the GUI
and extraction of the structural and behavioural informa-
tion. The exploration process is discussed in more detail in
Section IV-A. The abstractor is responsible for representing
the extracted information in different ways: visual models,
which enable a quick visual inspection; a Spec# model, which
can be used for MBGT; and a SMV model, which enables
the automatic verification of properties. These models are
explained in detail in Section V.

B. Extracted Information

Figure 5 represents the information extracted by ReGUI.
GUI Elements can be Windows or Controls that may be
initially enabled or disabled. Windows may be modal (in which
case it is not possible to interact with other windows of
the same application while this one is opened) or modeless
(it is possible to interact with other windows). Windows are
composed of Controls, which may be menu items or others.
The elements in the diagram (classes and relationships) are
annotated with graphical symbols used in the visual models
generated by ReGUI.

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Derived from "BelongsTo"
and "GivesAccessTo".

' GUI Element
/CanBeOpenedFrom
f

_—

targetWindow *

accessTarget GivesAccessTo

N - - -
updateTarget UpdatesAPropertyOf

/4 v\ *__

updateSourde

name: String

sourceWindow *

1
Application <> K
main

Window

Window
Control

BelongsTo

«—-

initiallyDisabled: Boolean
*

accessSource

Modal Window . |

Modeless Window D| |AMenultem A | |.Otherc0ntro| O|

| Filled symbol meansinitalIyDisabIelﬁ

Fig. 5. Annotated metamodel of the models generated by the ReGUI tool
(see Figure 4)

The associations between the objects represent the extracted
behaviour. When interacting with a control, there are five
possible identifiable outcomes:

e open - a window is opened;

e close - a window is closed;

e expansion - new controls become accessible. For instance,
the expansion of a menu;

e update - one or more properties of one or more elements
are updated. For instance, the name of a window is
modified or an enabled control becomes disabled (or vice-
versa);

 skip - nothing happens.

The first three outcomes are represented by the GivesAc-
cessTo relation, while the third one is represented by the
UpdatesAPropertyOf relation. If a control of a window (Be-
longsTo relation) opens another window (GivesAccessTo rela-
tion), then there is a CanBeOpenedFrom relation between the
second and the first windows. This makes the last relation a
derivation from the two previous ones.

C. Front-End
The ReGUI front-end is shown in Figure 6.

1

.
ol ReGUI Tool 2.0 - | e S

Spy tool
=™ Drag and Drop into the
\ y Ul that you want to spy Play

Generate SMV Model

Generate Spec# Model

il

=

Fig. 6. ReGUI front-end

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http.//www.iariajournals.org/software/

229

In order to start the extraction process, it is necessary to
identify the GUI to be analysed. In order to do so, it is
necessary to drag the Spy Tool symbol and drop it on top
of the GUI. Following, the user must press the button Play,
which will start the exploration process. The name of this
button changes to Playing during the execution. At the end of
the execution, all models except the Spec# and the SMV ones
have already been generated. As such, the user may press the
Generate SMV Model button in order to generate the SMV
model, as well as, the Generate Spec# Model button in order
to generate the Spec# model.

IV. REGUI ANALYSER

In this Section, the analyser process is described, namely
the exploration process and the challenges tackled during the
implementation.

A. Exploration Process

In general, a dynamic exploration can be classified accord-
ing to its automation, manual or automatic, and to whether
or not it is guided. If the exploration is automatic not being
guided means it is random whilst a guided exploration would
require some heuristic to determine which control should be
explored at each instance. If, otherwise, it is manual, being
guided means the user actions are driven by a particular
goal, whilst not being guided would just indicate the user has
complete freedom in choosing the next control.

Given the goal of this approach, the exploration must be
performed automatically, remaining the choice of being guided
or not. If the random exploration took long enough, eventually
the entire interface would be explored. However, the amount
of time a company has is limited and, thus, this approach is
not ideal. On the other hand, the guided exploration depends
completely on the algorithm used for the exploration.

As in most situations, the best solution would be to get the
advantages of each approach: follow a guided approach mixed
with a random one and, if and when the exploration hits a
breakpoint, the tool should ask the user to interact with the
GUI in order to move forward with the automatic exploration.
ReGUI follows a guided exploration based on the order of the
elements.

The exploration process is divided in two phases. First,
ReGUI navigates through every menu option in order to
extract the initial state of the GUI, i.e., which GUI elements
are enabled/disabled at the beginning of the execution, in
the main window. For the second phase, ReGUI navigates
through all the menus and interacts with the ones enabled
at that instance. After each interaction, ReGUI verifies if
any window has opened. If so, ReGUI extracts its structure,
closing it afterwards. Following, ReGUI goes through all the
menus again in order to verify if any state changed, i.e., if a
previously enabled element became disabled or vice-versa. All
the information extracted is organised in internal structures,
which are described in Section V.

