
278

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Metrics and Measurements in Global Software Development

Maarit Tihinen and Päivi
Parviainen

Digital Service Research
VTT Technical Research Centre of

Finland
maarit.tihinen@vtt.fi

paivi.parviainen@vtt.fi

Rob Kommeren

Digital Systems & Technology
Philips,

The Netherlands
r.c.kommeren@philips.com

Jim Rotherham

Project Management Office
Symbio,
Finland

jim.rotherham@symbio.com

Abstract—Today products are increasingly developed globally
in collaboration between subcontractors, third-party suppliers
and in-house developers. However, management of a
distributed product development project is proven to be more
challenging and complicated than traditional single-site
development. From the viewpoint of project management, the
measurements and metrics are important elements for
successful product development. This paper is focused on
describing a set of essential metrics that are successfully used
in Global Software Development (GSD). In addition, visualised
examples are given demonstrating various industrial
experiences of use. Even if most of the essential metrics are
similar as in single-site development, their collection and
interpretation need to take into account the GSD aspects. One
of the most important reasons for choosing proposed metrics
was their provision of early warning signs - to proactively react
to potential issues in the project. This is especially important in
distributed projects, where tracking the project status is
needed and more complex. In this paper, the first ideas of GSD
specific metrics are presented based on the common challenges
in GSD practice.

Keywords-metrics; measurements; global software development;
distributed product development

I. INTRODUCTION
Global Software Development (GSD) is increasingly

common practice in industry due to the expected benefits,
such as lower costs and utilising resources globally. GSD
brings several additional challenges to the development,
which also affects the measurement practices, results and
metrics interpretation. A current literature study showed that
there is little research on GSD metrics or experiences of their
use. This paper is enhanced and extended version of the
ICSEA 2011 conference paper “Metrics in distributed
product development” [1] where the metrics set had been
successfully used in GSD were introduced. In this paper, the
published metric set (with an example set of visualised
metrics) was given with industrial experiences of their use.
In addition, challenges faced during GSD are discussed from
the viewpoint of metrics and measurements as well as
potential GSD specific metrics.

Software metric is a valuable factor for the management
and control of many software related activities, for example;
cost, effort and schedule estimation, productivity, reliability
and quality measures. Traditionally software measurement
has been understood as an information gathering process. For
example, software measurement is defined by [2] as follows:
“The software measurements is the continuous process of
defining, collecting and analysing data on the software
development process and its products in order to understand
and control the process and its products and to supply
meaningful information to improve that process and its
products”. The measurement data item consists of numeric
data (e.g., efforts, schedules) or a pre-classified set of
categories (e.g., severity of defects: minor, medium, major).
Software metrics can consist of several measurement data
items singly or in combination. Metric visualisation is a
visual representation of the collected and processed
information about software systems. Typically software
metrics are visualised for presenting this information in a
meaningful way that can be understood quickly. For
example, visualising metrics through charts or graphs is
usually easier to understand than long textual or numerical
descriptions.

The main purpose of measurements and metrics in
software production is to create the means for monitoring
and controlling which provide support for decision-making
and project management [3]. Traditionally, the software
metrics are divided into process, product and resource
metrics [4]. In the comprehensive measurement program, all
these dimensions should be taken into consideration while
interpreting measurement results; otherwise the
interpretation may lead to wrong decisions or incorrect
actions. A successful measurement program can prove to be
an effective tool for keeping on top of the development
effort, especially for large distributed projects [5]. However,
many problems and challenges have been identified that
reduce and may even eliminate all interests to the
measurements. For example, not enough time is allocated for
the measurement activities during a project, or not enough
visible benefits are gained by the project doing the
measurement work (e.g., data is useful only at the end of

279

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

project, not during the project). In addition, the “metric
enthusiasts” may define too many metrics making it too time
consuming to collect and analyse the data. Thus, it’s
beneficial [5] to define core metrics to collect across all
projects to provide benchmarking data for projects, and to
focus on measurements that come naturally out of existing
practices and tools.

GDS development enables product development to take
place independently of the geographical location, individuals
or organizations. In fact, today the products are increasingly
developed globally in collaboration between subcontractors,
third party suppliers and in-house developers [6]. In practice
distributed projects struggle with the same problems as
single-site projects including problems related to managing
quality, schedule and cost. Distribution only makes it even
harder to handle and control these problems
[7][8][9][10][11]. These challenges are caused by various
issues, for example, less communication – especially
informal communication – caused by distance between
partners, and differences in background knowledge of the
partners. That’s why, in distributed projects the systematic
monitoring and reporting of the project work is especially
important, and measurement and metrics are an important
means to do that effectively.

Management of a distributed product development
project is more challenging than traditional development
[12]. Based on an industrial survey [13], one of the most
important topics in the project management in distributed
software development is detailed project planning and
control during the project. In GSD, this includes; dividing
work by sites into sub-projects, clearly defined
responsibilities, dependencies and timetables, along with
regular meetings and status monitoring.

In this paper, a set of essential metrics used in GSD is
discussed with experiences of their use. The main purpose is
to introduce the selected metric set from the viewpoint of
their proactive role in decision-making during globally
distributed software development. The chosen metrics
indicate a well-rounded view of status in the various
engineering disciplines and highlight potential issues in the
project. This creates real possibilities to act proactively based
on signals gathered from various engineering viewpoints.
This is especially important in GSD, where information of
project status is not readily available but requires special
effort, distributed over sites and companies.

 The amount of the metrics is intentionally kept as
limited as possible. Also, the metrics should be such, that
they provide online information during the projects, in order
to enable fast reaction to potential problems during the
project. The metrics and experience presented in the paper
are based on metrics programs of two companies, Philips and
Symbio. Royal Philips Electronics is a global company
providing healthcare, consumer lifestyle and lighting
products and services. Digital Systems & Technology is a
unit within Philips Research that develops first-of-a-kind
products in the area of healthcare, well-being and lifestyle.
The projects follow a defined process and are usually
distributed over sites and/or use subcontractors as part of
product development. Symbio Services Oy provides tailored

services to organizations seeking to build tomorrow's
technologies. Well-versed in a variety of software
development methodologies and testing best practices,
Symbio's specialized approaches and proprietary processes
begin with product design and continue through
globalization, maintenance and support. Symbio has built a
team of worldwide specialists that focus on critical areas of
the product development lifecycle. Currently, Symbio
employs around 1400 people and their project execution is
distributed between sites in the US, Sweden, Finland and
China.

The metrics and discussion in the paper is based on GSD
improvement work carried out during several years, in
several research projects, including experiences from 54
industrial cases (see Parviainen [14], SameRoomSpirit Wiki
[15]). This paper focuses especially on the experiences of
two companies, Philips and Symbio.

The paper is structured as follows. Firstly, an overview of
related work – available literature and its limitations related
to measurements and metrics in distributed product
development. This is introduced in Section II. In Section III,
basic GSD circumstances with challenges are presented in
order to explain the special requirements for measurements
in GSD where the proposed metrics set is to be collected and
utilised. In Section IV, measurement and metrics background
and used terminology are introduced. In Section V, proposed
metrics are presented using Rational Unified Process (RUP)
[16] approach as a framework. The proposed metric set is
presented with visualised examples and industrial
experiences of their use. Furthermore, some GSD specific
metrics are introduced in Section VI. Finally, discussion
about metrics and their experiences is presented in Section
VII and the conclusions are discussed in Section VIII.

II. RELATED WORK
There are several papers that discuss globally distributed

software engineering and its challenges, for example, [5],
[17] and [18]. Also, metrics in general and for specific
aspects have been discussed in numerous papers and books
for decades. However, little GSD literature has focused on
metrics and measurements or even discusses the topic. Da
Silva et al. [12] report similar conclusion based on analysis
of distributed software development (DSD) literature
published during 1999 – 2009: they state as one of their key
findings that the “vast majority of the reported studies show
only qualitative data about the effect of best practices,
models, and tools on solving the challenges of DSD project
management. In other words, our findings indicate that
strong (quantitative) evidence about the effect of using best
practices, models, and tools in DSD projects is still scarce in
the literature.” Bourgault et al. [19] reported similar findings,
“Clearly, research into distributed projects’ performance
metrics and measurement needs more attention from
researchers and practitioners so that it can contribute to the
development and diffusion of well-designed management
information systems.”