In order to interact with the GUI, ReGUI uses Ul Automa-
tion [43], which is the accessibility framework for Microsoft

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Windows, available on all operating systems that support
Windows Presentation Foundation. This framework represents
all the applications opened in a computer as a tree (a Tree
Walker), whose root is the Desktop and whose nodes are the
applications opened at a certain moment. The GUI elements
are represented as nodes, children of the application to which
they belong. In the Ul Automation framework each of these
elements is an Automation Element.

B. Challenges

During the development of ReGUI, it was necessary to face
some challenges:

1) Identification of GUI elements: GUI elements may have
dynamic properties, i.e., properties which may vary along the
execution, such as the RunTimeldProcess and the Name, and
do not have a property which uniquely identifies them. During
the exploration process, the identification of an element is
performed by comparing its properties with the ones of other
elements. There are some that, when used for comparing two
elements, undoubtedly distinguish them when their values are
different. For example, if two controls are a button and a
menu item, then they are necessarily different. However, this
sort of properties may not be sufficient. As such, an heuristic
based on some properties was implemented to compare two
elements: an element a is considered to be the same as an
element b when it is the one which most resembles element
b, considering a minimum threshold. The properties to be used
in the comparison can be configured in the beginning of the
execution.

2) Exploration order: In general, the extracted information
depends on the order in which the GUI is explored. Currently,
ReGUI follows a depth-first algorithm, i.e., all the options
of a menu are explored before exploring the next one. The
exploration of the children of a node follows the order in which
they appear on the GUIL. However, if the exploration followed a
different order, the dependencies extracted would be different.
An example of such may be found in the Microsoft Notepad
v6.1 application and is depicted in Figure 7. The menu item
Select All requires the presence of text in the main window
in order to produce any results. Since there is no text in the
main window, in the beginning, interacting with this menu item
does not have any effect. However, after interacting with the
Time/Date menu item, which writes the time and date in the
main window, the Select All menu item would produce visible
results: it would select the text, enabling the menu items Cut,
Copy and Delete and disabling the Select All menu item itself.

3) Synchronisation: To automatically interact with a GUI,
it is necessary to wait for the interface to respond after each
action. In order to surpass this problem, ReGUI checks (with
event handlers) when any changes occurred in the Ul Automa-
tion tree (which reflects the state of the screen in each moment)
and continues after that. For example, after expanding a menu,
its submenus are added to the UI Automation tree as its
children, launching an event. The event handler catches it
and ReGUI acts accordingly. When verifying whether or not
a window opened, there is an event handler similar to the one

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http.//www.iariajournals.org/software/

230

used to catch a menu expansion. However, when invoking
an element for the first time, there is no way of previously
knowing if any event will occur. This way, after invoking an
element, ReGUI waits either for the event handler to catch the
event or for a defined amount of time.

4) Closing a Window: During the execution it is necessary
to close windows that are eventually opened, in order to
continue the exploration process. However, there is no standard
way of closing them. Windows usually have a top right button
for closing purposes but, when this is not available, ReGUI
looks for one of these buttons to close it: cancel, no, close,
ok, continue or x.

V. REGUI ABSTRACTOR

ReGUI generates different views on the extracted informa-
tion. Each of these views represents different aspects of the
structure and behaviour of the GUI under analysis, enabling
a rapid visual inspection of such aspects. The current views
ReGUI is able to extract are a tree representing the structure
of the GUI and the hierarchy between the different elements,
and four graphs representing its behaviour. Every node of these
four graphs corresponds to a node in the tree. The information
stored in these structures is used to generate the formal models
both in Spec# and in SMV. The next sub-sections describe
these different outputs, explaining the type of information
represented in each of them. The Figures referred along this
Section are examples of outputs and can be depicted along
Section VI.

A. Structural Information: ReGUI Tree

The ReGUI tree merges all the Ul Automation trees pro-
duced during the exploration process. Initially, the ReGUI
tree has only the elements visible at the beginning of the
exploration and, at the end, it has every element which has
become visible at some point of the exploration, such as the
content of the windows opened along the process and sub-
menu options. An examples is depicted in Figure 12.

B. Behavioural Information

Extracting behavioural information is useful for different
purposes, such as modelling the GUI behaviour, generating test
cases, proving properties or usability analysis. This Section
describes the different views generated by ReGUI on the
behavioural information extracted.

1) Navigation Graph: The navigation graph represents the
nodes relevant to the navigation, i.e., this graph stores infor-
mation about which user actions must be performed in order
to open the different windows of the application. A visual
representation of this graph is depicted in Figure 13. A solid
edge between a window w/ and a GUI element e/ means e/ is
inside of wl whilst a dashed edge between two GUI elements
el and e2 means e2 becomes accessible after interacting with
el.

Figure 8 is a subset of Figure 5 of Section III and depicts
the information extracted by ReGUI that is represented in this
graph, as well as the graphical symbols used.

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http.//www.iariajournals.org/software/

231

File I Edit | Format View Help File | Edit| Format View Help File [Edit| Fomrmat View Help
Undo Cirl-Z 15:Q Unda CirkeZ 15:(Undo Chrl+Z
Cut Cirl+ ¥ Cut Ctrl+ X Cut Cirl+ ¥
Copy Ctrl+C Copy Cirl+C Copy Ctrl+C
Paste Cirl=V Paste Ctrl+V Paste Cirl+V
Delete Del Delets Del Delete Del
Find.. Cerl+F Find... Ctrl+F Find... Ctrl+F
Find Net F3 Find Mext F3 Find Mext =
Replace.. Ctri+H Replace... Curl+H Replace.. Ctil+H
Go Ta... Ctrl- G GoTo.. Ctrl+G Go To... Ctrl+G
Select All Ctrl+A Select All Ctrl+ 4 Select Al Ctrl+a
Time/Date F5 Time/Date F5 Time/Date F5

a)

Fig. 7.

bl

o)

Menu item Edit on Microsoft Notepad v6.1: a) after invoking the menu item Select All and before invoking the menu item Time/Date; b) after

invoking the menu item Time/Date; c) after invoking again the menu item Select All

accessT arget GivesAccessTo

- — —

GUI Element

initiallyDisabled: Boolean

name: String

BelongsTo

<+—

iindow Control

accessSource

/

Modal Window ﬂ Modeless WindowD| IAMenultem A | |_.Dther¢ontro[d

Fig. 8. Representation of the different elements and their relationships in
the navigation graph

2) Window Graph: The window graph shows a subset
of the information represented by the navigation graph. It
describes the windows that may be opened in the application.
Figure 14 is a visual representation of this graph. A window
may be modal or modeless. An edge between two nodes w/
and w2 means that it is possible to open window w2 by
interacting with elements of window w/.

Figure 9 is a subset of Figure 5 of Section III and depicts
the information extracted by ReGUI that is represented in this
graph.

3) Disabled Graph: The disabled graph’s purpose is to
show which nodes are accessible but disabled int he begin-
ning of the execution (obtained during the first phase of the
exploration process described in Section IV-A). The enabled
property of an element may vary during the second phase but
that modification is not represented in this graph. An example
of this graph is depicted in Figure 15. The nodes correspond
to some GUI elements, being filled when disabled and empty
when enabled. A solid edge between two nodes n/ and n2
means that n2 belongs to n/. On the other hand, a dashed edge

/CanBeOpenedFrom
—

targetWindow *

sourceWindow *

Window

Modeless Window D|

Modal Window [

Fig. 9. Representation of the different elements and their relationships in
the window graph

between those nodes means n2 is accessible after interacting
with nl.

Figure 8 is also applicable to this graph as the relations
between the controls have the same meaning, even though the
information represented in both graphs is different.

4) Dependency Graph: A dependency between two ele-
ments A and B means that interacting with A modifies the
value of a property of B. An example of a dependency would
be if interacting with A enabled a previously disabled B. Figure
16 is the visual representation of a dependency graph obtained
during an exploration process. A solid edge between a window
wl and a node n/ means nl/ is accessed from w/ and a
dashed edge between two nodes n/ and n2 means there is
a dependency between n/ and n2.

Figure 10 is a subset of Figure 5 of Section III and depicts
the information extracted by ReGUI that is represented in this
graph.

C. Spec# Model

Spec# is a formal specification language that can be used
as input to the model-based testing tool Spec Explorer [44],
for automatic test generation.

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

accessTarget GivesAccessTo

« - - -

updateTarget UpdatesAPropertyOf

/’4 \ « ——

BelongsTo

—

GUI Element

name: String

Window

Control updateSourde

initiallyDisabled: Boolean .

accessSource

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http.//www.iariajournals.org/software/

232

Rule2 J—————*> A/a
MenuQOptionName

Rule1l J- windowName
Spect:

namespace windowName; Spec#

varwindowName = 1; //if main window | // Apply Rule 1 to WindowName
varwindowName = 3; //if other windows| yar menuOptionName = 1; //if Aand
//main window

windowName

var menuOptionName = 2; //if 4+ and
[Imain window
var menuOptionName = 3; //if other windows

[Action] MenuOptionName()
requires menuOptionName ==1; { }

Modeless WindowD| |AMenuItem A | |.D!herCcntroI d

Modal Window .|

Fig. 10. Representation of the different elements and their relationships in
the dependency graph

The Spec# model is obtained by applying the rules in
Figure 11 on the navigation graph. Each window generates
a namespace and each edge generates a method annotated
with [Action]. Action methods in Spec# are methods that will
be used as steps within the following generated test cases.
Methods without annotations are only used internally. All
the elements relevant to the navigation are represented as
variables (var) having three possible values: /, if the element
is accessible and enabled; 2, if the element is accessible
but disabled; and 3, if the element is not accessible. At
the beginning of the execution, the only possibly accessible
elements are the ones belonging to the main window, as
every other window is not accessible itself. Every variable
and method corresponding to elements belonging to a certain
window must be placed under the namespace representing that
window. An example of a model generated by the application
of these rules is in Figure 17.