The papers that have discussed some metrics for GSD
usually focus on some specific aspect, for example,
Korhonen and Salo [18], discuss quality metrics to support

280

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

defect management process in a multi-site organization.
Misra [20] presents a cognitive weight complexity metric
(CWCM) for unit testing in a global software development
environment. Lotlikar et al. [21] propose a framework for
global project management and governance including some
metrics with the main goal to support work allocation to
various sites. Lane and Agerfalk [22] use another framework
as an analytic device to investigate various projects
performed by distributed teams in order to explore further
the mechanisms used in industry both to overcome obstacles
posed by distance and process challenges and also to exploit
potential benefits enabled by GDS. Similarly, Piri and
Niinimäki [23] applied Word Design Questionnaire (WDQ)
that consists of total of 21 sum variables in four categories
(task characteristics, knowledge characteristics, social
characteristics, and work context) to compare differences
between the co-located and the distributed projects by
metrics - “work design”, “team dynamics”, “teamwork
quality”, “project performance” and “individual
satisfaction”. These kinds of frameworks could be used to
evaluate effectiveness of distributed team configuration
during GSD projects as well. Peixoto et al. [17] discuss effort
estimation in GSD, and one of their conclusions is that “GSD
projects are using all kinds of estimation techniques and
none of them is being consider as proper to be used in all
cases that it has been used”, meaning, that there is no
established technique for GSD projects. In addition, some
effort has also been invested in defining how to measure
success of GSD projects [24], and these metrics mainly focus
on cost related metrics and are done after project completion.
These papers usually use common metrics that are not
specific for GSD projects. For example, Ramasubbu and
Balan [25] use 11 metrics (productivity, quality, dispersion,
prevention QMA (Quality Management Approach), appraisal
QMA, failure QMA, code size, team size, design rework,
upfront investment and reuse), development productivity and
conformance quality to evaluate how work dispersion effects
to identified metrics. However, these metrics have not been
used to gather information, indicators or experiences from
ongoing distributed development.

Furthermore, only few papers discuss measurement
tooling for GSD projects. Simmons [26] describes a PAMPA
tool, where an intelligent agent tracks cost driver dominators
to determine if a project may fail and tells managers how to
modify project plans to reduce probability of project failure.
Additionally, Simmons and Ma [27] discuss a software
engineering expert system (SEES) tool where the software
professional can gather metrics from CASE tool databases to
reconstruct all activities in a software project from project
initiation to project termination. Da Silva et al [28] discuss
software cockpits from GSD viewpoint. They propose to
examine various visualizations in the context of software
cockpits, at-a-glance computer controlled displays of
development-related data collected from multiple sources.
They present three visualizations: (1) shows high-level
information about teams and dependencies among them in an
interactive world map, (2) displays the system design
through a self-updating view of the current state of the
software implementation, and (3) is a 3D visualization that

presents an overview of current and past activities in
individual workspaces.

The focus of this paper is to introduce a metrics set that
creates real possibilities to act proactively based on signals
gathered from various engineering viewpoints. Furthermore,
the paper gives several visualised examples of metrics that
can be utilised while monitoring on-going GSD projects. The
introduced metrics set can be seen as ‘balanced score card’,
on which management can balance insights (~status) from
time, effort, cost, functionality (requirements) and quality
(tests) perspective.

III. BASIC GSD CIRCUMSTANCES WITH CHALLENGES
Parviainen [14] describes problems and challenges that

are directly caused by the basic GSD circumstances. These
challenges influence measurements and metrics and their
interpretation during distributed software development.
These challenges are mainly an intrinsic and natural part of
GSD and they can either complicate globally distributed
product development or even cause further challenges. The
basic circumstances are:

 Multiple parties, meaning two or more different
teams and sites (locations) of a company or
different companies.

 Time difference and distance that are caused by the
geographical distribution of the parties.

Problems caused by these circumstances include; issues
such as unclear roles and responsibilities for the different
stakeholders in different parties or locations, knowing the
contact persons (e.g., responsibilities, authorities and
knowledge) from different locations and establishing and
ensuring a common understanding across distance. The basic
GSD circumstances can also lead to poor transparency and
control of remote activities as well as difficulties in
managing dependencies over distance, problems in
coordination and control of the distributed work and
integration problems, for example. Problems may also be
caused by basic circumstances in terms of accessing remote
databases and tools or accordingly they may generate data
transfer problems caused by the various data formats
between the tools or different versions of the tools used by
the different teams. The basic circumstances may also cause
problems with data security and access to databases or
another organisation's resources.

A commonly referenced classification for challenges
caused by GSD is [29][30]:

 Communication breakdown (loss of communication
richness)

 Coordination breakdown
 Control breakdown (geographical dispersion)
 Cohesion barriers (loss of “teamness”)
 Culture clash (cultural differences).

Communication breakdown (loss of communication
richness). Human beings communicate best when they are
communicating face-to-face. In GSD, face-to-face
communication decreases due to distance, causing
misunderstandings and lack of information over sites. For
example, communication over distance can lead to

281

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

misinterpretation because people cannot communicate well
due to language barriers.

Coordination breakdown. Software development is a
complex process that requires on-going adjustments and
coordination of shared tasks. In geographically distributed
projects, the small adjustments usually made in face-to-face
contact do not take place or it is not easy to make
adjustments. This can cause problem solving to be delayed
or the project to go down the wrong track until it becomes
very expensive to x. GSD also sets additional requirements
for planning, for example, the need for coordination between
teams and the procedures and contacts for how to work with
partners needs to be defined [31][32][33]. Coordination
breakdown can also cause a number of specific problems; for
example, Battin et al. [34] reported a number of software
integration problems, which were due to a large number of
independent teams. Wahyudin et al. [35] state that GSD
demands more from project management. In addition to the
project managers, the project members such as testers,
technical leaders, and developers also need to be kept
informed and notified of certain information and events that
are relevant to their roles’ objectives in timely manner which
provides the conditions for in-time decision making.

Control breakdown (geographical dispersion). GSD
means that management by walking around the development
team is not feasible and, instead, telephones, email and other
communication means (e.g., chat servers) must be used.
These types of communication tools could be consider as
less effective - not always providing a clear and correct
status of the development site. Also, dividing the tasks and
work across development sites, and managing the
dependencies between sites is difficult due to the restraints of
the available resources, the level of expertise and the
infrastructure [34][36][37]. According to Holmstrom et al.
[38], creating the overlap in time between different sites is
challenging despite the flexible working hours and
communication technologies that enable asynchronous
communication. Lack of overlap leads to a delay in
responses with a feeling of “being behind”, “missing out”
and even losing track of the overall work process.

Cohesion barriers (loss of “teamness”). In working
groups that are composed of dispersed individuals, the team
is unlikely to form tight social bonds, which are a key to a
project’s success. Lack of informal communication, different
processes and practices have a negative impact on teamness
[31][32][34]. Furthermore, fear (e.g., of losing one’s job to
the other site) has direct negative impact on trust, team
building co-operation and knowledge transfer, even where
good relationships existed beforehand. According to Casey
and Richardson [39] fear and lack of trust negatively impact
the building of effective distributed teams, resulting in clear
examples of not wanting to cooperate and share knowledge
with remote colleagues. Al-Ani and Redmiles [40] discuss
the role that the existing tools can play in developing trust
and providing insights on how future tools can be designed
to promote trust. They found that tools can promote trust by
sharing information derived from each developer’s activities
and their interdependencies, leading to a greater likelihood

that team members will rely on each other which leads to a
more effective collaboration.

Culture clash (cultural differences). Each culture has
different communication norms. In any cross-cultural
communication the receiver is more likely to misinterpret
messages or cues. Hence, miscommunication across cultures
is usually present. Borchers [41] discusses observations of
how cultural differences impacted the software engineering
techniques used in the case projects. The cultural indexes,
power distance (degree of inequality of managers vs.
subordinates), uncertainty avoidance (tolerance for
uncertainty about the future) and individualism (strength of
the relationship between an individual and their societal
group), discussed by Hofstede [42], were found to be
relevant from the software engineering viewpoint.
Holmstrom et al. [38] discuss the challenge of creating a
mutual understanding between people from different
backgrounds. They concluded that often general
understanding in terms of English was good, but more subtle
issues, such as political or religious values, caused
misunderstandings and conflicts during projects.

IV. MEASUREMENT BACKGROUND
In this section measurement background, the used

terminology and traditional measurement methods, with
GSD related challenges are introduced.

A. Traditional Metrics and Project Characteristics
Software measurements and metrics have been discussed

since 1960’s. The metrics have been classified many
different ways. For example, they can be divided into basic
and additional metrics [43] where basic metrics are size,
effort, schedule and defects, and the additional metrics are
typically metrics that are calculated or annexed from basic
metrics (productivity = software size per used effort). The
metrics can also be divided into objective or subjective
metrics [43]. The objective metrics are easily quantified and
measured, examples including size and effort, while the
subjective metrics include less quantifiable data such as
quality attitudes (excellent, good, fair, poor). An example of
the subjective metrics is customer satisfaction. Furthermore,
software metrics can be classified according to the
measurement target, product, processes and resources [4].
Example metrics of product entities are size, complexity,
reusability and maintainability. Example metrics of process
entities are effort, time, number of requirements changes,
number of specification/coding faults found and cost.
Furthermore, examples of resource entities are age, price,
size, maturity, standardization certification, memory size or
reliability. These classifications, various viewpoints and the
amount of examples merely prove how difficult the selection
of metrics really can be during the project.

In addition to different ways of metrics classification,
development projects can also be classified. Typically, the
project classification is used as a baseline for further
interpretation of the metrics and measurements. For example,
all kind of predictions or comparison should be done within
the same kind of development projects, or the differences
should be taken into account. Traditional project

282

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

characteristics are, for example; size and duration of a
project, type of a project (development, maintenance,
operational lifetime, etc.), project position (contractor,
subcontractor, internal development etc.), type of software
(hardware-related software development, application
software, etc.) or used software development approaches
(agile, open source, scrum, spiral-model, test driven
development, model-driven development, V-model, waterfall
model etc.). Furthermore, different phases of development
projects have to be taken consideration while analysing
gathered measurement data.

B. Traditional Software Measurement and GSD
One of the most commonly used measurement methods

at the end of 1990 and the beginning of 2000 was the Goal
/Question /Metric (GQM) method. The GQM paradigm [3]
represented a systematic approach for tailoring and
integrating the objectives of an organisation into
measurement goals and their step-wise refinement into
measurable values. The GQM method was commonly known
and was often used for searching and identifying
organisations’ strengths and weaknesses relating to the
identified improvement goals. Furthermore, several
assessment methods, for example CMMI [44] and SPICE
(Software Process Improvement and Capability
Determination, further known as a standard ISO/IEC 15504
Information technology — Process assessment), were
generally used for identifying possible improvements areas
and gaining knowledge of the software process of an
organisation. In fact, the most of traditional measurements
methods were based on expressions of the famous Shewhart
cycle, called also the Deming cycle: PDCA (Plan–Do–
Check–Act) [45]. The PDCA circle is an iterative four-step
management method that is used in business for the control
and continuous improvement of processes and products. The
traditional methods used in software measurements were
generally based on clearly defined and largely stabile
processes that could be adjusted and improved. In those
cases, the improvement actions were mainly done
afterwards, for example, in the next project.

In GSD environment, where project stakeholders, work
practices and development tools can vary by projects and
partners, traditional measurement methods and actions are
not adequate if they are used for process improvement
purposes. There is little sense, if measurements only prove
after the project what has happened during the project,
because then it is too late to correct the situation.
Furthermore, the lessons learned may not be suitable in the
next projects. Overly large measurement programs with time
consuming assessments are not worth paying the effort in
dynamic GSD context. The traditional methods should be
utilised for specific and well-aimed purposes. For example,
the GQM method can be utilised while identifying new GSD
specific metrics.

In GSD, development processes are dynamic and thus
results of measurements and their interpretation vary. In this
paper, GSD metrics used in the companies were focused on
‘early warning’ signals for the project and management. In a
changing environment it’s also an important aspect that the

measurement data is easy to collect and that the metrics can
be quickly calculated at regular intervals. Ease of use and
speed are also central factors from metrics interpretation
viewpoint. This also emphasises the importance of metrics
visualisation. Interestingly, GSD literature has rarely focused
on metrics and measurements or given experimental
examples of successfully used metrics during GDS
development.

C. Balancing Measurements
A Balanced Scorecard (BSC) is widely used for

monitoring performance of an organisation towards strategic
goals. The original BSC approach covers a small number of
performance metrics from four perspectives, called as
Kaplan & Norton perspectives: Financial, Customer, Internal
Processes, Learning & Growth [46]. The BSC framework
added strategic non-financial performance measures to
traditional financial metrics to give managers and executives
a more 'balanced' view of organizational performance.
However, many early BSCs failed, because clear information
and knowledge about the selection of measures and targets
were not available. For example, organisations had attempted
to use Kaplan & Norton perspectives without thinking about
whether they were suitable in their situation. After that many
improvements and enhancements have been completed on
BSC approach. Since 2000, it has been described as a “Third
Generation” of Balanced Scorecard designs. The BSC has
evolved to be a strategic management tool that involves a
wide range of managers in the strategic management process,
provides boundaries of control, but is not prescriptive or
constrictive and more importantly, removes the separation
between formulation and implementation of strategy [47].
The BSC suggests that organisation should be viewed from
four perspectives (Learning & Growth perspective, Business
process perspective, Customer perspective, and Financial
perspective) and metrics should be developed, data collected
and analysed in relation to these perspectives.

Even if BSC are generally intended to deal with strategic
issues, in this paper, the balancing of various perspectives of
BSC has been emphasised. In fact, it has been proved that
Practical Software Measurement and the Balanced Scorecard
are both compatible and complementary [48]. In GSD
context, decisions or actions taken based on the analysis of
metrics and measurements collected from different
development parties or stakeholders need to take specific the
GSD factors into account as well.

D. Measurement Challenges in GSD
Even in the daily software development work, the

measurements are still seen as unfamiliar or an extra burden
for projects. For example, project managers feel it is time
consuming to collect metrics for the organization (business-
goal-related metrics), yet they need to have metrics that are
relevant to the project. Furthermore, in many cases, not
enough time is budgeted for measurements, and this is why it
is very difficult to obtain approval from stakeholders for this
kind of work [5].

Globally distributed development generates new
challenges and difficulties for the measurements. For

283

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

example, the gathering of the measurements data can be
problematic because of different development tools which
have different versions, work practices with related concepts
can vary by project stakeholders or reliability of the gathered
data can vary due to cultural differences, especially, in
subjective evaluations. In addition, distributed projects are
often so unique (e.g., product domain and hardware-software
balance vary, or different subcontractors are used in different
phases of the project) that their comparison is impossible.
Thus, the interpretation of measurements data is more
complicated in GSD than one-site projects. This is why it is
recommended to select a moderate amount of metrics. In this
paper, we will present a set of metrics as well as examples of
their visualisation possibilities to support decision making in
GSD. Also industrial experiences about the metrics will be
discussed.

The common metrics (effort, size, schedule, etc.) are also
applicable for GSD projects. However, special attention may
be needed in training the metrics collection, to ensure a
common understanding of them (e.g., used classifications).
In addition, as measurements also tend to guide people’s
behaviour, it is important to ensure that all are aware of the
purpose of the metrics (i.e., not to measure individual
performance), specifically in projects distributed over
different cultures. In GSD content the automation of
measurements is highly recommended to avoid
misunderstanding - even if it is not easy to implement. The
focus is to generate real-time information shown in a format
that is easy and quickly interpreted. This means that great
attention should be paid to metrics visualisation.

V. GENERIC MEASUREMENTS AND METRICS IN GSD
In this section, the metric set used in the companies is

introduced. In addition, several visualised examples of
proposed metrics are given and discussed. The metric set and
their visualisation examples have been produced during the
ITEA PRISMA (2008-2011) project [49]. The main goal of
the PRISMA project was to boost productivity of
collaborative systems development. One of the project’s
results was the Prisma Workbench (PSW), a tool integration
framework [50]. PSW provides several real-time views into
data that has been collected from various data sources even
from separate stakeholders’ databases. The PSW enabled the
visualisation of metrics in GSD and collection of the
experiences of their use. The work was done in close co-
operation with industrial partners and experimental views
were generated based on their needs or challenges. The
original metrics were the same that the industrial partners
had successfully used in their globally distributed projects,
published in [1]. During the PRISMA project, the
development of the PSW tool enabled further development
of the proposed metrics set and their visualisation in co-
operation with the industrial partners. The industrial partners
had identified metrics, and defined their collection and
visualisation. They had also tried the metrics in few projects
to collect experiences. These experiences were then shared
among the industrial partners of the project. The researchers
analysed the measurements and experiences to find
commonalities from these measurement practices. Results of

this analysis was discussed in workshops with the
companies, and updated based on the comments. This paper
presents the results of this work. In following sub-sections,
the developed example views are shown and discussed.
Industrial experiences, opinions and ideas for improvement
are also presented. The industrial experiences were gathered
during the industrial cases by interviewing companies’
personnel who had developed the metrics and measurement
programs.

A. Rational Unified Process (RUP) Approach
Each phase in the lifecycle of a development project

affects the interpretation of the metrics. Thus, in this paper,
proposed metrics and visualisation examples are introduced
by using commonly known approach of software
development called Rational Unified Process (RUP). Also
the processes used in the companies were similar to the RUP
phasing, so it was chosen as a presentation framework for
this paper. RUP is a process that provides a disciplined
approach to assigning tasks and responsibilities within a
development organisation. Its goal is to ensure the
production of high quality software that meets the needs of
its end-users within a predictable schedule and budget
[16][51].