D. SMV Model

After obtaining a model one problem that may rise is how
to verify properties on it. This may be tackled by model
checking techniques, which verify if given properties are valid
on the model under analysis. The verification of properties
can be very useful, for example, in usability analysis and
improvement [45], [46]. The one used in this approach is
symbolic model checking [47]. Properties are expressed in
Computation Tree Logic, which is a propositional temporal
logic, and the system is modelled as a FSM.

Some of the properties that can usually be verified are
reachability, i.e., if it is possible to reach every node, liveness,
i.e., under certain circumstances, something will eventually
happen, safety, i.e., under some circumstances, something
will never happen, fairness, i.e., under certain conditions,
something will always happen, and deadlock-freeness, i.e., the
system does not get into a cycle from which it cannot come
out.

With this approach, the state machine representing the
system is generated automatically based on the navigation
graph. Alike this graph, each state represents a GUI element,
which is represented by a unique id. The first state corresponds

Rue3J—— > ¢ Ruled A---------—---——- > A4

MenuOptionNamel MenuOptionName2

Spec#:

varmenuOptionName2 = 3;
[Action] void MenuOpticnNamel()
requires menuOptionNamel == 1;{

menuOptionName2 =1; /for 2if &

WindowName ButtonName

Spec#:

[/ Apply Rule 1 to WindowName

var buttonName = 1; //if main window
var buttonName = 3; //if other windows
[Action] ButtonName()

requires buttonName == 1; { } }

[Action] void MenuOptionName2()
requires menuOptionName2 == 1; {}

Rules A --—------——-——- » O Rule6 = --------------- »
MenuOptionName WindowName ButtonName WindowName
Spec#: Spec#:

[Action] void MenuOptionName()

requires menuOptionName == 1; {
WindowName.windowName = 1;
menuOptionName = 3;

1 1

{{Rule 1 for WindowName /{Rule 1 for WindowName

//if not yet constructed /fif not yet constructed

1- accessible and enabled; 2- accessible but not enabled; 3- not accessible

[Action] void ButtonName()

requires buttonName == 1; {
WindowMName.windowName =1;
buttonName = 3;

Fig. 11. Rules for the Spec# generation

to the main window, having id 1. The relations belongsTo of
the navigation graph were eliminated for this representation
because they do not describe user actions.

This model is imported to the SMV tool® and is composed
of three modules:

o getlnfo(id), where further information about the states
may be represented. In this case, the type of GUI elements
can be I for window, 2 for menu item and 3 for other
controls;

o getNextState(id), which represents information about the
next state (e.g., how many and which states follow a given
state);

e main, in which the state machine is described along with
the specification of the properties to be verified.

Figure 18 depicts an example of the SMV description of a
state machine.

VI. FEASIBILITY STUDY

In order to check and test the feasibility of the approach
presented in Section IV, ReGUI was run on Microsoft Notepad
v6.1. In this Section the different outputs resultant from this
experiment are presented and analysed. The window, naviga-
tion, disabled and dependencies graphs were visualised with
a template for Microsoft Excel, NodeXL'°.

http://www.cs.cmu.edu/~modelcheck/smv.html
10http://nodexl.codeplex.com/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Structural Information

Figure 12 is a simplified representation of the menu struc-
ture of Notepad upon the exploration of its menu item File.
At this point, the ReGUI tree has more information than the
presented in this Figure as the Ul Automation tree contains
plenty of elements. However, these do not add any relevant
information to the structure and were, therefore, removed from
the example provided in this document.

Untitled — Notepad

File
New
Open...
Save
Save As...
Page Setup...
Print...
Exit

Edit

Format

View

Help

Fig. 12. Part of the ReGUI tree when exploring the menu item File

B. Behavioural Information

Apart from the structure, behavioural information is also
extracted and stored in four internal structures. In this Section,
an example of each of the graphs corresponding to those
structures, which have already been described in Section V, is
presented.

Figure 13 shows the visual representation of the navigation
graph. In this example, it is possible to depict that it is
necessary to interact with the menu item File and then interact
with the menu item Save or with the menu item Save As in
order to open the Save As window. Clicking on this window’s
button Close closes it and the main window gets the focus
again.

The visual representation of the window graph is repre-
sented in Figure 14. In this case, it is possible to see that
the window Open, which is modal, and the window Windows
Help and Support, which is modeless, may both be opened
from the main window of the AUA, which is modeless.