The software lifecycle is divided into cycles, each cycle
working on a new generation of the product. RUP divides
one development cycle in four consecutive phases [51]: (1)
inception phase, (2) elaboration phase, (3) construction phase
and (4) transition phase. There can be one or more iterations
within each phase during the software generation. The
phases and iterations of RUP approach are illustrated in
following Figure 1.

Figure 1. Phases and Iterations of RUP Approach [51]

From a technical perspective, the software development
is seen as a succession of iterations, through which the
software under development evolves incrementally [16].
From measurement perspective this means that some metrics
can be focused on during one or two phases of the
development cycle, and some can be continuous metrics that
can be measured in all phases, and can be analysed in each
iteration.

In this paper, the metrics are introduced according to the
RUP phases. Each metric is presented in the phase where the

284

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

metric can be utilised in the first time or where the metric is
seen to be the most relevant to measure, even if some metrics
are relevant in several phases. In fact, many of the introduced
metrics can be used also in the following product
development phases. For each metric - a name, a notation
and a detailed definition is introduced. The main goal is to
offer a useful, yet reasonable amount of metrics, for
supporting the on-time monitoring of the GSD projects. The
indicators are supposed to be leading indicators rather than
lagging indicators. For example, planned/actual schedule
measurements should be implemented as milestone trend
analysis which measures the slip in the first milestone and
predicts the consequences for the other milestones and
project end.

B. Metrics and their Visualisation for Inception Phase
During the inception phase, the project scope has to be

defined and the business case has to be established. The
business case includes success criteria, risk assessment, and
estimate of the resources needed, and a phase plan showing
dates of major milestones. Inception is the smallest phase in
the project, and ideally it should be quite short. Example
outcomes of the inception phase are a general vision
document of the project's core requirements, main
constraints, an initial use case model (10% -20% complete),
and a project plan, showing phases and iterations [52].
Proposed metrics to be taken into consideration in this phase
are introduced in Table I.

TABLE I. METRICS FOR THE INCEPTION PHASE

Metric Notation Definition
Planned
Schedule

DPLANNED The planned Date of delivery (usually
the completion of an iteration, a
release or a phase)

Planned
Personnel

FTPLANNED The planned number of Full Time
persons in the project at any given
time

Planned
Effort

EPLANNED The planned Effort for project tasks
(/requirements) at any given time

Proposed
Requirements

Reqs The number of proposed
requirements.

The metrics Planned Schedule and Planned Personnel

/Effort are mostly needed for comparison with actual
schedule, personnel and effort, in order to identify lack of
available resources as well as delays in schedule quickly.
The amount of Proposed Requirements tells about the
progress of the product definition.

Figure 2 shows how some of the proposed metrics can be
utilised during product development for visualising the
progress of project. The metric of progress status combines
effort and schedule metrics in a visualised way. The first
and top line (blue) in the Figure 2 is a cumulative planned
effort over time calculated from project tasks. The next line,
the red line describes the cumulative updated planned effort
and accordingly, the green line describes the cumulative
actual used effort over time summarised from project tasks.
The bottom and last line in lilac shows the earned value that
indicates the cumulative effort of completed tasks
(/workproducts).

Figure 2. Visualised Metric: Progress Status

The graph visualises the project progress and easily
gives several kinds of information as well as proactive
insights, such as, is the project resourcing in place, and is
the project completing work as planned. In the shown graph,
it is a good signal that cumulative planned effort (blue line)
is continuously above the cumulative updated planned effort
(red line); it means the project is running on schedule.
Another good signal is if actual used effort (green line) and
earned value (lilac line) is relatively close to each others; it
means that the results (~completed tasks) have been
achieved with the used effort. The status in the Month 11
indicates that there are still several open tasks that are not
completed even if actual used effort (green line) seems to
draw closer to the cumulative updated planned effort (red
line); this indicates a potential threat. Depending on
project’s phase (for example, in the middle phase or at the
ending phase) corrective actions would be needed. The
actions are not needed if the project is at the ending phase
because the cumulative planned effort (blue line) is still
clearly the upmost line.

Industrial comments
In the Philips company example, the Progress status

metric has proven to give a timely insight in the actual
consumption of effort compared to planned effort in large
first-of-a-kind Consumer Electronics projects. The
representation over time enables the ability to analyse trends,
and take actions pro-actively. Moreover, the use of earned
value gives insight in the effectiveness of the effort spent
answering the question: “Does the effort spent contribute to
realizing the agreed results?”

In the Symbio company example, indicators of earned
value and tracking of unplanned work were seen as
especially important from a management perspective.
Unplanned work may yield a strong indication of a variety of
causes early in the project, such as technical infeasibility or a
lack of shared vision between project stakeholders.
Accordingly, they identified that from a budget perspective,
justifying workshops early in the project to shape a shared
vision and collaborate on scoping project goals is often
difficult to qualify for many stakeholders. It is a typical case
that only when problems manifest, or a sharp trend in
unplanned work is experienced will stakeholders react.
Usually, remedying the problem requires unplanned trips to

285

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

put people together into the same room to hammer out
solutions that essentially consume budget.

C. Metrics and their Visualisation for Elaboration Phase
During the elaboration phase a majority of the system

requirements are expected to be captured. The purpose of the
phase is to analyse the problem domain, establish a sound
architectural foundation, develop the project plan, and
eliminate the highest risk elements of the project. The final
elaboration phase deliverable is also a plan (including cost
and schedule estimates) for the construction phase. Example
outcomes of the elaboration phase are; a use case model (at
least 80% complete), a software architecture description,
supplementary requirements capturing the non-functional
requirements and any requirements that are not associated
with a specific use case, a revised risk list and a revised
business case, and a development plan for the overall project.
Proposed metrics to be taken into consideration in this phase
are introduced in Table II.

TABLE II. METRICS FOR THE ELABORATION PHASE

Metric Notation Definition
Schedule:
Planned
/Actual Schedule

DPLANNED

DACTUAL

The planned/actual Date of
delivery (usually the
completion of an iteration, a
release or a phase)

Staff:
Planned
/Actual Personnel
Planned
/Actual Effort

#FTPLANNED
#FTACTUAL

EPLANNED
EACTUAL

The planned/actual number
of Full Time persons in the
project at any given time.
The planned/actual Effort for
project tasks (/requirements)
at any given time.

Requirements
-Drafted
-Proposed
-Approved
-Not implemented

#Reqs DRAFTED

#Reqs PROPOSED
#Reqs APPROVED.
#Reqs NOT_IMPL

The number (#) of
- drafted requirements
- proposed requirements
- reqs approved by customer
- not implemented reqs

Tests
-Planned

#Tests PLANNED

The number (#) of
- planned tests

Documents:
-Planned
-Proposed
-Accepted

#Docs PLANNED
#Docs PROPOSED
#Docs ACCEPTED

The number (#) of
planned /proposed /accepted
documents to be reviewed
during the project.

The metrics related to requirements, tests and documents

indicate the technical progress of the project from different
viewpoints. The Staffing metric may explain deviations in
the expected progress vs. the actual progress, both from a
technical as well as from a schedule viewpoint. Note that
those metrics that are more relevant to measure by iterations
(effort and size) are introduced later (in Section E).

Figure 3 shows how some of the proposed metrics can be
visualised in order to describe the project’s status. The metric
of requirements status combines the amount of planned
effort with status of requirements’ implementation over a
time in the same graph. The bars summarise the amount of
planned effort for the month. Each bar is composed from
four different data relating to identified requirements as
follows. The first block (green) describes a sum of planned
efforts for all implemented requirements. The second block
(grey) describes a sum of planned efforts for approved but
not implemented requirements. The third block (blue)

decribes a sum of planned efforts for proposed requirements
and the last block (orange) shows a sum of planned efforts
for drafted requirements.

Figure 3. Visualised Metrics: Requirements Status

It is important to note, that the planned effort is used
constantly, even for implemented requirements. This is due
to keeping the baseline in order to enable comparing project
situation over time, i.e., to be able to see the project trend
with respect to planned work. The planned effort may be
updated for the requirements during the project, if a new
baseline is created. This information is then used together
with the actuals, to see how well the planning has succeeded
to help learning to estimate better.

The visualised metric “Requirements status” indicates
several status information but also trend lines relating to
requirements implementation, and is focused on showing
the uncertainly of the project, for example how much more
work maybe dedicated to be implemented in the project. In
the example graph, a good signal is that the sum of planned
efforts for implemented requirements seems to increase over
time while the sum of planned efforts for approved, but not
implemented requirements, seems to reduce. However, the
sums of planned efforts for proposed and drafted
requirements are still quite large in the Month 8, especially,
while comparing them to the sums of planned efforts for
approved requirements. This indicates that the project is in
the beginning phase rather than in the ending phase.
However, the interpretation needs other metrics information,
such as “Progress status” or “Testing status” to make any
decisions.