Figure 15 is the visual representation of the disabled graph,
obtained during the first step of the exploration process. In
this Figure, the set of menu items Paste, Undo, Cut, Delete,
Find Next, Find... and Copy are initially disabled. The menu
item Edit is represented only because it is the parent of these
menu items.

Figure 16 is the visual representation of the dependency
graph. With this graph it is possible to detect dependencies
among GUI controls and analyse whether or not it behaves as
expected. For instance, interacting with the menu item Word
Wrap provokes a modification on the isEnabled property of the
menu items Undo and Go To... (there is a dashed edge from

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http.//www.iariajournals.org/software/

233

‘."|e\f?r-lelp “““““““ .

About thepad

Lbout Notepad
Windows Help a upport

C Ios‘e
Clos& ™~ _

F'q.ue 5

Page getup :
‘L\ Op

File
Nedes: [0 Modeless Window B Modal Window A Menu Item (O Other Controls

Edges: A — B: B belongs to window A
A ==p B to access B, interact with A

Fig. 13. Visual representation of the navigation graph

Print

Nodes: [J Modeless Window W Modal Window

Fig. 14. Visual representation of the window graph

A
Cc: . Fln .. ,¥ndo
Untitled - Notepa Py~ . /’ —T:HEI‘N
afe =777 ind Next
hamommmm-meEso_ TN
Paste _--~ Edit Delete
-
Cut

Nodes: [J window A Enabled Menu item & Disabled Menu Item

A — B: B belongs to window A
A == B: to access B, interact with A

Edges:

Fig. 15. Visual representation of the disabled graph

Word Wrap to Undo and to Go To...) and interacting with the
menu item 7ime/Date may alter the isEnabled property of the
menu item Undo (there is also a dashed edge between these
nodes). As such, a visual inspection over the graph may be

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

enough for the tester to detect some abnormalities in the GUI’s
behaviour.

Time/Date

Nodes: [J window A Menultem () Other Controls

Edges: A — B: B is accessed from/belongs to A
A =-=pB: Aupdates a property of B

Fig. 16. Visual representation of the dependency graph

C. Spec# Model

Using the extracted information it is possible to obtain
another kind of model: a Spec# model, which is a formal
representation of the behaviour of the GUI. At this moment,
the Spec # model only represents the information gathered on
the navigation graph.

Figure 17 depicts a small sample of the generated Spec#
model for this case study. The rules applied to generate
this Spec# model, presented in Figure 11, are enumerated in
comments (/). The first namespace corresponds to the main
window of the Notepad software application. The two methods
within this namespace describe the behaviour when interacting
with the menu item File and with the menu item Save. The
second namespace corresponds to the window Save As and its
method describes the interaction with the button Close inside
that window.

After validating and completing the model, it can be used,
for example, as input for the MBGT approach described in
[48].

D. SMV Model

In order to verify properties on the extracted information, it
goes through a transformation process to SMV. Until now, only
the information represented by the navigation graph is used
to verify properties. The navigation graph is automatically
transformed into a SMV state machine (see Figure 18).

Figure 18 depicts the representation of the state machine
in the SMV model for this case study. The state machine has
an initial state (init(state)) and transitions (next(state)). The
meaning of each transition is described in comments (——).
Three variables have been declared: state, which corresponds

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http.//www.iariajournals.org/software/

234

namespace WindowUntitled Notepad;
var windowUntitled Notepad = 1;
var menu itemFile 1
var menu_itemSave 3;
[Action] void Menu itemFile ()
requires menu itemFile == 1;{
menu_ itemSave = 1;

}i
[Action] void Menu_itemSave ()

requires menu_itemSave == 1;({
menu_itemSave = 3;
WindowSave As.windowSave As = 1;

}i

namespace WindowSave As;
var windowSave Asd4 = 3;
var buttonClose = 3;
[Action] ButtonClose ()
requires buttonClose == 1;{
buttonClose = 3;
WindowUntitled Notepad.
windowUntitled Notepad = 1;
}i

Fig. 17. Sample of the Spec# formal model generated

to the id of the control represented by that state; follow,
which has two attributes: state, which corresponds to the set
of possible next states, and num, which indicates the number
of possible next states; and morelnfo, which has the attribute
type that represents the type of the control corresponding to
that state.

With this state machine, it is possible to verify several
properties to evaluate, for instance, usability properties, such
as:

o regardless of the current state, it is always possible to
reach the main window (state =1):
AF state = 1,

« check the presence of deadlocks:
I(EF (AG (follow.num = 1 & state in follow.state))).
It checks if when there is only one out transition, the next
state is different from the current state;

« regardless of the current state, it is possible to go back
to the main window in x steps (three, e.g.):
EBF 1..3 state = 1;

« when on the main window, there is always a window x
steps away (three, e.g.):
state = 1 — > ABF 1..3 morelnfo.tipo = 1.