Industrial comments
In the Philips company example, the current projects

lack insight into the satisfaction of requirements. This lack
of insight concerns both the actual status of implementation
of the requirements, as well as the expectation: “Up to what
level the project will be able to satisfy its requirements, and
if not, what are measures to accomplish that?” The (leading)
indicator as proposed in this document seems to be a good
answer to this problem. The metric has been introduced in a
few (one-roof) projects yet and initial results seem
promising. However, no data with experiences on a metric
like this have been collected yet.

According to Symbio’s practice, when looking to exit an
elaboration phase, product owners should pay special

286

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

attention to the coverage of requirements affecting
architecture to ensure the construction phases run more to
plan as the team sizes may scale and involve more sites.
Whilst iterative development can be seen as promoting
elaboration of requirements later in the lifecycle, core
functions that separate the project output from competition
should be conceptualized and approved for implementation.
Project managers may consider implementation of these
differentiating use cases to be made geographically or
temporally close to the project owner. Non-approved
requirements should be managed accordingly and not
planned for implementation off-site until they are suitably
elaborated and accepted into the development roadmap.
Misunderstanding of the requirements needs to be
minimalized if the team size and development sites scale
during construction phases otherwise projected cost savings
from multi-site development can be quickly eliminated.

D. Metrics and their Visualisation for Construction Phase
Construction is the largest phase in the project. During

the phase, all remaining components and application features
are developed and integrated into the product, and all
features are thoroughly tested. System features are
implemented in a series of short, time boxed iterations. Each
iteration results in an executable release of the software.
Example outcomes of the phase consist of a software product
integrated on the adequate platforms, user manuals, and a
description of the current release. Proposed metrics to be
taken into consideration in this phase are introduced in Table
III.

TABLE III. METRICS FOR THE CONSTRUCTION PHASE

Metric Notation Definition
Planned
/Actual Schedule
Planned
/Actual Personnel

DPLANNED
DACTUAL

#FTPLANNED
#FTACTUAL

Defined in the elaboration
phase.

Requirements:
-Proposed
-Approved
-Not implemented
-Started
-Completed

#Reqs PROPOSED
#Reqs APPROVED.
#Reqs NOT_IMPL

#Reqs STARTED
#Reqs COMPLETED

The number (#) of
- proposed requirements
- reqs approved by customer
- not implemented reqs
- reqs started to implement
- reqs completed

Change Requests:
-New CR

-Accepted

-Implemented

#CRs NEW

#CRs ACCEPTED

#CRs IMPL.

The number (#) of
- identified new CR or
enhancement
- CRs accepted for
implementation
- CRs implemented

Tests:
-Planned
-Passed
-Failed
-Not tested

#Tests PLANNED.

#Tests PASSED
#Tests FAILED
#TestsNOT TESTED

The number (#) of
- planned tests
- passed tests
- failed tests
- not started to test

Defects
-by Priority: e.g.,
Showstopper,
Medium, Low

#Dfs PRIORITY

The number (#) of
- defects by Priority during
the time period

Documents:
-Planned
-Proposed
-Accepted

#Docs PLANNED
#Docs PROPOSED

#Docs ACCEPTED

Defined in the elaboration
phase.

Note that those metrics that are continuously measured
are introduced later (in Section E).The metrics related to
requirements, tests and documents indicate the technical
progress of the project from different viewpoints. Metrics
related to changes indicate both the stability of the project
technical content, and can explain schedule delays, and
unexpected technical progress. Defect metrics describe both
the progress of testing as well as the maturity of the product.

In the construction phase, all components and features
are developed and integrated into the product. In addition,
they are also thoroughly tested, so there are many
simultaneous actions that can be implemented by multiple
partners or/and in different locations in GSD. This is why the
metrics interpretation needs to be done very carefully by
utilising indicators from different data sources and from
different partners. In this subsection two metrics: “Budget
status” and “Testing status” are introduced with discussion
about indicators and proactive signals that they provide.

The visualisation of Budget status combines cost,
requirements and defects metrics in the same graph shown in
Figure 4.

Figure 4. Visualised Metrics: Budget Status

The Budget status graph shows actual costs of the project
in portion with the agreed budget over a time period. The
metric also gives several indicators of estimated prospective
costs in each month. The bars summarise amount of costs for
the month, and each bar is composed from five different
cost-related data. The first block (green) describes actual
cumulative costs of the project. The agreed budget for the
project is shown clearly as a green line in the middle of the
graph. The second block (blue) describes remaining planned
cost based on effort estimated for requirements that have
been accepted for implementation but not yet implemented.
The third block (light blue), in the middle of the bar,
indicates proposed cost that can be seen very likely costs for
the project. These costs are based on effort estimated for the
proposed requirements that are estimated likely to be
implemented, for example, a customer will want them. The
fourth block (orange) describes proposed but vague costs for

287

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the project. These costs are based on effort estimated for the
proposed requirements which the likeliness for
implementation is not known. Instead, the fifth block (red)
indicates very potential costs for the project, so-called
“Known defects” costs. The costs are based on effort
estimated to be needed to fix the known critical, major or
average defects. In the example graph, the Budget status
metric in Figure 4, the project’s costs will overrun the agreed
budget.

Industrial comments
At Philips, the current applied budget metrics generally

give a clear understanding in the actual budget consumption,
but are poor in predicting budget consumption for the
remainder of the project. The metric suggested allows for
trend analysis and by that extrapolation to the future,
resulting in better prediction of the budget consumption for
the remainder of the project. This will improve the projects’
and the management’s insight into the project and enable
them to take required measures in a timely fashion, as
appropriate. The metric has not yet been applied in our
projects.

In Symbio, managers will often track cost against budget
throughout construction for project sponsors, but earned
value becomes increasingly more important in the latter
stages of the lifecycle. Earned value can be tracked with
relative ease if defined requirements are quantified for
business importance. Product backlogs imply the importance
by a requirement’s position in the backlog; however some
backlogs may include other items than requirements such as
operational tasks for deployment and so on. To compensate
all project requirements (both functional and non-functional)
can be attributed with a business value, its value based in
comparison to the cumulative value of all project
requirements. When a requirement is delivered its value is
added to cumulative total to provide an earned value
delivered by the project. This approach is ideal if the backlog
of the product development stabilizes throughout
construction. However significant changes in the business
value of requirements will weaken the importance of
tracking this metric over time. Also this metric requires the
project team and stakeholders to agree upon a “definition of
done” which can be very difficult, and even more so if the
accepting and implementing parties are different entities or
located in different sites.

The metric of Testing status combines effort,
requirements and test metrics in a same graph. The Testing
status metric visualises the progress of testing phase by
collecting data from various phases. The bars in the graph
summarise efforts relating to tests in each month. Each bar is
composed from four different sums of efforts. The first block
(green) describes a sum of efforts for tested requirements.
The second block (blue) describes a sum of efforts for
requirements for which test case is available, and
accordingly, the third block (purple) describes a sum of
efforts for requirements for which test cases are not
available. The last, the fourth block (red) is a very proactive
indicator describing a sum of effort estimated for uncertain
requirements. Figure 5 shows the visualisation of Testing
status metric.

Figure 5. Visualised Metrics: Testing Status

Even if “Testing status” shows easily how ‘mature’ the
testing phase is the metric requires other metrics – such as
the before introduced metrics: Budget status, Progress status
and Requirements status – make conclusions based on the
data.

Industrial comments
According to Philips, one of the most important

indicators of a development project is insight in what will be
the status of the product at the delivery time - what will the
product actually contain and what is the quality of those
contents? This metric is an effective means to get early
insight in the status of the product by the end of the project.
Moreover, the test status trend analysis helps to initiate
timely measures to work towards an agreed project result.
The metric has been applied in a single project at Philips and
results were promising - it really improved the insight of
project, management and customer in the status of the
product-under-construction and better understanding of what
could be expected by the end of the project.

According to Symbio, earned value is especially
invaluable in the close down phases of a project. Projects
may deteriorate into loss making, unplanned iteration as
stakeholders become overly conscious on metrics of
requirements coverage. This situation is can be further
exacerbated if the value of requirements is not continually
reviewed and communicated to all stakeholders throughout
the project.

E. Metrics for Transition Phase
The final project phase of the RUP approach is transition.

The purpose of the phase is to transfer a software product to
a user community. Feedback received from initial release(s)
may result in further refinements to be incorporated over the
course of several transition phase iterations. The phase also
includes system conversions, installation, technical support,
user training and maintenance. From measurements
viewpoint the metrics identified in the phases relating to
schedule, effort, tests, defects, change requests and costs are
still relevant in the transition phase. In addition, customer

288

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

satisfaction is generally gathered in the transition phase, and
post-mortem analysis carried out.

F. Metrics for Iterations
Each iteration results in an increment, which is a release

of the system that contains added or improved functionality
compared with the previous release. Each release is
accompanied by supporting artifacts: release description,
user’s documentation, plans, etc. Although most iterations
will include work in most of the process disciplines
(requirements, design, implementation, testing) the relative
effort and emphasis will change over the course of the
project. Proposed metrics for each iteration to be taken into
consideration, are introduced in Table IV.

TABLE IV. METRICS FOR ITERATIONS

Metric Notation Definition
Effort:
-Planned Effort
-Actual Effort

EPLANNED
EACTUAL

The planned/actual effort
required of any given
iteration of the project.

Size:
-Planned size
-Actual size

SIZEPLANNED
SIZEACTUAL

The planned /actual size of
each iteration can be
measured as SLOC
(Source Lines of Code),
Points or any other
commonly accepted way.

Cost:
-Budgeted
-Expenditure

COSTBUDGET
COSTACTUAL

The budgeted cost /actual
expenditure for any given
iteration.

Velosity:
-planned /actual
story points

#PTS PLAN
#PTS ACT

How many story points are
planned to be /actually
implemented of any given
iteration of the project.

Productivity:

EACTUAL / #PTS
ACT

Use effort per acutally
implemented story points
for each sprint /iteration

All of these metrics provide indications of the project

progress and reasons for deviations should be analysed.
These metrics should be analysed together with other metrics
results (presented in Tables I-III) in order to gain a
comprehensive picture of the status.

VI. SPECIFIC MEASUREMENTS AND METRICS IN GSD
Section V discussed metrics, which are not specific for

GSD, but they provide valuable information to follow a GSD
project progress. So, in GSD, metrics can be similar or same
as in single-site development. However, in order to prevent
potential problems during distributed projects some specific
GSD metrics could be added to be used together with the
metrics presented in Section V. These metrics should be
focused on the specific challenges in GSD that were
presented in general level in Section III and they would help
to quickly detect the GSD related source of problems that are
identified in the metrics presented in Section V.

Measuring the generic GSD challenges (Section III) is
difficult, and in fact, measuring the challenges does not
provide clear value from project monitoring viewpoint. It is
more beneficial to follow and detect the symptoms that
indicate problems in the GSD practice. Example problems
[14] caused by lack of communication, coordination

breakdown, and different backgrounds include, for example,
ineffective use of resources as competences are not known
from other sites, obstacles in resolving seemingly small
problems and faulty work products due to a lack of
competence or background information. These causes can
also lead to a lack of transparency in the other parties’ work,
misunderstood assignments and, thus, faulty deliveries from
parties, delays caused by waiting for the other parties’ input
and duplicate work or uncovered areas. Further problems
that can be caused by these issues include differences in tool
use or practices in storing information, misplaced restrictions
on the access to data and unsuitable infrastructure for the
distributed setting.

Example problems [14] caused by lack of teamness and
lack of trust include hiding problems and unwillingness to
ask for clarification from others, expending a lot of effort in
trying to find that the cause of problems (defects) has
occurred in the other parties’ workplace, an unwillingness to
help others and an unwillingness to share information and
work products until specifically requested to do so. These
causes may also appear as difficulties in agreeing about the
practices to be used and then not following the process and
practices as agreed, for example. Further problems caused by
these issues include the use of other tools than those agreed
to for the project and plentiful technical issues that hinder
communication and use of the tools, as agreed.

The following problems are among the most common
ones in companies GSD practice (based on 54 industrial
cases during several research projects):

1. unclear responsibilities and escalation channels,
2. unavailability of information timely for all who need

it,
3. unclear information and misunderstandings (for

example of requirements and task assignments),
4. problem hiding,
5. non-communicated and unexpected changes,
6. lack of visibility and transparency of all sites work

and progress,
7. faulty and/or delayed (internal) deliveries, and
8. sub optimal use of resources.
Next we discuss potential measurements to indicate as

early as possible if these problems are present. These
proposals have not been applied in practice, yet. Instead,
their implementations and possible selections were discussed
with industrial partners.

Relating to problems 1-3, a measurement could be a short
questionnaire asking the project members if they know their
responsibilities and when and to whom to escalate problems,
and is the required information available and clear. In
addition, from GSD viewpoint, a potential measurement
could be related to time spent idling (a team member is
waiting because of wrong, incorrect or missing information
or input from other members) or percentage of unplanned
work (a team member is working with unplanned or
duplicated tasks).

For problems 4 – 6, a measure is amount and type of
communication over sites. For example, communications
activeness could be monitored via metrics like amount of
status reports, meeting memos, chats, calls between

289

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

locations, etc. Communication activeness is especially
important between distributed teams where their
development tasks are highly coupled or dependent on
deliveries and results of each other. For example, silence or
communication only via documents (official reports) can be
an indicator of problem, whereas active informal
communication over sites indicates active discussion of work
at hand. In the worst case in GSD, lack of face-to-face
communication can lead to “reportmania” where
communication is handled only through large amount of
documents. Long textual descriptions can be easily omitted
or alternatively misunderstood because of high amount of
effort and time required for adopting the content.

For problem 7, metrics related to defects and schedule
are relevant and for problem 8, a potential measurement is
time spent idling and the time blocked because of the
impediments elsewhere in the team as these affect
productivity and highlight when a team is not performing.
Also, communication related metrics are valuable for these
problems.

The metrics relating to team trust, project commitment
and team identifications describes team dynamics that can
provide lot of explaining information for the problems in
GSD project. Some indicators, such as how many people
have left from the project, refer the individual satisfaction as
well as project commitment. Because software development
is fundamentally team oriented action [53], metrics relating
to team dynamics and teamwork quality is highly
recommended to monitor in GSD. Potential metrics are
related to communication, tasks coordination, balance of
member contributions, mutual support, effort and cohesion
as introduced by Hoegl and Gemuenden [54]. Examples of
questions are as follows:
 Communication: Is there sufficient frequent, informal,

direct, and open communication?
 Coordination: Are individual efforts well-structured and

synchronised within the team?
 Balance of member contributions: Are all team members

able to bring in their expertise to its full potential?
 Mutual support: Do team members help and support

each other in carrying out their tasks?
 Effort: Do team members exert all efforts to team tasks?
 Cohesion: Are team members motivated to maintain the

team? Is there team spirit?
These questions can be used to measure team dynamics

and team work quality during a GSD project.

VII. DISCUSSION

A. GSD Metrics
As discussed, little focus has been paid on GSD metrics

in the literature. In fact, the research has been focused on
clarifying differences between collocated and distributed
projects and also, identifying variables that differ the most.
Although this kind of approach is important for gaining
knowledge about the issues that need to be monitored in
GSD, a specific focus on the metrics and their collection and
analysis is also needed. For example, project performance is

even more complicated and multi-level concept to measure
in GSD than in single-site. It concerns team members’
individual performance, teamwork performance and tasks
performance as well as management performance.
Bourgault et al. [19] pointed out that distributed projects’
performance metrics and measurement needs more attention
so that well designed management information systems
could be developed in order to create effective monitoring
systems for distributed projects. This kind of development
was seen as necessary to provide decision makers with
dynamic, user-friendly information system that would
support management activities, not only for project
managers, but also for top managers. However, the issue of
performance metrics in the context of distributed projects
needs to be investigated in more detail. Furthermore, a
dispersion of work has significant effects on productivity
and, indirectly, on the quality of the software. However, it is
currently difficult to specify metrics, measurement processes
and activities that best suit different companies and specific
GSD circumstances. We have presented a first step towards
taking into account the specific aspects of GSD in
measurement programs, but more work is needed. For
example, specific GSD metrics are currently collected and
processed manually, thus requiring extra and error prone
effort. In the world of the hectic and dynamic GSD practice,
the metrics collection and visualisation should also be
automated to be valuable in large-scale use. The automation
is an important issue for further research.

B. Industrial Viewpoint
The metrics presented in Section V were common for

both of the companies. Although the metrics were chosen
independently by both companies, the reasoning behind
choosing these metrics was similar. An important reason was
to come from a re-active into a pro-active mode, for example
to introduce ‘early warning’ signals for the project and
management. Specifically these metrics have been chosen as
they indicate a well-rounded view of status in the various
engineering disciplines and highlight potential issues in the
project. This creates real possibilities to act proactively based
on signals gathered from various engineering viewpoints.
This is especially important in GSD, where information of
project status is not readily available but needs special effort,
distributed over sites and companies. Accordingly, the
metrics set can be seen as a ‘balanced score card’, on which
management can take the right measures, balancing insights
from time, effort (e.g., staffing), cost, functionality
(requirements) and quality (tests) perspective.

An important aspect was also that the metrics are easy to
capture and that they can be captured from the used tools
“for free”, or can be quickly calculated at regular intervals.
Costs and budgets are good examples of metrics that can be
easily captured from the tools. This is also important from
GSD viewpoint, as automated capturing reduces the chance
of variations caused by differences in recording the metrics
data in different sites. Neither of the companies use metrics
based on lines-of-code as they did not find it to be a reliable
indicator of progress, size or quality of design.