Running the SMV model for the Microsoft Notepad appli-

cation, it is possible to state that:

e it is always possible to reach the main window, regardless
of the state;

¢ no deadlocks were detected;

o it is always possible to get to the main window in three
steps;

o there is always a window three steps away.

VII. CONCLUSIONS AND FUTURE WORK

ReGUI is capable of extracting important information about
the behaviour of the AUA, such as navigational information

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

MODULE main
VAR
state: 1..20;
follow: getNextState(state);
morelnfo: getinfo(state);

ASSIGN
init(state) := 1;
next(state):=
case

state=1:{2,4,6,7,9, 11,13, 15,17, 19};
--from state 1, it is possible to go to states 2 (Open...),
--4 (Save), 6 (Save As...), 7 (Page Setup), 9 (Print...),
--11 (Replace...), 13 (Go To...), 15 (Font...),
--17 (View Help), 19 (About Notepad)

state = 2: 3; --goes to window Open

state = 3: 1; --goes to the main window
state = 4: 5; --goes to window Save As
state = 5: 1; --goes to the main window
state = 6: 5; --goes to window Save As
state = 7: 8; --goes to window Page Setup
state = 8: 1; --goes to the main window
state = 9: 10; --goes to window Print

state = 10: 1; --goes to the main window
state = 11: 12; --goes to window Replace
state = 12: 1; --goes to the main window
state = 13: 14; --goes to window Go To Line
state = 14: 1; --goes to the main window
state = 15: 16; --goes to window Font
state = 16: 1; --goes to the main window
state = 17: 18; --goes to window Windows Help and Support
state = 18: 1; --goes to the main window
state = 19: 20; --goes to window About Notepad
state = 20: 1; --goes to the main window
esac;

Fig. 18. State machine in SMV

and which GUI elements become enabled or disabled after
interacting with another element. The exploration process is
fully automatic, with the user just having to point out the AUA.

The outputs generated by the ReGUI tool are extremely
useful for program comprehension and for program verifi-
cation as the graphs can be used to verify some important
properties, such as reachability and deadlock-freeness, and the
Spec# model can be used for test case generation and platform
migration, for example. Even though the ReGUI tool does not
generate the totality of the Spec# model, it already provides
an important part of it.

The static and hybrid approaches have, by definition, a
different purpose than the one presented in this paper as
they require the source code, contrary to dynamic approaches.
Comparing with other dynamic approaches, it is possible to
conclude this approach extracts more information. Memon’s
approach [25] extracts information on the structure and the
relation between the different events, which is represented by
the ReGUI Tree and the navigation and window graphs, whilst
this approach also extracts information on the dependency be-
tween the different controls. Similarly, Amalfitano’s approach
[27] is focused on the events (when they are raised and
completed) and not on the dependency part. Briand et al. [31],
Safyallah and Sartipi [33] and Alafi’s [35] approaches require
instrumentation, even though they are considered dynamic

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http.//www.iariajournals.org/software/

235

approaches, which makes these approaches more intrusives
than the approach presented in this paper. Moreover, the
behavioural information extracted enables proving different
properties through model checking. None of the analysed
approaches provides such analysis.

The main difficulties faced during the development were the
lack of GUI standards and the necessity of synchronisation.
ReGUI has still some limitations. For instance, currently, it
only supports interaction through the invoke pattern but it may
evolve to interact through other patterns. In addition, it just
tries to open windows from the main window and there are
still other dependencies that may be explored.

The future work will be focused on solving these limitations,
on improving the exploration of the GUI, i.e., interact with the
different controls more than once and in different orders and
on improving the Spec# generation. It is also intended to apply
this approach to other platforms, such as web and mobile.

VIII. ACKNOWLEDGEMENTS

This work is financed by the ERDF - European Regional
Development Fund through the COMPETE Programme (oper-
ational programme for competitiveness) and by National Funds
through the FCT - Fundagdo para a Ciéncia e a Tecnologia
(Portuguese Foundation for Science and Technology) within
the project FCOMP-01-0124-FEDER-020554 and the PhD
scholarship SFRH/BD/81075/2011.

REFERENCES

[1] I. Coimbra Morgado, A. Paiva, and J. Pascoal Faria. Reverse Engineering
of Graphical User Interfaces. In The Sixth International Conference on
Software Engineering Advances (ICSEA ’11), number c, pages 293-298,
Barcelona, 2011.

[2] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A
Tools Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, November 2007.

[3] AnaC.R. Paiva, Jodo C. P. Faria, and Raul F. A. M. Vidal. Specification-
based testing of user interfaces. In Joaquim A. Jorge, Nuno Jardim
Nunes, and Jodo Falcdo e Cunha, editors, 10th International Workshop
on Interactive Systems. Design, Specification, and Verification (DSV-IS
’03), pages 139—-153, Funchal, Portugal, 2003.