290

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

It can be seen that the metrics are quite similar as in
single-site development. However, the metrics may be
analysed separately for each site, and comparisons between
sites can thus be made in order to identify potential problems
early. On the other hand, it is important to recognise that
some metrics correlate with each other, for example, metrics
relating to tests correlate with metrics about requirements,
and that needs to take consideration while analysing. In
general, the interpretation of project’s comprehensive status
needs various metrics information – like Requirements
status, Progress status, Testing status and Budget status – for
making conclusions based on the data. In addition, while
interpreting or making decisions based on the measurement
results the distributed development implications need to be
taken into account. Distributed development requires ‘super-
balancing’ - how to come to the right corrective action if for
instance, on the one side, the % of not accepted requirements
is high, and on the other side, the # of passed tests is lagging
behind. Distributed development may also affect the actual
results of the measurements. For example, relating to
subjective metrics, such as effort estimation, differences
between backgrounds of the people (cultural or work
experience) in different sites may affect the result.

The companies also use the measurement results to gain
insight into why a measure varies between similar single-site
and multi-site projects in order to try to reduce potential
variances. This also partially explains the use of the same
metrics as single-site development. This was experienced by
the representative of Symbio: “These points presented should
be by now well known. From an economic perspective these
points must be considered when evaluating and comparing
costs of different project models of delivery.”, and
“Benchmarking and tracking of historical data across the
entire project portfolio is still only an initial step to shape
more informed cost estimations when composing project
teams with distributed elements. Continuous effort is
required not only in definition and capture of metrics but
also in the effects on working practices in general.”

Furthermore, the challenges in communication and
dynamics of distributed teams mean that working practices
need to be addressed continuously as impressed by Symbio
representative: “Often a practical solution to working
procedures can result in compensation for potential lost
productivity. For example a testing team in China lags their
working week by one day (Tuesday to Saturday) in order to
test the results from an implementation team in Finland
(working Monday to Friday). In this example the Finland
team agrees to ensure continuous integration in order to not
block the testing team. If these two practices have a positive
effect on productivity when compared against similar project
models, future cost estimations should then be benchmarked
on the new working practices.” However, in addition to
metrics results, paying close attention and acting on feedback
is as important, if not more important than drawing strong
conclusions from metrics alone.

Currently, both companies are in process of revamping
their metric usage, but feel confident that the metrics
introduced in this paper are the right ones. This was pointed
out by Philips by the following: “Applying the metrics

suggested in this document to the parties involved in the
GSD project already gives better insight in the relative
performances of the groups, and enables to take measures
over time (e.g., systematically improve a party’s
performance, or replace it). We have applied detailed effort
consumption metrics to our single-roof and multi-side
development projects. Those metrics learned that staff of
multi-side projects spend significantly more time on things
they call ‘communication’ or ‘overhead’ (up to 50%!). Our
understanding of the matter is that no new metric needs to be
‘invented’ for that: standard effort distribution metrics
would do. The main challenge is to have it introduced in a
systematic way, with the same understanding and
interpretation of the metrics by the parties involved.
Especially the first element is often a challenge: third parties
are often reluctant to provide this level of transparency of
their performance.”

Both companies are careful in introducing new metrics,
as it is well known that too many metrics lead to overkill and
rejection by the organization, and do not provide the right
insights and indication for control measures. Easy
implementation and by that, easy acceptance is the most
crucial thing to get these metrics as established practice
within the company. However, the few specific GSD metrics
presented in Section VI are intended to be used together as
the proposed metrics set. These additional metrics should be
focused on measuring the project performance, especially
task and team performance in GSD.

VIII. CONCLUSION
The management of the more and more common

distributed product development project has proven to be
more challenging and complicated than traditional one-site
development. Metrics are seen as important activities for
successful product development as they provide the means to
effectively monitor the project progress. However, defining
useful, yet reasonable amount of metrics is challenging, and
there is little guidance available for a company to define
metrics for its distributed projects.

Globally distributed development generates new
challenges and difficulties for the measurements. For
example, the gathering of the measurements data can be
problematic because of different development tools and their
versions, work practices with related concepts can vary by
project stakeholders or reliability of the gathered data can
vary due to cultural differences, especially, in subjective
evaluations. Furthermore, interpretation and decision-making
based on the measurement results require that the distributed
development implications are taken carefully into
consideration.

This paper focused on describing a set of metrics that is
successfully used in industrial practice in GSD and given
examples of their visualisation with industrial experiences of
their use. These metrics, are aimed especially to provide the
means to proactively react to potential issues in the project,
and are meant to be used as a whole, not interpreted as single
information of project status. The basic GSD circumstances
with challenges are discussed from viewpoints of metrics

291

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and measurements in order to create awareness and
knowledge of potential GSD specific metrics.

The metrics presented in the paper were common for
both of the companies. Based on experiences, the reasoning
for selecting these metrics was similar: they are easy to
capture and can be quickly calculated and analysed at regular
intervals. Also, one of the most important reasons was that
these metrics were aimed especially to provide the means to
proactively react to potential issues in the project. The
balancing insights from time, effort, cost, functionality and
quality was also seen as very important aspect.

ACKNOWLEDGMENT
This paper was written within the PRISMA project that is

an ITEA 2 project, number 07024 [49]. The authors would
like to thank the support of ITEA [55] and Tekes (the
Finnish Funding Agency for Technology and Innovation)
[56].

REFERENCES
[1] M. Tihinen, P. Parviainen, R. Kommeren and J. Rotherham, "Metrics

in distributed product development," In Proceedings of the Sixth
International Conference on Software Engineering Advances
(ICSEA'11), Barcelona, Spain, 2011, pp. 275-280.

[2] R. Van Solingen and E. Berghout, The Goal/Question/Metric
Method: A Practical Guide for Quality Improvement of Software
Development. McGraw-Hill, 1999.

[3] V. R. Basili, Software modeling and measurement: The Goal
/Question/Metric paradigm. Computer Science Technical Report CS-
TR-2956, UNIMACS-TR-92-96, University of Maryland at College
Park, Sep. 1992, pp. 1-24.

[4] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach. PWS Publishing Co. Boston, MA, USA, 1998.

[5] M. Umarji and F. Shull, "Measuring developers: Aligning
perspectives and other best practices," IEEE Software, vol. 26, (6),
2009, pp. 92-94.

[6] J. Hyysalo, P. Parviainen and M. Tihinen, "Collaborative embedded
systems development: Survey of state of the practice," In Proceedings
of 13th Annual IEEE International Symposium and Workshop on
Engineering of Computer Based Systems (ECBS 2006), IEEE, 2006,
pp. 1-9.

[7] J. D. Herbsleb, "Global software engineering: The future of socio-
technical coordination," In Proceedings of Future of Software
Engineering FOSE '07, IEEE Computer Society, 2007, pp. 188-198.

[8] J. D. Herbsleb, A. Mockus, T. A. Finholt and R. E. Grinter,
"Distance, dependencies, and delay in a global collaboration," In
Proceedings of the ACM Conference on Computer Supported
Cooperative Work, ACM, 2000, pp. 319-328.

[9] M. Jiménez, M. Piattini and A. Vizcaíno, "Challenges and
improvements in distributed software development: A systematic
review," Advances in Software Engineering, vol. Jan-2009, (No. 3),
2009, pp. 1-16.

[10] S. Komi-Sirviö and M. Tihinen, "Lessons learned by participants of
distributed software development," Knowledge and Process
Management, vol. 12, (2), 2005, pp. 108-122.

[11] M. Tihinen, P. Parviainen, T. Suomalainen, K. Karhu and M.
Mannevaara, "ABB experiences of boosting controlling and
monitoring activities in collaborative production," In Proceedings of
the 6th IEEE International Conference on Global Software
Engineering (ICGSE'11) Helsinki, Finland, 2011, pp. 1-5.

[12] F. Q. B. da Silva, C. Costa, A. C. C. França and R. Prikladinicki,
"Challenges and solutions in distributed software development project
management: A systematic literature review," In Proceedings of

International Conference on Global Software Engineering
(ICGSE2010), IEEE, 2010, pp. 87-96.

[13] S. Komi-Sirviö and M. Tihinen, "Great challenges and opportunities
of distributed software development - an industrial survey," In
Proceedings of the15th International Conference on Software
Engineering and Knowledge Engineering (SEKE2003), San
Francisco, USA, 2003, pp. 489-496.

[14] P. Parviainen, "Global software engineering. challenges and solutions
framework," Doctoral Dissertation, VTT Science 6, Finland, 2012,
pp. 106 p. + app. 150 p.

[15] Prisma-wiki, SameRoomSpirit wiki homepage. URL:
http://www.sameroomspirit.org/index.php/Main_Page (Accessed
19.12.2012).