[4] Ana C. R. Paiva, Jodo C. P. Faria, and Pedro M. C. Mendes. Reverse
engineered formal models for GUI testing. In The 12th international
conference on Formal methods for industrial critical systems, pages 218—
233, Berlin, Germany, July 2007. Springer-Verlag.

[5] MG Rekoff. On Reverse Engineering. IEEE Trans. Systems, Man, and
Cybernetics, (March-April):244 — 252, 1985.

[6] E.J. Chikofsky and J.H. Cross. Reverse Engineering and Design
Recovery: a Taxonomy. IEEE Software, 7(1):13-17, 1990.

[7]1 Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas Webster. The
concept assignment problem in program understanding. In The 15th
international conference on Software Engineering (ICSE ’93), pages
482-498, May 1993.

[8] Thomas A. Standish. An Essay on Software Reuse. IEEE Transactions
on Software Engineering, SE-10(5):494-497, September 1984.

[9] Hausi A. Muller, Jens H. Jahnke, Dennis B. Smith, and Margaret-
Anne Storey. Reverse engineering: a roadmap. In Proceedings of the
conference on The future of Software engineering - ICSE '00, pages
47-60, New York, New York, USA, May 2000. ACM Press.

[10] Gerardo Canfora, Massimiliano Di Penta, and Luigi Cerulo. Achieve-
ments and challenges in software reverse engineering. Communications
of the ACM, 54(4):142, April 2011.

[11] Eldad Eilam. Reversing: Secrets of Reverse Engineering. Wiley, 2005.

[12] David Binkley. Source Code Analysis: A Road Map. In Future of
Software Engineering (FOSE ’07), pages 104—119. IEEE, May 2007.

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http.//www.iariajournals.org/software/

[13]

[14]

[15]

[16]

(17]

[18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]
[29]
[30]

(31]

[32]

[33]

[34]

[35]

Thoms Bell. The concept of dynamic analysis. ACM SIGSOFT Software
Engineering Notes, 24(6):216-234, November 1999.

Huzefa Kagdi, Michael L. Collard, and Jonathan I. Maletic. A survey
and taxonomy of approaches for mining software repositories in the
context of software evolution. Journal of Software Maintenance and
Evolution: Research and Practice, 19(2):77-131, March 2007.

Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec\#
Programming System: An Overview. In International Conference in
Construction and Analysis of Safe, Secure and Interoperable Smart
Devices (CASSIS '04), pages 49-69, Marseille, France, 2004. Springer.
Kenneth L. McMillan. Getting Started with SMV. Cadence Berkley
Labs, 2001 Addison St., Berkley, CA, USA, 1999.

AM.P. Grilo, A.CR. Paiva, and J.P. Faria. Reverse engineering of
GUI models for testing. In The 5th Iberian Conference on Information
Systems and Technologies (CISTI "10), number July, pages 1-6. IEEE,
2010.

Alexandru Telea, Lucian Voinea, and Heorhiy Byelas. Architecting an
Open System for Querying Large C and C++ Code Bases. S. African
Computer Journal, 41(December):43-56, 2008.

Stefan Staiger. Static Analysis of Programs with Graphical User
Interface. In 11th European Conference on Software Maintenance and
Reengineering (CSMR’07), pages 252-264. IEEE, 2007.

Aoun Raza, Gunther Vogel, and Erhard Plodereder. Bauhaus A Tool
Suite for Program Analysis and Reverse Engineering. In Reliable
Software Technologies, Ada Europe 2006, page 71, 2006.

Christof Lutteroth. Automated reverse engineering of hard-coded GUI
layouts. In The 9th conference on Australasian user interface (AUIC
’08), pages 65-73. ACM, January 2008.

Christof Lutteroth and Gerald Weber. User interface layout with
ordinal and linear constraints. In The 7th Australasian User Interface
Conference (AUIC '06), pages 53-60, January 2006.

Jodo Carlos Silva, Rui Gongalo, Jodo Saraiva, and José Creissac Cam-
pos. The GUISurfer Tool: Towards a Language Independent Approach
to Reverse Engineering GUI Code. In 2nd ACM SIGCHI symposium
on Engineering interactive computing systems, pages 181-186, Berlin,
2010. ACM.

Nicola Howarth. Abstract Syntax Tree Design. Technical Report August
1995, Architecture Projects Management Limited, 1995.

Atif M. Memon, Ishan Banerjee, and Adithya Nagarajan. GUI Ripping:
Reverse Engineering of Graphical User Interfaces for Testing. In The
10th Working Conference on Reverse Engineering (WCRE ’03), 2003.

Daniel R. Hackner and Atif M. Memon. Test case generator for
GUITAR. In Companion of the 13th international conference on
Software engineering (ICSE Companion ’08), ICSE Companion ’08,
page 959, New York, New York, USA, 2008. ACM Press.