[16] P. Kruchten, The Rational Unified Process: An Introduction.
Addison-Wesley Professional, 2004.

[17] C. E. L. Peixoto, J. L. N. Audy and R. Prikladnicki, "Effort estimation
in global software development projects: Preliminary results from a
survey," In Proceedings of International Conference on Global
Software Engineering, IEEE Computer Society, 2010, pp. 123-127.

[18] K. Korhonen and O. Salo, "Exploring quality metrics to support
defect management process in a multi-site organization - A case
study," In Proceedings of 19th International Symposium on Software
Reliability Engineering (ISSRE), IEEE, 2008, pp. 213-218.

[19] M. Bourgault, E. Lefebvre, L. A. Lefebvre, R. Pellerin and E. Elia,
"Discussion of metrics for distributed project management:
Preliminary findings," In Proceedings of the 35th Annual Hawaii
International Conference on System Sciences HICSS'02, IEEE, 2002,
10 p.

[20] S. Misra, "A metric for global software development environment,"
In Proceedings of the Indian National Science Academy 2009, pp.
145-158.

[21] R. M. Lotlikar, R. Polavarapu, S. Sharma and B. Srivastava,
"Towards effective project management across multiple projects with
distributed performing centers," In Proceedings of IEEE International
Conference on Services Computing (CSC'08), IEEE, 2008, pp. 33-40.

[22] M. T. Lane and P. J. Ågerfalk, "Experiences in global software
development - A framework-based analysis of distributed product
development projects," In Proceedings of the Fourth IEEE
International Conference on Global Software Engineering (ICGSE
2009). 2009, pp. 244-248.

[23] A. Piri and T. Niinimaki, "Does distribution make any difference?
quantitative comparison of collocated and globally distributed
projects," In Proceedings of the Sixth IEEE International Conference
on Global Software Engineering Workshop (ICGSEW'11), 2011, pp.
24-30.

[24] B. Sengupta, S. Chandra and V. Sinha, "A research agenda for
distributed software development," In Proceedings of the 28th
International Conference on Software Engineering, ACM, 2006, pp.
731-740.

[25] N. Ramasubbu and R. K. Balan, "Globally distributed software
development project performance: An empirical analysis," In
Proceedings of the the 6th Joint Meeting of the European Software
Engineering Conference aNd the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC-FSE '07), ACM, 2007,
pp. 125-134.

[26] D. B. Simmons, "Measuring and tracking distributed software
development projects," In Proceedings the Ninth IEEE Workshop on
Future Trends of Distributed Computing Systems (FTDCS 2003).
IEEE, 2003, pp. 63-69.

[27] D. B. Simmons and N. K. Ma, "Software engineering expert system
for global development," In Proceedings of 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI'06), IEEE,
2006, pp. 33-38.

[28] I. A. da Silva, M. Alvim, R. Ripley, A. Sarma, C. M. L. Werner and
A. van der Hoek, "Designing software cockpits for coordinating
distributed software development," In the First Workshop on

292

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Measurement-Based Cockpits for Distributed Software and Systems
Engineering Projects, 2007, pp. 14-19.

[29] E. Carmel, Global Software Teams: Collaborating Across Borders
and Time Zones. Prentice Hall PTR, Upper Saddle River, NJ, USA,
1999.

[30] E. Carmel and P. Tija, Offshoring Information Technology: Sourcing
and Outsourcing to a Global Workforce. Cambridge University Press,
the United Kingdom, 2005.

[31] D. E. Damian and D. Zowghi, "An insight into the interplay between
culture, conflict and distance in globally distributed requirements
negotiations," In Proceedings of the 36th Annual Hawaii International
Conference on System Sciences (HICSS'03), 2003, 10 p.

[32] J. Herbsleb and A. Mockus, "An empirical study of speed and
communication in globally distributed software development," IEEE
Transactions on Software Engineering, vol. 29, (6), 2003, pp. 481-
494.

[33] M. Paasivaara and C. Lassenius, "Collaboration practices in global
inter-organizational software development projects," Software
Process: Improvement and Practice, vol. 8, (4), 2003, pp. 183-199.

[34] R. Battin, R. Crocker, J. Kreidler and K. Subramanian, "Leveraging
resources in global software development," IEEE Software, vol. 18,
(2), 2001, pp. 70-77.

[35] D. M. Wahyudin, S. Heindl, A. Biffl and B. R. Schatten, "In-time
project status notification for all team members in global software
development as part of their work environments," In Proceeding of
SOFPIT Workshop 2007, SOFPIT/ICGSE, Munich, 2007, pp. 20-25.

[36] J. D. Herbsleb and D. Moitra, "Global software development," IEEE
Software, vol. 18, (2), 2001, pp. 16-20.

[37] R. Welborn and V. Kasten, The Jericho Principle, how Companies
use Strategic Collaboration to Find New Sources of Value. John
Wiley & Sons, Inc., Hoboken, New Jersey, 2003.

[38] H. Holmstrom, E. O. Conchuir, P. J. Ågerfalk and B. Fitzgerald,
"Global software development challenges: A case study on temporal,
geographical and socio-cultural distance," In Proceedings of IEEE
International Conference on Global Software Engineering
(ICGSE’06), IEEE, 2006, pp. 3-11.

[39] V. Casey and I. Richardson, "Virtual teams: Understanding the
impact of fear," Software Process Improvement and Practice, vol. 13,
(6), 2008, pp. 511-526.

[40] B. Al-Ani and D. Redmiles, "Trust in distributed teams: Support
through continuous coordination," IEEE Software, vol. 26, (6), 2009,
pp. 35-40.

[41] G. Borchers, "The software engineering impacts of cultural factors on
multicultural software development teams," In Proceedings of the 25th
International Conference on Software Engineering (ICSE’03), IEEE,
2003, pp. 540-545.

[42] G. Hofstede, Culture’s Consequences. Comparing Values, Behaviors,
Institutions, and Organizations, Across Nations. Sage Publications.
London, 2nd edition, 2001.

[43] K. H. Möller and D. J. Paulish, Software Metrics: A Practitioner's
Guide to Improved Product Development. Institute of Electrical &
Electronics Enginee, London, 1993.

[44] CMMI, "CMMI for development," Tech. Rep. version 1.2., Technical
Report CMU/SEI-2006-TR-008, 2006.

[45] W. A. Shewhart, Statistical Method from the Viewpoint of Quality
Control. Graduate School of Agriculture, Washington, 1939.
Referenced in W.E. Deming: Out of Crisis. Cambridge, Mass.: MIT
Center for Advanced Engineering Study, 1986.

[46] R. S. Kaplan and D. P. Norton, "The balanced scorecard-measures
that drive performance," Harward Business Review, (No. 92105),
1992, pp. 71-79.

[47] G. Lawrie and I. Cobbold, "Third-generation balanced scorecard:
Evolution of an effective strategic control tool," International Journal
of Productivity and Performance Management, vol. 53, (7), 2004, pp.
611-623.

[48] D. Card, "Integrating practical software measurement and the
balanced scoreboard," In Proceedings of the 27th Annual International
Computer Software and Applications Conference COMPSAC 2003,
3-6 Nov. 2003, pp. 362- 363.

[49] PRISMA, Productivity in Collaborative Systems Development, ITEA
project (2008-2011) number 07024, Project info page, URL:
http://www.itea2.org/project/index/view/?project=237 (Accessed
19.12.2012).

[50] J. Eskeli, J. Maurolagoitia and C. Polcaro, "PSW: A framework-based
tool integration solution for global collaborative software
development," In Proceedings of the Sixth International Conference
on Software Engineering Advances (ICSEA'11), Barcelona, Spain,
2011, pp. 124-129.

[51] I. Jacobson, G. Booch and J. Rumbaugh, The Unified Software
Development Process. Addison-Wesley Pub Co, Addison-Wesley
Object Technology Series, 1999.

[52] P. Kruchten, "A rational development process," CrossTalk, vol. 9, (7),
1996, pp. 11-16.

[53] E. Demirors, G. Sarmasik and O. Demirors, "The role of teamwork in
software development: Microsoft case study," In Proceedings of the
23rd EUROMICRO Conference, New Frontiers of Information
Technology, 1997, pp. 129-133.

[54] M. Hoegl and H. G. Gemuenden, "Teamwork quality and the success
of innovative projects: A theoretical concept and empirical evidence,"
Organization Science, vol. 12, (4), 2001, pp. 435-449.

[55] ITEA 2, Information Technology for European Advancement, ITEA
2 homepage, URL: http://www.itea2.org/ (Accessed 19.12.2012).

[56] Tekes, the Finnish Funding Agency for Technology and Innovation,
Tekes homepage. URL: http://www.tekes.fi/eng/ (Accessed
19.12.2012).