Domenico Amalfitano, Anna Rita Fasolino, and Porfirio Tramontana.
Reverse Engineering Finite State Machines from Rich Internet Applica-
tions. In The 15th Working Conference on Reverse Engineering (WCRE
’08), pages 69-73. IEEE, October 2008.

Jesse James Garrett. Ajax: A New Approach to Web Applications.
Adaptive Path, 2005.
Cameron O’Rourke.
Magazine, 2004.

D. Lee and M. Yannakakis. Principles and methods of testing finite state
machines-a survey. Proceedings of the IEEE, 84(8):1090-1123, 1996.

L.C. Briand, Y. Labiche, and J. Leduc. Toward the Reverse Engineering
of UML Sequence Diagrams for Distributed Java Software. [EEE
Transactions on Software Engineering, 32(9):642-663, September 2006.
Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In Mehmet Aksit and Satoshi Matsuoka, editors, The 11th
European Conference on Object-Oriented Programming (ECOOP’97),
volume 1241 of Lecture Notes in Computer Science, pages 220-242.
Springer Berlin / Heidelberg, 1997.

H. Safyallah and K. Sartipi. Dynamic Analysis of Software Systems
using Execution Pattern Mining. In The I4th IEEE International
Conference on Program Comprehension (ICPC ’06), pages 84-88.
IEEE, 2006.

Tao Xie, Suresh Thummalapenta, and D Lo. Data mining for software
engineering. [EEE Computer, 42(8):55-62, 2009.

Manar H. Alalfi, James R. Cordy, and Thomas R. Dean. A verification
framework for access control in dynamic web applications. In The
Proceedings of the 2nd Canadian Conference on Computer Science and

A Look at Rich Internet Applications. Oracle

(36]
[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

236

Software Engineering (C3S2E °09), page 109, New York, New York,
USA, May 2009. ACM Press.

Object Management Group. UML 2.1.2, 2012.

Tarja Systd. Static and Dynamic Reverse Engineering Techniques for
Java Software Systems. Phd, University of Tampere, 2000.

Hausi A. Miiller, Scott R. Tilley, and Kenny Wong. Understanding
software systems using reverse engineering technology perspectives
from the Rigi project. In Proceedings of the 1993 conference of
the Centre for Advanced Studies on Collaborative research: software
engineering (CASCON ’93), CASCON ’93, pages Volumel: 217-226.
IBM Press, 1993.

K. Koskimies, T. Systa, J. Tuomi, and T. Mannisto. Automated support
for modeling OO software. IEEE Software, 15(1):87-94, 1998.
Dominik Franke, Corinna Elsemann, Stefan Kowalewski, and Carsten
Weise. Reverse Engineering of Mobile Application Lifecycles. In /8th
Working Conference on Reverse Engineering (WCRE ’11), pages 283—
292. IEEE, October 2011.

Glenford J. Myers. Art of Software Testing. March 1979.

Manar H. Alalfi, James R. Cordy, and Thomas R. Dean. Automated
Reverse Engineering of UML Sequence Diagrams for Dynamic Web
Applications. In International Conference on Software Testing, Verifi-
cation, and Validation Workshops (ICSTW '09), pages 287-294. IEEE,
April 2009.

Rob Haverty. New accessibility model for Microsoft Windows and cross
platform development. SIGACCESS Access. Comput., (82):11-17, 2005.
Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram
Schulte, Nikolai Tillmann, Lev Nachmanson, Robert Hierons, Jonathan
Bowen, and Mark Harman. Model-based testing of object-oriented
reactive systems with spec explorer. In Robert M. Hierons, Jonathan P.
Bowen, and Mark Harman, editors, Formal Models and Testing, volume
4949 of Lecture Notes in Computer Science, pages 39-76. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

Fabio Paternd and Carmen Santoro. Integrating Model Checking and
HCI Tools to Help Designers Verify User Interface Properties. In 7th
International Workshop on Interactive Systems Design, Specification and
Verification, Limmerick, Ireland, 2001.

Nadjet Kamel, Sid Ahmed Selouani, and Habib Hamam. A Model-
Checking Approach for the Verification of CARE Usability Properties
for Multimodal User Interfaces. International Review on Computers &
Software, 4(1):152—-160, 2009.

E Clarke, K McMillan, S Campos, and V Hartonas-Garmhausen. Sym-
bolic model checking. In Rajeev Alur and Thomas Henzinger, editors,
Computer Aided Verification, volume 1102 of Lecture Notes in Computer
Science, pages 419—422. Springer Berlin / Heidelberg, 1996.

Ana C. R. Paiva, Joao C. P. Faria, Nikolai Tillmann, and Raul A. M.
Vidal. A Model-to-implementation Mapping Tool for Automated Model-
based GUI Testing. In 7th International Conference on Formal Engi-
neering Methods (ICFEM ’05), pages 450—464, 2005.

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

